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Key Points:21

• Climate variability operates on a continuum of spatial and temporal scales in such a22

way that the variability exhibits scaling relationships23

• Climatologically relevant imprints of scaling include Long-Range Dependence and24

non-Gaussian fluctuations25

• Scaling has implications for trend detection, climate sensitivity and predictability26
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Abstract27

One of the most intriguing facets of the climate system is that it exhibits variability across28

all temporal and spatial scales; pronounced examples are temperature and precipitation.29

The structure of this variability, however, is not arbitrary. Over certain spatial and tem-30

poral ranges it can be described by scaling relationships in the form of power-laws in31

probability density distributions and autocorrelation functions. These scaling relationships32

can be quantified by scaling exponents which measure how the variability changes across33

scales and how the intensity changes with frequency of occurrence. Scaling determines34

the relative magnitudes and persistence of natural climate fluctuations. Here, we review35

various scaling mechanisms and their relevance for the climate system. We show observa-36

tional evidence of scaling and discuss the application of scaling properties and methods in37

trend detection, climate sensitivity analyses, and climate prediction.38

Plain Language Summary39

Climate variables are related over long times and large distances. This shows up as40

correlations for averages on long intervals or between distant areas. An important finding41

is that the majority of correlations in climate can be described by a simple mathematical42

relationship. We present such correlations for temperature on long times. Similarly, the43

intensity of precipitation events depends on their frequency in a simple manner. A use-44

ful concept is scaling where a scale denotes the width of an average. Scaling says that45

averages on different scales are related by a simple function – mathematically this is a46

power-law with the scaling exponent as a characteristic number. Scaling has impacts on47

predictability, temperature trends and the assessment of future climate changes caused by48

anthropogenic forcing.49

1 Introduction50

An emerging topic in climate science is the systematic change of the temporal and51

spatial structure of climate variability seen across a multitude of spatial and temporal52

scales, in particular power-law behavior [e.g. Hurst, 1951; Mandelbrot and Wallis, 1968;53

Huybers and Curry, 2006; Lovejoy and Schertzer, 2013; Graves et al., 2017a]. The in-54

tensity distribution of climate variables in relation to their frequency of occurrence also55

shows such power-law behavior. It is of importance to improve our understanding of the56

underlying structure of climate variability since this may potentially allow us not only to57
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improve our predictive capabilities but also contribute to an improved overall understand-58

ing of the complex Earth system as a whole. The presence of power-law behavior in both59

the temporal and spatial domains and in intensities can reveal aspects of the underlying60

dynamics of the Earth system such as climate sensitivity and predictability.61

This behavior can be illustrated with two climatological time series (Fig. 1). Our62

choice of precipitation data (Fig. 1a) exhibits the typical intermittent behavior with no or63

only very little precipitation on most days interspersed with an occasional extreme event.64

Hence, precipitation is a climatological variable that is highly episodic. Consequently, the65

distribution of precipitation is much more heavy-tailed than a Gaussian distribution (Fig.66

1b). Thus, large values are much more likely than in the case of variables that are Gaus-67

sian distributed; The Gaussian distribution decays much faster than a power-law. The tails68

of many precipitation distributions, as well as of other climatological quantities, decay69

according to a power-law (see Section 1.2 for details). This power-law relation between70

intensity and probability of occurrence constitutes a scaling relationship.71

As a second time series we present the Central England Temperature (CET) [Parker72

et al., 1992] time series for the period 1772-2017. The CET consists of observations from73

stations located throughout central England. In Fig. 1c we show the annual mean time74

series overlayed by an 11-year running mean and the non-linearly filtered decadal-scale75

CET data using Empirical Mode Decomposition (EMD) [Huang et al., 1998; Huang and76

Wu, 2008; Franzke, 2009]. EMD allows for a systematic decomposition of time series77

into dynamically relevant oscillatory modes and a non-linear trend. The CET time se-78

ries exhibits decadal-scale variations about an instantaneous mean [Franzke, 2009]. The79

observed decadal-scale variability is a visible imprint of the scaling and Long-Range De-80

pendence (LRD) [e.g. Gil-Alana, 2008; Graves et al., 2015]. Intuitively, Long-Range De-81

pendence has the property that spatially coherent anomalies persist for a long time, e.g.,82

heat waves or droughts may last for many years [Cook et al., 2015], which is indicative83

of a decay of serial correlation which is slower than exponential, e.g. power-law decay.84

Long-range dependence means that positive (negative) anomalies are very likely followed85

by positive (negative) anomalies for long periods of time. The decay of serial correla-86

tions of long-range dependent systems behaves according to a power-law (Fig. 1d and e)87

as can be shown by an analysis using Detrended Fluctuation Analysis (see Sec. 2.6.3).88

This approach provides more robust estimates than the standard autocorrelation function,89

which can be noisy at long lags (Fig. 1e). In brief, this method computes the variance for90
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moving windows of different sizes which yields a scaling relationship for the correlation91

strength of values at different times.92

To summarize, many climatological time series exhibit a power-law behavior in their93

amplitudes or their autocorrelations or both. This behavior is an imprint of scaling, which94

is a fundamental property of many physical and biological systems and has also been dis-95

covered in financial and socio-economic data as well as in information networks [Man-96

delbrot, 1963; Mantegna and Stanley, 1999; Clauset et al., 2009; Willinger et al., 2004;97

Saichev et al., 2009; Ball, 2003]. While the power-law has no preferred scale, the expo-98

nential function, also ubiquitous in physical and biological systems, does have a preferred99

scale, namely the e-folding scale, i.e., the amount by which its magnitude has decayed by100

a factor of exp(−1). For example, the average height of humans is a good predictor for101

the height of the next person you meet as there are no humans that are 10 times larger102

or smaller than you. However, the average wealth of people is not a good predictor for103

the wealth of the next person you meet as there are people who can be more than a 1000104

times richer or poorer than you are. Hence, the height of people is well described by a105

Gaussian distribution, while the wealth of people follows a power-law [Newman, 2005].106

Furthermore, an fascinating aspect of scaling in the climate system is that it occurs107

in many different characteristics of climate variables. As demonstrated above it exists in108

time and intensity and, as we will discuss below, in space. For instance, negative vortic-109

ity anomalies, such as blocking can be very persistent [e.g. Feldstein and Franzke, 2017],110

while positive vorticity anomalies, such as storms, have a heavy-tailed probability distribu-111

tion of intensities [Corral et al., 2010; Blender et al., 2016] and heavy-tailed waiting time112

distributions [Franzke, 2013; Yang et al., 2019]. Persistence and heavy-tailed distributions113

are described by scaling relationships. Different dynamical regimes are likely causing the114

scaling properties in the intensity, time and space. In section 2.5 we discuss potential115

physical mechanisms which can explain scaling in the climate system. While there have116

been many mechanisms discussed in the literature [e.g. Beran, 1994; Beran et al., 2013],117

their applicability to the climate system is still an open question.118

While the existence of scaling has been known for a long time and across many sci-119

entific areas, it had been largely ignored for an almost equally long time in the analysis of120

climate data, with some exceptions [e.g. Gil-Alana, 2003; Vyushin et al., 2004; Koscielny-121

Bunde et al., 1998; Blender and Fraedrich, 2003; Mann, 2011; Franzke, 2012; Dangendorf122
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et al., 2014; Becker et al., 2014]. Only recently has its usefulness been more widely ap-123

preciated in climate science, partly due to its inclusion in text books (e.g. Chandler and124

Scott [2011]; Mudelsee [2013]; Lovejoy and Schertzer [2013]; Schmitt and Huang [2016])125

and partly due to the establishment of working groups such as Climate Variability Across126

Scales (CVAS), part of Past Global Changes (PAGES), who employ scaling approaches to127

improve our understanding of the complexities of the Earth system [see e.g. Crucifix et al.,128

2017].129

These scaling ideas enter the climate sciences from theoretical physics, applied math-130

ematics, statistics, and theoretical climatology. They are rarely taught in standard mete-131

orology, oceanography, or climate science courses. Here, we aim to bridge these disci-132

plinary gaps by introducing the main ideas in a manner that is accessible and applicable133

for climate scientists.134

1.1 Scales in the climate system135

One of the fascinating aspects of the climate system is the close relationship be-136

tween the spatial and temporal scales of the relevant physical processes. This accounts137

for the success of scaling analyses of the equations of motion and the systematic deriva-138

tion of simplified versions of the primitive equations, such as the quasi-geostrophic or the139

shallow-water equations [e.g. Vallis, 2017; Majda and Wang, 2006; Klein, 2010; Franzke140

et al., 2019]. For instance, the quasi-geostrophic equations are valid in the limit of a small141

Rossby number [Vallis, 2017] and describe Rossby and synoptic-scale waves and, thus,142

provide an excellent conceptual model to understand many important aspects of the atmo-143

sphere and ocean.144

The many physical processes in the Earth’s climate system span a vast dynamic145

range, both in space (from 10−3 m to 107m) and time (from seconds to millions of years)146

