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Abstract

Numbers of lapwings (Vanellus vanellus) breeding in Britain and Ireland have declined over 

the last 20 years. It has been suggested that intensification of agricultural practices has 

contributed to the decline by reducing food abundance and availability and the suitability of 

nesting and chick rearing habitat. Much of the previous research has been conducted on 

arable habitats while very little is still known of the effects of grassland improvement on 

lapwing food supply and breeding success.

This thesis investigates the effects of grassland management techniques, i.e. fertiliser 

application, drainage and re-seeding on the invertebrate food supply and breeding success of 

lapwings at the Loch Gruinart Nature Reserve on Islay. The study was carried out using a 

farm-scale factorial experiment manipulating timing of fertiliser and water levels.

The key findings were that both water and fertiliser treatments had a significant effect on 

earthworm biomass, an important component of adult lapwing diet and surface invertebrates, 

important in chick diet. Lapwing nest placement was affected by both water and fertiliser 

treatment, however this was dependent on field. Ditches were selected over rigs as preferred 

nest sites, probably because chick food supply and availability on ditches is greater than rigs. 

Sward structure interacted with predator activity to affect nest survival. In fields where 

predator activity was low nests were more successful in longer sward, in fields where 

predator activity was high nests were more successful in shorter vegetation, benefiting from 

early detection of predators.

Chick foraging behaviour and condition was influenced by surface invertebrate abundance 

and vegetation structure. Lapwing broods favoured areas of short sward for foraging; these 

areas included late fertilised treatments and ditches. Foraging rates in short sward were 

significantly greater than in long sward, explaining the difference in treatment preference. No 

effect of treatment was observed in determining egg or clutch size, however chicks which 

hatched in treatments with abundant food supplies were heavier and survived for longer.

The use of the farm-scale experiment has allowed us to demonstrate the complex and 

multifactorial impacts of two commonly used farming practices on the food supply, 

behaviour, life history and productivity of a declining farmland bird species.
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Chapter 1

General introduction & study site



Farmland Bird Declines

Populations of farmland birds have suffered widespread declines and range contractions 

throughout Europe since the 1950s. It is now widely accepted that post war changes in 

agricultural practices have contributed to the declines (Siriwardena et al. 2001, Wilson et al. 

1999, Fuller et al. 1999, O’Connor & Shrubb 1986). During and after the second world war, 

agricultural policy in Europe and later in the European Union changed, offering financial 

incentives to farmers to modernise farming methods and increase food production. These 

changes were delivered by means of subsidies provided by the Common Agricultural Policy 

(CAP) of which a modified version is still functional today. In Britain, changes in lowland 

farmland practices that occurred after the introduction of the CAP included complete 

mechanisation of practices such as mowing and ploughing (O’Connor & Shrubb 1986), a 

great increase in drainage of wetland habitats (Jefferson & Grice 1998, Self et al. 1994) and 

the more widespread use of inorganic fertilisers and the introduction of synthetic pesticides 

(Fuller, 1999). In the 1970s intensification of farming practices increased including a switch 

from spring to autumn sowing of cereal crops and the simplification of crop rotations with 

the loss of grass leys (O’Connor & Shrubb 1986, Evans 1997). On grassland habitats silage 

production replaced hay and stocking rates increased (O’Connor & Shrubb 1986).

The relationship between farmland bird declines and agricultural intensification has been 

tested in various ways. On a community level, long-term monitoring schemes such as the 

Common Bird Census (CBC) have identified downward population trends and range 

contractions of some farmland bird specialists. Many of these species are now on the ‘Red 

List’ of birds of conservation concern (Gregory et al. 2002). The declines in farmland bird 

populations parallel declines in both plant and invertebrate food supply on farmland (Wilson 

et al. 1999, Benton et al. 2002) and habitat loss, such as changes in the sowing of cereal 

crops (Chamberlain et al. 2000). Secondly, many autecological studies have demonstrated
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negative behavioural (e.g. habitat use) and demographic (e.g. hatching success and chick 

survival) responses of farmland birds to agricultural intensification (e.g. Donald et al. 2002, 

Baillie, et al. 1997, Green 1984). While the use of field experiments in identifying the 

mechanisms of population declines with changes in management has been limited, they have 

proved to be powerful in understanding and quantifying the impact of a particular 

component of agricultural change (Potts 1986, Green & Stowe 1993).

Agricultural intensification can impact bird populations in two ways affecting them: 1. 

directly, through removal of habitat or increased mortality due to disturbance and 2. 

indirectly, by altering food resources or quality of nesting sites (Fuller 1999). For example, 

the change in timing of sowing cereal crops has contributed to the decline of skylarks 

Alauda arvensis by changing the vegetation structure, thus reducing the amount of suitable 

nesting habitat (Chamberlain & Crick 1999, Donald & Vickery 2000, Donald et al. 2002). 

Declines of invertebrates on farmland are thought to be responsible for the decline in 

gamebird species by reducing chick survival (Potts 1970 & 1980, Green 1984).

The impacts of changes in arable farming practices on farmland birds over the last 10 years 

are well documented (Siriwardena et al. 2001, Wilson et al. 1999). Grassland habitats, on 

the other hand, which have been subjected to the same degree of intensification, have 

received very little attention despite recent declines in species associated with grassland 

habitats (Vickery et al. 2001).

The Northern Lapwing
The Northern Lapwing Vanellus vanellus, locally known in many areas of Britain and 

Ireland as “peewits”, are terrestrial plovers, which are closely associated with farmland. 

They are conspicuous in their appearance and behaviour especially during the breeding 

season where males can be seen corkscrewing and tumbling in the air. This behaviour along
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with their high-pitched screech, makes them one of the most widely recognised and popular 

birds of the British countryside.

Lapwings breed in most of Europe including Iceland, but more sparsely through North 

Africa across South Russia and North China to Ussuriland. The Netherlands, Belarus and 

Great Britain hold 80-90% of the total European breeding population. Their wintering 

grounds range from the Atlantic littoral (Ireland to Iberia) and the coastal plains of North 

West Africa through the Mediterranean (Hagemeijer & Blair 1997).

In the early 19th century, lapwings in Britain and Ireland were widely distributed and a 

common bird of the countryside (Holloway 1996). Since then they have undergone a series 

of population fluctuations. In the 1830s lapwing populations suffered a decline due to egg 

collecting, netting of autumn flocks and the drainage and enclosure of farmland. Numbers 

then increased briefly following the introduction of the Lapwing Act of 1926 and then 

suffered another decline in the 1950s (Holloway 1996).

Population trends documented by the British Trust for Ornithology (BTO) / Joint Nature 

Conservancy Council’s (JNCC) Common Bird Census (CBC) suggest that the decline in 

numbers since the 1950s has accelerated in the last 20 years (Baillie et al. 2002). Other 

surveys reveal declines in England and Wales of 38 % between 1982 and 1989 (O’Brien & 

Smith 1992) and of 49% between 1987 and 1998 (Wilson et al. 2001). The Scottish 

population has suffered a decline of 28% between 1994 and 1998 as documented by the 

British Trust for Ornithology (BTO) / Royal Society for the Protection of Birds (RSPB) / 

Joint Nature Conservancy Council’s (JNCC) Breeding Bird Survey (BBS) (Wilson & 

Browne 1999), and a 13% decline in lowland areas between 1992 and 1997 (Tharme 1998). 

In addition there has been a marked range contraction from the southwest of England, 

northwest Scotland, parts of Wales and throughout Ireland between breeding atlas periods
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1968-1972 (Sharrock 1976) and 1988-1991 (Gibbons et al. 1993). Despite this, lapwings 

remain widely distributed in Britain (Gibbons et al. 1993). The decline in Britain is 

consistent with the rest of Europe where 50% of European countries have experienced range 

contractions and a decline in numbers during the period 1970-1990, by 20-50% (Hagemeijer 

& Blair 1997). However, eastern European countries, such as Russia, Poland, Ukraine, 

Romania, Lithuania and Croatia, all regions where farming practices are not yet fully 

industrialised, report mostly stable numbers (Hagemeijer & Blair 1997).

In order to obtain a better understanding of the change in population dynamics, analysis of 

British lapwing ringing recoveries was undertaken by Peach et al. (1994). It was shown that 

mean adult annual survival rates were at 0.705 in the period 1930-1988, but since 1960 have 

increased to 0.752. Further analysis revealed that while the proportion of birds surviving 

their first year had fluctuated markedly, no long-term trend was evident, concluding that the 

recent decline in lapwings in Britain could not be attributed to a reduction in adult or first 

year survival. Peach et al. (1994) therefore suggested a reduction in chick productivity was 

contributing to the overall decline of lapwings in Britain and identified that to replace adult 

losses lapwings need to produce 0.83 - 0.97 fledglings per pair per year. Analysis of nest 

record data from the BTO’s Nest Record Scheme shows an increase in failure rates at egg 

stage from 40% to 49% in the same period of decline (Baillie et al. 2002). It appears 

therefore that a reduction in breeding success is responsible for the overall decline, however 

the mechanisms are still poorly understood.

Farmland is now considered the most important habitat type for lapwings (Hudson et al. 

1994). In a survey of England and Wales in 1987, 96% of breeding lapwings of that 

population were recorded on agricultural land (Shrubb & Lack 1991) and 85% of the 

Scottish population were recorded on farmland (Thom 1986). It is now widely recognised
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that a reduction in habitat quality through agricultural intensification is responsible for 

declines in breeding lapwing populations in Britain (e.g. Lister 1964, Green & Cadbury 

1987, Galbraith 1988b, Baines 1990, Gibbons et a l  1993, Hudson et al. 1994) and 

elsewhere in Europe (e.g. Schifferli 2000, Hutchinson 1989, Hagemeijer & Blair 1997, Berg 

1992, Beintema & Miiskens 1987).

Factors affecting breeding lapwing on farmland 

Nest habitat
Nest site selection in lapwings is determined by vegetation height (e.g. Spencer 1953, 

Galbraith 1988a, Berg et al. 1992, Hudson et a l  1994), predator avoidance (e.g. Baines 

1990, Berg et a l  1992) and philopatry (Thompson et a l  1994).

The impacts of agricultural intensification on nesting lapwings are well documented. On 

arable habitats the switch from spring to autumn sown cereal crops has reduced the amount 

of suitable habitat available for nesting (Shrubb 1990). A change from hay to silage 

production through drainage and fertiliser input on grassland habitats has had negative 

impacts on nesting lapwings. Silage production involves earlier, fast growing swards 

unsuitable for nesting (Lister 1964). Lapwings leave areas when the sward height reaches 

15cm and avoid intensively managed grass crops where the sward is too dense and tall for 

nesting (Lister 1964, Shrubb & Lack 1991). In the Netherlands, the promotion of grass 

growth achieved through drainage and fertilizer application has caused lapwings and other 

wader species to breed 1-2 weeks earlier than in the early 1900s (Beintema & Miiskens 

1987). An increase in nest mortality through trampling by livestock (Beintema & Miiskens 

1987, Shrubb 1990), destruction by farm machinery (Baines 1990, Kruk et a l  1996) and 

increases in the risk of detection by predators (Baines 1990) have also occurred.
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In lowland Britain, lapwings nest on both grassland and arable habitats. Arable, especially 

spring cereals are preferred for nesting (Shrubb 1990). In an analysis of nest record cards, 

Shrubb (1990) found that hatching success on arable was greater than pasture. It appeared 

that lapwings nesting in spring cereals benefited from easier nest placement due to sparse 

vegetation cover, less predation risk due to clearer views around the nest and no trampling 

from stock (Shrubb 1990).

The role of food in selecting nest sites is much debated. While food supply during the pre­

breeding season is important in providing energy for male territorial displays and egg 

production in females (Galbraith 1989a), it is not considered important in determining nest 

site selection on arable or grassland habitats (Baines 1990, Galbraith 1989a). However, other 

studies attribute preference for arable as a nesting habitat in part to the availability of 

earthworms early in the season (Berg et a l 2002, Berg 1993, Blomqvist & Johansson 1995). 

Proximity to good chick rearing habitat is important in determining chick survival (e.g. 

Shrubb 1990, Galbraith 1989a, Johansson & Blomqvist 1996), but in many cases this is not 

a key factor in determining nest placement (e.g. Galbraith 1989a, Kirby & Tyler 1999).

Philopatry and breeding site fidelity are also important factors in determining where 

lapwings nest (Thompson et a l 1994). However recent research by Berg et a l  (2002) 

suggests that nest site choice is not driven by past experience but rather by environmental 

conditions on arrival in the spring.

Previous work on lapwing nesting habitat selection on farmland has focussed on the 

comparison of behavioural and demographic responses between grassland and arable 

habitats. However, the mechanisms underlying these responses within grassland habitat 

types are still poorly researched and understood.

7



Chick-rearing habitat

Lapwing chicks are precocial and after hatching broods are moved to suitable chick- rearing 

areas by adults (Cramp & Simmons 1983). While hatching success is high on arable 

habitats, and fledging success of arable clutches is dependent on proximity to grassland 

habitats that provide good chick-rearing areas (e.g. Shrubb 1990, Galbraith 1989a, 

Johansson & Blomqvist 1996). It has been suggested that vegetation height on arable 

habitats constrains the ability of chicks to forage and that food supply is less plentiful on 

arable than on grassland habitats (Galbraith 1988a). Galbraith (1988a,b) found that chicks 

that did not leave their natal arable fields deteriorated in body condition.

Chick-rearing areas tend to be associated with short vegetation and high soil moisture (e.g. 

Milsom et al. 2002, Berg 1992, Baines 1990, Jackson & Jackson 1980). It has been 

suggested that these areas provide more abundant and accessible food than nesting sites 

(Redfern 1982, Galbraith 1988b, Berg 1992) as well as allowing easier detection of 

predators (Galbraith 1988b). However, grassland improvement (i.e. fertiliser application and 

drainage) has resulted in a loss of suitable chick rearing habitat available to lapwing broods. 

Lapwing chicks now have to mover greater distances to find suitable foraging areas and 

these long distance movements are associated with reduced survival (Blomqvist & 

Johansson 1995).

Lapwing food supply

The importance of food in determining breeding success in birds is widely acknowledged. It 

has been suggested that a reduction in food abundance and availability, through grassland 

improvement, is one of the main factors contributing to lapwing decline in Britain (Vickery 

et al. 2001, Wilson et al. 2001). Previous studies have shown how adult food supply prior to 

breeding can influence chick survival through egg quality (Blomqvist & Johansson 1995,



Galbraith 1988b). Chick survival can also be determined by proximity to an abundant food 

source (Galbraith 1988b, Baines 1990). Despite this very little is known about the effects of 

grassland management on the abundance and availability of lapwing food supply.

Many studies have demonstrated that Lumbricidae (earthworms), Coleoptera (beetles) and 

fly larva (particularly Tipulidae) are be the most important components of both lapwing 

adult and chick diet during the breeding season (Baines 1990, Galbraith 1989b & Bientema 

et al. 1991). Early in the breeding season lapwings are found feeding in areas where 

earthworm densities are high (Galbraith 1989a, Baines 1990, McKeever unpublished data). 

Earthworm biomass during this period is important in determining lapwing egg size, which 

has implications for chick survival (Galbraith 1988c, Blomqvist & Johansson 1995). 

Lapwing chick diet is varied and opportunistic (Hudson et al. 1994), including beetles, 

leatherjackets, spiders and earthworms (Galbraith 1989b, Baines 1990, Beintema et al 1991, 

Johansson & Blomqvist 1996).

Recent research has quantified a negative response of some species of terrestrial earthworms 

to winter flooding where recreation of lowland wet grassland has been attempted (Ausden et 

al. 2001). Earthworm responses to fertiliser can be positive or negative depending on the 

rate of application (Edwards 1984) although in general very little is known about the effects 

of either drainage or fertiliser application on surface invertebrate abundance.

In a recent review by Vickery et al. (2001), the need for more research into the effects of 

grassland management and their impacts on bird populations, in particular how food 

abundance is affected by fertiliser application, was highlighted.
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Study site 

Islay

Islay is the southern most of the Scottish Inner Hebrides, lying west of mainland Scotland 

and north of Ireland. It has an area of 614 km2. Islay’s climate is hyper-oceanic with lower 

summer and higher winter temperatures than the mainland (Boyd & Bowes 1983). Sea level 

c.7000 years ago was about 8-10m above its present level. Extensive and shallow mudflats 

linked Loch Gruinart and Loch Indaal. This area was probably attractive to considerable 

numbers of wildfowl and waders. At this time Islay’s climate encouraged the growth of a 

variety of tree species, including alder, hazel, birch, willow and oak. Insect and woodland 

bird populations flourished. At the beginning of the Neolithic period (c. 5,500 years ago) 

farming practices were introduced and land clearance made way for crops and grazing. 

Today, Islay’s mosaic of fertile farmland, heath, moorland and machair habitats attracts a 

diverse assemblage of breeding and wintering birds.

Loch Gruinart RSPB Reserve

The Loch Gruinart Reserve (Figure 1) was purchased by the RSPB in 1984 in response to 

increased threats to the internationally important numbers of wintering Greenland Barnacle 

geese Branta leucopsis and Greenland Whitefronted geese Anser albifrons flavirostris. It is a 

major farm holding which comprises a variety of habitat types including farmland, heather 

moorland, intertidal mudflats, salt marsh and woodland and has been designated a site of 

Special Scientific Interest (SSSI) (part) Special Protection Area (SPA) and RAMSAR site. 

The reserve includes the most important roosting and feeding areas for Barnacle geese on 

Islay. The reserve has fulfilled its role as a refuge for geese, which still remains a priority. In 

1994 the management direction of the reserve expanded to encompass the wide variety of 

habitats and species of high priority such as Corncrake Crex
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Vc,'»ĉ .ifr>

Gruinart Flats
Reserve Boundary lamh-ontinri

BltckpaHLTwvcoMta

KonUJ«*l

tj-2rirw

6*21'CTW

 L _

55-60VN -

©  Crown Copyright. RSPB licence ALB 15519

Figure 1 Map of the RSPB Loch Gruinart Nature Reserve, Isle of Islay, 
Scotland.

11



crex, Hen Harrier Circus cyaneus, chough Pyrrhocorax pyrrhocorax and breeding waders. 

The reserve habitats are dynamic and require continual management work to maintain 

suitable conditions for priority species (Beaumont et al. 1996, RSPB 2001). This is largely 

achieved by the running of an in hand farming enterprise, which enables the use of this site 

as a demonstration of managing habitats within an agricultural system.

Gruinart Flats

Gruinart Flats (Figure 1) were claimed from an area of salt marsh and floodplain of Loch 

Gruinart in 1812 with the construction of a sea bank across the saltings at the head of Loch 

Gruinart. This was subsequently breached and then repaired creating 400ha of new land for 

agriculture (Self et al. 1994). The Gleann Mor River that then meandered across Gruinart 

Flats from Eresaid to Loch Gruinart was directed along a new channel into Loch Indaal at 

Uiskentuie. Gruinart Flats comprises 86.1ha of improved and semi-improved grassland. It is 

managed for wintering Greenland Barnacle and Whitefronted geese, nationally important 

numbers of Corncrake and Spotted crake Porzana porzana and is one of the most important 

agricultural sites in Scotland for breeding waders.

The hydrology of Gruinart Flats is controlled by a system of sluiced canals along field 

boundaries and a series of shallow ditches which run along the length of each field (Figure 

2a). In fields 25 and 26-31 water control of individual rigs (Figure 2b) is achieved by 

attaching 90° angled pipes on individual outflow drains. This allows or restricts water flow 

out of rigs. High water levels are maintained until July when sluices are lowered for silage 

harvesting.

Reseeding is undertaken on a five-year rotation. Fields are ploughed then sown with a grass 

seed mix (40% ryegrass, 29% timothy, 19% fescues and 12% clover) at a rate of 42kg/ha. 

Reseeding takes place in the autumn after a cut of silage has been taken in August. Cattle
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of fields, view to south.
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then graze silage aftermath until the end of September. Cattle are used to produce an 

optimum sward height of c. 10cm for grazing Barnacle and Whitefronted Geese. Goose 

grazing results in favourable conditions for breeding waders including Lapwing (175-200 

pairs) and Redshank Tringa totanus (50-100 pairs) by cropping the sward to a suitable 

height for nesting and chick rearing.

Fertiliser is applied to the Flats to promote grass growth for corncrake cover, silage for 

winter feed, to maintain the mineral balance of the soil and achieve successful reseeds. A 

15:8:15 NPK blend is applied at the rate of 750kg/ha each year.

Aims of study

Despite the recent declines in the number of lapwing breeding on improved lowland 

grassland in Britain (Baillie 2002, Wilson et al 2001, Wilson & Browne 1999, Tharme 1998, 

Gibbons et al. 1993), very little is known of the factors causing the decline. Many authors 

suggest that a change in management in particular fertilising, reseeding and drainage have 

affected lapwings by creating habitat unsuitable for nesting and chick rearing and reducing 

food availability for chicks (e.g. Baines 1990, Galbraith 1988b, Beintema & Miiskens 1987, 

Berg et al. 1992, Blomqvist & Johansson 1995) thereby reducing productivity. This thesis 

investigates the effects of grassland management (drainage, fertilising and reseeding), using 

a large farm-scale factorial experiment, on lapwing invertebrate food supply and lapwing 

breeding success.

Thesis outline

Chapter 2 investigates long-term spatial and temporal trends in lapwing breeding success at 

Gruinart flats between 1995 and 1999. These results are used to compare and contrast with 

results from the experiment. Chapter 3 outlines the experimental design and tests the 

hypothesis that manipulating water levels and fertiliser application affects soil moisture,
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sward height and the abundance of surface and subsurface invertebrates. In Chapter 4 the 

response of lapwing nesting behaviour (nest density and hatching success) to treatments is 

investigated. The direct (sward manipulation) and indirect (food supply) impacts of 

grassland management are assessed. Chapter 5 investigates chick behaviour in relation to 

treatment. In particular, the role of food and vegetation structure in determining habitat use 

by lapwing chick is examined. The effects of treatment on aspects of lapwing life history 

(clutch and egg size, chick body condition and chick survival) are examined in Chapter 6. 

Finally, Chapter 7 concludes with a general discussion of the results found, leading to 

management recommendations for the study site. How these recommendations might be 

applied to the wider countryside will also be discussed.
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Chapter 2

Spatial and temporal trends of Northern Lapwing 

productivity at Gruinart Flats 1995-1999



Abstract

Lapwings breeding at the RSPB Loch Gruinart Nature Reserve were monitored from 1995 -  

1999. Pair density of the Flats population remained constant throughout the study ranging 

from a peak number of 109 pairs in 1995, reaching a low count of 81 pairs in 1998, with 

numbers recovering in 1999 to 100 pairs. Nest density over the study period was dependent 

on field. Marked decreases were observed in 2 fields, increases were observed in 2 fields 

while nest density in 3 fields remained constant over the study period. The vicinity of 

ditches was preferred over rigs as nest sites. Variation in hatching success between years 

was explained by lay date. Nests initiated early in the season had a higher chance of survival 

to hatching than those initiated later in the season. Hatching success between first and 

replacement clutches varied depending on field. Fledging success increased over the study 

period. Survival of first and replacement broods to fledging was dependent on natal field 

proximity to predator nests. Despite fluctuations in nest density and hatching success 

between fields, overall productivity of the lapwing population at Gruinart Flats appears to 

have increased steadily over the study period.
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2.1 Introduction

Numbers of lapwing breeding in Britain and Ireland have declined over the last 20 years 

(O’Brien & Smith 1992, Baillie et al. 2002, Wilson et al. 2001). It has been suggested that 

intensification of agricultural practices has contributed to the decline by reducing the 

amount of suitable breeding habitat and by reducing invertebrate food availability to chicks 

(Chamberlain & Crick 2002, Beintema et al. 1991, O’Brien & Smith 1992).

In lowland areas, grassland improvement has been identified as one of the main causes of 

lapwing decline (e.g. Chamberlain & Crick 2002, O’Brien & Smith 1992, Shrubb & Lack 

1991, Shrubb 1990). This often involves a switch from hay to silage production which has 

resulted in an increase in drainage, fertilising and reseeding and these practices create 

habitat that is unsuitable for nesting and chick rearing.

The Loch Gruinart RSPB Reserve on Islay is one of the most important agricultural sites in 

Scotland for breeding waders. When the reserve was acquired by the RSPB in 1984, 

management of Gruinart Flats was primarily aimed at providing grasslands suitable for over­

wintering geese. This management included fertilising in the spring and reseeding on a 7- 

year rotation. In 1990 management of the site was expanded to benefit other species, such as 

breeding waders and corncrake. This resulted in a change to the spring farming operations 

on the Flats (Beaumont et al. 1996). Practices such as ploughing, fertilising and rolling were 

delayed until later in the season and thereafter, numbers of breeding Lapwing on the reserve 

increased from 100 pairs in 1990 to just over 300 pairs in 1994 (Figure 1).

With increasing concern over declining lapwing populations elsewhere in the UK, the Loch 

Gruinart population offered the chance to study the breeding ecology of and apparently 

increasing population. In 1995 a pilot study was undertaken on the Flats, which held the
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highest densities of breeding waders on the reserve, to quantify Lapwing productivity. This 

included intensive monitoring of nest survival and chick survival throughout the breeding 

season. Productivity in the first year of the study (1995) was found to be particularly low 

with just 0.16 chicks per pair fledged (Welstead 1995), well below the 0.76 chicks per pair 

required to maintain a stable population (Peach et a l  1994). This posed many questions on 

how the current management was affecting productivity and Lapwing monitoring was 

therefore continued on the site from 1996-1999.
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Figure 1 Breeding Lapwing population at Loch Gruinart RSPB Reserve 1995- 
1999.

Numbers o f breeding pairs were taken from Breeding Wader Survey data. Survey methods 
are described in Bibby, Burgess & Hill (1992).

In this chapter, data from the ‘Lapwing productivity monitoring project 1995-1999’ are

analysed to investigate the temporal and spatial trends of lapwing nest density, nest survival

and chick survival in relation to management (reseeding) and within-field topography
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(rig/ditch effect). These baseline results will be used to compare with results from the 

experiment to follow.

The data presented in this chapter were collected by the RSPB as part of the ‘Lapwing 

productivity monitoring project 1995-1999’ (Rout 1999). Contributions made by data 

collectors, namely Fiona Rout, Julia Welstead and James Gordon and project managers 

Mike Peacock and David Beaumont are gratefully acknowledged.
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2.2 Methods

2.2.1 Nest Density

Nests were found by locating ‘scraping’ or ‘incubating’ birds at the beginning o f the 

breeding season. Observations were made using a Kowa TSN telescope with a x30 

magnification wide angled lens and 8x42 magnification binoculars from a landrover used as 

a mobile hide. All fields were monitored daily for new nests. As a nest was initiated, its 

location was mapped along with a brief habitat description and how to re-locate it using 

reference points. Nest location within fields (rig / ditch) was also noted. Nests located up to 

1.5m from the centre o f each ditch (see Figure 2) were recorded as ditch nests.

Ditch
centre

Ditch

Figure 2 Rig and Ditch boundaries.

Diagram not to scale.
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2.2.2 Nest survival

All nests were monitored daily until hatching or failure. Initiation date of each nest and date 

of hatching or failure was recorded. A nest without an incubating adult after 5 consecutive 

days was recorded as a failure. All nests initiated after the date of the first confirmed 

replacement attempt were included in the analysis as replacement nests (Kirby & Tyler 

1999).

2.2.3 Brood survival

Hatched broods stayed in close proximity to the nest for 3-4 days where numbers of chicks 

hatching were recorded. Chicks were ringed using BTO metal rings and colour rings to 

allow individual identification on re-location. Numbers of chicks per brood were monitored 

every 3 days for survival and their location noted to monitor movement within and between 

fields. Brood survival estimates were derived using the modified Kaplan Meier procedure 

described in Flint et al. (1995). This estimator controls for the assumption that chicks within 

broods have non-independent survival probabilities. Two brood survival estimates were 

calculated for 1. broods from hatch to day 5 as natal field effects are likely to be more 

detectable at this stage before broods are moved to other potential feeding areas and 2. from 

hatch to fledge to determine overall trends in survival between years.

2.2.4 Data analysis

Generalised linear models in S-plus were used to test the effects of ‘year’ and ‘field’ on nest 

density, nest and brood survival. GLMs allow the analysis of non-gaussian error 

distributions through the use of linearising link functions (McCullagh & Nelder 1983). 

Minimal models are arrived at by stepwise deletion (McCullagh & Nelder 1983). Model 

residuals are checked for normality. Predicted fits were used to display results controlling 

for other terms remaining in the model. Rig and ditch are nested in field to control for 

repeated measures.
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2.3 Results

2.3.1 Nest Density

Vegetation structure and predator avoidance are important factors determining nest site 

selection in lapwings (Redfern 1982, Beintema & Miiskens 1987, Berg et a l  1992). In this 

section, the effects of 1. proximity of lapwing nests to avian predator perches, such as 

known buzzard Buteo buteo nests and 2. field management, on lapwing nest density are 

examined.

Firstly, two predator indices per field were derived according to their proximity to avian 

predator nests or potential predator nests (Appendix 1, Figures 1 & 2). The ‘distance from 

buzzard nest’ index was calculated from the mean distance of lapwing nests to the nearest 

buzzard nest over the study period. The ‘distance from woodland’ index was calculated from 

the mean distance of lapwing nests to the nearest woodland (potential avian predator nests 

and perches) over the study period.

Nest density varied significantly within fields over time as shown by the year x field 

interaction (Table 1, Figure 3). It appeared that nest density increased over the study period 

in fields 29, 30. Nest density in fields 25, 28 and 32 appear to have remained constant. Field 

age and both predation indices did not predict this variation (Table 1).

Nest distribution within fields varied significantly, with more nests initiated on ditch edges 

than rigs (Table 1, Figure 4).
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Table 1 Generalised linear model of nest density 1995-1999.

Minimal model

Term d.f Deviance F-value

NULL 69 263.32

Field 6 31.62 <0.001

Field (Rig/Ditch) 7 167.14 <0.001

Year 4 10.48 0.032

Year x Field 24 39.98 0.021

Terms dropped

Field age 1 0.426 0.410

Distance from woodland 1 1.189 0.275

Distance from buzzard nest 1 0.111 0.738

Nest density, being count data, has a poisson distribution. The effects of year, field, field age and 2 

predator indices were analysed using a log-linear GLM. (Rig/Ditch) was nested in Field to control 

for within-field variation. Model residuals were Normal.
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Figure 3 Variation in nest density in fields between years

The predicted values control for terms remaining in the minimal model (Table 1).
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Figure 4 Variation in nest density within fields.

The predicted values control for terms remaining in the minimal model (Table 1).
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2.3.2 Hatching Success

Hatching success varied significantly with lay date and year as shown by the lay date x year 

interaction (Table 2). Chances of a clutch surviving until hatching decreased significantly 

over the season (Figure 5). It also appeared that hatching success between years was 

dependent on lay date (Table 2).

Hatching success between first and replacement clutches varied between fields (Table 2, 

Figure 6). Hatching rates of first clutches were higher than replacement clutches in fields 28 

and 32, where the difference in hatching rates between first and replacement clutches in field 

28 appeared to be significant (Table 2, Figure 6). Hatching rates of replacement clutches in 

remaining fields (25, 29, 30) were greater than first clutches.

The effects of two predation indices were investigated in the model. The effects of ‘distance 

from buzzard nest’ index and the ‘distance from woodland’ index used in the previous 

section were analysed. These indices did not explain variation in hatching success between 

fields or years (Table 2).

Rainfall (mm) was also included in the model, after Rout (1999), but did not explain the 

variation in hatching success between years (Table 2). Field age and nest density within 

fields were also not found to be predictors of variation of between years or fields (Table 2).
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Table 2 Generalised linear model of nest survival 1995-1999.

Minimal model

Term d.f Deviance F-value

NULL 624 866.43

Year 4 29.38 <0.001

Clutch 1 8.68 0.0032

Lay date 1 26.37 <0.001

Field 5 26.32 <0.001

Year x Lay date 1 25.31 <0.001

Clutch x Field 5 18.59 0.002

Terms dropped

Field (Rig/Ditch) 6 7.96 0.240

Field Age 1 0.08 0.775

Weather 1 0.259 0.610

Distance from woodland 1 2.17 0.140

Distance from buzzard nest 1 1.07 0.300

Nest density 1 1.41 0.23

The response variable is binary, indicating whether hatching occurred or not. Variation in nest 

survival over time and between fields was analysed using a logistic regression GLM. (Rig/Ditch) 

was nested in Field to control for within-field variation. Variation in hatching success between 

clutches, lay date, predator index and weather were also tested. Model residuals appeared Normal.
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Figure 5 Variation in hatching success with lay date.

The values shown control for terms remaining in the minimal model (Table 2).
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Figure 6 Variation in hatching success between first and replacement clutches 
within fields

The predicted values shown control for terms remaining in the minimal model (Table 2).
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2.3.2 Brood survival

Brood survival from hatching to day 5 varied significantly between years and clutches as 

shown by the year x clutch interaction (Table 3, Figure 7). Significant differences in brood 

survival between first and replacement clutches were observed in all years except 1998 and 

1999. Survival estimates in first broods were significantly greater than replacement broods 

in 1995 and 1997. In 1996 survival estimates of replacement clutches appeared significantly 

greater than first clutches. Differences in survival estimates to day 5 between years were 

also explained by nest density in each field (Table 3). No variation in brood survival from 

hatch to day 5 was observed between fields or between rigs and ditches (Table 3). Field age 

and predation indices were not found to affect survival of young broods (Table 3)
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Table 3 General linear model of brood survival 1995-1999 (hatch -  day 5).

Minimal model

Term d.f Deviance P-value

NULL 287 768.95

Year 4 59.27 <0.001

Clutch 1 0.182 0.765

Nest density 1 0.056 0.866

Year x Clutch 1 25.30 0.015

Year x Nest density 4 20.96 0.036

Terms dropped

Field 6 19.05 0.167

Field (Rig / Ditch) 9 21.49 0.328

Field Age 1 0.210 0.750

Distance from woodland 1 1.50 0.391

Distance from buzzard nest 1 0.006 0.953

The response variable has a binomial distribution. Variation in brood survival estimates (hatch -  day 

5) over time and between fields was analysed using a logistic regression GLM weighted by brood 

size. The model parameter was over-dispersed, therefore a quasi-likelihood GLM was applied with 

the appropriate “logit” link and “mu(l-mu)” variance functions for the Binomial family. (Rig/Ditch) 

was nested in Field to control for within-field variation. Model residuals appeared Normal.
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Figure 7 Variation in brood survival between first and replacement clutches over 
time

The predicted values shown control for terms remaining in the minimal model 
(Table 3).
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Brood survival to fledging varied significantly between years and fields as shown by the 

year x field interaction (Table 4, Figure 8). Overall, it appears that brood survival estimates 

increased over time. 1996 appeared to have been a particularly unsuccessful year, where 

very few broods in all field survived to fledging despite survival of broods from hatching to 

day 5 being slightly higher than most other years (Figure 7). Fields 29 and 30 were more 

productive than other fields over the study period. Variation between years and fields was 

not explained by field age or by predation index.

Brood survival also varied significantly between first and replacement clutches and this was 

dependent on the proximity of their natal field to buzzard nests (Table 3, Figure 9). In fields 

close to buzzard nests (Fields 28 & 29) the survival of replacement clutches to fledging 

appeared to be significantly greater than first clutches, while in fields more distant from 

buzzard nests (Fields 25, 32, 30, 31 & 27) survival of first broods appeared to be greater 

than replacement broods. This result highlights the importance of replacement broods in 

maintaining the recruitment of young to the population.

No variation in survival from broods that hatched on rigs and ditches was observed (Table 

4).
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Table 4 General linear model of brood survival 1995-1999 (hatch -  fledge).

Minimal model

Term d.f Deviance P-value

NULL 287 481.27

Year 4 102.21 <0.001

Clutch 1 11.9 0.001

Field 6 51.01 <0.001

Field (Rig / Ditch) 8 11.87 0.235

Distance from Buzzard nest 1 0.0001 0.991

Year x Field 19 36.18 0.038

Distance from Buzzard nest x Clutch 1 5.28 0.031

Terms dropped

Field Age 1 0.003 0.950

Distance from woodland 1 1.56 0.210

The response variable has a binomial distribution. Variation in brood survival estimates (hatch -  

fledge) over time and between fields was analysed using a logistic regression GLM weighted by 

brood size. (Rig/Ditch) was nested in Field to control for within-field variation. Model residuals 

appeared Normal.
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Figure 8 Variation in brood survival to fledging between fields over time.

The predicted values shown control for terms remaining in the minimal model 
(Table 4).
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The predicted values shown control for terms remaining in the minimal model 
(Table 4).
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2.4 Discussion

Breeding success of the Gruinart Flats lapwing population was dependent on year, field and 

clutch type (first or replacement). Overall, pair density within the flats population appeared 

to remain relatively constant while the total reserve population decreased between 1995- 

1999. Nest density and survival appeared to remain constant over the 5 years while an 

increase in brood survival to was observed.

Factors affecting nest density 1995-1999

At the RSPB Loch Gruinart Reserve the cessation of disturbance from spring farming 

operations was coincident with an increase in breeding lapwings from 100 to 311 pairs in the 

1990 -  1995 period. However, numbers decreased between 1995 and 1999 (Figure 1). While 

the overall reserve population declined, numbers of birds using Gruinart Flats remained 

relatively constant.

In a long-term study by Berg et al. (2002) in Sweden, spring flooding index was thought to 

explain variation in population size between years indirectly, by affecting food availability. 

Indeed in the present analysis density of nests initiated on ditch edges was significantly 

higher than on rigs, suggesting that wetter areas may have been preferred for nesting. 

However, no differences in nest survival or brood survival between rigs and ditches were 

observed suggesting no direct benefits were gained from nesting on ditch edges. In addition, 

between-year variation in nest survival was not explained by mean spring rainfall (mm). 

However, Rout (1999) suggested that preference for ditches is driven by more abundant 

food there for newly hatched chicks. This hypothesis will be tested later in the thesis. If food 

supply is responsible for determining nest distribution within fields then it is possible that 

food supply is responsible for between-field variation in nest density and may have 

contributed to declines in certain fields.
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Another important factor in determining nest site choice in lapwings is vegetation height 

(e.g. Beintema & Miiskens 1987, Redfern 1982). This factor was unlikely to affect lapwings 

at Gruinart as over wintering geese grazed the sward short and fertiliser was not applied 

until the end of May, thereby leaving a suitable sward height throughout the nesting period. 

Rout (1999) suggests that density of Juncus might affect nest site suitability of lapwings at 

Gruinart. However, Juncus density is positively related to field age (Rout 1999), i.e. old 

fields hold higher densities of Juncus than fields recently reseeded fields and field age did 

not significantly predict the variation in nest density between fields or years in this analysis.

Berg et a l  (1992) observed that lapwings avoided nesting in close proximity to potential 

predator perches or nest sites. Proximity to woodland and buzzard nests was not found to 

influence nesting lapwings within fields in this analysis. In addition to woodland there are 

many fence posts and telegraph poles around the site which can act as potential predator 

perches which were too many to take into account in this analysis. This measure only 

considers the effect of avian predators, mammalian predators which occur at the site, such as 

otter, were not included in the predator index.

Factors affecting nest survival

Previous studies have recognised disturbance from farm machinery and predation as the 

main causes of lapwing nest failure on agricultural land (e.g. Shrubb 1990, Baines 1990, 

Galbraith 1988b).

Disturbance from farm machinery during fertiliser application was not thought to contribute 

to nest failure in this study. When fertiliser was applied in late May the majority of first and 

replacement clutches had hatched and those still being incubated were marked and avoided 

by tractors. The effects of earlier fertilising on nest survival will be tested later in the thesis.
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Data on causes of nest failure were not recorded in this study. Rout (1999) suggested nest 

predation is the most obvious cause of lapwing nest failure, however nest proximity to 

buzzard nests or woodland did not explain variation in hatching success in the present 

analysis.

Variation in nest survival between first and replacement clutches was dependent on field. 

Berg et al. (1992) also observed differences in hatching success between first clutches and 

replacement clutches. However they found that greater hatching success of replacement 

clutches occurred when the loss of first clutches has been attributed to destruction from farm 

machinery. In the absence of nest destruction from machinery which occurred in this study, 

hatching success of first clutches was greater than replacement clutches in all but 2 fields. 

This result was replicated as clutches laid earlier in the season had higher hatching success 

than those laid later in the season. In the absence of significant disturbance from farm 

machinery at Gruinart it might be assumed that predation has contributed to the decline in 

1999. Rout (1999) suggested that increased numbers of corvids observed at the study site in 

that year might explain the high failure rates of first clutches, however corvids were only 

counted in 1998 and 1999 and so this hypothesis cannot be tested.

This analysis highlights the importance of replacement clutches for the Flats’ lapwing 

population. In fields where hatching success of first clutches is low, replacement clutches 

partially compensate this loss. However, previous studies have shown survival of 

replacement broods to be lower than early broods (Galbraith 1988a).
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Factors affecting brood survival

Previous studies have shown the importance of extrinsic factors (such as food supply, 

predation, habitat structure and weather) and intrinsic factors (egg size) on the survival of 

lapwing chicks (Galbraith 1988 a & b, Beintema & Visser 1989).

In this study, between-year variation in brood survival from hatch to day 5 appears to be 

influenced by season, i.e. broods hatched earlier in the season (first clutches) survived better 

than broods that hatched later in the season. This is likely to be related to food supply where 

food availability is more abundant earlier in the season (Galbraith 1988a). Rout (1999) 

hypothesised that food abundance on ditch edges was greater than rigs and that chicks 

hatched on ditches might survive better. However, no differences in survival between rigs 

and ditches were observed in this study. Between-year variation in survival of broods to day 

5 were also predicted by nest density in fields. Previous studies have highlighted the 

importance of larger colonies in protecting young chicks from predator attacks (Hudson et al 

1994), but proximity to predators did not influence chick survival to day 5 in this study.

When survival estimates of chicks from hatch to fledge were considered there were 

significant differences between fields suggesting that natal field appears to affect the 

survival of chicks to fledge but not the survival of chicks to day 5. Proximity of natal fields 

to buzzard nests predicted differences in chick survival between first and replacement 

broods. It appears that mortality of first clutches is greater than replacement clutches in 

fields close to buzzard nests, however this apparent mortality might also be explained by 

brood movement away from fields where predation pressure is high. Migration is more 

likely to explain why no effect of proximity to buzzard nest was observed in young chicks. 

Young chicks remain close to the nest until they are more mobile and then are moved by
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their parents. Higher survival in replacement clutches in fields close to buzzard nests could 

then be explained by taller vegetation later in the season providing extra cover for broods.