(Fig. 2). Williams et al. [2017] provide a census of atmospheric processes, the variability147

of which range from seconds to decades. In the climate system, we typically deal with the148

following physical processes and associated scales: turbulent eddies on time scales of a149

few seconds and length scales of millimeters to centimeters; convective activity on tempo-150

ral scales of hours and spatial scales of hundreds of meters to a few kilometers; synoptic151

weather systems varying diurnally on spatial scales of hundreds to thousands of kilome-152

ters; large-scale teleconnection patterns with an intra-seasonal to inter-annual temporal153
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variability and spatial scales that can span an entire hemisphere; the coupled atmosphere-154

ocean system which varies from decadal to centennial time scales and a global spatial155

scale; the ice ages represent global variations on millennial time scales (Fig. 2). The main156

four components of the climate system (atmosphere, ocean, land, and cryosphere) tend157

to operate on different time scales which interact non-linearly with each other creating a158

plethora of interesting effects and feedbacks [Rial et al., 2004; Peters et al., 2004; Williams159

et al., 2017].160

An intriguing property of the climate system is that despite the fact that we have161

to deal with many different physical processes, the variability constitutes a continuum of162

fluctuations, i.e., while the variability spectrum may be interspersed by spikes belonging163

to some particular and well defined forcing process (e.g., daily, annual, or Milankovich164

cycles) the vast part of the spectrum is continuous and scales over large ranges.165

1.2 Power-Law Scaling166

By scaling we mean the power-law relationship between the amplitude of fluctua-

tions and their probability of occurrence on a given temporal or spatial scale:

f (ay) = aγ f (y) (1)

where f is an arbitrary function which can either be deterministic or stochastic, y is a cli-167

mate variable or time, and γ denotes the scaling exponent, a factor which allows us to168

zoom in and out. In case of f being a stochastic function the equality has to be inter-169

preted as equality in distribution. When considering a time series, f is a stochastic pro-170

cess and Eq. (1) implies that the variability of short time scales is statistically similar to171

the variability on longer time scales. This also implies that no preferred time scale exists.172

Furthermore, this equation describes a self-similar process [Lamperti, 1962]; if y would173

denote time, then Eq. (1) would imply that the variance would go to infinity for increas-174

ing time scales. Furthermore, the fact that climate data exhibit scaling, indicates that the175

statistical properties remain independent of the scale [Kolmogorov, 1940; Hurst, 1951;176

Lamperti, 1962; Mandelbrot and Van Ness, 1968; Mandelbrot, 1982; Feder, 1988; Franzke177

et al., 2012; Taqqu, 2013] as is the case for fractals [Feder, 1988]. The scaling property178

might already be a familiar concept from power spectrum analyses where, in addition to179

pronounced peaks, one also examines for the existence of linear slopes in a double loga-180

rithmic scale representation [e.g. Wunsch, 2003; Huybers and Curry, 2006].181
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In Fig. 3 we display time series sample paths in order to illustrate the scaling prop-182

erty; these were generated from an Autoregressive Fractional Integrated Moving Average183

(ARFIMA) scaling model (see Section 2.4 and appendix A: ). the displayed Long-Range184

Dependence process has a slope of 0.75 in a log-log plot of fluctuation function versus185

scale while a Short-Range Dependence (SRD) process has a slope of 0.5 at long time186

scales. A slope of 0.5 corresponds to white noise which means that the process is uncor-187

related (Fig. 3c). The power spectrum (Figs. 3d) exhibits the corresponding behavior of188

increasing power for lower frequencies (with a singularity at zero) of a Long-Range De-189

pendence process exhibiting while the SRD spectrum is flat at low frequencies. Scaling in190

intensities is displayed in Fig. 4 for the α-stable distribution.191

1.3 Climate variability across scales192

The first attempt to conceptualize atmospheric variability over a wide range of scales193

has been made by Mitchell [1976]. Mitchell’s ambitious composite spectrum (Fig. 5)194

ranged from hours to the age of the Earth and focused on the peaks in the power spec-195

trum, thus emphasizing the quasi-periodic phenomena in the climate system and its forc-196

ings. Although Mitchell [1976] made a candid admission that his spectrum was mostly an197

’educated guess’, and despite subsequent improvements in climate and paleoclimate data,198

the original work has achieved almost iconic status.199

Mitchell’s scale-bound view led to a climate dynamics framework that emphasizes200

the importance of numerous processes occurring at well-defined time scales and the sepa-201

ration into quasi-periodic ’foreground’ processes (illustrated as sharp peaks in Fig. 5) and202

the ’unimportant background noise’. We argue that while this division is not wrong per203

se, it can only explain a small fraction of the overall variability and the underlying climate204

system dynamics. Wunsch [2003] showed that the quasi-periodic signals represent only a205

small fraction of the total variability which is more akin to a Lorentzian spectrum of an206

autoregressive process while Pelletier [1997] and Huybers and Curry [2006] put an em-207

phasis on the power-law behavior of the background spectrum.208

Lovejoy and Schertzer [2013] and Lovejoy [2015a] postulated the existence of 5 dis-209

tinct power-law scaling regimes. These regimes are based on different scaling exponents210

for the relationship E(ω) ∼ ω−β , where E denotes the spectral energy and ω frequency211

[Huybers and Curry, 2006]. The proposed regimes are212
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1. the weather regime with time scales from 6 hours up to 20 days with an exponent213

of β ≈1.8214

2. the macro-weather regime with time scales between 20 days and 50 years and β=0.2215

3. the climate regime with time scales between 50 and 80,000 years (includes glacial-216

interglacial cycles) and β=1.8217

4. the macro-climate regime between 80,000 and 500,000 years and β=-0.6218

5. the mega-climate regime for time scales larger than 500,000 years which takes us to219

the limit of reliable proxies [Lovejoy and Schertzer, 2013] and β=1.8.220

See Fig. 2a of Lovejoy [2015a] for an illustration of the scaling regimes.221

Some recent studies focused more on the continuum aspects of the spectra [Pelletier,222

1998; Paillard, 2001; Huybers and Curry, 2006]. For instance, Huybers and Curry [2006]223

reported qualitatively similar results for the macro-weather and climate regimes, while224

Nilsen et al. [2016] provided quantitative evidence that supports the hypothesis of just225

one scaling regime at least for the Holocene. Nilsen et al. [2016] also question whether226

it is meaningful to classify climate variability into universal regimes on time scales where227

we observe forced global climate changes, and in particular geological time scales. The228

reason is that the variability on the long time scales is fundamentally forced by time-229

dependent external processes, e.g. the Milankovich cycle, hence its statistics are time-230

varying [Nilsen et al., 2016]. On shorter temporal scales, on the other hand, scaling is231

better established in many climatic data sets for a wide range of spatial, and intensity232

ranges. Furthermore, it has been recognized that quasi-periodic signals represent only a233

small fraction of the total climate variability, and while many studies have focused on un-234

derstanding these quasi-periodic signals, we argue that the continuous variance spectrum is235

of equal significance and deserving of future research efforts.236

1.4 Scope of the review237

Because scales and scaling properties in the climate system are hard to adequately238

cover in a single paper, we will restrict this review to topics relevant to the interpreta-239

tion and reconstruction of time series and to the impacts of scaling on climate variability,240

trends, prediction, and climate sensitivity. While we cover the potential physical mecha-241

nisms behind scaling, we can only provide a broad and non-rigorous introduction to the242

mathematical framework of scaling processes. More rigorous treatments can be found243
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elsewhere [Beran, 1994; Beran et al., 2013; Baillie, 1996; Samorodnitsky, 2007, 2016; Em-244

brechts and Maejima, 2007; Lovejoy and Schertzer, 2013; Palma, 2007; Guegan, 2005;245

Doukhan et al., 2002].246

Our review is structured as follows: Section 2 covers the basic ideas of scaling and247

estimation methods; Section 3 provides empirical evidence of scaling in climatic time se-248

ries; Section 4 discusses applications of scaling like trend detection, climate prediction,249

and climate sensitivity. We end with an outlook and open research questions in Section 5.250

2 Basic Concepts Related to Scaling Relationships251

In this section we provide a brief review of the mathematical and physical back-252

ground to scaling, with an emphasis on an intuitive understanding of the main ideas, leav-253

ing the details to the specialist literature.254

2.1 Scaling and power laws255

2.1.1 Scaling from dimensional analysis256

In the physical sciences, scaling is a well-known and long established concept [Lon-257

gair, 2003; Bolster et al., 2011; Watkins et al., 2016]. For instance, scaling can be used258

to explain: (i) how a pendulum’s angular frequency depends on its length, or (ii) how the259

gravitational force between two bodies depends on their distance from one another.260

In the first example, the angular frequency ω depends on the length l as261

ω = 2π
√

g

l
∼ l−

1
2 (2)

where g is the gravitational acceleration. In the second example, Newton’s law of univer-262

sal gravitation states that the gravitational force, F, between two bodies with masses m1263

and m2, is inversely proportional to the square of the distance between their centers, r , as:264

265

F = G
m1m2

r2 ∼ r−2. (3)

where G is the universal gravitational constant. The scaling property in both examples is266

so well established that it can be used to extrapolate and to test the behavior of systems267

outside their initial observable range. It can easily be seen that Eqs. (2) and (3) are differ-268

ent forms of the power law from Eq. (1) with γ equal to − 1
2 and −2, respectively.269
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While originally a result of empirical observation, the above equations can also be270

derived from dimensional analyses. This embodies the physical principle of similarity,271

which requires that (natural) physical laws should be independent of (human) physical272

units used to describe a system. According to Buckingham’s Π theorem [Buckingham,273