This analysis gives an outline of the factors which influence the spatial and temporal trends 

in breeding success at Gruinart Flats. Understanding the mechanisms driving these trends, 

such as the effects of management (water level manipulation and fertilising) on invertebrate 

food supply and breeding success will be addressed in the following chapters.
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Chapter 3

The experiment: treatment effects & invertebrates



Abstract

The effects of grassland management practices on the invertebrate food supply of birds has 

been suggested as a possible mechanism for the decline in farmland birds associated with 

grassland habitats (Wilson et al. 2001). However, the mechanisms are poorly understood 

(Vickery et al. 2001). Here, the effects of two commonly used grassland management 

practices, fertilising and drainage, on the invertebrate food supply of breeding adult and 

chick lapwings are examined using a farm-scale factorial experiment. The experiment took 

the form of a 2 x 3 factorial design with 2 water (high, low) and 3 fertiliser treatments 

(application early, mid and late season) generating 6 treatment combinations. Both water 

and fertiliser treatment had a significant effect on earthworm biomass, important for pre­

breeding adults (e.g. Galbraith 1989a, Baines 1990). Applying fertiliser early in the season 

had a positive effect on earthworm biomass when soil moisture was low and an adverse 

effect when soil moisture is high. Significant spatial and temporal variation was also 

observed. Water and fertiliser treatments significantly affected numbers of surface 

invertebrates, important in chick diet (e.g. Beintema et a l  1991, Johansson & Blomqvist 

1996). Surface invertebrates were most abundant on early and late fertilised treatments when 

soil moisture was low. When soil moisture was high surface invertebrate abundance on 

fertiliser treatments did not differ. Spider numbers responded to treatment in a similar way 

to surface invertebrates, showing that the responses to treatment may be shared between 

groups. Significant spatial and temporal variation in surface invertebrate and spider number 

was also observed.
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3.1 Introduction

The importance of food supply in influencing bird populations is well known, however its 

precise effects are seldom easy to quantify (Newton 1998). For example, food shortage can 

affect bird species by reducing population size through lowering their breeding success. 

However, this type of effect may be difficult to detect because of the time lag between the 

food shortage and resultant decrease in population (Newton 1998). Food manipulation 

experiments have identified how food shortage prior to and during the breeding season can 

limit egg production (Pons & Miggot 1995) and can result in poor chick growth and survival 

(Green 1984) thereby affecting breeding success.

Over the past 50 years changes in agricultural practice have been blamed for the decline in 

bird species associated with farmland habitats. Links between changing management 

practices, reductions in invertebrate food availability and farmland bird populations on a 

large scale have recently been demonstrated (Benton et al. 2002). On a finer scale, the 

effects of reduced invertebrate food availability on the breeding success of birds associated 

with arable habitats are well documented (Wilson et al. 1999). However the impacts of 

grassland management on invertebrate populations and how they affect birds dependent on 

those habitats has received very little attention despite recent declines in those species 

(Vickery et a l  2001).

The role of food supply during the lapwing breeding season is well documented. Previous 

studies have shown how adult food supply prior to breeding can influence chick survival 

through egg quality (Blomqvist & Johansson 1995, Galbraith 1988b). Chick survival can 

also be determined by proximity to an abundant food source (Galbraith 1988b, Baines 

1990).
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In a survey of England and Wales in 1987, 96% of breeding lapwings were recorded on 

agricultural land (Shrubb & Lack 1991), and in Scotland 85% of lapwings were recorded on 

farmland (Thom 1986). It is no surprise therefore that changes in agricultural practice have 

been linked to the decline in numbers of breeding lapwings in Britain (O’Brien & Smith 

1992, Gibbons et al. 1993, Tharme 1998, Wilson et al. 2001) and elsewhere in Europe 

(Hagemeijer & Blair 1997). On grassland, direct effects such as disturbance from livestock 

and farm machinery have been shown to affect nest survival (Beintema & Miiskens 1987, 

Shrubb 1990, Berg et al. 1992). However, very little information is available on the effects 

of grassland management on lapwing food supply. Previous studies have highlighted 

differences in invertebrate abundance between grassland habitat types and how this affects 

lapwing productivity (Baines 1990). However no attempts have been made to understand 

how management techniques affect the invertebrate food supply of lapwings.

Adult lapwing diet during the breeding season comprises a wide range of soil invertebrates 

including earthworms and leatherjackets (Tipulidae), and ground dwelling beetles 

(Coleoptera) and other arthropods (Hogstedt 1974, Cramp 1983). Early in the breeding 

season lapwings are found feeding in areas where earthworm densities are high (Galbraith 

1989a, Baines 1990, McKeever unpublished data). Earthworm biomass during this period is 

important in determining lapwing egg size, which has implications for chick survival 

(Galbraith 1988c, Blomqvist & Johansson 1995). Lapwing chick diet is varied and 

opportunistic (Hudson et al. 1994), including beetles, leatherjackets, spiders (Araneae) and 

earthworms (Galbraith 1989b, Baines 1990, Beintema et al 1991, Johansson & Blomqvist 

1996).

Recent research has quantified a negative response of some species of terrestrial earthworms 

to prolonged winter flooding where re-creation of lowland wet grassland has been attempted
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(Ausden et al. 2001). Earthworm response to fertiliser can be positive or negative depending 

on the rate of application (Edwards 1984). Very little is known about the effects of drainage 

and fertiliser application on surface invertebrate abundance. In a recent review by Vickery et 

al. (2001) the need for more research into the effects of grassland management and their 

impacts on bird populations, in particular how food abundance is affected by fertiliser 

application, was highlighted.

In this Chapter we tested the hypothesis that lowland wet grassland management affects 

lapwing food availability. This was undertaken by first examining the effects of 

manipulating water levels and the timing of fertiliser applications on soil moisture and sward 

height. Secondly the effects of these manipulations on lapwing food supply were 

investigated using a farm-scale factorial experiment.

52



3.2 Methods

3.2.1 Experimental design

The study area was divided up into a series of experimental units (for detailed description of 

study site, see chapter one). The unit size was determined by lapwing territory size in 

previous years. Unit size consisted of 2 rigs and 2 ditches (c. lha), which was expected to 

hold up to 6 nests. Figure 1 shows rig and ditch boundaries for the purpose of this study. 

Fifty-four units of comparable size were created allowing adequate replication of treatments 

for the experiment. Rigs that held no lapwing territories in previous years, as well as 

‘corncrake corridors’ (Beaumont et al. 1996), were excluded from the design.

The experiment took the form of a 2x3 factorial design: water (HIGH, LOW) x fertiliser 

(EARLY, MID and LATE season application) generating 6 treatment combinations. With a 

sample size of 54 units, this allowed 9 replicates per treatment. Power analysis was used to 

test the robustness of a 2 x 3 design replicated 9 times (Table 1). The effect size used was 

the standard deviation of nest success to hatching in each unit, calculated from the 1995- 

1999 data set.

The effect of field age (i.e. number of years since re-seed, see Table 2) was monitored in 

addition to water and fertiliser treatments. Field age in this study encompasses the 

management technique and the associated differences in vegetation composition that occur 

with age. Variation in vegetation composition ranges from ryegrass Lolium perenne, timothy 

Phleum pratense and clover Trifolium repens dominated grassland in recently reseeded 

fields to Agrostis capillaries, A. stolonifera and Ranunculus repens dominated grassland 7 

years after reseeding (Evans 1985). Field age was not incorporated into the experimental 

design but was controlled for in all analyses.
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Table 1 Power calculations for water x fertiliser factorial design

Effect size = standard deviation of nest success to hatching between units 1995-1999. Power was calculated to 
95% probability level.

% Power % Power % Power water x
Factors N water fertiliser fertiliser

Water x 
fertiliser

9 98 99 30

Table 2 Field ages in 2000 & 2001

Year Field
Year last 
reseeded

Field age 
(Years)

2000 25 1997 3

27 1995 5

28 1994 6

29 1996 4

*30 1993 & 1999 7 & 1

31 1995 5

32 1997 3

2001 25 1997 4

27 1995 6

28 1994 7

29 1996 5

*30 1999 & 2000 1 &2

31 2000 1

32 1997 4

* Half of field 30 was reseeded in 1999 and the remainder in 2000. Prior to this field 30 was last reseeded in 
1993.
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Throughout the study, blocking by field encompasses a wide range of between-field 

variations such as distance from predator nests and perches and other features such as soil 

type.

Water x fertiliser treatments were allocated randomly over the study area, except in Field 32 

(Figure 2). Details of how treatments were applied and their effects are given below.
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Water

Water levels were manipulated for the experiment beginning in February 2000 by clearing 

outflow drains in each ditch. Right-angled pipes and extensions were attached for HIGH 

treatments (Figure 3a) and LOW treatments were prepared by allowing water to drain freely 

from ditches into the canals (Figure 3b). Sluice heights were set in the canals to encourage 

flow from low ditches and prevent flooding of low ditches in times of high precipitation. 

Water was unable to be controlled in field 32. Field 32 has typically been a dry field 

(personal observation) with minimal flooding in comparison to the other experimental fields; 

therefore all its units were allocated LOW water level status for the experiment.

The effects of water control on soil moisture within units were monitored throughout both 

field seasons. Volumetric soil moisture content (0) was measured using a Theta probe -  type 

ML2x (Gaskin & Miller 1996). Ten measurements were taken fortnightly from the rig centre 

(hereon to be referred to as rig) and lm  from the ditch edge (from hereon to be referred to as 

ditch) (Figure 1) of 3 x HIGH and 3 x LOW treatments chosen at random. Measurements 

were taken fortnightly from March 28 to June 6 in 2000 and 2001.

Fertiliser

Fertiliser (15:8:15 NPK blend) pellets were applied at a rate of 750kg/ha_1 using a tractor- 

mounted hopper on three dates: 19 April (EARLY season application), 8 May (MID season 

application) and 30 May (LATE season application) in both years. Fertiliser is normally 

applied in mid-May on Islay to produce optimum grass growth for silage.

Sward heights were monitored throughout both field seasons. Sward height measurements 

were taken fortnightly (from March 28 to June 6 in 2000 and 2001), 10 from transects along 

the rig and 10 from the ditch (Figure 1) of 2 x EARLY and 2 x MID and 2 x LATE
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treatments chosen at random. Measurements were taken using a sward stick at 2m intervals 

along transects.
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Figure 3a Photograph of HIGH water ditch - showing extension pipe preventing 
water flow out of ditch.

P PJkw'- , -

Figure 3b Photograph of LOW water ditch - showing water flow out of ditch.
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3.2.2 Invertebrates 

Soil invertebrates

Soil invertebrates were sampled using soil cores. In 2000, soil cores were sampled from 

each treatment type in March and again in June. Ten cores (10 x 6 cm, height x width) were 

taken from the rig and ten from the ditch.

Soil core sampling in 2001 was modified. Treatments were sampled fortnightly from 28 

March to 6 June 2001. Ten soil cores (14cm x 8cm, height x width) were sampled from each 

treatment. Five cores were taken from the rig and five lm  from the ditch (Figure 1). 

Treatments sampled were chosen at random.

Soil cores from both years were sorted by hand and earthworms were preserved in 70% 

alcohol. Earthworm density (number) and wet biomass (g) were calculated. Tipulid larvae 

occurred in very low numbers and were excluded from the analysis.

Surface invertebrates

Surface invertebrates were caught using pitfall traps (plastic cups; 100mm in diameter). 

Pitfall samples were collected from each treatment type every fortnight from 28 March to 6 

June 2001. Treatments sampled each fortnight were chosen at random. Within each 

treatment ten pitfalls were set, five on the rig and five lm  from the ditch, spaced at 2m 

intervals. Trapping fluid used was propylene glycol. Wire mesh (2cm mesh) was placed over 

each trap to prevent capture of wader chicks and small mammals.

Pitfall traps reflect not only the relative abundance of species caught, but also their activity 

and behaviour. Pitfall traps are more likely to catch species which forage more actively 

(Blake et al. 1994). Lapwings feed by visual cues and active invertebrates are more likely to 

be taken (Baines 1990). Pitfall trapping is therefore an appropriate method of catching
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potential lapwing food. However, pitfall efficiency can be affected by vegetation height 

(Greenslade 1964).

On collection, samples were placed in glass vials with 70% alcohol, to preserve them for 

identification. Invertebrates were identified to family level and counted. Only invertebrates 

>3mm in body length were included in the analysis. Animals smaller than this are not 

considered important in Lapwing chick diet (Beintema et a l  1991).

Spider abundance

Spiders are considered an important component of Lapwing food (Beintema et al. 1991, 

Baines 1990, Galbraith 1989b). Spiders were identified to species (Roberts 1993) and the 

effects of treatment on mean spider number were investigated to examine if similar trends 

were found to the total surface invertebrate catch. The help of Dr. D. J. Beaumont is 

acknowledged for identifying spiders to species level.

3.2.3 Data analysis

Generalised linear models in S-plus were used to test the effect of fertiliser and water 

treatment on soil moisture, sward height and invertebrates in this chapter. GLMs allow the 

analysis of non-gaussian error distributions through the use of linearising link functions 

(McCullagh & Nelder 1983). Minimal models were arrived at by stepwise deletion 

(McCullagh & Nelder 1983). Model residuals were checked for normality. Predicted fits 

were used to display results controlling for other terms remaining in the model. Rig and 

ditch were nested in field to control for repeated measures.
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3.3 Results

3.3.1 Treatment effects on physical environment 

Water

Soil moisture in HIGH water treatments was significantly greater than in LOW water 

treatments (Table 3, Figure 4). Therefore manipulating water levels of individual ditches had 

a significant effect on soil moisture of rigs. There was a tendency for soil moisture to vary 

between rigs and ditches (Table 3). Soil moisture in both HIGH and LOW treatments 

decreased throughout the season as expected (Table 3, Figure 5). Soil moisture varied 

significantly between fields (Table 3), in particular, soil moisture in field 32 was 

significantly lower than other fields.
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Table 3 Generalised linear model of volumetric soil moisture content (0).

Minimal Model

Term d.f. Deviance P-value

NULL 59 2.52

Water treatment 1 0.089 0.009

Week 1 0.593 <0.001

Field 6 0.341 0.001

Field (Rig/Ditch) 7 0.182 0.061

Field x Water 5 0.169 0.030

Week x Field 6 0.209 0.020

The response variable was volumetric soil moisture content (6). Distribution of the response variable 

appeared to be Poisson. A log-linear model was used to test the effects of water treatment. Field 

(Rig/Ditch) was added to control for between and within field variation. The dispersion parameter 

calculated for the log-linear model was too large (>2). A quasi likelihood GLM was applied. Quasi 

likelihood allows the estimation of the dispersion parameter in under or over dispersed regression 

models by supplying the appropriate link and variance functions. In this case we used the “log” link 

and “mu” variance functions for the Poisson family. Model residuals were Normal.

64



S 5.5 -

^4.5 '

High Low
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Figure 5 Variation in volumetric soil moisture content (6) with time.

The predicted values shown control for factors remaining in the minimal model (Table 3).
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Fertiliser

Applying fertiliser at different times throughout the season had a significant effect on sward 

height (Table 4, Figure 6). Sward height increased significantly with time as expected 

(Figure 6). Sward height varied significantly between fields however field age was not 

found to be a predictor of this variation. Therefore the variation in vegetation composition 

that occurs with field age was not shown to respond significantly to fertiliser application 

(Table 4). Sward height on rigs and ditches did not vary significantly (Table 4).

Table 4 Generalised linear model of sward height

Minimal Model

Term d.f Deviance P-value

NULL 59 173.36

Fertiliser treatment 2 10.59 0.018

Week 1 90.39 <0.001

Field (Rig/Ditch) 3 4.99 0.660

Terms dropped

Field age 2 0.944 0.623

The response variable was sward height (cm). Distribution of the response variable appeared to be 

Poisson. A log-linear model was used to test the effects of fertiliser treatment. Field (Rig/Ditch) was 

added to control for between and within field variation. Model residuals were Normal.
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Figure 6 Variation in sward height with fertiliser treatment

Predicted soil sward heights in EARLY, MID and LATE treatments. The predicted values 
shown control for factors remaining in the minimal model (Table 4). Arrows indicate date of 
fertiliser application.
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3.3.2 Treatment effects on Lapwing food supply 

Earthworms

Both water and fertiliser treatments had a significant effect on earthworm biomass as shown 

by the water x fertiliser interaction (Table 5, Figure 7). The effect of water treatment was 

strongest in EARLY fertilised treatments, with the same effect less pronounced in MID 

treatments. No difference between water treatments occurred in LATE fertilised treatments, 

LATE fertiliser was not applied until May 30, just 6 days before the final soil cores are 

sampled and therefore acts as a control. It appears that fertiliser application had a negative 

effect on earthworms in HIGH treatments and a positive effect in LOW treatments. The 

effect of fertiliser on earthworm biomass therefore was dependent on soil moisture content 

and the effect of water is equally dependent on the timing of fertiliser application. 

Earthworm biomass did not differ significantly between treatments after fertiliser 

application indicating earthworm response to fertiliser was not a direct effect of fertiliser but 

rather the interaction of timing of fertiliser and water treatment (Table 5).

Variation in earthworm biomass between fields interacted significantly with water and 

fertiliser treatments, julianday and year (Table 5). This suggests that variation between 

treatments, day and year depended on the field sampled. Between-field variation was not 

found to be related to field age (Table 5).

Earthworm biomass varied significantly within fields. Rigs held greater earthworm biomass 

than ditches (Table 5, Figure 8). This trend was consistent between treatments and fields.
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Table 5 Generalised linear model of mean earthworm biomass.

Minimal model

Term d.f. Deviance P-value

NULL I l l 1972.41

Water 1 33.72 0.023

Fertiliser 2 88.90 0.001

Year 1 15.41 0.121

Julianday 1 71.38 0.001

Field 6 228.82 <0.001

Field (Rig / Ditch) 7 273.54 <0.001

Water x Fertiliser 2 67.21 0.007

Water x Field 4 46.71 0.127

Fertiliser x Field 9 220.41 0.001

Julianday x Field 5 153.33 <0.001

Year x Field 5 181.90 <0.001

Year x Field (Rig/Ditch) 7 226.11 <0.001

Water x Fertiliser x Field 2 78.36 0.003

Terms dropped

Field age 1 1.43 0.635

Fertiliser presence 1 3.44 0.479

The response variable was mean earthworm biomass. Earthworm biomass is count data; therefore the 

distribution appeared to be Poisson. A log-linear model was used to test the effects of fertiliser and 

water treatment on earthworm biomass. The dispersion parameter calculated for the log-linear model 

was too large (>2). A quasi likelihood GLM was applied. Field (Rig/Ditch) was included to control 

for between and within field variation. Presence of fertiliser (1/0) was included to control for 

fertiliser treatments which had not yet received fertiliser due to timing of sampling. Year and 

Julianday were included to control for between and within seasonal variation. Model residuals were 

Normal.

69



If)
CNJ Water treatment

  High
  Low

O
CNJ

T3

LateEarly- M id
Fertiliser treatment

Figure 7 Variation in earthworm biomass with water and fertiliser treatment.

The effects of water x fertiliser interaction on earthworm biomass. Interaction plot controls 
for terms remaining in minimal model (Table5).
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Variation in earthworm biomass g between Rigs and Ditches. The predicted values shown 
control for terms remaining in the model (Table 5).

70



Earthworm biomass decreased over the season (Table 5, Figure 9). The rate of decrease over 

time varied significantly between fields as shown by the julianday x field interaction (Table 

5). Earthworm biomass varied between years in fields 28, 29, 31 and 32 (Table 5, Figure 

10), although only appeared significant in field 31. Between year variation is likely to be due 

to climatic differences between years.
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Surface invertebrate abundance

A total of 7986 invertebrates was caught over the sampling period in 2001. Thirty families 

were represented in the catch. Coleoptera and Araneae were the most numerous groups 

comprising 40% and 34% of the catch respectively. The most abundant families were the 

linyphiids and staphylinids at 28% and 15% of the total catch.

Water and fertiliser treatments both had a significant effect on surface invertebrate numbers, 

(Table 6, Figure 11). Invertebrate numbers were higher on HIGH water treatments than 

LOW, except when fertiliser was applied MID season. Here invertebrate numbers were 

slightly higher on LOW treatments than HIGH. It appears that surface invertebrate number 

is dependent on soil moisture especially in EARLY and LATE fertilised treatments. The 

negative effect of soil moisture in MID fertilised treatments is puzzling. Vegetation length is 

known to constrain the efficiency of pitfall traps (Greenslade 1964) but this does not appear 

to be the case in this study as invertebrate activity in EARLY treatments is equal to that in 

LATE treatments. Surface invertebrate number did not differ significantly between 

treatments after fertiliser application indicating surface invertebrate response to fertiliser 

was not a direct effect of fertiliser but rather the interaction of timing of fertiliser and water 

treatment (Table 6).

Fertiliser and time interact significantly to affect surface invertebrate numbers (Table 6, 

Figure 12). Overall there was an increase in surface invertebrate abundance over time as 

expected. On Julianday 130, after the EARLY fertiliser treatment has been applied, numbers 

of surface invertebrates on EARLY treatments were significantly lower than MID and 

LATE fertiliser treatments (Figure 12). This negative response to fertiliser treatment was 

observed on MID treatments, however it was not significant. No negative response was 

observed on LATE treatments.
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Table 6 Generalised linear model of mean surface invertebrate number.