1914; Meinsma, 2019], dimensional analysis can be used to show that any physical equa-274

tion involving n variables can be rewritten using n − m dimensionless parameters, where275

m ≥ 0, thus revealing possible scaling relations which can then be empirically tested [Bol-276

ster et al., 2011].277

Dimensional analysis remains a very powerful technique for systems which resist278

analytic or numerical treatment. The prime example is geophysical fluid turbulence. In279

1941 Kolmogorov [Kolmogorov, 1991a,b] derived a scaling relationship between turbu-280

lent kinetic energy E and the horizontal scale as measured by wavenumber k for isotropic281

turbulence. Thereby, he derived the Kolmogorov -5/3 spectrum (for details and underlying282

assumptions see Vallis [e.g. 2017]):283

E(k) ∼ k−5/3 (4)

While a power-law distribution of the energy spectrum has been confirmed by observa-284

tional evidence in the atmosphere [Nastrom and Gage, 1985; Straus and Ditlevsen, 1999],285

the exact exponent is still a matter of debate [Lovejoy et al., 2007; Lovejoy and Schertzer,286

2013]. For instance, Lovejoy et al. [2007] have shown that the atmosphere is anisotropic287

with different scaling exponents in the horizontal and vertical directions; which violates288

Kolmogorov’s assumption of isotropy. Also the theoretical −5/3 scaling for large hori-289

zontal scales is −2.4 according to aircraft measurements [Lovejoy et al., 2009]. This does290

not invalidate dimensional analysis but only shows that some of the underlying assump-291

tions made by Kolmogorov in his first model (homogeneous and isotropic 3-dimensional292

turbulence) describe an idealized system but are typically not valid in the real atmosphere293

or ocean, where vertical stratification, jet streams and the presence of boundaries prevents294

full isotropy and homogeneity.295

Another example of scaling is the addition of N random numbers, where the stan-296

dard error scales as σN ∝ N1/2, a result familiar to all scientists from the undergraduate297

laboratory and the treatment of experimental errors [e.g. Wilks, 2011]. Interestingly, this298

result can be connected to a physical situation, by considering the root mean square of the299

displacement yN from the origin of the first N steps of a random walk, which is one of300

–10–
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the most basic stochastic models for a time series. In a typical one-dimensional discrete301

random walk, a particle may start at a location and each step moves it either to the left or302

to the right with equal probability. The resulting root mean square of the total displace-303

ment, y, after N steps scales with N1/2 which can also be expressed in terms of time, t,304

as:305 √
y2− < y >2 ∼ t1/2. (5)

This describes the growth of the diffusing edge of a particle cloud executing Brownian306

motion (See appendix B: ) [Bouchaud and Potters, 2003]. The random walk model is sta-307

tistically self-similar, i.e., the time series generated by a random walk looks approximately308

the same as parts of it. In other words, the shapes and behaviors of the time series are in-309

dependent of the time scale under consideration. Mathematically, statistical self-similarity310

can be written as311

X(at) d
= aγSS X(t) (6)

and is equivalent to the scaling relationship in Eq. 1 where d
= refers to that both sides are312

equally distributed. Here, γSS is the self-similarity parameter. In some processes, such as313

fractional Brownian motion, this is identical to the Hurst exponent H. The Hurst exponent314

H is named after Harold Edwin Hurst who first identified a scaling relationship investi-315

gating the flow levels of the Nile river and other reservoirs [Hurst, 1951, 1957; Doukhan316

et al., 2002]. He developed the R/S method (see details below in appendix C.1 and ap-317

pendix D: ) to estimate the scaling exponent. A list of used exponents is given in Tab. 1.318

The range of problems we can handle with scaling analysis can be greatly broadened319

if we introduce the concept of fractals by considering scaling exponents γ which are non-320

rational. Just as in the integer or rational cases, there is physically instructive information321

in fractal exponents that can go beyond that from dimensional analysis. These non-rational322

exponents will play an important role from now on since they are necessary to describe323

the observed scaling in climate time series due to Long-Range Dependence and heavy-324

tailed Probability Density Functions. They will be discussed in the following subsections.325

2.2 Scaling in Probability Density Functions and Non-Gaussianity326

2.2.1 Non-Gaussian but stable Probability Density Functions327

The Central Limit Theorem states that the sum of independent and identically dis-328

tributed random variables with finite variance approaches a Gaussian distribution and re-329
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sults in an N1/2 scaling, where N is the length of the sums [von Storch and Zwiers, 2003;330

Wilks, 2011]. However, many natural systems, e.g., precipitation (Fig. 1) [Peters et al.,331

2001, 2010; Yang et al., 2019] and the Greenland ice cores [Ditlevsen, 1999; Gairing332

et al., 2017; Peavoy and Franzke, 2010], show more erratic fluctuations, i.e., the corre-333

sponding probability density function (PDF) decays much slower than the corresponding334

Gaussian distribution with the same mean and variance. Hence, such distributions have335

heavier tails than the corresponding Gaussian distribution and very extreme events are336

much more likely than in the Gaussian world.337

This behavior can be explained by the generalized Central Limit Theorem [Sornette,338

2006], a generalization of the standard Central Limit Theorem [Wilks, 2011] which per-339

mits the random variables to have infinite variance, which means that the sums of such340

random variables scale as N1/α and follow α-stable distributions with 0 < α ≤ 2 [Doukhan341

et al., 2002; Sornette, 2006; Samorodnitsky, 2016]. For α = 2 we recover the Gaussian342

case with finite variance. The Central Limit Theorem expresses the fact that sums of ran-343

dom variables from short-tailed PDFs converge to a fixed point, i.e., a Gaussian distribu-344

tion which retains its shape and is therefore a stable distribution [Mantegna and Stanley,345

1999]. In the case of the generalized Central Limit Theorem, there is a series of such346

fixed points which can be imagined as forming a line in the space of all possible distri-347

butions, with each point on the line corresponding to an exponent α in the range from348

2 to 0. Hence, sums of random variables from heavy-tailed, power-law Probability Den-349

sity Functions converge to a power-law distribution, the α-stable distribution; rather than350

being Gaussian. In general, the α-stable Probability Density Functions do not have an an-351

alytic representation except via their characteristic functions, i.e., the Fourier transform of352

the PDF p(x) [Gardiner, 2009]. The α-stable distributions with α < 2 have characteris-353

tic functions of the form p(s) ∼ e−s
α and so p(x) decays asymptotically as a power law:354

p(s) ∼ s−(1+α) as s → ∞ [Sornette, 2006]. Furthermore, these power-law distributions355

decay so slowly that for α < 2 the variance does not exist and for α < 1 not even the356

mean exists. There is a corresponding random walk with α-stable increments, often called357

a ’Lévy flight’, whose root mean square displacement grows as ∼ t1/α, which is referred to358

as super-diffusion [Gardiner, 2009].359
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2.2.2 Other non-Gaussian Probability Density Functions360

The α-stable model is simple and, thus, economical but can have extremely wild361

fluctuations. The properties of observational data may motivate other models for fluctu-362

ations which are less extreme than in the α-stable model. In particular, the infinite vari-363

ance property of the α-stable model may yield fluctuations with tails that are heavier than364

desired and observed. Thus, other non-Gaussian PDFs need to be considered, such as365

stretched exponentials, where the PDF is given by p(x) ∼ e−x
s with s between 0 and366

1, or a log-normal distribution. Furthermore, heavy-tailed PDFs can also originate from367

extreme value statistics [Coles, 2001] that rely on the Fisher-Tippett-Gnedenko theorem368

[Coles, 2001] which is based on the maxima of identically and independently distributed369

sequences of random variables, rather than their sums as in the Central Limit Theorem.370

Unlike α-stable distributions, these are not stable under addition which means that371

they converge towards the Gaussian distribution under addition. For instance, a first or-372

der autoregressive process xt+1 = axt + σ2ζ where ζ is a Gaussian-distributed random373

variable, with variance σ2, is also Gaussian distributed for x. However, if ζ were assumed374

to be log-normal then the process distribution x would not be log-normal but asymptot-375

ically Gaussian. This suggests that also non-linear and multiplicative processes need to376

be considered to explain the existence of power-law probability density functions. For in-377

stance, non-Gaussian distributions can also be created by multiplicative processes, such378

as multiplying a state variable with Gaussian noise [Majda et al., 2008, 2009; Sardesh-379

mukh and Sura, 2009; Franzke, 2017]. Such multiplicative noise can create heavy-tailed380

distributions. They naturally occur in stochastic climate theory [Sura, 2011; Penland and381

Sardeshmukh, 2012; Franzke et al., 2015a; Sardeshmukh and Penland, 2015; Franzke and382

O’Kane, 2017; Gottwald et al., 2017]. The energy cascade in turbulence is a particularly383

important multiplicative physical model as it describes the non-linear interaction between384

different scales or waves [Vallis, 2017].385

2.3 Long-Range Dependence386

Long-Range Dependence is characterized by a slow, power-law decay, of the auto-387

correlation function. This implies that even long ago states still affect the current state,388

thus, even far apart in time states, show dependence on each other.389
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The most basic Long-Range Dependence model is the fractional Brownian mo-390

tion (fBm) (See appendix B: ). The main difference between fractional Brownian mo-391

tion and regular Brownian motion is that in Brownian motion the increments are inde-392

pendent of each other while in fractional Brownian motion such increments are dependent393

in time. This dependence actually covers the whole past; that is the reason why this model394

is sometimes also called Long-Term Persistence or Long-Memory (for H > 0.5). There are395

different definitions of fractional Brownian motion and we refer to the specialist literature396

for more details [e.g. Lévy, 1953; Mandelbrot and Van Ness, 1968; Beran, 1994; Beran397

et al., 2013; Embrechts and Maejima, 2007].398

While fractional Brownian motion is a continuous-time process, the statistics liter-399

ature prefers a more flexible model, the discrete time Autoregressive Fractionally Inte-400

grated Moving Average model (ARFIMA) [e.g. Hosking, 1981; Granger, 1978; Granger401

and Joyeux, 1980; Beran, 1994]:402

Φ(B)(1 − B)dXt = Ψ(B)Zt (7)

where B denotes the back shift operator BXt = Xt−1,B2Xt = Xt−2, . . . . The polynomials403

Φ and Ψ are defined as Φ(x) := 1 −
∑p

j=1 aj x j and Ψ(x) := 1 +
∑q

j=1 bj x j , where p and404

q are integers and denote the order of the autoregressive Φ and moving average Ψ parts,405

respectively. The noise variables Zt are assumed to be independent Gaussian distributed406

with zero-mean and constant variance σ2
Z . See appendix A: for more details.407

However, the Autoregressive Fractionally Integrated Moving Average model model408

can also be generalized to use α-stable distributed increments [Kokoszka and Taqqu, 1994;409

Stoev and Taqqu, 2005; Franzke et al., 2012; Graves et al., 2017b]. For these infinite vari-410

ance models no agreed upon definition of Long-Range Dependence exists [Samorodnitsky,411

2016]. Note that for d = 0 the Autoregressive Fractionally Integrated Moving Average412

model reduces to the Autoregressive Moving Average model (ARMA) which is a Short-413

Range Dependence (SRD) process. In general, Autoregressive Fractionally Integrated414

Moving Average models can also be driven by non-Gaussian (e.g. t-distributed) noise415

[Graves et al., 2017b]. Autoregressive Fractionally Integrated Moving Average models416

are more flexible than fractional Brownian motion since they combine a Long-Range De-417

pendence component with Short-Range Dependence behavior [Beran, 1994; Beran et al.,418

2013; Franzke et al., 2012; Graves et al., 2015]. The R package ARFIMA can be used to419

estimate Autoregressive Fractional Integrated Moving Average models [Veenstra, 2012].420
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These are the two most important and widely used paradigmatic models of Long-421

Range Dependence, but since they were not derived from basic physical laws their use422

in climate research was originally, and continous to be, met with criticism [e.g. Klemeš,423

1974; Maraun et al., 2004; Mann, 2011]. Long-Range Dependence also implies that even424

the most distant past still influences the current and future climate, which appears at odds425

with common intuition. Many geophysical equations of motion such as the Navier-Stokes426

or the primitive equations are usually Markovian, i.e., their current state only depends on427

the immediately preceding state and not on states in the more distant past. Furthermore,428

they do not have memory terms [Mori, 1965; Zwanzig, 1973, 2001; Chorin and Hald,429

2013; Gottwald et al., 2017]. This fact appears to be at odds with the observed (non-430

Markovian) Long-Range Dependence behavior of many climate time series and has led431

to much debate [Percival et al., 2001; Maraun et al., 2004; Cohn and Lins, 2005; Vyushin432

and Kushner, 2009; Mann, 2011; Franzke, 2012; Bunde et al., 2014]. The debate stems433

from the fact that the underlying equations of motion are Markovian. However, Long-434

Range Dependence is frequently seen in time series from an aggregated system rather than435

data from a less ambiguous physical variable, and so the apparent paradox may be illu-436

sory since even Markovian systems can appear non-Markovian when not observing the full437

system. We will discuss possible physical mechanisms to explain this behavior in section438

2.5.439

2.4 Multi-fractals440

In the introduction, we discussed scaling in precipitation intensities and in temper-441

ature time series. For intensity fields as well as time series, there are notions of multi-442

fractality that generalize self-similar scaling.443

Intensity fields in geophysics can have spatial characteristics that are consistent with444

random cascades [Kahane and Peyriere, 1976; Sornette, 2006; Kantelhardt, 2009]. In such445

cascades, the intensity in a spatial region distributes non-uniformly between its smaller-446

scale subregions according to multiplicative processes. The simplest example is the bino-447

mial cascade introduced by Kahane [1985]. This model originates in turbulence theory,448

as a rigorous analysis of the Kolmogorov-Obukhov model for spatial variability of the en-449

ergy dissipation rate [Obukhov, 1962; Kolmogorov, 1962]. The multiplicative chaos model450

[Riedi et al., 1999] is a modern version of the same idea.451
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The binomial cascade and the multiplicative chaos models define singular (non-452

smooth) measures. By construction, the qth moments of the region-averaged intensities453

are power laws in spatial scale, with exponents that depend concavely on q. Consequently,454

the distributions of intensities between different spatial regions become increasingly lep-455

tokurtic with decreasing scale.456

A multi-fractal time series X(t) is one where the qth moment of an increment |X(t +457

∆t) − X(t)| scales with the time-lag ∆t, with an exponent ζ(q) that depends concavely on458

q. The scaling function ζ(q) is linear for self-similar processes.459

There are several ways to construct multi-fractal stochastic processes from multi-460

fractal measures. In most constructions, a multi-fractal intensity field on the time axis de-461

termines the amplitudes in the time series, analogous to how the energy dissipation rate462

determines the amplitude of velocity field fluctuations in turbulence theory.463

For strictly concave scaling functions the distributions of increments are more lep-464

tokurtic on short time scales than on longer time scales. Consequently, all multi-fractal465

time series are non-Gaussian. The reverse implication does not hold. It is well known,466

that unless one carefully verifies scaling of higher-order moments, standard techniques467

for estimation of multi-fractality can lead to spurious results for time series with non-468

Gaussian marginal distributions.469

While multi-fractals are an abstract concept, they are useful for modeling time series470

with volatility clustering in time series, where the serial correlations between large and471

small amplitude events are different.472

Applications of multi-fractal models in climate science have been shown by Schmitt473

et al. [1995]. More recently, Ashkenazy et al. [2003] analyzed climate data from the past474

100kyr and found evidence for nonlinearity and clustering of the magnitude of climatic475

changes, consistent with multi-fractality. Similar results have been found by Maslov [2014].476

Evidence of multi-fractal scaling in temperature, wind, and precipitation has been found477

by Gan et al. [2007]; Royer et al. [2008]; Baranowski et al. [2015]. See appendix E: for478

multi-fractal estimators.479
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2.5 Physical scaling mechanisms480

Scaling, and particularly Long-Range Dependence, is an actively discussed topic481

in climate research. There is no obvious physical mechanism in the climate system that482

would allow the distant past to directly affect the current state of the system. Since the483

equations of motion used in climate models are all usually Markovian and do not contain484

memory terms, how can we explain the presence of Long-Range Dependence, and scaling,485

in the climate system?486

2.5.1 Model Reduction487

Long-Range Dependence can be explained using the Mori-Zwanzig formalism from488

statistical physics [Mori, 1965; Zwanzig, 1973, 2001; Gottwald et al., 2017] which rig-489

orously demonstrates how model reduction leads to the emergence of memory terms in490

the reduced equations of motion. Let us consider the following example [Zwanzig, 2001;491

Gottwald et al., 2017]:492

Ûx = L11x + L12y (8)

Ûy = L21x + L22y (9)

where Li j are constant parameters. If we are now only interested in the dynamics of x we493

can formally solve for y494

y(t) = L12eL22t y(0) + L12

∫ t

0
eL22(t−s)L21x(s)ds (10)

which we can now insert into Eq. (8)495

Ûx(t) = L11x + L12

∫ t

0
eL22(t−s)L21x(s)ds + L12eL22t y(0) (11)

The first term is a Markovian term from the original equations, the second term is a mem-496

ory term since it integrates over the past and the last term is the initial condition which497

can be considered to be random. This example explicitly shows how one gets memory498

terms when looking only at parts of the full state vector. Eq. (11) is still exactly equiva-499

lent to the original system.500

Most of our measurements are point measurements, or just measurements of a subset501

of the continuous fields. In either case, their dynamics stem from a low-dimensional sys-502

tem embedded in a climate system of infinite dimensions. The Mori-Zwanzig formalism503
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shows that memory effects arise if only a small part of the full system is observed. Thus,504

Long-Range Dependence could be a direct result of this observation. While the memory505

term in Eq. (11) is fairly general – which makes it impossible to know how exactly mem-506

ory decays – a power-law decay is a possibility, especially when making additional as-507

sumptions about the memory kernel. Kupferman [2004] approximated the memory kernel508

with a power-law.509

2.5.2 Non-Linearity and Regimes510

Lorenz put forward the idea that deterministic systems can be almost intransitive,511

i.e., they can exhibit long-lasting climate changes and hence no unique climate state exists512

[Lorenz, 1968, 1976]. Such long-term anomalies can be a form of scaling in that the vari-513

ance increases with increasing time scale. Several studies have shown that non-linearity514

can lead to scaling [Lorenz, 1976; Franzke et al., 2015b; Mesa et al., 2012]. Atmospheric515

circulation regime behavior, a main component of the climate system [Nicolis, 1990; Ghil516

and Robertson, 2002; Hannachi et al., 2017; Feldstein and Franzke, 2017; Franzke, 2013;517