Minimal model

Term d.f. Deviance P-value

NULL 59 369.8

Water 1 0.25 0.611

Fertiliser 2 5.99 0.049

Julianday 1 126.77 <0.001

Field 6 66.15 <0.001

Field (Rig /  Ditch) 7 47.15 <0.001

Water x Fertiliser 2 7.19 0.027

Fertiliser x Julianday 2 13.38 0.001

Fertiliser x Field 10 51.30 <0.001

Fertiliser x Field x Julianday 3 7.19 0.037

Terms dropped

Field age 1 2.65 0.103

Fertiliser presence 1 0.296 0.586

The response variable was mean surface invertebrate number. Distribution appeared to be 

Poisson. A log-linear model was used to test the effects of fertiliser and water treatment on 

surface invertebrate number. Field (Rig/Ditch) was included to control for between and within 

field variation. Presence of fertiliser (1/0) was included to control for fertiliser treatments which 

had not yet received fertiliser due to timing of sampling. Year and Julianday were included to 

control for between and within seasonal variation. Model residuals were Normal.
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Figure 11 Variation in surface invertebrate number with water and fertiliser 

treatment.
The predicted values shown control for terms remaining in the model (Table 6).
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Figure 12 Variation in surface invertebrate number between fertiliser treatments 
with date.

The predicted values shown control for terms remaining in the model (Table 6). Arrows 
indicate date fertiliser treatments were applied.
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Numbers of surface invertebrates varied significantly between fields. Fertiliser was observed 

to be the main predictor of this variation. Field age was not associated with between-field 

variation in surface invertebrate numbers (Table 6).

Considerable variation occurred within fields with a strong effect of location i.e. rig and 

ditch (Table 6, Figure 13). Greater numbers of surface invertebrates were observed on 

ditches than rigs. Standing water in ditches (both HIGH and LOW water treatments) 

decreased over the season. As surface water retreats bare soil is exposed. These areas create 

conditions where surface-active invertebrates are more accessible to lapwing chicks.
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Figure 13 Variation in surface invertebrate number caught in pitfall traps between 
rigs and ditches.

The predicted values shown control for terms remaining in the model (Table 6).
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Spider abundance

There were 2,264 spiders collected in pitfall traps, representing 40 species. Just over 50% of 

the catch was comprised of Erigone atra with the remainder predominantly Oedothorax 

fuscus, Erigone dentipalpis and Bathyphantes gracilis. All these species are of the family 

Linyphiidae and are typical of agricultural grasslands in the UK.

Both water and fertiliser treatment had a significant effect on mean spider number (Table 7). 

When water levels are HIGH, spiders are more abundant after fertiliser has been applied 

than before (Table 7, Figure 14). There was no apparent difference in mean spider number 

before and after fertiliser application when water is LOW. Therefore, spiders only appear to 

respond directly from fertiliser application when water is HIGH.

Spider number within fertiliser treatments varied significantly after fertiliser application 

(Table 7, Figure 16). Spider abundance benefited from fertiliser application in both EARLY 

and MID fertiliser treatments where greater numbers of spiders were observed after fertiliser 

was applied. Numbers of spiders in late treatments did not appear to vary significantly after 

fertiliser application. Overall, spider number appeared greatest on MID and LATE fertiliser 

treatments than EARLY suggesting preference for shorter sward.
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Table 7 Generalised linear model of mean number of spiders

Minimal model

Term d.f. Deviance P-value

NULL 59 183.09

W ater treatment 1 0.237 0.626

Fertiliser treatment 2 15.86 <0.001

Fertiliser presence 1 5.35 0.020

Julian day 1 3.56 0.058

Field 6 68.88 <0.001

Field (Rig/Ditch) 7 16.55 0.020

Field age 1 3.66 0.055

Fertiliser presence x Fertiliser treatment 2 41.04 <0.001

W ater treatment x Fertiliser presence 1 6.35 0.011

Fertiliser treatment x Julianday 2 22.20 <0.001

The response variable was mean spider number. Distribution appeared to be Poisson. A log-linear 

model was used to test the effects of fertiliser and water treatment on spider number. Field 

(Rig/Ditch) was included to control for between and within field variation. Presence of fertiliser (1/0) 

was included to control for fertiliser treatments which had not yet received fertiliser due to timing of 

sampling. Year and Julianday were included to control for between and within seasonal variation. 

Model residuals were Normal.
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Fertiliser treatment also interacted significantly with julianday (Table 7, Figure 15). 

Numbers of Erigone atm , Oedothorax fuscus, Erigone dentipalpis and Bathyphantes 

gracilis peak in June / July (Harvey et al. 2002), after the last samples are collected for this 

study. Increase in spider number early in the season was greatest in LATE fertilised 

treatments (Figure 15) indicating that these species select short sward over long. Later in the 

season spider number was greatest in EARLY treatments, however this was not significant. 

There is evidence to suggest that immediately after fertiliser application spider number 

decreases for a fortnight. In EARLY treatments a significant decrease in numbers was 

observed for a fortnight (day 130) after fertiliser was applied with a subsequent recovery.

Spider number differed significantly between fields (Table 7) and within fields (Table 7, 

Figure 17). Between field variation might be attributed to field age, which was found to have 

a weak significant effect on spider number (Table 7). More spiders were caught from 

ditches than rigs as was observed with surface invertebrates analysed in the previous section.
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3.4 Discussion

The importance of establishing the effects of grassland management on the invertebrate food 

supply of grassland birds has been highlighted recently (Vickery et al. 2001). In this chapter 

we have demonstrated how manipulation of water levels and timing of fertiliser can affect 

abundance of lapwing food (earthworm biomass and surface invertebrate number).

Earthworms

Much is known about the effects of grassland management on earthworm populations. 

Previous studies have examined the effects of fertiliser, both organic and inorganic 

(Edwards 1984, Edwards & Lofty 1982a, Ma et al. 1990), cultivation (Edwards & Lofty 

1982b) and compaction (Hansen & Englestad 1999) by using field experiments. Other 

studies have demonstrated the relationship between earthworm biomasses and soil moisture 

content (Ausden et al. 2001, Nuutinen et al. 2001). Fertiliser application and drainage are 

two of the most widely used methods of lowland grassland management. This study 

assessed how these two factors might interact affect earthworm abundance.

Earthworm biomass was dependent on both soil moisture and timing of fertiliser. Previous 

studies have shown marked differences between earthworm biomass in flooded and 

unflooded areas of the same field (Ausden et al. 2001, Nuutinen et al. 2001). The contrast 

between water treatments in this study was only significant when fertiliser was applied.

The positive effect of fertiliser on earthworm biomass in LOW water treatments might be 

explained by the release rate of nutrients from the fertiliser in the soil. Fertiliser pellets 

spread on HIGH treatments might be released and spread into the soil faster than under 

LOW water treatments. Fertiliser on LOW treatments therefore might act like a lower dose 

over a longer period of time. Low rates of inorganic fertiliser have been shown to have 

positive effects on earthworm populations (Zajonc 1975).
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Terrestrial earthworms vacate recently flooded fields, probably due to lack of oxygen 

(Ausden 2001) and the development of noxious gases (Mather & Christensen 1988). It is 

likely that a combination of oxygen depletion in HIGH water treatments and fertiliser 

dissolving into solution has a negative effect on earthworm biomass. Application of NPK 

fertiliser on some soil types has an acidifying effect creating adverse conditions for 

earthworms (Ma et a l  1990, Hansen & Engelstad 1999). It is possible that the adverse 

effects of fertiliser chemicals are enhanced when dissolved faster in HIGH water treatments. 

No difference in earthworm biomass was observed between HIGH and LOW water 

treatments when fertiliser was applied LATE. This is probably caused by lower soil 

moisture in HIGH water treatments by the time LATE fertiliser is applied (Chapter 3, Figure

5).

The variation in earthworm biomass between rigs and ditches might be explained by the 

species composition therein. Semi -  aquatic species commonly found in flooded areas are 

smaller than terrestrial species found in drier soils (Ausden et al. 2001), however variation 

in species combination between rigs and ditches did not occur (Bishop, unpublished data).

A significant seasonal decline in earthworm biomass was observed in this study. As the 

season progresses and soil dries out earthworms are forced to burrow deeper into the soil 

(Edwards & Lofty 1977, Edwards & Lofty 1982b). The rate of decline in LOW water 

treatments was not, as expected, greater than HIGH treatments suggesting that a reduction in 

soil moisture over time may not be the sole predictor of seasonal decline.

Reseeding has been shown to affect earthworms through disturbance caused by cultivation 

(Edwards 1984). However, in this study it was not found to influence earthworm biomass. It 

appears that water level, timing of fertiliser and seasonal effects are of greater importance in 

determining earthworm biomass.
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Surface invertebrates

The response of surface invertebrate number to sward height was dependent on soil 

moisture. There is evidence to suggest that surface invertebrates require a specific sward 

height when soil moisture is low. When soil moisture is high the surface invertebrate 

response is positive and no apparent significant variation with sward height occurs. The 

effect of drainage on surface invertebrates associated with grassland is not well documented. 

It is known that arthropods of arable land in Southern Britain benefit from irrigation 

(Frampton, van den Brink & Gould 2000). Soil moisture has been suggested as one of the 

main predictors of variation in arthropod number between improved and unimproved 

grassland habitats in northern England (Baines 1990).

Few studies exist on the effects of fertiliser on abundance of surface invertebrates. In this 

study temporal increases of surface invertebrates were dependent on fertiliser treatment; 

there was evidence of a short-term decrease in number after fertiliser was applied indicating 

a short-term direct effect of fertiliser application. Edwards and Lofty (1975) found 

reductions in Collembola, Diptera and Coleoptera in permanent pasture receiving fertiliser 

compared with unfertilised pasture. However this study is the first to consider the combined 

effects of fertiliser application at different times during the season with varying water levels. 

Previous authors have also shown that as management intensity increases species diversity 

and size of Coleoptera (Morris & Rispin 1987, Seipel 1990, Foster et al. 1997), Hemiptera 

and Araneae (Siepel 1990) decreases. Decrease in abundance and over time a decrease in 

animal size and species diversity will have negative impacts on birds that depend on these 

invertebrates for food.
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Spiders

Spiders numbers were greatest on treatments with high soil moisture after fertiliser had been 

applied suggesting spiders benefit directly from fertiliser application. Higher numbers of 

spiders in ditches than rigs is also likely to reflect the higher soil moisture in ditches. In 

contrast, Downie et a l  (2000) in a study of linyphiids over 18 land-use categories across 

Scotland showed that soil moisture has a negative effect on abundance.

Spider preference for fertiliser treatments varied before and after fertiliser application. 

Spider number was greatest on treatments with short sward after fertiliser was applied. 

Downie et a l  (2000) showed that vegetation height was not a significant determinant of 

linyphiid number. In this study over 50% of the spiders caught were Erigone atra, a species 

associated with short vegetation.

Temporal increases of spiders were also influenced by fertiliser treatment. Increases were 

greatest on short sward early in the season with a shift to longer grass later in the season. 

Erigone atra are commonly found at ground level on low vegetation (Harvey et a l 2002), 

therefore higher numbers of these spiders were expected on short sward. However it is likely 

that this result might reflect the activity of spiders rather than actual number, in which case 

they are more likely to be detected by lapwing chicks. There also appears to be the same 

short-term negative affect of fertiliser as observed with other surface invertebrates.

86



Conclusions

Water and fertiliser treatments are very important in determining the abundance of 

invertebrates which are important in the diet of lapwings. Earthworms are positively affected 

by fertiliser treatment when soil moisture is low. However previous studies have shown that 

lapwings, in particular lapwing chicks find great difficulty in feeding in conditions of dry 

soil and long vegetation (Hudson et al. 1994, Baines 1990, Galbraith 1987, 1988). 

Earthworm biomass in HIGH and LOW treatments are equal when fertiliser is applied 

LATE. The short sward and better penetrability created by LATE fertiliser HIGH water 

should attract more chicks for feeding. Optimum conditions for surface invertebrates 

(particularly spiders) are also provided by LATE fertiliser and HIGH water treatments.

Questions to be answered later in the thesis from these results are:

1. Does food availability influence where lapwings nest?

2. Does food availability determine egg size in lapwings?

3. Does food availability influence lapwing hatching success?

4. Do food availability and/or accessibility influence where lapwing chicks feed and 

their foraging behaviour?

5. Does food availability in treatments where lapwing chicks feed influence their 

condition, growth patterns and ultimately their survival?
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Chapter 4

Grassland management and lapwing nesting behaviour



Abstract

Recent research has revealed a decrease in lapwing nest survival rates over the past 30 years 

(Baillie et al. 2002). While much is known of the direct effects of agricultural intensification 

such as nest destruction from machinery and trampling by livestock (Beintema & Muskens 

1987), very little is known of the threats posed by changes in habitat structure (Lister 1964) 

and food supply. Here, the effects of grassland management practices, namely fertiliser 

application and drainage, on lapwing nest placement and hatching success are investigated 

using a farm-scale factorial experiment. Both water and fertiliser treatment significantly 

influenced nest density, however this was dependent on field. Significant within-field 

variation occurred, where nest density on ditches was significantly higher than rigs. 

Fertiliser treatment had a significant effect on hatching success. In fields with low predator 

activity hatching success in early fertilised treatments was greatest. In fields with high 

predator activity hatching success was highest in treatments where fertiliser was applied 

later in the season.
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4.1 Introduction

Changes in agricultural practice have been implicated as the cause of severe declines in 

farmland bird populations over recent decades (e.g. O’Connor & Shrubb 1986, Fuller 1999, 

Siriwardena et al 2001). The impacts of these changes can be classified as direct and 

indirect. Direct impacts include loss of suitable nesting habitat, for example hedgerow 

removal, which has been suggested as one of the major contributors of linnet Carduelis 

cannabina decline (Fuller et a l 2001). Indirect effects include a reduction in food 

availability, for example Benton et a l (2002) found that changes in farmland bird 

populations in Scotland were closely linked to changes in agricultural practice through their 

effects on invertebrate abundance.

While much is known about the effects of agricultural activities on birds associated with 

arable systems, the effect of grassland management on farmland birds has received little 

attention (Vickery et a l  2001). The direct and indirect effects of fertilising, reseeding and 

drainage on ground nesting species is poorly understood and more research is required on 

their effects and in particular their interaction effects with predators and weather (Vickery et 

a l  2001).

Numbers of breeding lapwings in Britain have declined by 49% between 1987 and 1998, 

particularly in lowland areas (Wilson et a l 2001). In addition failure rates at the egg stage 

have increased from 40% to 49% between 1968 and 1998 (Baillie et a l  2002). The loss of 

suitable nesting habitat and alteration of food supply through grassland improvement are 

thought to be the main causes of lapwing decline in lowland Britain (Chamberlain & Crick 

2002, Fuller 1999, Beintema & Miiskens 1987).

The direct impacts of grassland management on breeding lapwings are well documented. 

Over the last 50 years agricultural intensification has led to the loss of considerable areas of
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lowland wet grassland in Britain (O’Brien & Self 1994) and lapwings in these areas have 

declined by 38% between 1982 and 1989 (O’Brien & Smith 1992). Increased use of 

fertilisers has paralled a change from hay to silage production and an increase in stocking 

rates. Silage production results in fast, dense growing swards unsuitable for nesting 

lapwings (Lister 1964), an increase in nest mortality through trampling by livestock 

(Beintema & Miiskens 1987, Shrubb 1990), destruction by farm machinery (Baines 1990, 

Kruk et al. 1996) and increases in the risk of detection by predators (Baines 1990).

Little is known of the indirect effects of grassland management on lapwing nest site 

selection and hatching success (i.e. what role food supply has on lapwing nest site selection, 

and ultimately hatching success). Previous studies that have identified links between food 

supply and breeding success have focused on differences between arable and grassland 

habitats (Galbraith 1988a, 1988b). However, one study comparing improved and 

unimproved grassland sites found that while earthworm densities were highest on improved 

fields, lapwing nest density was highest on unimproved fields (Baines 1990). Baines (1990) 

suggested that other factors such as sward structure and soil moisture content were more 

important factors in determining breeding field selection, however this has never been 

investigated. It is clear then that more research is needed in this area to attain a better 

understanding of what factors determine nest site selection and hatching success of lapwings 

on grassland.

The effects of manipulating water levels and timing of fertiliser on lapwing food supply in 

this study have already been established. In this chapter the hypothesis that lowland wet 

grassland management affects the nesting behaviour of lapwings will be investigated.
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4.2 Methods

The effects of experimental grassland management on lapwing nests were monitored in 

years 2000 and 2001 of the study. Details of experimental design are outlined in Chapter 3. 

Aspects of nesting behaviour studied in detail were nest density and nest survival to 

hatching.

4.2.1 Nest density

Nests were found by locating ‘scraping’ or ‘incubating’ birds at the beginning of the 

breeding season. Observations were made using a Kowa TSN telescope with a x30 

magnification wide angled lens and 8x42 magnification binoculars from a landrover used as 

a mobile hide. All fields were monitored daily for new nests. As a nest was initiated, its 

location was mapped along with a brief habitat description and how to re-locate it using 

reference points. Nest location (rig / ditch) was also noted. Nests located up to 1.5m from 

the centre of each ditch were recorded as ditch nests.

4.2.2 Nest Survival

All nests were monitored daily until hatching or failure. Initiation date of each nest and date 

of hatching or failure was recorded. A nest without an incubating adult on two consecutive 

days was recorded as a failure. Replacement nests were easily identified as they were 

usually initiated in the same territory approximately one week after failure of the first clutch 

occurred. Later in the season nests in new territories that occurred were assumed to be 

replacement attempts by pairs which failed in the surrounding area.

4.2.3 Predators

Between-field variation encompasses a range of factors, the most important of which in this 

chapter is predation. Predator pressure was quantified from daily observations of predator 

activity within each field over the study period. As a predator was observed, the species was
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recorded along with location (field) and lapwing response. One hundred and sixty predator 

observations were recorded over the study period (Appendix 1, Table 1). Fields were ranked 

according to the proportion of predator activity observed over the study period (Appendix 1, 

Figure 1) and this index was included in the analysis.

4.2.4 Data analysis

Generalized linear models in S-plus are used to test the effect of treatment on nest site 

selection and hatching success. GLMs allow the analysis of non-gaussian error distributions 

through the use of linearising link functions (McCullagh & Nelder 1983). Minimal models 

are arrived at by stepwise deletion (McCullagh & Nelder 1983). Model residuals are 

checked for normality. Predicted fits were used to display results controlling for other terms 

remaining in the model. Rig and ditch are nested in field to control for repeated measures.
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4.3 Results

Two hundred and seventy nests (121 first clutches and 86 replacement clutches) were 

initiated in the study area over the two-year period. Average nest density in the study area 

was 2.9 nests ha \  with 76% of units holding at least one nest. First-egg lay dates ranged 

from 29th March -  22nd May in 2000 and 3rd April -  22nd May in 2001.

4.3.1 Nest density

Nest site choice by lapwings was not expected to be influenced by treatment before water 

and fertiliser manipulations took effect (24th April and 29th April respectively, see Chapter 

3). On the other hand, numbers of nests initiated after treatments took effect were too few to 

analyse. Fertiliser presence was included in the model in addition to fertiliser treatment 

(timing of fertiliser) to control for variation in nest density before and after fertiliser 

application.

Numbers of nests initiated in water treatments varied significantly before and after fertiliser 

application. Numbers of nests initiated before fertiliser was applied were significantly 

greater than those initiated after fertiliser application (Figure 1). Numbers of nests initiated 

in fertiliser treatments also varied significantly before and after fertiliser application where 

numbers initiated before fertiliser was applied were significantly greater than those initiated 

after fertiliser application (Figure 2).
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Table 1 Generalised linear model of nest density.

Minimal model

Term d.f. Deviance P-value

NULL 171 954.1

W ater treatment 1 3.60 0.204

Fertiliser treatment 2 0.297 0.935

Fertiliser presence 1 393.71 <0.001

Year 1 1.84 0.363

Field 6 42.69 0.004

Field (Rig/Ditch) 7 225.33 <0.001

Field Age 1 19.77 0.003

Field x Fertiliser presence 6 48.05 0.001

Field x Fertiliser treatment 12 79.28 <0.001

Year x Field 6 46.99 0.002

Water x Fertiliser presence 1 25.86 <0.001

Water x Field 5 47.38 <0.001

Fertiliser treatment x Field age 2 33.69 <0.001

Nest density being count data has a poisson distribution. The effects of water and fertiliser 

treatment were analysed using a log-linear GLM. Field (Rig/Ditch) was included to control for 

between and within field variation. Fertiliser presence (1/0) was included to control for nests 

initiated before and after fertiliser application. Year was included to control for variation 

between years. The dispersion parameter calculated for the log-linear model was too large (>2). 

A quasi likelihood GLM was applied with the appropriate “log” link and “mu” variance 

functions for the Poisson family. Model residuals were Normal.
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When total nest density was analysed significant treatment effects occurred. Significant 

variation between water treatments occurred as shown by the water x field interaction (Table 

1, Figure 3). The greatest differences between HIGH and LOW water treatments were 

observed in fields 28, 29 and 30 (Figure 3). These fields had the most protracted laying 

seasons (Table 2) with last eggs laid on the 22nd May. Replacement nests initiated later in 

the season are therefore more likely to be affected by water treatment.