Franzke et al., 2011], has been suggested as a prime candidate for scaling [Franzke et al.,518

2015b]. An example of atmospheric circulation regimes is given by the quasi-stationary519

circulation systems like blocking events, which are quasi-stationary high-pressure sys-520

tems that can last for weeks and cause heat waves and cold spells [Hannachi et al., 2017;521

Feldstein and Franzke, 2017]. It has been shown for very long but finite time series that522

regime behavior is a plausible mechanism for scaling because the residence times of the523

regimes are power-law distributed [Franzke et al., 2015b; Diebold and Inoue, 2001]. The524

residence time, is the time the system stays in one regime state. If these time intervals are525

power-law distributed then the system can exhibit Long-Range Dependence. This implies526

that memory effects in the climate system may not be needed to explain the apparent scal-527

ing of variance with time scale. The origin of this scaling has been found to be associated528

with the coarse-graining of the dynamics into a finite number of specific regimes, leading529

to non-Markovian dynamics [Nicolis, 1990; Nicolis and Nicolis, 1988, 1995; Nicolis et al.,530

1997; Vannitsem, 2001].531

Recent model experiments suggest also another possible non-linear mechanism that532

could explain Long-Range Dependence: the coupling of the atmosphere with other com-533

ponents of the climate system that have very different characteristic time scales. A case in534

point is ocean-atmosphere coupling, for which a reduced order non-linear coupled model535
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has been developed recently [Vannitsem et al., 2015; De Cruz et al., 2016]. This model536

employs the quasi-geostrophic equations to describe the large-scale dynamics of the at-537

mosphere and oceans in extra-tropical regions. The coupling is achieved via an energy538

balance scheme and momentum transfer through wind stress.539

Multiple scaling regimes were found (Fig. 7) using a Haar wavelet analysis (see ap-540

pendix C.1.4). Remarkably, no Low-Frequency Variability (LFV) was found in the cou-541

pled model for small friction coefficients and the moments peak at a scale of about 10542

days and decrease for larger periods. By low-frequency variability we mean a set of long-543

periodic, attracting orbits that couple the dynamical modes of the ocean and the atmo-544

sphere in this model. If low-frequency variability develops in the system, then additional545

peaks emerge at 10,000 and 40,000 days. Similar to Lovejoy [2015a], this allows us to546

define different regimes based on the respective scaling exponents. The structure of the547

Low-Frequency Variability and Long-Range Dependence critically depends on the water548

depth (Figs. 7b and c). This suggests that one plausible explanation of observed scaling549

regimes lies in the coupling of climate sub-components. We will further discuss this cou-550

pling mechanism in a linear framework next.551

2.5.3 Superposition of Linear Short-Range Dependence Models and Linear Re-552

sponse553

Another plausible scaling mechanism is the superposition of Short-Range Depen-554

dence models such as first order autoregressive process models [Granger, 1980]. This ap-555

proach assumes that each climate subcomponent (atmosphere, ocean, land, cryosphere,556

etc.) evolves according to some Short-Range Dependence process. The superposition of557

those climate sub-component processes can result in scaling and Long-Range Dependence558

behavior [Granger, 1980]. The plausibility of this hypothesis has been confirmed by the559

linear response in energy balance models [Fredriksen and Rypdal, 2017]. Linear model560

types include the vertical diffusion model of Fraedrich et al. [2004] for the ocean tempera-561

ture. With two layers the model produces a 1/f spectral range in the mixed layer tempera-562

ture for a white noise surface forcing.563

Another example is the Pacific Decadal Oscillation [Mantua and Hare, 2002] which564

also shows strong Long-Range Dependence [Yuan et al., 2014]. The Pacific Decadal Oscil-565

lation shows variability on inter-annual to multi-decadal time scales. The Pacific Decadal566
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Oscillation is not thought of being a single physical model of variability; instead it is the567

aggregation of several different physical processes such as ENSO teleconnections, sea sur-568

face temperature reemergence and stochastic atmospheric forcing [Newman et al., 2003;569

Vimont, 2005; Schneider and Cornuelle, 2005; Qiu et al., 2007; Newman et al., 2016].570

Hence, the Pacific Decadal Oscillation is rather an imprint of scaling in the climate sys-571

tem than its cause.572

On one hand this superposition mechanism is physically plausible, on the other hand573

from a statistical point of view it requires the estimation of many parameters. Hence, from574

a model selection point of view, which favors an economical model with as few param-575

eters as necessary over more complex models (Occam’s razor principle) [Burnham and576

Anderson, 2003], the scaling models are preferable. This does not mean that they are the577

best representation of the underlying dynamics. This suggests that in practice one has to578

decide whether we want to better understand the physical processes behind certain phe-579

nomena, or want an efficient and skillful statistical model, for example for prediction pur-580

poses.581

2.5.4 Non-Gaussianity and Multiplicative Noise582

As discussed above, scaling can also arise from the distribution of the increments583

or the driving noise in a stochastic process. So far we only discussed scaling in additive584

noise processes which in addition may have heavy-tails. Also Gaussian noise can produce585

power-law PDFs when it occurs in a multiplicative or state-dependent process [Sornette,586

2006; Majda et al., 2009; Sardeshmukh and Sura, 2009; Sura and Hannachi, 2015; Penland587

and Sardeshmukh, 2012; Franzke, 2017; Bódai and Franzke, 2017]. The simplest multi-588

plicative noise process is the Kesten process [Sornette, 2006], a first order autoregressive589

process model with random coefficients:590

xn+1 = anxn + bn, (12)

where an and bn are independent random variables. Under certain conditions, the Kesten591

process has a process cumulative probability density function (CDF) with a power-law592

decay of its tails, that is593

P(Xt > x) ∼ x−(1+γ) (13)

where γ is the power-law exponent.594
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Stochastic climate theory predicts the presence of multiplicative noise in non-linear595

systems [Majda et al., 1999, 2001, 2008, 2009; Sardeshmukh and Sura, 2009; Sura and596

Hannachi, 2015; Penland and Sardeshmukh, 2012; Franzke, 2017; Franzke et al., 2005;597

Franzke and Majda, 2006; Franzke et al., 2015a, 2019; Gottwald et al., 2017]. It can also598

be shown that multiplicative noise leads to power-laws over some ranges in stochastic cli-599

mate models [Majda et al., 2009; Sardeshmukh and Sura, 2009; Sura and Hannachi, 2015].600

Unlike power-law processes, stochastic climate theory also provides mechanisms to limit601

extremes. This power-law roll-off is due to the same non-linear interaction that causes602

the multiplicative noise in the first place: the non-linear interaction between slow and603

fast components [Majda et al., 1999, 2001, 2008, 2009; Franzke et al., 2005; Franzke and604

Majda, 2006; Sardeshmukh and Sura, 2009; Sura and Sardeshmukh, 2008]. This can be605

understood as follows: The fast components of the flow, e.g. convection, synoptic-scale606

weather systems, are effectively serially uncorrelated on the time scale of the slow com-607

ponents, e.g. Rossby waves or the ocean. This time scale separation allows us to treat608

the fast components effectively as a noise variable. While there are non-linear interac-609

tions between the slow and the fast components in the climate system, this can be written610

now as a product of the slow flow variable and a noise variable; i.e. multiplicative noise,611

also called state-dependent noise since the impact of the noise can be modulated by the612

state of the slow variable. This is consistent with the findings of Sardeshmukh and Sura613

[2009] where they found evidence in global circulation model simulations that multiplica-614

tive noise is due to turbulent adiabatic fluxes and not rapid diabatic forcing fluctuations.615

An example are wind gusts: if the large-scale wind speed is low then there are only weak616

wind gusts; on the other hand, if the large-scale wind speed is high also the wind gusts617

are strong. This behavior can be easily represented by a multiplicative noise where the618

wind gusts are computed by the product of the large-scale wind speed and a noise. The619

relevance of multiplicative noise has been shown for sea surface temperature variability620

[Sura and Sardeshmukh, 2008], atmospheric vorticity variability [Sardeshmukh and Sura,621

2009], teleconnection patterns such as the North Atlantic Oscillation [Majda et al., 2009;622

Önskog et al., 2019] and extreme events [Sura, 2013; Penland and Sardeshmukh, 2012;623

Franzke, 2017].624

While theoretical considerations predict a power-law, e.g. the generalized Central625

Limit Theorem [Sornette, 2006], our climate system is of finite size and thus infinitely626

large events cannot occur which mean that the power-laws need to cut or roll off at some627
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intensity or spatial size. This is also consistent with the dynamical systems theory of ex-628

tremes [Lucarini et al., 2016] which shows that pure power-law dynamics cannot occur at629

arbitrarily large intensities or sizes.630

2.5.5 Non-Stationarities631

While Hurst [1951] was the first to discover scaling in natural time series, Kol-632

mogorov [1940]; Lamperti [1962]; Mandelbrot [1965]; Mandelbrot and Wallis [1968] de-633

veloped the first mathematical Long-Range Dependence models (see above) to explain634

such behavior [Graves et al., 2017a]. From the outset, the Long-Range Dependence con-635

cept was controversial, especially in hydrology [Klemeš, 1974]. Klemeš argued that Long-636

Range Dependence can be caused by non-stationarities and by random walks with an ab-637

sorbing boundary. The latter is mostly relevant for natural storage systems but less so for638

the climate system and will therefore not be discussed here. Klemeš argues that Long-639

Range Dependence is only an apparent effect and that there is no real memory in the cli-640

mate system. While it is easy to construct non-stationary models exhibiting Long-Range641

Dependence [Klemeš, 1974] they raise deep philosophical questions about how the climate642

system is modeled. In general, all models of natural systems are assumed to have fixed643

parameters stemming from the underlying physical laws and all apparent non-stationarities644

would be the result of non-linearities in the underlying equations of motion or due to645

changes in external forcing (e.g. greenhouse gas emissions, Milankovich cycles). One646

could design non-stationary climate models by introducing random jumps in model pa-647

rameters which would lead to shifts in the mean state, as proposed for hydrology by Kle-648

meš [1974]. For instance, the inclusion of volcanic activity, which is very intermittent,649

improves the scaling behavior of climate simulations [Vyushin et al., 2004]. While the suc-650

cess and skill of current numerical weather and climate predictions shows the usefulness651

of the stationarity assumption, the question remains unresolved whether non-stationary652

models could provide a viable alternative.653

2.5.6 Self-Organized Criticality654

Self-Organized Criticality (SOC) may be another possible mechanism behind scal-655

ing [Bak et al., 1987; Bak, 1996; Watkins et al., 2016]. SOC refers to a process driven by656

a slow and constant energy input that leads to sudden burst behavior without any typi-657
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cal scale. Hence, the statistics of a SOC process are described by power-laws [Hergarten,658

2003].659

Peters et al. [2001]; Peters and Christensen [2006]; Peters and Neelin [2006] used660

SOC to explain the observed scaling of precipitation. The atmosphere receives energy661

from evaporation due to solar radiation. The water vapor is stored in the atmosphere un-662

til a dynamical threshold (saturation) is reached, at which point energy bursts out, i.e., it663

rains and latent heat is released. These burst events have no typical scale and are a possi-664

ble explanation of the observed power-law behavior of the tail of the PDF of precipitation665

event sizes and durations.666

Another potential mechanism for power-laws is the Highly Optimized Tolerance667

(HOT) framework [Carlson and Doyle, 1999, 2000, 2002]. This framework relates power-668

laws to evolving structures. However, this framework has been developed for biological669

and engineering systems. How well it can also be applied to the climate systems needs to670

be examined. A recent application was to ecosystems and wild fires [Moritz et al., 2005].671

2.5.7 Scaling via Turbulent Cascades672

While the above approaches apply to the time domain and aim to explain the pres-673

ence of Long-Range Dependence in the climate system or intensity distributions, we now674

discuss a theory to explain the existence of scaling in the space domain. We focus on en-675

ergy spectra, i.e., on how energy is distributed with spatial scale.676

At the largest scales, the atmosphere is forced in a quasi-steady manner by the solar677

gradient between the equator and the poles, which leads to a meridional temperature gra-678

dient. The corresponding energy flux is represented by non-linear terms in the equations679

of motion used in coupled atmosphere-ocean models. The non-linear interactions between680

different spatial scales cause large eddies to break up into smaller ’daughter eddies’, trans-681

ferring their energy fluxes to ever smaller scales [Vallis, 2017] until viscosity dissipates682

the energy as heat.683

This process can be modeled by cascade models. In the first cascade models, the684

parent eddies were typically large cubes that produced smaller daughter cubes of half the685

parent’s diameter [Schertzer and Lovejoy, 1987]. Now, for each daughter, one flips a coin686

to decide how the energy flux from the parent eddy will be transferred over to the daugh-687
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ter. This can be done so that some daughter eddies occasionally receive zero energy while688

others have their fluxes multiplicatively boosted to conserve the total energy [Novikov and689

Stewart, 1964; Mandelbrot, 1974; Frisch et al., 1978]. The outcome of these cascades are690

power-laws for the distribution of the energy with spatial scale [Nastrom and Gage, 1985;691

Straus and Ditlevsen, 1999; Vallis, 2017]. These are qualitatively consistent with the the-692

oretical power-law spectra predicted by Kolmogorov [Kolmogorov, 1991a,b] as discussed693

above.694

2.6 Estimation methods for scaling exponents695

A multitude of estimators have been developed over the years to provide accurate696

estimates of the scaling exponents and different estimators infer different aspects of the697

scaling properties. For instance, most estimators infer the Long-Range Dependence pa-698

rameter parameter d or the Hurst exponent H of a time series, and are insensitive to non-699

Gaussianity of its amplitudes, which can cause them to differ from the self-similarity pa-700

rameter γSS . When deciding whether or not to use a particular estimator, one should al-701

ways be aware of the underlying assumptions that went into its construction.702

2.6.1 Estimation of the power-law exponent703

Recognizing the existence of power-law tails and estimating the corresponding tail704

parameter or scaling exponent of power-law PDFs are important topics. Clauset et al.705

[2009] provide a review on this topic and carefully explain the potential pitfalls. Firstly,706

it is important to realize that true power-laws can be hard to identify and that simple re-707

gression approaches can lead to false positive identifications [Clauset et al., 2009]. Clauset708

et al. [2009] recommend the use of a Maximum Likelihood Estimator (MLE). Code for709

the power-law estimation for the statistical programming language R is available at http:710

//tuvalu.santafe.edu/~aaronc/powerlaws/plfit.r. They also show that the widely711

used least-squares regression approach can lead to inaccurate estimates and cannot answer712

the question whether the data obey a power-law decay at all [Clauset et al., 2009]. Gerlach713

and Altmann [2019] propose a different way to identify power-laws using shuffling and714

under-sampling of the data. This approach leads to less rejections and larger confidence715

intervals then the Clauset et al. [2009] approach and potentially to more false positive716

identifications. While that study is mostly concerned with power-law tails of Probability717

Density Functions, the Maximum Likelihood Estimator approach can also be used for es-718
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timating the Long-Range Dependence parameter. With an Maximum Likelihood Estimator719

also the parameters of other distributions such as the Generalized Extreme Value, stretched720

exponential or the log-normal distribution can be estimated. Most of these distributions721

can be estimated with standard functions or packages included in the statistical software722

package R.723

Extreme value statistics also provides methods to estimate the tail exponent of dis-724

tributions [e.g. Beirlant et al., 2006; Coles, 2001; Embrechts et al., 2013]. However, they725

fit an extreme value distribution, either the Generalized Extreme Value or the General-726

ized Pareto distribution. Those distributions can have either a power-law or an exponential727

decay of their tail. Gilleland and Katz [2016] provide a R package for the estimation of728

extreme value distributions.729

While direct confirmation of power-laws can be difficult, it is advisable to perform730

a model selection exercise where different models, e.g. power-law, stretched-exponential,731

etc, are fitted to the data and then the best fitted model is selected using some objective732

criterion. Burnham and Anderson [2003] discuss systematic ways of model selection.733

2.6.2 Estimation of the Long-Range Dependence parameter734

When analyzing and modeling the temporal dependence of Long-Range Dependent735

time series, it is important to accurately estimate the strength of Long-Range Dependence.736

This can be achieved by determining the Hurst exponent, H, or the fractional integration737

parameter, d, arising from the Autoregressive Fractionally Integrated Moving Average738

(ARFIMA) class of processes [Box et al., 2015; McNeil et al., 2015; Franzke et al., 2012;739

Franzke, 2017]. H is more commonly used in physics, while d is preferred by the statis-740

tics community (Appendix D: ). In principle, one could also analyze the autocorrelation741

function and search for a power-law decay at large time lags. However, the estimation of742

the autocorrelation function suffers from sampling errors. The below described estimators743

provide more robust estimates of the scaling exponent then the autocorrelation function.744

As emphasized by Samorodnitsky [2016], most definitions of Long-Range Depen-745

dence in the literature are based on the second-order (or variance) properties of the pro-746

cess which include the asymptotic behavior of covariances, spectral density, and variances747

of partial sums. Second-order properties are popular choices because they are conceptually748

simple and they can be easily estimated from data. However, as noted by Samorodnitsky749

–25–

©2020 American Geophysical Union. All rights reserved. 