The effect of fertiliser application is dependent on field (Table 1, Figure 4). The difference 

between fertiliser treatments within fields was greatest in Fields 28 and 30, with preference 

for LATE treatments in Field 28 and preference for EARLY treatments in Field 30. It is not 

clear if this preference is driven by sward height as the majority of nests are initiated before 

EARLY fertiliser treatment takes effect. However, placement of relay clutches is more 

likely to be affected by fertiliser treatment later in the season. Other factors important in nest 

site selection by lapwings, in addition to vegetation height, include avoidance of nest 

predation, nest site fidelity and shelter from adverse weather conditions (Galbraith 1989, 

Baines 1990, Thompson et a l 1994). It is likely that slightly longer grass provides 

unattended nests better concealment from predators.
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Table 2 Duration of laving season (days) in each field.

Mean number of days between initiation of first and last nests was calculated for each field in both years.

Field Mean length of laying 
season (days)

25 26

27 17.5

28 53.5

29 41.5

30 46.5

31 24.5

32 38
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Nest density within fields varied significantly (Table 1, Figure 5). Nest density on ditch 

edges was greater than rigs. Nests initiated on ditch edges between 1995 and 1999 survived 

better than rigs but this result was not significant. However, survival of young chicks (1-5 

days old) did not differ between rigs and ditches (Chapter 2). There does not therefore 

appear to be an advantage to nesting on ditch edges.

Nest density in fields varied significantly between years (Table 1, Figure 6). Decreases 

between 2000 and 2001 in fields 25 and 27 are consistent with long-term trends (Chapter 2). 

Increases in fields 28, 29 & 30 were expected from extrapolation of long-term trends. 

Increases in fields 31 & 32 were not expected as nest density in these fields has been 

decreasing steadily since 1995.
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4.3.4 Hatching success

Timing of fertiliser also had a significant effect on hatching success as shown by the 

fertiliser x field (Table 3, Figure 7) interaction. Hatching success was highest on EARLY 

and MID treatments in all fields but one (Figure 8). This is likely to be a direct consequence 

of sward cover, providing protection from adverse weather and concealment from predators. 

Hatching success on EARLY fertilised treatments was highest in fields that were ranked 

lowest in terms of predator activity (Figure 8; Appendix 1, Figure 1). This suggests that 

early cover provides good nest protection even in the absence of high predator activity. It is 

possible that disturbance from EARLY fertilising in fields with highly ranked predator 

activity (Figure 8; Appendix 1, Figure 1) contributed to their detection by predators and the 

ultimate failure of those nests. Fields 28 and 29 are adjacent and lie below Aoradh wood 

where ravens Corvus corax and rooks Corvus frugilegus nest. It is possible that these fields 

are more prone to nest predation in EARLY fertilised treatments than other fields.

Hatching success within fertiliser treatments varied significantly before and after fertiliser 

application (Table 3, Figure 8). Hatching success was greater after fertiliser was applied 

indicating that increased cover provided by taller sward benefits lapwing hatching success.

Hatching success of first and replacement clutches also differed significantly (Table 3, 

Figure 9). First clutches appeared significantly more successful than replacement clutches.

No significant variation in nest survival between water treatments, year and field age was 

observed (Table 3).
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Table 3 Generalised linear model of hatching success

Minimal Model

Variable d.f Deviance F-Value

NULL 212 287.33

Fertiliser Treatment 2 9.81 0.009

Fertiliser presence 1 16.90 <0.001

Clutch 1 5.48 0.021

Field 6 18.42 0.008

Field (Rig/Ditch) 9 16.04 0.08

Field x Fertiliser treatment 10 20.80 0.032

Term dropped

Field age 1 0.44 0.509

Water 1 0.86 0.361

Year 1 3.08 0.089

The response variable is binary, indicating whether hatching occurred or not. The effects of 

water and fertiliser treatments on hatching success were analysed using a logistic regression 

GLM. Fields were ranked in order of their predator activity (Figure 5). Field (Rig/Ditch) was 

included to control for between and within field variation. Fertiliser presence (1/0) was included 

to control for nests initiated before and after fertiliser application. Year was included to control 

for variation between years. Model residuals appeared Normal.
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4.4 Discussion

In recent years hatching success of lapwing nests on grassland has decreased significantly 

(Baillie et al. 2002). It is therefore important to establish how grassland management 

practices affect lapwing nesting behaviour and conservation in the wider countryside. Little 

is known about the direct effects of land drainage and sward height on nests after initiation. 

In this study both water and fertiliser treatments were important in determining where 

lapwings nested and nest success to hatching. Treatment effects varied considerably 

depending on predator activity and clutch type. Within fields, lapwings selected ditches over 

rigs as their preferred nesting habitat.

Nest density

Both soil moisture content and vegetation structure have been identified as important factors 

in influencing lapwing nest site selection. For example, Baines (1990) suggested that 

differences in soil moisture content and vegetation type and structure between unimproved 

and improved fields in upland grassland systems is responsible for higher breeding densities 

of lapwings on unimproved fields. In a comparative study of lapwing breeding success 

between arable and rough grazing habitats in Central Scotland, Galbraith (1988b) found 

laying dates on arable were truncated because of the rapid increase in vegetation height from 

crop growth.

Associating bird populations with habitat is difficult as bird responses to habitat changes are 

often lagged (Weins 1989). This may be particularly relevant to lapwings as site fidelity and 

predator avoidance are also important factors when choosing nest sites (Thompson et al. 

1994; Berg, Lindberg and Kallebrink 1992) and therefore may override specific habitat 

features. O’Brien (2001) investigated the association between habitat and lapwing breeding 

densities in upland farmland in Northern Britain. He found that lapwing numbers were
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declining on sites despite the presence of apparently suitable habitat suggesting that other 

factors are influential in affecting lapwing density. In a 10 year study of lapwings in central 

Sweden, Berg et a l (2002) found low hatching success on arable habitats and much better 

hatching success on the less preferred grassland habitats. In addition, they found no increase 

in lapwing numbers on grassland after an extensive meadow restoration programme and 

attributed that to a lagged response in part due to natal site philopatry.

In the present study significant effects of water and fertiliser treatments were observed in 

fields which had the longest laying seasons, suggesting nests initiated later in the season 

were affected. This was expected as both water and fertiliser treatments did not take affect 

until after all first clutches and the majority of replacement clutches were initiated. Hart et 

al. (2002) found that sward height was not a predictor of lapwing density because of 

uniformity in the sward early in the season and suggested that sward height would have 

greater influence later. It is more likely therefore that factors such as predator avoidance, 

protection from adverse weather or site fidelity are more influential in determining where 

lapwings nest early in the breeding season.

It is unlikely that differences in food supply between water treatments (Chapter 3) was a 

determining factor in the selection of water treatments for nesting, as invertebrate responses 

to water treatment were dependent on timing of fertiliser. In addition invertebrate abundance 

did not vary significantly between water treatments within fields where significant 

differences in nest density occurred. This indicates that other field variables such as soil 

temperature or vegetation cover interact with water treatment in those fields to affect nest 

site choice.

The importance of the distance between nests and suitable chick-rearing habitat is well 

documented (Galbraith 1988b, Baines 1990, Berg et al. 1992, Blomqvist & Johansson
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1995). In this study, lapwings favoured ditch edges over rigs as nesting habitat and this trend 

was consistent over all fields and treatments. One possible advantage of nesting by ditch 

edges is proximity to food supply. The surface area of moist bare soil increases in ditches as 

standing water retreats over the season; this creates conditions suitable for surface 

invertebrates which are an important and accessible source of chick food. Numbers of 

surface invertebrates at ditch edges were significantly higher than rigs (Chapter 3).

Hatching success

Many authors have identified destruction from farm machinery and predation as the main 

causes of lapwing nest failure on agricultural land (O’Brien 2001, Galbraith 1988b, 

Beintema and Miiskens 1987). In a recent analysis of BTO nest record cards, Chamberlain 

and Crick (2002) found nest abandonment, weather, destruction by farm machinery or 

trampling and predation to be the main causes of lapwing nest failure from 1962 to 1999. 

Previous studies have considered the direct effects of trampling by livestock and farming 

methods such as harrowing, and rolling (Pearson and Stoate 1994) or differences in 

predation rates between habitats (Baines 1990). However very little is known about the 

direct or indirect effects of drainage and sward height on nest success.

Fertiliser treatment had a significant effect on lapwing hatching success at Gruinart flats. 

The effects of fertiliser treatment appeared to have been dependent on predator activity in 

each field. In relation to predator activity, hatching success was highest in treatments where 

sward was long and the proportion of predator activity was low. This result was replicated 

with significantly more lapwing nests surviving after fertiliser was applied. It is likely that 

nests initiated on treatments with early cover are provided with more concealment when 

pressure from predators is minimal. In contrast, when predator activity was high, failure 

rates in long sward were greater. It is probable that a combination of reduced predator
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detection in long grass, disturbance by applying fertiliser early and increased pressure by 

predators leaves lapwings unable to defend their nests effectively. However, Baines (1990) 

found nest predation higher on improved than unimproved grassland and attributed this to 

the ability of diverse vegetation and irregular background mosaics to provide camouflage for 

eggs. Potential nest predators observed at the study site included hooded crow, raven, 

common gulls, herring gulls, feral cat, otter and other mustelids. On the mainland, foxes 

have been associated with high nest predation of lapwings and other waders (O’Brien 2001, 

Grant et al. 1999) but do not occur on Islay.

Survival of first and replacement clutches differed significantly with survival of first 

clutches greater than replacement clutches. Previous studies have noted differences in 

hatching success between first and replacement clutches. Berg, Lindberg and Kallebrink 

(1992) found hatching success in replacement clutches higher than first clutches, with 

disturbance from farming operations causing high nest mortality amongst first clutches. The 

same trends and causes of nest failure were observed by Berg et al. (2002). In this study 

there did not appear to be a direct adverse effect of fertiliser application on first or 

replacement clutches.

Since the cessation of spring farming operations at Gruinart flats in 1990, numbers of 

breeding pairs have increased from 150 to 300 in 1999. It is assumed that an increase in 

hatching success of first clutches in the absence of early cultivation and rolling has given 

rise to an increase in recruitment to the population. Since 1995 hatching success of 

replacement clutches in lapwings at Gruinart flats (1995-1999) has been significantly lower 

than first clutches (Chapter 2). Variation in hatching success between first clutches and 

replacement clutches in the present study was consistent with these trends. When hatching 

success in first clutches is low then hatching success amongst replacement clutches may
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become important in maintaining population levels, however this does not appear necessary 

at Gruinart Flats..

To conclude, the effects of fertiliser and water treatment on nest density were only apparent 

in fields where the laying season was protracted. Other factors, such as site fidelity are likely 

to have influenced nest placement at Gruinart Flats. This could not be integrated, however, 

due to the very small numbers of colour ringed adult birds observed. The effects of fertiliser 

treatment on hatching success within fields were dependent on the susceptibility of fields to 

predation events. It appears that heterogeneity of sward height benefits nest survival. Early 

cover benefits hatching success particularly those nests initiated in fields with low predator 

activity.
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APPENDIX 1

Table 1 Predator activity within fields over study period

Field
(rank)

Species No.
Observations

Proportion of 
activity within 

field (%)

Buzzard 12 56
Peregrine Falcon 5 21

25 Raven 2 9
(4) Hooded crow 1 4

Merlin 1 4
Stoat 1 4

27 Buzzard 4 80
(1) Lesser Black backed gull 1 20

Raven 13 28
Buzzard 12 26

28 Hooded crow 9 20
(7) Hen Harrier 5 11

Herring Gull 4 8
Stoat 2 4

Buzzard 17 45
Raven 8 20

29 Hooded crow 8 20
(6) Herring Gull 3 7

Lesser black backed gull 1 2
Stoat 2 5
Otter 1 2

Buzzard 11 50
30 Hooded Crow 6 27
(4) Herring gull 4 18

Otter 1 4
Pheasant 4 50

31 Hen harrier 2 25
(2) Herring gull 2 25

Hooded crow 6 54
32 Raven 3 27
(3) Buzzard 2 18
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study period.
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_______________________ Chapter 5

Grassland management and chick foraging behaviour



Abstract

While much is known of the impacts of agricultural change on nesting lapwings (Shrubb 

1990, Baines 1990, Beintema & Miiskens 1987) very little is known of how changes in 

grassland management may affect chick behaviour (Milsom et al 2002). Recent research has 

highlighted the importance of changes in habitat structure, brought about by changes in 

agricultural management practices, on the foraging success of farmland birds. Here, the 

effects of grassland management on chick foraging behaviour (habitat use and foraging 

success) are examined, with particular reference to food supply and habitat structure. Broods 

were found to significantly select areas of short sward for foraging, these areas included 

treatments that were fertilised late in the season and ditches. Areas with long sward (i.e. 

treatments fertilised early in the season and rigs) were actively avoided by foraging broods. 

No significant variation in preference for high or low water treatments was observed. 

Foraging success of chicks in varying sward heights was examined. It was found that 

foraging success and foraging rates in short sward were significantly greater than in long 

sward, explaining the difference in preference for treatments with short sward. Preference 

for short sward was also explained by variation in surface invertebrates. Early fertilising has 

a negative impact on the foraging behaviour of lapwing chicks by reducing food supply and 

detectability of food.
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5.1 Introduction

Intensification of agricultural practices over the last 50 years has been blamed for the 

decline of many farmland bird species in Britain (Fuller et al. 1995, Chamberlain et al.

2000). Changes in habitat structure (O’Connor & Shrubb 1986, Fuller 1999, Vickery et al.

2001) and a reduction in summer invertebrate food availability (Benton et a l  2002, Potts 

1986) and winter seed availability (Robinson & Sutherland 2002) have been suggested as 

three of the main causes of these declines. For example, changes in habitat structure such as 

the replacement of hay meadows with silage systems characterised by dense, fast growing 

swards which have reduced the availability of suitable nest sites for skylarks Alauda 

arvensis (Wilson et al. 1997). Reductions in invertebrate food supply through herbicide 

application to arable crops are thought to be responsible for reduced chick survival of the 

grey partridge Perdix perdix (Potts 1986). Factors affecting farmland birds associated with 

arable systems are now widely acknowledged and understood, however, the effect of 

lowland grassland improvement on farmland bird populations has received little attention 

(Vickery et al. 2001, Chamberlain & Fuller 2001). Vickery et al. (2001) highlighted many 

research gaps in understanding grassland management such as changes in food abundance 

and availability due to changes in sward structure through fertiliser input.

While grassland improvement has been blamed for the decline of lapwings breeding on 

lowland wet grassland (O’Brien and Smith 1992, Wilson et al. 2001), the mechanisms 

underlying the decline are still poorly understood. Grassland improvement is achieved 

through drainage, fertiliser application and reseeding, thus changes in habitat structure and 

food availability are factors most likely to affect breeding lapwings. Many previous studies 

investigating the effects of agricultural intensification on lapwing breeding success have 

addressed habitat selection of nesting adults (e.g. Redfem 1982, Galbraith 1988b, Baines
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1990, Berg 1993) and factors affecting hatching success (Beintema & Miiskens 1987, 

Shrubb 1990, Liker & Szekley 1997). However, little is known about the impacts of 

grassland improvement on lapwing chick food supply, habitat use and their foraging 

behaviour (Johansson & Blomqvist 1996, Milsom et a l 2002).

Food availability, predation risk, and morphological constraints are important factors 

influencing habitat selection in birds (Hilden 1965). Lapwings require different habitat types 

for nesting and chick rearing (Redfern 1982, Galbraith 1988b, Blomqvist & Johansson 

1996). Shortly after hatching, adult lapwings move broods to chick-rearing areas where the 

precocial young feed themselves (Cramp & Simmons 1983). Chick-rearing areas tend to be 

associated with short vegetation and high soil moisture (e.g. Milsom et a l  2002, Berg 1992, 

Baines 1990, Jackson & Jackson 1980). It is thought that these areas normally provide more 

abundant and accessible food than the vicinity of nest sites (Redfern 1983, Galbraith 1988b, 

Berg 1992) as well as allowing easier detection of predators (Galbraith 1988b).

The importance of an abundant food source for lapwing chick development and survival is 

well documented (Galbraith 1988a, Beintema & Visser 1989). Therefore establishing what 

factors determine food availability and accessibility for chicks is important in managing 

habitats to benefit lapwings. Fertiliser application and drainage have been shown to affect 

invertebrate abundance (Ausden et a l  2001, Downie et a l 2000, Seipel 1990), however 

these treatments may also affect prey availability through vegetation cover (Olsson et a l

2001). The effect of vegetation structure on the foraging success of birds has received much 

attention recently and is thought to be as important in determining habitat use and foraging 

success as food abundance (Moorcroft et a l 2002, Whittingham & Markland 2002). While 

food supply may be plentiful, vegetation structure or soil moisture might influence

124



delectability or accessibility of food items thereby influencing intake rates (Whittingham & 

Markland 2002).

Milsom et al. (2002) found that foraging rates of lapwing chicks varied with soil moisture, 

however foraging rates in relation to food availability and sward (which were the suggested 

mechanisms responsible for variation in foraging rates) were not investigated. Galbraith 

(1988b) suggested that vegetation height can constrain the ability of lapwing chicks to use 

habitats by reducing their foraging efficiency by restricting their mobility, however this 

hypothesis has never been tested.

In this chapter the effects of manipulating sward height and soil moisture will be 

investigated on the habitat use and foraging behaviour of lapwing chicks. The results will 

also be interpreted in relation to food availability in treatments (see chapter 3).
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5.2 Methods

1.2.1 Chick habitat use

On hatching, broods stayed close to their nest site for the first 3-4 days. Brood size was 

recorded and chicks were ringed with BTO metal rings and colour rings with a unique 

combination to allow individual identification on re-location. Broods were monitored every 

2-3 days. Number of chicks per brood, activity (foraging or being brooded) and location 

within fields were recorded. Only broods with 3 or more observation days between age 3 

days (age when usually moved by adults) and fledging were included in the analysis 

(Johansson & Blomqvist 1996). This resulted in data from field 27 being dropped from the 

analysis.

The majority of broods (90%) remained in their natal fields until fledging or failure. 

Preference for treatments was therefore analysed on 2 spatial scales, both over the whole 

study site (‘potential range’) and within fields ( ‘actual range’) (Grant et al. 1992, Milsom et 

al. 2002). The former assumes chicks are free to move in any direction after hatching, 

whereas the latter is more appropriate if brood movements are constrained within fields. 

Over the ‘potential range’ mean preference indices were derived for each treatment 

combination.

Preference for treatments by 50 broods within fields was investigated. Field 32 was dropped 

from water treatment analysis as just one water treatment was applied in that field (Chapter

2).
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Habitat preference indices were calculated for each brood using the following equation 

(Manly 1974):

Pi = log (Uj + 1) / A;

Where P, = preference index for area i, U,- = proportion of usage of area i and A; = available 

area.

P, values greater than 0.3 indicate selectivity while values below 0.3 indicate avoidance 

(Manly 1974).

5.2.2 Chick foraging rates

Lapwing chicks were observed foraging at Gruinart Flats between the 4th and 16th May 

2002. Foraging rates in the form of ‘peck rates’ and ‘successful peck rates’ were collected. 

Pecks were defined as attempts to catch food whether successful or not. Successful pecks 

were defined as observed food intake. One chick per brood was followed for periods up to 

two hours. Within that time period chicks alternated between foraging bouts and being 

brooded by adult birds. Foraging bouts were timed and overall numbers of pecks and 

successful pecks in that time were recorded. After foraging bouts, 10 sward height and 10 

soil moisture measurements were collected at random from where chicks were observed 

feeding. Chick foraging rates (overall and successful) were then calculated and analysed in 

relation to mean sward height, soil moisture and location within field (rig/ditch).

5.2.3 Data analysis

Variation in treatment preference by broods was determined using generalised linear models 

(GLMs) in S-plus. GLMs allow the analysis of non-gaussian error distributions through the 

use of linearising link functions (McCullagh & Nelder 1983). The effects of treatment on 

foraging rates were investigated using generalised linear mixed models (GLMMs)
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performed in Genstat 5 (Genstat 5 committee, 1993). This technique allows repeated 

measures on chicks from the same brood by fitting brood identity as a random effect. 

Minimal models are arrived at by stepwise deletion (McCullagh & Nelder 1983). Model 

residuals are checked for normality. Predicted fits were used to display results controlling 

for other terms remaining in the model.
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5.3 Results

5.3.1 Chick habitat use

Over the study period (2000 & 2001) habitat use by 50 broods was monitored. The majority 

of broods remained in their natal fields until fledging or until broods had failed. Initially 

habitat preference indices were calculated for each treatment combination ‘potential range’ 

(Appendix 1, Table 1). Overall, HIGH water treatments appeared to score higher preference 

indices than LOW water treatments independent of fertiliser treatment, however this did not 

appear to be significant (Figure 1). Preference for LATE fertilised treatments was 

significantly greater than MID and EARLY treatments (Table 1, Figure 1). Significant 

variation between years also occurred in treatments 2, 3 and 5. Overall, lapwing broods 

actively selected treatments with short sward and high soil moisture and actively avoided 

treatments with long sward (see Chapter 3, Figures 5 & 6 for contrast and sward height 

between treatment types). Significant variation between years also occurred in treatments 2, 

3 and 5. To control for the tendency of broods to remain in their natal field and use only the 

treatments available therein, treatment preference within fields (‘actual range’) was also 

assessed.