Confidential manuscript submitted to Reviews of Geophysics

[2016] this complicates the definition of Long-Range Dependence when a process has infi-750

nite variance, because theoretical moments and sample moments will behave in strikingly751

different ways.752

Many methods are used to estimate the value of the Hurst exponent. They can be753

broadly divided into time-domain methods and frequency-domain methods. Time domain754

methods include variance-type estimators [Taqqu et al., 1995; Giraitis et al., 1999], the755

rescaled range or R/S statistic [Mandelbrot and Taqqu, 1979; Bhattacharya et al., 1983],756

least-squares regression using sub-sampling [Higuchi, 1990], and the variance of residu-757

als estimators [Peng et al., 1994]. Frequency domain estimators include Whittle estima-758

tors [Fox and Taqqu, 1986; Dahlhaus, 1989] and connections to Fourier spectrum decay759

[Geweke and Porter-Hudak, 1983; Lobato and Robinson, 1996]. Wavelet-based regres-760

sion approaches have also been considered [Percival and Guttorp, 1994; Abry et al., 2000,761

1995]. Extensions of wavelet estimators to other settings such as observational noise and762

irregularly spaced time series have been published [Stoev et al., 2006; Gloter et al., 2007;763

Knight et al., 2016]. Other works about Long-Range Dependence estimation including764

multi-scale approaches are Hsu [2006] and Coeurjolly et al. [2014].765

For technical details of the most common estimators see appendix C: . A more de-766

tailed comparison of different estimator and a discussion of their strengths and weaknesses767

is given by Schmittbuhl et al. [e.g. 1995]; Faÿ et al. [e.g. 2009]; Franzke et al. [e.g. 2012];768

Witt and Malamud [e.g. 2013].769

2.7 Spectral analysis and its limitations770

Analyzing data by Fourier decomposition is attractive because each sinusoid has an771

exact and unambiguous time scale: its period. Furthermore, one has to assume that the772

signal is statistically stationary in time or homogeneous in space for Fourier analysis to773

be valid. This implies that the probability laws that govern the behavior of the time se-774

ries do not change over time. As a result, the phases of the Fourier modes are randomly775

distributed and can be neglected. However, this only applies if the time series is Gaussian776

because the phases are correlated otherwise; a fact that is often overlooked. If observa-777

tionally data really had to meet these criteria fully then Fourier analysis would not be as778

useful as it has been, so we can relax these conditions in practice to some extend.779
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A potential problem with Fourier analysis is that the interpretation of the resulting780

spectra are nontrivial. To illustrate this problem, we consider surrogate time series which781

have the same multi-fractal characteristics as the EPICA dust series [Lambert et al., 2008;782

Lovejoy, 2018]. Since the time series are generated by a multi-fractal stochastic process,783

even the strong peaks are randomly excited (Fig. 8). However, the presence of such strong784

peaks can be misinterpreted as signatures of important climatic processes [Lovejoy, 2018].785

This example, should also be taken as a cautionary tale against the simple interpretation786

of peaks in Fourier analysis as quasi-oscillations resulting from physical mechanisms. The787

important point we want to emphasize here is not that these methods do not work, but788

rather that their resulting spectra need to be carefully interpreted and the model represent-789

ing the underlying process carefully chosen.790

3 Empirical evidence of scaling791

The atmospheric near surface temperature is a relevant indicator for climatic Long-792

Range Dependence. Instrumental measurements reach back to the 17th century (Central793

England temperature) [Parker et al., 1992]) and cover inhabited areas and ocean areas794

near ship routes densely during the last 50 to 100 years. Furthermore, temperature is re-795

constructed using statistical relationships with proxy data for time horizons of thousands796

up to a million years. In all these data, a continuous background in variability shows up,797

which is parsimoniously described by power laws. In all these data sets, Long-Range De-798

pendence is considered to be present if power-law scaling reaches the longest time scale799

observed (in contrast to a stringent mathematical definition which requires infinity as a800

limit).801

All observations and especially climate reconstructions based on proxy data are sub-802

ject to non-climatic influences such as measurement errors or imperfect recording of the803

climate signal. As this can also affect the scaling [e.g. Rust et al., 2008; Franzke et al.,804

2012], it is important to consider these uncertainties in order to infer useful information805

about the scaling of climate variability.806

3.1 Station temperatures807

Significant evidence for Long-Range Dependence in station temperature have been808

reported in many studies [Koscielny-Bunde et al., 1998; Fraedrich and Blender, 2003;809
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Franzke, 2010, 2012; Capparelli et al., 2013; Bunde et al., 2014; Ludescher et al., 2015;810

Gao and Franzke, 2017; Graves et al., 2015; Løvsletten and Rypdal, 2016]. The exponent811

H = 0.65 of the fluctuation function F(τ) ∼ τH which was determined by Detrended Fluc-812

tuation Analysis was suggested to be universal for local temperature variations. This expo-813

nent is related to the exponent β = 0.3 in a power spectrum, P( f ) ∼ f −β by β := 2H − 1.814

Fig. 9 shows the results for the fluctuation function obtained by Detrended Fluctuation815

Analysis (see appendix C.1.3) for 12 meteorological stations distributed worldwide. In the816

inter-annual range (up to the total duration) the stations reveal linear slopes given by an817

exponent H ≈ 0.65. It is tempting to conclude that atmospheric Long-Range Dependence818

could be characterized by a single universal value. Later on, it was found that the value819

H = 0.65 might be a transition phenomenon between memory-less inner continents with820

H = 0.5 and some oceanic areas with H ≈ 1 [Fraedrich and Blender, 2003; Ludescher821

et al., 2015; Løvsletten and Rypdal, 2016].822

3.2 Near surface temperatures on land and ocean823

Observed near surface temperatures are available since 1900 with a sufficient den-824

sity to estimate a global pattern of Long-Range Dependence [Jones, 1994; Parker et al.,825

1995; Jones et al., 2001]. Fig. 10 shows the power-law exponents H for the monthly data826

estimated by Detrended Fluctuation Analysis with quadratic trend (DFA2). The results are827

concentrated in coastal regions, Europe, North America, and along ship routes. In inner-828

continental locations, Long-Range Dependence is negligible with H ≈ 0.5. Along the829

coasts the memory increases to H ≈ [0.6,0.8] and in the central North Atlantic and in the830

equatorial Indian ocean, the highest values of H ≈ 0.9 are found. This pattern shows that831

Long-Range Dependence in the considered time range is a marine phenomenon. On land832

no memory is evident on these time scales far from the coasts. The finding of H ≈ 0.65833

in the stations can be explained by the locations of the stations considered in Fig. 9. In-834

habited areas with observational stations are traditionally along coasts. Note that there835

can be a huge gradient in Long-Range Dependence as seen along the western North Pa-836

cific coast. Later on, Fraedrich and Blender [2003] found that this surface temperature837

Long-Range Dependence can be found in coupled atmosphere-ocean simulations with a838

dynamical ocean model, but not with a slab ocean model.839

A spectrum with β = 1 is denoted as 1/ f -noise (see appendix F: ). If this extends to840

vanishing frequency (or infinite time) stationarity is violated. Clearly, in observational data841
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this limit cannot be attained, and whether the sea surface temperature data are stationary842

remains open. However, this type of variability indicates that short term averages, as are843

typically used in climate science, are not defined and should be interpreted with caution.844

The 1/ f -spectrum of the sea surface temperature in some oceanic regions can be845

obtained by a diffusion model in a vertical column with two compartments [Fraedrich846

et al., 2004]. A decisive parameter is the diffusivity in the abyssal ocean. This parameter847

determines turbulent mixing and is caused by tides and the orography. Although the atmo-848

spheric forcing is white, the sea surface temperature shows Long-Range Dependence close849

to non-stationarity. Furthermore, wind also provides a significant part of the mechanical850

energy for diapycnal mixing in the ocean [Wunsch and Ferrari, 2004; Munk and Wunsch,851

1998] which could also lead to this behavior as discussed in Sec. 2.5.2.852

In summary, the analysis of observational data reveals that Long-Range Dependence853

in the lower atmosphere is predominantly found in oceanic regions where the variability854

is close to non-stationarity (1/ f -spectrum). Far from coasts Long-Range Dependence on855

decadal time scales is not observed. In transition zones along coasts a spectrum is found856

which is approximately given by P( f ) ∼ f −0.3.857

3.3 Scaling in regional and global mean temperatures858

Local and regional surface temperature variations have a much greater magnitude859

and show a weaker scaling than global average temperature variability [e.g. Laepple and860

Huybers, 2014a]. This difference in variability is strongest for inter-annual and shorter861

time-scales and decreases on longer time-scales. The reduced variability of the global862

mean temperatures reflect cancellation of variability in the global mean and the weaker863

cancelation toward lower frequencies is consistent with findings that temperature anoma-864

lies have greater spatial autocorrelation toward longer timescales [Jones et al., 1997]. This865

behavior is also reproduced in diffusive Energy Balance models [Rypdal et al., 2015] where866

the predicted slope of the spectrum of global mean temperatures is around double the867

slope of regional temperatures over a large frequency range following from the horizon-868

tal diffusive coupling. Thus, it is important to consider the spatial scale analyzed when869

interpreting the variability and long-term memory of temperature time-series.870
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3.4 Paleo data and simulations871

The isotope fraction δ18O in ice cores can be used as a proxy for the surface tem-872

perature due to the different weights of the molecules [Dansgaard, 1964; Barlow et al.,873

1997]. As the annual snowfall is preserved on the Greenland and Antarctic ice-sheets,874

this allows in principle to analyze climate scaling from inter-annual to multi-millennial875

time-scales. However, especially on the shorter time-scales, non-temperature effects such876

as snow redistribution [Fisher et al., 1985], diffusion [Johnsen et al., 2000] and aliasing877

effects from intermittent snowfall [Laepple et al., 2017] considerably affect the recorded878

variability and have to be corrected for, to infer about climate scaling [Münch and Laep-879

ple, 2018]. The oxygen fractions measured in the Greenland ice cores GRIP and GISP2880

during the last 10k years reveal estimates for H [Blender et al., 2006] which are clearly881

above 0.5 in the millennial time range (Fig. 11). The corresponding exponents in the882

power spectrum P( f ) correspond to H ≈ 0.5. Hence, scaling can be assumed, at least883

approximately. It is remarkable that this result can be obtained in an extremely long cou-884

pled atmosphere-ocean simulation [Blender et al., 2006] which reveals intense Long-Range885