129



Table 1 Generalised linear model of preference indices

Minimal model

Term d.f. Deviance F-value

NULL 299 363.06

Year 1 2.53 0.111

Treatment 5 35.63 <0.001

Year x Treatment 5 11.46 0.042

The response variable is habitat selectivity index (P,). P, has a binomial distribution. A logistic GLM 

was used to analyse the variation of P, between treatments within years. Treatment = HIGH water, 

EARLY fertiliser; HIGH water, MID fertiliser; HIGH water, LATE fertiliser; LOW water, EARLY 

fertiliser; LOW water, MID fertiliser; LOW water, LATE fertiliser.
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Figure 1 Preference indices of lapwing broods for treatm ent combinations in all 

fields ‘potential range’.
The predicted values and standard errors shown control for terms remaining in the model 

(Table 1).
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Not all treatment combinations were available in individual fields therefore analysis of water 

and fertiliser treatment preferences were analysed independently of each other within fields. 

Due to the small numbers of broods per field, broods from both years were grouped for the 

analysis.

Fertiliser treatments

When habitat use for fertiliser treatments within fields was considered it was found that 

LATE fertilised treatments scored significantly higher preference indices than MID and 

EARLY (Table 2, Figure 2) EARLY treatments were actively avoided in proportion to their 

availability in 2 fields out of 5, and MID treatments in field 29 and LATE treatments in field 

28 were avoided out of all treatments available. Avoidance of late treatments in field 28 

might be explained by 80% of those treatments having LOW water level status because 

LOW LATE treatments are not as attractive to lapwing chicks as HIGH LATE (Figure 1).
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Table 2 Generalised linear model of preference indices.

Minimal model

Term d.f. Deviance P-value

NULL 149 199.52

Fertiliser 2 9.7 0.002

Field 4 5.62 0.280

Fertiliser x Field 8 11.8 0.023

T he resp on se  variable is habitat selectiv ity  index (P,). P, has a b inom ial distribution. A  lo g istic  G L M  

w as u sed  to an a lyse  the variation o f  P, betw een treatments w ithin years.
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Figure 2 H abitat preference indices of lapwing broods for FERTILISER 

treatm ents within ‘actual range .
The predicted values and standard errors shown control for terms remaining in the model

(Table 2). 
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Selection for water treatments within fields was also derived (Appendix 1, Table 3). 

Analysis showed HIGH treatments were avoided in field 25), however this was not 

significant (Table 3, Figure 3). In remaining fields no difference in preference for one water 

treatment over the other was observed (Table 3, Figure 3). No significant preference for 

water treatment was therefore observed in the ‘actual range’ or ‘potential range’.

Table 3 Generalised linear model of preference indices.

Minimal Model

Term d.f. Deviance P-value

NULL 107 90.60

Terms dropped

Water 1 0.302 0.582

Field 3 2.84 0.410

Water x Field 3 1.15 0.762

The response variable is habitat selectivity index (Pi). P, has a binomial distribution. A logistic GLM 

was used to analyse the variation of P, between treatments within years.

133



Pr
ed

ict
ed

 
pr

ef
er

en
ce

 
in

di
ce

s 
(0

0.6 Preference
■  water H IG H  

□  water L O W

0.4  -

0.3

A voidance

29 3025 28

Field number

Figure 3 Habitat preference indices of lapwing broods for WATER treatments 
within ‘actual range’.

The predicted values and standard errors shown control for terms remaining in the model 
(Table 3).

134



Lapwing chick preference indices were calculated for location within treatment (rig/ditch) 

(Appendix 1, Table 4). Preference for rigs and ditches varied considerably. Preference 

indices for ditches were significantly (Table 4, Figure 4) higher than rigs in all fields. Rigs 

were actively avoided in all fields indicating that rigs do not provide suitable habitat for 

foraging lapwing chicks.

Table 4 General linear model of brood habitat use within fields.

Minimal Model

Term d.f. Deviance P-value

NULL 98 80.68

Location 1 77.84 0.001

Field 4 9.56 0.048

Terms dropped

Field x Location 4 6.05 0.195

The response variable is habitat selectivity index (P,). P, has a binomial distribution. A logistic GLM 

was used to analyse the variation of P, between treatments within years.
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5.3.2 Chick foraging rates

It has already been established above that lapwing chicks actively avoid areas of long 

vegetation. In order to understand the possible mechanisms behind this avoidance, variation 

in chick foraging rates with sward height, soil moisture and between rigs and ditches, were 

investigated.

Firstly, successful peck rates were found to be significantly related to overall peck rates (R2 

= 0.797, F i;35=137.9, PcO.OOl; Figure 5), implying that food intake is directly dependent on 

factors determining the overall peck rate of lapwing chicks.
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As overall and successful’ peck were significantly related (Figure 5) the effects of sward 

height and soil moisture were only investigated on overall peck rates.

The rate at which chicks fed and the number of prey caught per minute varied significantly 

with sward height and location within field (Table 8). Foraging rates were significantly 

reduced as sward height increased (Figure 6). Lapwing chicks have relatively short legs and 

are not well adapted to long vegetation (Galbraith 1988c). It is probable therefore that food 

intake is compromised by restricted mobility.

Foraging rates were considerably greater on ditches than on rigs (Figures 7). Surface 

invertebrate abundance is also significantly greater on ditches than rigs (Chapter 3). 

Therefore variation in foraging rates between rigs and ditches is likely to be a direct 

consequence of increased food availability and accessibility. As water levels in ditches 

retreat over the season, areas of bare soil become available providing unrestricted access to 

an abundant food supply.

Soil moisture was not found to be a predictor of foraging rates (Table 8) as assumed in other 

studies (Milsom et al. 2002, Baines 1990).
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Table 8 Generalised linear mixed model of foraging rates ('overall).

Minimal Model

Term d.f. Wald statistic (%2) F-value

Sward height 1 20.38 <0.001

Rig/Ditch 1 14.58 0.002

Terms dropped

Soil moisture 1 0.04 0.835

The response variable is number of pecks min. Number of pecks is Poisson distributed. A 

generalised linear mixed model (GLMM) was used to analyse the effects of sward height, soil 

moisture and location (rig/ditch) on foraging rates.
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The predicted values shown controls for terms remaining in the model (Table 8).
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5.4 Discussion

On the whole, broods preferred to feed in areas with short or no vegetation. It appears that 

this preference is driven by significantly improved foraging rates and food intake in shorter 

vegetation. While soil moisture appeared to be important in brood habitat use over their 

‘potential range’, it was not as important in determining habitat use over their ‘actual range’ 

and had no significant effect on chick foraging rates.

Chick treatment use in relation to food supply

Much is known about the importance of food density in determining habitat use by birds 

(Hilden 1965, Cody 1985, Newton 1998). Previous studies have shown how habitat 

selection by lapwing broods is largely determined by food supply. For example Galbraith 

(1988b) and Johansson & Blomqvist (1996) explained that brood movement from natal 

arable fields was driven by a more abundant food supply on adjacent grassland fields. 

Baines (1990) also explains brood movement after hatching from improved to unimproved 

grassland habitats as food related.

Based on these predictions it would be expected that lapwing chicks at Gruinart should be 

observed foraging in areas where food is most abundant. Indeed, lapwing chicks were 

observed foraging more often in ditches than rigs than expected by chance, and it likely that 

this was determined by a combination of significantly greater numbers of surface 

invertebrate numbers on ditches (Chapter 3) and their accessibility.

However, predicting chick use of treatments by food availability was not so clear, as food 

abundance did not always reflect where chicks were observed. Food abundance between 

treatments varied considerably (see Figure 10, Chapter 3). In particular higher numbers of
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surface invertebrates (important in chick diet) were sometimes observed on treatments with 

long sward.
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Figure 10 (taken from chapter 3) Variation in surface invertebrate number with 

water and fertiliser treatment.

Differences in food availability between water treatments differed significantly depending 

on sward height. This trend was reflected in chick use o f treatments over their potential 

range’. In LOW water treatments chick preference for fertiliser treatments closely reflected 

surface invertebrate responses to fertiliser treatment, where LOW EARLY treatments were 

avoided and marginal preference for LOW LATE treatments was observed. When water was 

HIGH, however, chicks were observed on MID fertilised treatments more than expected and 

observed less than expected on EARLY treatments in relation to surface invertebrate 

abundance. Treatment preference in relation to earthworm biomass was similar. Earthworm 

biomass was greatest when water was LOW and fertiliser was applied EARLY, treatments 

that were actively avoided by lapwing chicks. When water was HIGH, earthworms were 

most abundant in LATE fertilised treatments, treatments that were most preferred by chicks.
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Chick preference for fertiliser treatment in their ‘actual range’ closely reflected the trend 

observed on their ‘potential range’ where short grass was selected over long. Selection for 

water treatments on the other hand differed between ranges. Water level did not appear to 

influence chick habitat use over their ‘potential range’ or their ‘actual range’ suggesting that 

within fields, fertiliser treatment is more important in determining where lapwing chicks 

feed. Preferences for fertiliser treatment in both their ‘potential’ and ‘actual’ ranges suggests 

that both food abundance and sward height are invariably important factors in determining 

habitat use by lapwing chicks.

Chick habitat use in relation to vegetation structure

A linear relationship between sward height and foraging success of lapwing chicks was 

observed in this study. Foraging success was greatest in short vegetation than long, which 

explains preference for treatments with short sward over long. Recent studies on the 

foraging success of passerines propose that depressed prey detectability in tall vegetation 

contributes to low food intake rates (Whittingham & Markland 2002). However it is more 

likely that a combination of restricted mobility (Galbraith 1988a) and reduced visibility in 

tall vegetation are responsible for poor foraging efficiency in lapwing chicks.

Milsom et al. (2002) suggested that soil wetness is important in creating habitat for foraging 

lapwing broods, however no variation in lapwing chick foraging success was observed with 

soil moisture in this study. Milsom et al. (2002) considered that soil wetness might reduce 

vegetation cover thus improving detectability of prey items but this was not proven. In this 

study soil moisture on rigs did not affect sward height on rigs (chapter 3) and therefore was 

not a predictor of variation in foraging success or water treatment preference within fields.
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Foraging success on ditches was much greater than rigs, highlighting their importance as 

foraging habitats for lapwing chicks. As the season progressed water levels in ditches 

dropped, creating conditions of moist soil with little or no vegetation. Chick mobility in 

ditches is therefore easier allowing greater detectability of abundant surface invertebrates. 

These factors can explain the considerable variation in preference indices between rigs and 

ditches.

To conclude, areas of short (LATE fertilised treatments) or no vegetation (ditches) are 

preferred foraging habitats for lapwing chicks on two counts. Firstly they provide an 

abundant surface food supply and secondly they allow chicks to move without restriction to 

catch their prey and increase prey detectability.
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APPENDIX 1

Table 1_______ Habitat selectivity indices of lapwing broods for all treatments ‘potential
range*.

Year Treatment Available Proportion of Mean proportion of
area (ha'1) available brood encounters in

area treatments ± s.e.

(A,) (U/)

Mean
Preference 
index per 
treatment ± s.e. 

(P/)

WATER FERTILISER

1. HIGH EARLY 6.96 0.111 0.060 ±0.210 0.17±0.59

2. HIGH MID 8.67 0.138 0.080 ±0.180 0.20±0.45

2000 3. HIGH LATE 9.35 0.149 0.410 ±0.420 0.86±0.89

(n=30) 4. LOW EARLY 10.7 0.170 0.155 ±0.330 0.28±0.60

5. LOW MID 10.1 0.161 0.260 ±0.106 0.06±0.23

6. LOW LATE 16.8 0.268 0.266 ± 0.383 0.32±0.44

1. HIGH EARLY 6.96 0.111 0.043 ±0.168 0.12 ±0.49

2. HIGH MID 8.67 0.138 0.185 ±0.234 0.47 ± 0.59

2001 3. HIGH LATE 9.35 0.149 0.173 ±0.295 0.39 ± 0.63

(n=20) 4. LOW EARLY 10.7 0.170 0.064 ±0.193 0.12 ±0.36

5. LOW MID 10.1 0.161 0.100 ±0.183 0.22 ± 0.40

6. LOW LATE 16.8 0.268 0.431 ±0.368 0.52 ± 0.43

148



Ta.bl.e2 Habitat selectivity indices of lapwing broods for FERTILISER treatments.

Field number
(number of 

broods)

Fertiliser
treatment

Available area 
(ha-1)

Proportion of 
available area 

(Ai)

Proportion of brood 
observations 

(Ui)

Preference
index
(Pi)

25
(9)

Early 1.5 0.22 0.44 ± 0.8 0.09
Mid 2.7 0.41 4.1 ±5.1 0.37
Late 2.4 0.36 5.3 ±4.6 0.52

28
(12) Early 1.56 0.10 0.09 ± 0.25 0.39

Mid 3.12 0.20 0.34 ± 0.26 0.65
Late 10.92 0.70 0.55 ± 0.29 0.28

29
(13) Early 2.56 0.33 0.34 ± 0.39 0.39

Mid 3.84 0.50 0.30 ± 0.35 0.23

Late 1.28 0.16 0.35 ± 0.39 0.82

30
(17) Early 3.42 0.39 0.33 ± 0.37 0.32

Mid 1.96 0.22 0.23 ± 0.27 0.41

Late 3.43 0.28 0.43 ± 0.39 0.56

32
(5)

Early 5.64 0.42 0.26 ± 0.42 0.24

Mid 3.76 0.28 0.23 ± 0.37 0.32

Late 3.76 0.28 0.50 ± 0.47 0.64
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Table 3 Habitat selectivity indices of lapwing broods for WATER treatments.

Field
Water

treatment
Available area Proportion of 

(ha-1) available area 

(Ai)

Proportion of brood 
observations 

(Ui)

Preference
index
(Pi)

25 High 4.01 0.60 0.42 ± 0.39 0.26
Low 2.61 0.40 0.57 ± 0.39 0.49

28 High 7.8 0.50 0.48 ± 0.32 0.35

Low 7.8 0.50 0.51 ±0.32 0.36

29 High 5.12 0.57 0.60 ± 0.28 0.36

Low 3.84 0.42 0.40 ± 0.29 0.35

30 High 5.14 0.50 0.51 ±0.37 0.36

Low 5.09 0.50 0.48 ± 0.37 0.34

rable 4 Habitat selectivity indices of laDwine broods within fields.

Field
Location within 

field
Available area Proportion of 

(ha-1) available area 
(Ai)

Proportion of brood 
observations 

(Ui)

Preference
index
(Pi)

25 Rig

Ditch

5.62

1

0.84

0.15

0.24 ±0.18 

0.76 ±0.19

0.11

0.64

28 Rig

Ditch

13.2

2.4

0.84

0.15

0.43 ± 0.23 

0.57 ± 0.24

0.19

1.30

29 Rig

Ditch

7.84

1.12

0.87

0.13

0.41 ± 0.26 

0.59 ± 0.26

0.17

1.55

31 Rig
Ditch

9.05

1.18

0.88

0.12

0.22 ± 0.29 

0.80 ± 0.29

0.10

2.12

32 Rig

Ditch

11.48

1.68

0.87

0.13

0.34 ± 0.22 

0.67 ± 0.20

0.15

1.72
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Chapter 6

Grassland management, life history 
and lapwing breeding success.



Abstract

The importance of egg size and chick body condition in determining chick survival in avian 

species is well documented. Previous studies have established the importance of several life 

history traits and development factors in lapwing chick survival. Other studies have 

demonstrated how variation in food supply between habitat types can influence chick 

survival. In this chapter, the effects of two commonly used grassland management 

practices, fertilising and drainage, on lapwing life history (egg size, clutch size and survival) 

and development (chick body condition), with particular reference to the to the importance 

of food supply are examined using a farm-scale factorial experiment. The experiment took 

the form of a 2 x 3 factorial design with 2 water (high, low) and 3 fertiliser treatments 

(application early, mid and late season) generating 6 treatment combinations. No significant 

variation in clutch size or egg size in relation to treatment was observed. No effect of egg 

size on chick body condition was observed but both water and fertiliser treatments 

significantly affected chick body condition. These trends were explained by variation in 

surface invertebrate number between treatments. No effect of body condition on survival of 

broods to day 5 was observed, however water and fertiliser treatment significantly predicted 

chick survival thereafter. Both body condition and water and fertiliser treatment affected 

chick survival from day 5 to day 10. This chapter demonstrates how changes in grassland 

management practices can affect body condition in lapwing chicks through changes in food 

supply, thereby affecting their survival.
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6.1 Introduction

Recent changes in agricultural practices have been blamed for declines in farmland bird 

populations in Britain (Fuller et a l  1995, Chamberlain et al 2000). It has been suggested 

that a reduction in both invertebrate and plant food availability has had a major effect on 

breeding success of many species (Benton et a l  2002, Robinson & Sutherland 2002). For 

example, reductions in invertebrate food supply through herbicide application to arable 

crops are thought to be responsible for reduced chick survival of the grey partridge Perdix 

perdix (Potts 1986). The mechanisms driving farmland bird declines are still poorly 

understood, in particular how changes in management practices may affect reproductive 

success indirectly through changes in food supply (Vickery et a l  2001, Chamberlain & 

Fuller 2001).

Intensification of grassland management has been suggested as one of the major factors 

contributing to the decline of breeding lapwings in Britain (O’Brien and Smith 1992, Wilson 

et a l  2001), however the mechanisms underlying the decline on grassland habitats has not 

been as well documented as arable habitats. Much is known about differences in invertebrate 

abundances and diversity between arable and grassland habitats and the resultant impact on 

the breeding success of farmland birds (Southwood & Cross 1969, Galbraith 1988b). On the 

other hand very little is known about the effects of grassland improvement on invertebrate 

abundance and availability and the potential effects on chick survival (Baines 1990, Vickery 

et a l  2001).

Life history traits of animals, such as adult size and fecundity rate, all show a wide variation 

which is determined by natural selection and reflects adaptation of that animal to its 

environment (Roff 2002). In birds, a wide range of life histories occur, from short lived, 

mostly small-bodied species to long-lived, mostly large-bodied species. Body size correlates
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with most avian life history traits such as longevity, age of first breeding, breeding cycle and 

fecundity (Newton 1998). It is widely accepted that food limitation can induce much of the 

variation in life history traits of birds within species by influencing clutch size, egg size, 

chick growth rates and ultimately fledging success (Lack 1947, Martin 1987, Martin 1995, 

Perrins 1995, Brinkhof & Cave 1997, Bukacihski et al. 1998, Clifford and Anderson 2001). 

In lapwings previous studies have outlined the potential importance of food availability in 

determining chick survival (Galbraith 1988b, Baines 1990), while other studies have 

highlighted how life history traits (Blomqvist & Johansson 1995, Galbraith 1988b) 

determine breeding success and chick survival. However, the impact o f food limitation 

through agricultural improvement on lapwing life history traits and the resultant implications 

for lapwing breeding success have never been investigated.

A wide range of clutch size variation exists among bird species. Much of this variation 

between species can be explained by life history i.e. clutch size will be limited to the number 

of eggs that can be incubated successfully or in altricial species how many young parents 

can provision (Lack 1947, Godfray at a l 1991). There is evidence to suggest that some of 

the variation in clutch size within species can be explained by other factors such as predation 

(Kuleza, 1990) and food supply prior to egg laying (Martin 1995, Clifford and Anderson 

(2001). Clutch size in lapwings, like all wader species, is a relatively invariable feature of 

reproduction and is truncated at the modal number of 4 eggs (Arnold 1999, Ward 2000). 

Despite this, differences in clutch size between habitat types have been observed in previous 

studies. Analysis of BTO nest-record cards from England and Wales (1962 - 1985) by 

Shrubb (1990) found significantly larger clutches in tillage than grassland. Differences were 

also observed within grassland habitats with smaller clutches being observed on improved 

grassland than unimproved grassland. Shrubb (1990) suggested that food availability was 

probably the cause of variation between grassland habitat types.
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W ader chicks are precocial and as such their eggs are large and contain large yolk reserves 

(Carey et al. 1980). Indeed this egg size trait amongst precocial species may also contribute 

to clutch size limitation where there is a trade off between egg size and clutch size. Egg size 

is important in lapwings, as chicks that hatch from large eggs are heavier and larger at 

hatching, grow faster and survive better than those from small eggs (Galbraith 1988a, 

Blomqvist et al. 1997, Kirby & Tyler 1999). Magrath (1992) suggests the reason why egg 

size has a greater effect in precocial than altrical species is their dependence on nutrient 

reserves during the first few days after hatching while learning to feed. Indeed Galbraith 

(1988a) found that egg size enhanced chick survival to fledging through an effect in the first 

10 days after hatching. In lapwings intrinsic factors such as female body mass, wing length 

and condition, are known to correlate with egg volume, as are extrinsic factors such as food 

availability prior to breeding (Galbraith 1988a, Blomqvist & Johansson 1995).

The role of condition in determining chick survival in lapwings and other wader species is 

well documented (Galbraith 1988 a & b, Beintema & Visser 1989, Johansson & Blomqvist 

1997, Grant 1991, Pearce-Higgins & Yalden 2002). Previous studies have shown how body 

condition in lapwing chicks can be determined indirectly by food supply through maternal 

condition and egg size (Galbraith 1988a, Beintema 1994). Galbraith (1988c) suggests that 

condition in lapwing chicks can be influenced directly by habitat types through differences 

in food abundance between them, but this has not been investigated in detail.

In this chapter, experimental treatment effects will be examined at various stages of lapwing 

life history including clutch size, egg size, chick condition and finally survival. The results 

will be interpreted in relation to how variation in food supply between treatments (see 

Chapter 3) determines lapwing life history traits and how predator activity varies between 

fields thereby influencing lapwing breeding success.
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6.2 Methods

6.2.1 Clutch size & egg volume

In 2001, clutch sizes from 39 nests selected at random throughout the season were recorded 

from each treatment type. The length and breadth of 133 eggs from these 39 nests were 

measured to the nearest 0.1mm using dial callipers. Egg volumes were calculated using the 

equation:

Egg volume (cm3) = 0.425 * L *  B2 (Galbraith 1988a)

Where, L= egg length and B= egg breadth.

6.2.2 Chick condition

Chick mass (gm) and bill length (mm) were measured using a ‘Pesola’ spring balance and 

dial callipers respectively from chicks of known age. As nests were monitored daily, 

hatching dates were recorded therefore allowing accurate determination of chick age. 

Condition indices for chicks of known age were derived from the relationship between 

standard mass (expected mass) and observed chick mass:

Condition index (Cl) = observed mass (OW) / standard mass (EW) (Beintema 1994),

Standard masses were calculated from the relationship between mean chick mass and chick 

age (Appendix 1).

Mean chick condition indices were then calculated for each brood using standardised body 

masses. At Gruinart lapwing chicks remain close to the nest site for 3-4 days after hatching. 

Treatment effects in relation to where chicks hatched were investigated. Separate analyses 

were undertaken on broods aged between 3-4 days old and all broods.
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6.2.3 Brood survival

After hatching chicks were ringed using BTO metal rings and colour rings to allow 

individual identification on re-location. Numbers of chicks per brood were monitored every 

3 days for survival and their location noted to monitor movement within and between fields. 

Brood survival estimates were derived using the modified Kaplan Meier procedure 

described in Flint et al. (1995). This estimator controls for the assumption that individuals 

within broods have independent survival probabilities. Two brood survival estimates were 

calculated. Firstly, survival estimates for broods from hatching to day 5 were derived, as 

natal treatment effects are more detectable at this stage before broods are moved to other 

potential feeding areas. Secondly, survival estimates for brood from hatching to day 10 

were derived. Numbers of chicks monitored after day 10 (due to either migration or 

mortality) were too few to detect treatment effects accurately.

Between-field variation encompasses a range of factors, the most important of which in this 

section is predation. Predator pressure was quantified from daily observations of predator 

activity within each field over the study period (see Chapter 4 methods & Appendix 1: 

Figure 1, Table 1).

6.2.4 Data analysis

Generalised linear models (GLMs) in S-plus were used to test the effects of treatment on 

clutch size, chick condition and brood survival. GLMs allow the analysis of non-gaussian 

error distributions through the use of linearising link functions (MeCullagh & Nelder 1983). 

Minimal models were arrived at by stepwise deletion (MeCullagh & Nelder 1983). Model 

residuals are checked for normality. Predicted fits were used to display results controlling 

for other terms remaining in the model. Rig and ditch were nested in field to control for 

repeated measures. The effects of treatment on egg volume were investigated using
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restricted maximum likelihood techniques (REML) performed in Genstat 5. This technique 

allows repeated measures on the same nest by fitting nest identity as a random effect.
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6.3 Results

6.3.1 Clutch size & egg volume

In this section the hypothesis that water and fertiliser treatments predict clutch size and egg 

volume is tested.

Clutch size over the study period ranged from 3 to 4 eggs per clutch. W ater and fertiliser 

treatments did not influence clutch size of lapwings (Table 1). There were no significant 

effects of field, location within field, field age or clutch type (first or replacement clutch) on 

clutch size.

Table 1 Generalised linear model of clutch size.

Minimal Model

Term d.f. Deviance lvalue

NULL 37 8.37

Terms dropped

Water 1 0.004 0.894

Fertiliser 2 0.17 0.696

Field age 1 0.29 0.280

Field 6 0.01 0.653

Field (Rig/Ditch) 7 0.99 0.791

Clutch type 1 0.50 0.162

The response variable was clutch size of lapwings. The response variable appeared to be poisson 

distributed. The effects of treatment and field age were analysed using a log-linear GLM. The dispersion 

parameter calculated was too large (<2), therefore a quasi-likelihood GLM was applied with the 

appropriate “log” link and “mu” variance functions for the Poisson family. Field (Rig/Ditch) was included 

to control for between and within field variation Clutch type distinguishes between first and replacement 

clutches. Model residuals appeared Normal.

159



Mean egg volume per clutch ranged from 20.28 cm3 to 25.44 cm3. Variation in egg 

volume in lapwings is likely to be influenced by intrinsic factors such as female 

condition and extrinsic factors such as food availability (Galbraith 1988a, Blomqvist & 

Johansson 1995). Invertebrate response to treatments (Chapter 3) did not occur until 

after the measured nests were initiated, therefore an egg volume response to treatment 

was not anticipated. As expected, water and fertiliser treatments did not significantly 

affect lapwing egg volumes (Table 4). No differences in egg volume were observed 

between fields and within fields. Egg volumes in first clutches did not differ 

significantly from replacement clutches.

Table 2 Linear mixed model of egg volume. 

Minimal Model

Term d.f. Wald statistic (3c2) P-value

Terms dropped

Water 1 0.05 0.822

Fertiliser 2 0.66 0.567

Field age 1 1.42 0.234

Clutch type 1 0.10 0.751

The response variable is egg volume cm 3. Egg volume distribution tested normal. A linear mixed 

model, restricted maximum likelihood technique (REML) was used to analyse the effects of 

treatment, field age and clutch type (first or replacement) on egg volume. REML allows repeated 

measures of egg volume from the same nest, by fitting individual nest as a random effect. Field 

(Rig/Ditch) and nest age were added as random variables to control for between and within field 

variation and egg volume differences that might arise due to nest age. Random effects tested non­

significant.
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6.3.2 Chick condition

In this section the following hypotheses are tested, 1. life history traits (egg volume) predict 

the body condition o f broods aged 3-4 days and 2. water and fertiliser treatments predict the 

body condition o f  broods aged 3-4 days.

The relationship between lapwing chick condition at hatching and subsequent survival is 

well documented (Galbraith 1988a, Beintema 1994). Chick condition can be determined 

both intrinsically through maternal size and extrinsically through factors such as food supply 

(Galbraith 1988a, Blomqvist & Johansson 1995). In this study the relationship between 

mean egg volume per clutch and mean chick condition per brood o f 23 broods was not 

found to be significant (R2=0.049, Fi52i=0.964, P=0.337; Figure 1). This result suggests that 

extrinsic factors such as food supply may be more influential in determining chick 

condition.

0.7 '

252423222120
Mean egg volume (crr )̂

Figure 1 Relationship between mean egg volume and mean condition of chicks 
ranging from 3-10 days.
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Body condition of young broods (3-4 days) were significantly affected by natal treatments as 

shown by the water x fertiliser interaction (Table 3, Figure 2). In HIGH water treatments, 

chicks that hatched on EARLY and LATE fertilised treatments were in significantly better 

condition than chicks that hatched on MID treatments. When water treatment was LOW, 

chicks that hatched on MID and LATE fertilised treatments were in better condition than 

those that hatched on EARLY treatments. These results may reflect the response of surface 

invertebrates to water and fertiliser treatments (Chapter 3: Table 6, Figure 11) as their 

responses to treatments were similar. This suggests that chick condition may be closely 

linked to food supply, in particular surface invertebrates.

Chick condition of young broods did not vary significantly with year, field age or between 

first and replacement clutches (Table 3). Condition of young broods hatched before fertiliser 

application did not vary significantly from those which hatched after fertiliser application.
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Table 3 General linear model of mean chick condition (broods aged 3-4 days).

Minimal model

Term d.f. Deviance P-value

NULL 43 2.31

Water 1 0.022 0.439

Fertiliser 2 0.059 0.449

Field 6 0.533 0.051

Field (Rig/Ditch) 6 0.370 0.158

Water x Fertiliser 2 0.37 0.014

Terms dropped

Fertiliser presence 1 0.020 0.468

Clutch type 1 0.024 0.417

Field age 1 0.006 0.824

Year 1 0.001 0.656

The response variable was mean brood condition of lapwing broods. The response variable appeared to be 

normally distributed. The effects of treatment and field age were analysed using gaussian GLM. Field and 

Rig/Ditch were included to control for between and within field variation Clutch type was included to 

investigate for differences in chick condition between first and replacement clutches. Fertiliser presence 

(1/0) was included to investigatel for variation in condition of broods hatched before and after fertiliser 

application. Model residuals appeared Normal.
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Figure 2 Variation in mean chick condition (0-3days) per brood with water and 
fertiliser treatment

The predicted values shown control for terms remaining in the model (Table 3).
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Next, mean body condition in broods of all ages were analysed to investigate the response 

to treatment. Water and fertiliser interacted significantly to affect mean chick body condition 

of all broods measured over the study period (Table 4, Figure 3). Bigger chicks were 

observed on EARLY and LATE fertiliser treatment than on MID treatments when water 

treatment was HIGH. When water treatment was LOW bigger chicks were observed on MID 

and LATE treatments. In addition condition varied significantly between fertiliser treatments 

within fields (Table 4). These results suggest that natal treatment and natal field were 

important factors in determining chick body condition of broods at Gruinart flats.
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Table 5 General linear model of mean chick condition (all broods).

Minimal model

Term d.f. Deviance F-value

NULL 93 4.9

Water 1 0.002 0.815

Fertiliser 2 0.03 0.635

Field 6 0.43 0.11

Field (Rig/Ditch) 7 0.477 0.133

Water x Fertiliser 2 0.40 0.009

Field x Fertiliser 10 0.91 0.020

Terms dropped

Fertiliser presence 1 0.005 0.701

Clutch type 1 0.02 0.430

Field Age 1 0.02 0.444

Year 1 0.01 0.509

The response variable was mean chick condition of lapwing broods. The response variable appeared to be 

normally distributed. The effects of treatment and field age were analysed using a gaussian GLM. Field 

(Rig/Ditch) was included to control for between and within field variation Clutch type was included to 

investigate for differences in chick condition between first and replacement clutches. Fertiliser presence (1/0) 

was included to investigate for variation in condition of broods hatched before and after fertiliser application. 

Model residuals appeared Normal.
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Figure 3 Variation in mean chick condition (all broods) per brood with water and 
fertiliser treatment.

The predicted values shown control for terms remaining in the model (Table 4).



6.3.3 Brood survival

In this section the hypothesis that treatment affect the survival of chicks to two stages 1. 0 to 

5days and 2. 5 to 10 days is tested.

Survival day OtoS

Both water and fertiliser treatments had a significant effect on brood survival (Table 5, 

Figure 4). In HIGH water treatments there appeared to be no significant effect of fertiliser 

treatment on brood survival to five days. In LOW water treatments however, chicks hatched 

on MID and LATE fertilised treatments appeared to have higher survival estimates to day 5 

than those that hatched on EARLY fertilised treatments. Chick survival to day 5 was not 

influenced by mean brood condition (Table 5) suggesting that either the food abundance or 

food availability responses to treatments might be important in determining chick survival.

Fertiliser treatment also interacted significantly with clutch type to affect brood survival to 

day 5 (Table 5, Figure 5). Survival of first clutches was greater than replacement clutches in 

all fertiliser treatments and appeared to be significantly greater in LATE fertilised 

treatments. Survival estimates of first clutches to day 5 responded negatively to fertiliser 

input. This may be attributable to variation in food abundance (see Chapter 3) or restricted 

foraging rates in taller sward (see Chapter 5).

Variation in brood survival was also dependent on the inferred level of predator activity 

within natal fields (Appendix 2, Figure 1). In fields 28 and 29, where predator activity is 

highest (Figure 6) brood survival to day 5 appears to be greater in EARLY and MID 

fertilised treatments than LATE fertilised treatments. In fields 32 and 31, where predator 

activity is lowest (Figure 6) broods hatched on LATE treatments appear to have a higher 

chance of survival to day 5 than those hatched on MID or LATE treatments. This result 

suggests that cover provided by EARLY fertilised treatments benefits chicks when predation

168



pressure is high, and the absence of cover under LATE treatments results in higher mortality 

rates amongst broods.

Table 5 Generalised linear model of brood survival (0-5 days).

Minimal model

Term d.f. Deviance P-value

NULL 83 257.22

Fertiliser treatment 2 1.29 0.752

Water treatment 1 0.54 0.626

Clutch type 1 14.45 0.014

Field 6 22.67 0.148

Field (Rig/Ditch) 6 8.32 0.721

Water x Fertiliser 2 20.43 0.015

Clutch type x Fertiliser 2 20.60 0.015

Field x Fertiliser 9 46.97 0.029

Terms dropped

Fertiliser presence 1 2.30 0.305

Year 1 4.17 0.169

Field Age 1 5.04 0.141

Condition index 1 6.59 0.087

The response variable has a binomial distribution. The effects of treatment, field age and brood condition were 

analysed using a logistic regression GLM. Fields were ranked in order of their predator activity (Figure 7). 

Field (Rig/Ditch) was included to control for between and within field variation. The dispersion parameter 

calculated for the logistic regression model was too large (>2). A quasi-likelihood GLM was applied with the 

appropriate “logit” link and “mu (1-mu)” variance functions. Clutch type was included to investigate for 

differences in chick survival between first and replacement clutches. Fertiliser presence (1/0) was included to 

investigate for variation in survival of broods hatched before and after fertiliser application. Model residuals 

appeared Normal.
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Fields are ranked according to predator activity observed in fields over the study 
period (Chapter 4, Appendix 1: Table 1, Figure 1). The predicted values shown 
control for factors remaining in the minimal model (Table 5).
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However when predation pressure is lower, tall sward appears to have an adverse effect on 

brood survival and short sward appears to benefit survival of broods to day 5.

Survival day 5 to 10

The impact of natal treatment on brood survival after day 5 should be difficult to assess 

accurately because broods frequently move to other treatments to forage, however, brood 

survival from day 5 to day 10 was significantly affected by natal treatment (Table 6, Figure 

7). Chicks that hatched on HIGH water treatments survived longer than those that hatched 

on LOW water treatments. Survival of broods also varied significantly between fertiliser 

treatments before and after fertiliser was applied (Table 6, Figure 8). Survival estimates of 

broods in EARLY and LATE fertilised treatments appeared to decline significantly after 

fertiliser was applied while survival of broods hatched in MID fertilised treatments did not 

appear to change after fertiliser application. This indicates fertilising may have an adverse 

effect on brood survival from day 5 to 10 depending on timing of fertiliser.

Survival of replacement broods were significantly greater than first broods which contrasts 

with survival of young chicks (Table 6, Figure 9). Survival estimates varied significantly 

between fields (Table 6), however predator activity was not found to explain this variation. 

In contrast with survival of young chicks, chick condition interacted significantly with 

treatment to predict chick survival from day 5 to day 10 (Table 6).
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Table 6 Generalised linear model of brood survival (5-10 days).

Minimal model

Term d.f. Deviance P-value

NULL 57 124.98

Fertiliser treatment 2 1.93 0.225

Water treatment 1 23.20 <0.001

Fertiliser presence 1 6.99 0.002

Condition Index 1 0.69 0.297

Field Age 1 3.57 0.022

Clutch Type 1 2.69 0.045

Field 6 20.98 <0.001

Field (Rig / Ditch) 6 13.27 0.008

Water x Fertiliser Treatment 2 4.89 0.029

Water x Fertiliser presence 1 9.21 <0.001

Water x Condition Index 1 9.11 <0.001

Fertiliser treatment x Condition Index 1 16.64 <0.001

Fertiliser treatment x fertiliser presence 1 13.69 <0.001

Terms dropped

Year 1 1.017 0.743

The response variable has a binomial distribution. The effects of treatment, field age and mean brood condition 

were analysed using a logistic regression GLM. Field (Rig/Ditch) was included to control for between and 

within field variation. Clutch type was included to investigate for differences in chick survival between first 

and replacement clutches. Fertiliser presence (1/0) was included to investigate for variation in survival of 

broods hatched before and after fertiliser application. Model residuals appeared Normal.

173



Pr
ed

ic
te

d 
me

an
 

su
rv

iv
al

 e
sti

m
at

es
 

(K
ap

lan
 

M
ei

er
)

Fertiliser treatment
  Late
  Mid
  Early

C\
o

oo
©

©

High Low
Water treatment

Figure 7 Variation in brood survival estimates (5 -  10 days) between water and 
fertiliser treatments.
The predicted values shown control for terms remaining in the minimal model. 
(Table 6).
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Figure 9 Variation in brood survival estimates (5 - 1 0  days) between first and 
replacement clutches
The predicted values shown control for terms remaining in the minimal model. 
(Table 6).
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6.4 Discussion

Recent changes in grassland management are thought to be a major factor in contributing to 

the decline of lapwings in the wider countryside (O’Brien and Smith 1992, Wilson et a l  

2001, Vickery et a l  2001). However very little is known how habitat quality affects those 

life history traits likely to affect lapwing breeding success.

Clutch size & egg volume

Water and fertiliser treatments did not affect clutch size. Lapwings like most other waders 

lay clutches of no more than 4 eggs. It is thought that incubation-limitation (i.e. waders 

cannot successfully incubate larger clutches) is the main factor limiting clutch size in waders 

(Arnold 1999, but see Wallander & Andersson 2002). Therefore, the effects of habitat 

quality or in this case the effects of treatment are more likely to be expressed in egg volume 

rather than clutch size (Galbraith 1988a), however this was not the case in this study. In 

addition, variation in egg size between females was not found to be significant. Treatment 

effects on food supply were not observed until all clutches measured were initiated (see 

Chapters 3 & 4); therefore differences in clutch size and egg volume due to treatment were 

not expected. Effects of treatment in clutches initiated later in the season when variations in 

food supply were detected were too few to analyse. Differences in egg volume between first 

and replacement clutches found in other studies (Galbraith 1988a, Parish et al 2001) were 

not observed in this study.

Chick body condition

Body condition of lapwing chicks and other wader species can be determined in two ways 1. 

by intrinsic factors such as maternal condition and egg size or 2. by extrinsic factors such as 

food supply and weather conditions (Galbraith 1988 a, b & c, Grant 1991 Bientema 1994, 

Blomqvist & Johansson 1995, Parish et al. 2001, Pearce-Higgins & Yalden 2002). Body 

condition in precocial chicks is important in determining survival, where survival rates of
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big chicks are greater than those of small chicks (Galbraith 1988b, Pearce-Higgins & Yalden 

2002). Previous studies have found a relationship between egg volume and chick condition 

(Galbraith 1988a). In this study, however the relationship between mean egg volume per 

clutch and mean body condition of broods was not significant suggesting that extrinsic 

factors such as food supply might be more important in determining body condition of 

chicks. In addition treatment effects may have been detected with a larger sample size, 

adding more power to the analysis or by measuring chicks within a day after hatching. Both 

water and fertiliser treatments interacted significantly to affect body condition of chicks 

aged between 3 and 4 days and all broods. Chick condition responses to treatments were 

similar to surface invertebrate responses to water and fertiliser treatment (Figure 10 a & b), 

indicating that food availability at hatching is important in determining chick body 

condition. The effect of treatment on condition at hatching appears to have been sustained as 

body condition of all broods (both young and old combined) was also significantly affected 

by food supply at hatching.
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Brood survival

The role of chick body condition and food supply in determining chick survival in lapwings 

and other wader species is well documented (Galbraith 1988 a & b, Beintema & Visser 

1989, Johansson & Blomqvist 1996, Grant 1991, Pearce-Higgins & Yalden 2002). In this 

study both water and fertiliser treatment was important in determining brood survival to day 

5 and day 10. Brood survival to fledging could not be analysed accurately due to small 

numbers of broods observed at the later stages of growth.

Galbraith (1988b) suggested food availability and vegetation height were responsible for 

variation in chick survival rates between arable and pasture habitat types. He found that 

chicks that hatched in arable habitats suffered severe mortality during the first few days after 

hatching compared to chicks that hatched close to or on pasture habitats. In this study no 

significant differences in brood survival rates from 0 to 5 days were apparent between 

fertiliser treatments in HIGH water treatments. This might be explained by availability of 

surface invertebrates (see Figure 10b) where no apparent significant differences between 

fertiliser treatments on HIGH water treatments were observed. Differences in survival rates 

between fertiliser treatments in LOW water treatments might be explained by foraging rates. 

Foraging rates were dependent on sward height (see Chapter 5), therefore chicks feeding in 

LATE and MID fertilised treatments are predicted to have higher food intake, resulting in 

higher survival rates, than in EARLY fertilised treatments where the sward is significantly 

longer (see Chapter 3). Therefore, when soil moisture is HIGH food abundance is the most 

important predictor of chick survival and when soil moisture is LOW, a short sward 

enabling increased food intake is important in determining brood survival rates.

Previous studies that have considered the interaction effects of habitat structure and lapwing 

predation have focussed on predation at the nest stage (Baines 1990, Galbraith 1988b). In
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these studies nest predation rates were lower on habitats with tall or more uniform 

vegetation than those with short or heterogeneous vegetation structure. In this study we 

identified that brood survival in an individual field was dependent on vegetation height and 

amount of predator activity observed within that field boundry. It appeared that chicks that 

hatched in fields with low predator activity benefited from being able to forage in areas of 

short sward, however their survival decreased as predator activity increased. Chicks hatched 

on treatments with longer vegetation benefited from extra cover and survived better when 

predator activity was high. These results highlight both the potential importance of 

vegetation cover for young lapwing chicks when predator levels are high and a potential 

trade-off which results when providing suitable foraging habitat.

Previous authors have shown how survival rates between first and replacement clutches can 

vary (Galbraith 1988a). In this study brood survival rates (to day 5) were also dependent on 

clutch type (first or replacement clutches). The apparent linear negative response of first 

broods to sward height also indicates the importance of food abundance and availability. It is 

likely that survival rates of first broods are predicted by their food intake, where foraging 

rates are significantly greater in short sward than long sward (Chapter 5). Explaining the 

brood survival rates of replacement broods between fertiliser treatments is not as clear. 

Replacement broods hatched in EARLY and MID treatments appear to benefit from cover. 

It appears that replacement broods hatched on LATE fertilised treatments may also be more 

vulnerable to predation through a combination of less cover from predators and poorer body 

condition.

Brood survival from day 5 to day 10 was also dependent on soil moisture and sward 

height although the observed response varied slightly from the observed response in broods 

to day 5. Survival estimates of older broods on HIGH water treatments were higher than
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LOW water treatments particularly in EARLY and LATE fertilised treatments. Older chicks 

appeared to be more sensitive to differences in soil moisture than sward height in contrast 

with young broods where differences in survival estimates between water treatments were 

not as obvious. This trend is again consistent with variation observed in surface invertebrate 

numbers between treatments where higher numbers of surface invertebrates were observed 

in treatments with LATE and EARLY fertiliser application and HIGH water levels (Figure 

10b). Fertiliser application appeared to have a negative effect on brood survival however 

this was dependant on timing of that application. Broods hatched on EARLY and LATE 

treatments were most sensitive to fertiliser application showing an negative response.

In contrast with young broods, survival estimates to day 10 were significantly predicted by 

chick condition. While survival estimates of chicks to day 5 appear to have been predicted 

by food supply alone the results suggest that the influence of food availability on chick body 

condition, a life history trait, is important in predicting the survival of chicks to a later stage 

in their development. In comparison, Galbraith (1988a) found that egg size enhanced chick 

survival through effect in the first 10 days after hatching. Food supply is therefore important 

in determining body condition and this effect is sustained to predict chick survival later in 

development (5 to lOdays).

Survival estimates of replacement broods from 5 to 10 days was significantly higher than 

first broods. This result contrasted with young broods (0 to 5 days) where survival estimates 

of first broods and did not differ significantly from replacement broods, except in LATE 

fertilised treatments, where survival of first broods was greater. It is possible as first broods 

become more mobile in day 5 to 10 they are more susceptible to predation than replacement 

broods where more adequate cover is available.
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To conclude, both water and fertiliser treatments were found to effect lapwing chick 

condition and survival. The role of body condition as a predictor of chick survival is well 

documented, however this study demonstrates the importance of extrinsic factors in 

determining lapwing body condition and its subsequent effect on chick survival.
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APPENDIX I

(a)
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Figure 1 Relationship between chick age and chick weight.

Each point represents the expected weight (average weight) of chicks of each age. A 
Friedman super smoothed line was fitted to standardise expected weights for all chick ages.
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(b)
Table 1 Standardised body weights of lapwing chicks at Loch Gruinart.

Age (days)

Expected weight

(mean weight per age)

(g)

s.d. n

Standardised values for 
expected weight

(g)

1 21.99 4.8 18 21

2 21.34 3.1 27 21

3 21.48 7.0 30 25

4 23.18 3.6 54 27

5 27.43 5.8 27 30

6 35.71 12.6 28 34

7 38.45 10.3 18 38

8 47.29 14.5 17 46

9 49.36 10.4 5 50

10 - - - 57

11 61.62 14.1 8 62

12 68.15 5.1 6 68

13 70.33 5.5 3 72

14 77.50 15.8 6 78

15 84.50 3.5 4 85

16 84.20 11.0 5 88

17 91.30 24.2 11 93

18 93.50 11.0 4 98

19 102 - 2 103

20 121 - 1 113

21 - - - 118

22 - - - 125

23 - - - 132

24 - - - 137

25 - - - 143

26 138 19.85 3 150

27 153 5.8 5 156

28 158 - 1 162

29 168 1 167
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Chapter 7

General discussion



The relationship between farmland birds and agricultural intensification has previously been 

tested in many ways including on a community level, where associations between farmland 

bird declines parallel declines in both plant and invertebrate food supply on farmland 

(Wilson et a l  1999, Benton et a l  2002). Secondly, many autecological studies have 

demonstrated negative behavioural (e.g. habitat use) and demographic (e.g. hatching success 

and chick survival) responses of farmland birds to agricultural intensification (Donald et a l  

2002, Baillie, et a l  1997, Green 1984). However, the use of field experiments in identifying 

the mechanisms of population declines with changes in management has been limited and 

they have proved to be powerful in understanding and quantifying the impact of a particular 

component of agricultural change (Potts 1986, Green & Stowe 1993).

The aim of this thesis was to investigate the relationship between farming practice, 

invertebrate food supplies and the life history of a bird of conservation importance, in order 

to assess the likely mechanistic effect of farming practice on population biology. The model 

system we chose was to assess the effects of lowland grassland management on lapwing 

food supply and lapwing breeding success using a farm-scale experiment. The experiment 

has highlighted that the impacts of farming methods on the breeding success of a farmland 

bird and its invertebrate food supply are complex and multifactorial and has indicated that 

there is no one single farming practice that will reverse farmland bird declines. The 

experiment found links between vegetation structure and nest success, between chick food 

supply and chick survival, between vegetation structure and foraging success all of which 

are likely to affect other species which depend on grassland habitats for breeding such as 

redshank, oystercatcher, snipe and skylark.

In this chapter the results are discussed with reference to long term trends in lapwing 

productivity at the study site (see Chapter 2. Options to manage lowland grassland habitat 

for breeding lapwings are also compared.
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Invertebrate abundance and lapwing breeding success 

Earthworm biomass

Earthworms are an important component of adult lapwing chick diet and are so likely to be 

an important determinant of the adults’ performance. While other studies have found 

significant independent responses of earthworm abundance with fertiliser application 

(Edwards 1984) and soil moisture (Ausden et al. 2001), in this study the interaction effects 

of both fertiliser and soil moisture were presented. Treatments with low soil moisture and 

early fertiliser application provided best conditions for earthworm biomass (Chapter 3, 

Figure 7). It is possible that the slow release of nutrients from fertiliser pellets in LOW water 

treatments had a beneficial affect on earthworms while the application of nutrients in HIGH 

treatments appears to deter earthworms, possibly brought about by an increase in biological 

oxygen demand or acidification in soil water (Andrews & Rebane 1994). Within-field 

variation in earthworm biomass is consistent with between-treatment variations where 

biomass is highest on rigs, which have a lower soil moisture and higher fertiliser content 

than ditches.

Earthworm biomass and distribution between treatments did not predict nest density, chick 

foraging behaviour or chick survival in lapwings. There is evidence from previous studies to 

suggest that lapwings benefit most from earthworm abundance during the pre-breeding 

season, for example, pre-breeding lapwing flocks were found foraging in fields with a  high 

earthworm density (Galbraith 1989a, Baines 1990, McKeever unpublished data). Other 

studies have documented the importance of earthworms in determining egg size in lapwings 

(Galbraith 1988c, Blomqvist & Johansson 1995). The statistical model including 

earthworms as a predictor variable predicts that lowering water levels and applying fertiliser 

early in the season will benefit pre-breeding lapwings by increasing earthworm abundance,
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however, applying fertiliser early in the season has a negative effect on lapwing chick 

foraging behaviour and survival (Chapters 5 and 6) and lowering water levels has a negative 

effect on surface invertebrates and chick survival. Therefore, trade-offs are likely to occur in 

providing adult lapwings with an abundant pre-breeding food source. However, it is not 

necessary for lapwing nesting fields to be good feeding sites for adults, provided that 

productive foraging areas are available nearby (Hudson et a l  1994). This suggests the 

importance of a heterogeneous farmland habitat. Lapwings require fields close to nesting 

and chick rearing areas which are well drained and have fertiliser applied early to provide 

them with an abundant food supply. The importance of earthworm abundance to pre­

breeding lapwings has been well documented (Galbraith 1988c, Blomqvist & Johansson 

1995), however the proximity of an abundant food source throughout the breeding season is 

likely to have implications in nest survival, chick survival and adult survival, where adults 

can be more attentive if their preferred food source is close by.

The response of earthworms to water and fertiliser treatment may have implications for 

other breeding species that forage on grasslands. Species such as breeding curlew, redshank, 

oystercatcher and snipe are also likely to be affected by changes in earthworm abundance 

brought about by grassland improvement. Previous studies have highlighted the importance 

of grassland as a foraging habitat for these species during the breeding season (Berg 1992b, 

Green & Cadbury 1987); they are therefore susceptible to changes in earthworm food supply 

brought about by grassland improvement.

Surface invertebrates
Surface invertebrates are an important source of lapwing chick food (Hudson et al. 1994).
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W hile previous studies have demonstrated the effects of agricultural intensification on the 

surface invertebrate populations of arable farmland habitats (Robinson & Sutherland 2002, 

W ilson et al. 1999), very little is still known of the effects of grassland management on 

surface invertebrate abundance (Vickery et al. 2001).

Higher numbers of surface invertebrates, including predominantly beetles and spiders, 

which are important in chick diets (Galbraith 1989b, Baines 1990, Beintema et al. 1991, 

Johansson & Blomqvist 1996), were observed on ditches than rigs (Chapter 3, Figure 13). 

This variation in surface invertebrate number within fields (i.e. between rigs and ditches) 

was suggested as a possible mechanism for differences in nest density between rigs and 

ditches at Gruinart Flats between 1995 and 1999 (Rout 1999; Chapter 2, Figure 4). In more 

general terms, we might expect to find more insects in wet areas in fields which do not have 

a rig and ditch structure. Proximity to suitable chick rearing areas can be important in 

determining lapwing chick survival (Galbraith 1988a); where nesting close to an abundant 

food source has advantages, especially in as dense a population as Gruinart Flats, where 

movements between territories can be hazardous from attacks by neighbouring adults. In the 

factorial experiment, surface invertebrates were most abundant in treatments with high soil 

moisture and in treatments with low soil moisture when fertiliser was applied in early May 

(Chapter 3, Figure 11). This response was replicated when numbers of spiders were 

analysed. These responses in surface invertebrate and spider number occurred long after 

nesting was initiated and therefore did not predict nest density nor hatching success but were 

found to be important only in affecting chick growth, condition and survival.

Lapwing chicks were not observed foraging in all treatments with the highest number of 

surface invertebrates as expected from the surface invertebrate model (Chapter 3, Figure 

11). While lapwing chicks were observed foraging on ditches and on LATE fertilised, HIGH

192



water treatments (Chapter 5, Figure 4) chicks appeared to avoid EARLY fertilised, HIGH 

water treatments despite those treatments having high numbers of surface invertebrates. 

Galbraith (1988a) suggested that restricted mobility contributes to the avoidance of long 

vegetation by lapwing chicks, making it more difficult for them to detect and access their 

prey. This was confirmed in this study as foraging rates of lapwing chicks declined with an 

increase in sward height (Chapter 5, Figure 6) highlighting the importance of prey 

availability. Foraging rates of lapwing chicks on ditches were greater than rigs (Chapter 5, 

Figure 7) highlighting the importance of both prey availability and abundance as a 

mechanism in determining habitat preference. In a study of skylark foraging habitat use in 

relation to arthropod abundance and vegetation structure, Odderskaer et a l  (1997) found 

skylarks preferred areas with short vegetation even though these areas contained lower food 

densities than the main crop. Vickery et al. (1997) found higher densities of redshank in 

fields with short sward and attributed this to ease of prey detectability in shorter sward. This 

evidence suggests that foraging locations are selected on the basis of both vegetation 

structure and food supply.

It is widely accepted that food limitation can underlie much of the variation in life history 

traits of birds by influencing clutch size, egg size, fledging success and later survival (Lack 

1947, Martin 1987, Martin 1995, Perrins 1995, Brinkhof & Cave 1997, Bukacinski et a l  

1998, Clifford and Anderson 2001). Previous studies have demonstrated how reductions in 

surface invertebrate food supply brought about by agricultural practices have affected the 

breeding success of both passerine and non-passerine species. For example, Southwood & 

Cross (1969) and Potts (1986) demonstrated how grey partridge chick survival is closely 

liked to the abundance of sawfly larvae, their preferred prey, which is affected by the use of 

pesticides. Studies on skylark in the UK (Wilson et a l  1997) and yellowhammer in 

Denmark (Petersen et a l  1997) suggest that the higher breeding success of these species on
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organically managed farmland than intensively managed farmland is, in part, attributable to 

the increased number of arthropods found on organically managed farmland.

While food supply has previously been noted to be important in determining egg size, as 

well as chick condition and survival in lapwings (Galbraith 1988b, Baines 1990, Blomqvist 

& Johansson 1995), no effects of treatment were observed on clutch size and egg size. In 

studies where variation in clutch size and egg volume has occurred, these differences were 

only observed between habitat types (Shmbb 1990, Galbraith 1988a), suggesting that 

variation within habitats is more difficult to detect. This is especially the case within the 

experimental design used here, in that the experimental unit was a much smaller size than 

the area that an adult lapwing could forage in. Thus the placement of the nest was not 

necessarily an indicator of adult foraging areas, and hence we did not expect, a priori, a 

relationship between the food available in the experimental unit where a nest was located 

and the egg size.

Lapwing chicks tended to remain in close proximity to the nest site in the first 3-4 days after 

hatching, making the effects of natal treatments more likely to be detected at this stage in 

chick development, before becoming increasingly mobile and foraging elsewhere. Egg 

volume had no effect on chick body condition as observed in other studies (Galbraith 1988a, 

Blomqvist et al. 1997, Kirby & Tyler 1999). However, variation in surface invertebrate 

number between treatments closely matched variation in chick body condition and chick 

survival between treatments implying that surface invertebrate responses to treatments 

affected chick body condition. Even so, variation in surface invertebrates did not predict 

body condition of young chicks or their survival to day 5, but did explain variation in chick 

condition of older broods and the survival of chicks from day 5 to 10. This suggests that the 

benefits of an abundant food source are not detectable in chick body condition and survival
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until later in their development. The fact that natal treatment effects are detected later in 

chick development is testament to the importance of providing suitable habitat for both the 

early nesting stage and chick rearing. Previous studies have discussed the negative impacts 

of chicks hatching in habitats unsuitable for foraging, in particular arable habitats where 

food is limited and rapid vegetation growth can inhibit movement within those habitats 

(Galbraith 1988b, Blomqvist & Johansson 1995).

To conclude, the importance of an abundant food source on hatching is important, 

particularly in predicting chick condition and survival in lapwing chicks. From a 

management perspective the surface invertebrate model predicts that maintaining high water 

levels throughout the season and applying fertiliser early or late in the season will benefit 

lapwing chick survival by increasing numbers of surface invertebrates. However, chicks 

avoid long sward despite an abundant food source, as mobility and detectability of food is 

restricted, decreasing foraging rates. Therefore, by maintaining high water levels and 

maintaining a short sward during the chick-rearing period by withholding fertiliser 

application until early June increases the chance of chick survival as a result of providing 

good foraging habitat.

v t .K . ' '-.J

195



Changes in habitat structure and lapwing breeding success

The previous section has considered the effects of grassland management on lapwing 

breeding success in relation to food supply. In this section the effects of manipulating sward 

structure and water levels on breeding success are discussed.

Nest Survival

The main causes of lapwing nest failure on agricultural land are disturbance, such as 

trampling by livestock (Beintema & Miiskens 1987, Shrubb 1990) and destruction from 

farm machinery (Kruk et al. 1996). Baines (1990) suggested that differences in sward 

structure between improved and unimproved pasture in the English uplands might contribute 

to increased lapwing nest mortality due detection by predators, however this has never been 

tested. The role of vegetation structure in providing good nesting habitat for other ground 

nesting species in farmland habitats is well documented. For example, corncrakes tend to 

nest in tall, dense vegetation in order to avoid detection from predators (Green & Stowe 

1993), while skylarks prefer nesting in more open habitat allowing early detection of 

predators (Henderson 2001).

In the absence of disturbance from agricultural practices in this study, sward height was 

found to have a significant impact on hatching success whilst soil moisture had no effect 

(Chapter 4). Early cover benefits nest survival when the threat from predators is low. When 

the threat from predators is high, however, lapwings benefit from nesting in short sward, 

allowing adults to detect approaching predators more easily than in longer grass. This 

assumes that lapwings are more tolerant of longer sward when threat from predators is low 

but not when predator activity is high, when early detection is apparently important in 

defending nests. Predation-risk indices did not explain differences in hatching success 

between fields in the period 1995 -1999 at Gruinart Flats (Chapter 2). As fertiliser was only
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applied once during the season over that period, variation in hatching success with sward 

height was not detected. The nest survival experiment model predicts that fertilising early or 

late in the season can benefit nest survival, but this is dependent on predator activity, 

suggesting that a heterogeneous sward structure would provide an appropriate range of 

conditions for nesting lapwings, as it is also for skylarks (Donald et a l  2002).

Predation is a well-known cause of lapwing chick mortality (Baines 1990, Galbraith 1988b, 

Rout 1999). Variation in vegetation height has been suggested as a possible mechanism for 

variation in predator mortality among lapwing chicks (Galbraith 1988b), however this has 

never been tested. While variation in food supply between treatments predicted chick 

survival ( 0 - 5  days), predator activity within fields was also important. Chicks hatched in 

fields where predator activity was low benefited from a short sward, allowing adults to 

watch over their broods efficiently (Galbraith 1988b), whilst chicks hatching in fields with 

high predation benefited from cover (long sward) from predators (Chapter 6). This response 

was not observed in the survival of older chicks in the experiment but analysis of long-term 

data from the site suggests that field proximity to buzzard nest sites is important in 

determining chick survival to fledging (Chapter 2). However, the long-term data also 

suggests that while predators are an important factor in determining chick survival between 

fields this has not affected chick productivity over time, where increases in fledging rates 

were observed over the 1995 -  1999 period. As with nest survival, the chick survival model 

predicts that providing a heterogeneous sward structure will benefit chicks from predators, 

and this will trade-off against providing suitable chick foraging habitat. This view is in 

accordance with a recent review undertaken by Benton et a l  (in press) who have 

demonstrated the importance of heterogeneity in the farmland landscape both at a between- 

field scale and a within-field scale in maintaining farmland biodiversity.
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Management recommendations

To conclude, taking both the results of the experiment and Chapter 2 into consideration, the 

following recommendations to manage Gruinart Flats for lapwings is proposed.

Option 1:

This option solely focuses on the breeding requirements of lapwings and does not consider 

goose management and farming requirements.

• Apply NO fertiliser and maintain HIGH water levels in ditches throughout the 

season.

In the absence of fertiliser at Gruinart Flats grazing by barnacle geese is likely to be reduced 

(Percival 1993) thereby increasing the diversity of sward height and suppressing rapid sward 

growth throughout the lapwing breeding season. This measure benefits nesting lapwings and 

provides adequate cover for lapwing chicks in addition to providing good chick foraging 

areas. In a study of the management of grazing marshes for wintering geese and breeding 

waders, Vickery et a l  (1997) found that fields that had been lightly grazed by geese in 

winter were more attractive to breeding waders the following summer. However, we 

recommend removal of fertiliser from the system as a short-term management 

recommendation while more research is carried out to monitor the effects of no nutrient 

input over time on the abundance of both sub-surface and surface invertebrate populations.

Removing fertiliser from the system at Gruinart Flats brings into question the validity of 

reseeding. Reseeding is used along with fertilisers to promote grass growth for silage 

production and to attract geese on to the reserve (Percival 1993). Reseeding is also useful in 

controlling the spread of Juncus (Evans 1985), however other methods can be used to 

control Juncus such as topping and weed-wiping (RSPB Loch Gruinart Management Plan).
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More research is required to monitor the effects of reseeding without fertilising on the 

invertebrate communities and sward structure.

Option 2:

This approach takes into consideration other species which use the site, such as corncrake 

and barnacle geese in addition to the farming operation.

• Fertilise EARLY (late April) on part of each field i.e. every second rig and LATE 

in season (end May) on remaining rigs and maintain HIGH water levels 

, throughout the season.

In the case of barnacle geese, providing suitable over-wintering habitat is integral with 

maintaining the in-hand farming operation on the reserve in that both benefit from 

fertilising. The presence of fertiliser is known to significantly increase the time that barnacle 

geese spend grazing a pasture (Percival 1993), which if removed will reduce the 

effectiveness of Gruinart Flats as a refuge for geese. In addition, removing fertiliser from the 

system will reduce the silage crop required to feed cattle over winter and reduce cattle 

grazing in the autumn. Therefore option 2 recommends applying fertiliser both EARLY in 

the season and LATE in the season to provide the heterogeneous sward required for nest and 

chick survival while maintaining the goose management and silage production requirements 

of the reserve. McFarlane (2001) found that manipulating the timing of fertiliser and water 

levels in the previous spring had no effect on the foraging behaviour or distribution of 

barnacle geese in the following winter. Therefore managing Gruinart Flats for lapwings 

using option 2 is unlikely to compromise the value of the site for over-wintering geese in 

contrast to Vickery et a l  (1997) who suggest that there is a conflict between managing 

grassland for geese and breeding waders.

199



Fertiliser input also benefits breeding corncrakes that use the site by providing cover later in 

the season. Little is known about the effects of both fertiliser and water treatment on the 

breeding success of redshank, which also breed in high numbers on the site. Norris (1998) 

explained the decline of redshank nesting on saltmarshes on the decrease of sward diversity 

brought about by increased grazing by cattle. This suggests that a more diverse sward as a 

result of two fertiliser applications will provide a more suitable nesting habitat for nesting 

redshank.

To coriclude, this study has demonstrated the effectiveness of a formal farm-scale factorial 

experiment in addressing the mechanisms of farming practices on the food supply, 

behaviour, life history and productivity of a declining farmland bird species.
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