Dependence south of Greenland (see Fig. 11) with exponents of similar magnitude, but886

much less Long-Range Dependence in other oceanic regions; the Pacific ocean reveals no887

Long-Range Dependence of a comparable intensity. The simulation was performed un-888

der present-day conditions, hence no external variability is necessary to explain this result.889

The Long-Range Dependence is related to the variability of the zonally averaged stream-890

function in the North Atlantic ocean. Evidence for Long-Range Dependence has also been891

found in other coupled climate models [Østvand et al., 2014; Fredriksen and Rypdal, 2016;892

Vyushin et al., 2004; Zhu et al., 2010]. Vyushin et al. [2004] showed that the inclusion of893

volcanic eruptions improves the simulation of Long-Range Dependence in climate models.894

An important question is how well climate models reproduce the true internal vari-895

ability on time scales of centuries and longer. The local model surface temperature spectra896

seem to indicate a lower (or even zero) spectral exponent β for frequencies below 1 × 10−2
897

yr−1, but on long time scales the finite sample size errors are so large that this cannot be898

concluded with high statistical confidence [Fredriksen and Rypdal, 2016]. This flattening899

of the spectra on time scales longer than a century cannot be detected in the instrumental900

temperatures, since the time series are too short, but they are also not detected in temper-901

ature reconstructions of Holocene climate [Laepple and Huybers, 2014b] even after cor-902

recting for non-climate effects on the spectra. On the contrary, some authors claim higher903

–30–

©2020 American Geophysical Union. All rights reserved. 



Confidential manuscript submitted to Reviews of Geophysics

exponents for local temperatures (β ≈ 2.2) for these longer time scales based on com-904

posite spectra established from different proxy records [Huybers and Curry, 2006; Love-905

joy and Schertzer, 2012a]. This conclusion, however, can only be drawn with confidence906

from proxy records spanning the last glacial period and including the last deglacation, and907

hence may not be valid for the Holocene climate.908

Analyzing global mean temperatures that are dominated by external forcing on the909

other hand suggests that the scaling and variability is comparable between reconstructions910

and model simulations [Crowley, 2000; Zhu et al., 2019] or climate model simulations911

may even overestimate global mean temperature variability.912

The issue is illustrated in Fig. 12a where we have plotted time series of reconstructed913

annual temperatures for the Northern hemisphere and the corresponding series derived914

from the NorESM model with historical forcing. In Fig. 12b we have estimated their Haar915

fluctuation functions (see appendix C.1.4). The fluctuation level is more than twice as916

high for the model temperatures on time scales less than 100 yr. It turns out that this is917

due to the higher short-time responses to large volcanic eruptions in the models. This can918

be seen by elimination of these spikes from the model signal, as shown in the zoomed in919

signals in Fig. 12. The fluctuation function of this ’chopped’ signal is very close to that920

of the reconstructed temperature (Fig. 12). The cloud of thin curves in Fig. 12 are fluc-921

tuation functions estimated for 20 realizations of fractional Gaussian noises with Hurst922

exponent H = 0.9 of the same length as the NorESM model run. The width of the cloud923

suggests that the reconstruction as well as the chopped model signal are consistent with924

such a fractional Gaussian noise, although the power at time scales longer than a few cen-925

turies are somewhat high. It is easy to verify that this increased power is due to the tem-926

perature difference between the Medieval Warming Anomaly and the Little Ice Age. Some927

authors interpret the power in this oscillation as a signature of a transition to scaling with928

an exponent β > 1 on time scales longer than a few centuries [Huybers and Curry, 2006;929

Lovejoy and Schertzer, 2012a]. On the other hand, Nilsen et al. [2016] argue that existing930

temperature reconstructions for the Holocene are generally consistent with a single scaling931

regime with H ≈ 0.9 on all time scales shorter than the duration of the interglacial period.932

Similar ideas are advocated by Rypdal and Rypdal [2016b], who demonstrate that933

temperatures derived from ice cores over the last 100 kyr can be described as sudden tran-934

sitions between stadials and interstadials superposed on a 1/ f -noise (H ≈ 1) background.935
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According to this view, mono-fractal, near Gaussian, scaling with H ≈ 1 is a useful de-936

scription of the climate noise background in Quaternary climate. Whether a scaling de-937

scription is appropriate for the succession of transitions between stadials and interstadials938

is another story and needs more research.939

3.5 Scaling behaviors in other meteorological and climatological variables940

Besides the evidence of Long-Range Dependence in temperatures, there are also941

scaling behaviors detected in many other variables, including precipitation, river runoff, to-942

tal ozone, relative humidity and sea level change. For in-situ precipitation records, small943

Long-Range Dependence parameters have been found by several studies [Kantelhardt944

et al., 2006; Jiang et al., 2017; Yang and Fu, 2019]. On average, the Detrended Fluctuation945

Analysis exponent H mainly ranges between 0.5 and 0.55, indicating weak Long-Range946

Dependence. For river runoff much stronger Long-Range Dependence has been detected.947

Kantelhardt et al. [2006] found the mean Long-Range Dependence parameter for river948

runoff is 0.72 based on 42 river runoff records observed from Europe, North and South949

America, Africa, Australia and Asia. Wang et al. [2008] detected Long-Range Dependence950

close to 1/ f (H ≈ 1) for the intra-annual Yangtze discharge. As for relative humidity,951

Chen et al. [2007] reported that the mean Detrended Fluctuation Analysis exponent H for952

in-situ relative humidity records over China is around 0.75. Recently, there were also re-953

sults reported indicating that sea level changes are characterized by Long-Range Depen-954

dence. The Detrended Fluctuation Analysis exponent H has a large variation range from955

0.60 to 0.95, depending on different regions [Dangendorf et al., 2014]. Other variables956

such as wind speed, atmospheric circulation indices, and ozone anomalies, etc., have also957

been shown to have the scaling behavior [Feng et al., 2009; Vyushin et al., 2007; Vyushin958

and Kushner, 2009; Varotsos and Kirk-Davidoff , 2006; Franzke et al., 2015b].959

3.6 Evidence of multi-fractal behavior960

Besides Long-Range Dependence that only needs one exponent H to describe mono-961

fractal behavior, there is also empirical evidence of multi-fractal behavior. For instance,962

in precipitation records, although the measured Long-Range Dependence is weak, pro-963

nounced multi-fractality has been found [Kantelhardt et al., 2006], indicating that precip-964

itation records of different amplitudes have different scaling behaviors. Similar properties965

also exist in river runoff data [Koscielny-Bunde et al., 2006], where the multi-fractality966
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was found to be even stronger than that in precipitation records [Kantelhardt et al., 2006].967

For temperature related records such as the surface mean air temperature, diurnal temper-968

ature range (DTR), etc., different multi-fractal behaviors were found over different regions969

[Lin and Fu, 2008; Yuan et al., 2013a]. Such as in the south of the Yangtze River, pro-970

nounced multi-fractality was found in DTR records, while in the north, the multi-fractal971

behavior is very weak or even non-existent [Yuan et al., 2013a]. Other variables such as972

wind speed, relative humidity, etc., have also been shown to have the multi-fractal behav-973

ior [Kavasseri and Nagarajan, 2005; Baranowski et al., 2015].974

4 Applications of scaling in climate research975

4.1 Scaling for Trend Detection976

The identification of trends is one of the most frequent and prominent goals in the977

analysis of geophysical time series [Chandler and Scott, 2011; Wu et al., 2007]. Although978

apparently an easily understandable objective, trend assessment is very challenging, start-979

ing with the lack of a precise definition of trend itself. Implicit in the intuitive notion of980

trend are concepts such as long-term, smoothness, or monotonicity, but it is not unam-981

biguously defined how long is ’long-term’, or how smooth needs a pattern to be in order982

to be a trend. Furthermore, time series characterized by scaling behavior often exhibit fea-983

tures that can be classified broadly as a trend, even in the absence of any genuine trend.984

Unlike the notion of trend, stationarity is a well-defined statistical property. A time985

series (Xt ) is weakly stationary if its first and second moments are time invariant (i.e., the986

mean and variance are constant and the covariance depends only on the time lag between987

the observations). The trend in a time series can be ascribed to a non-stationary gener-988

ating process (at least the mean is not constant in time) and described by a trend model.989

Trend models can be broadly classified as either being i) deterministic or ii) stochastic.990

Deterministic trend models represent deterministic (non-random) non-stationary processes991

which are described by a function evolving in time; one example are trends which are992

forced by external factors such as anthropogenic greenhouse gas emissions. Stochastic993

trend models represent stochastic non-stationary processes described by models such as994

a random walk or an Autoregressive Integrated Moving Average model. Such models ex-995

hibit apparent trends without any external forcing, instead these trends are caused by the996

internal dynamics of the process. Unfortunately it is extremely difficult, for example by997
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visual judgment alone [Percival and Rothrock, 2005], to select a trend model or even to998

distinguish between deterministic and stochastic trend models, particularly in the case of999

short time series [Franzke, 2012].1000

Furthermore, weakly stationary processes can generate a time series with an appar-1001

ent trend, particularly when a short segment of the process is observed. Such "spurious"1002

trends can be misleadingly taken as evidence of non-stationary behavior when in fact the1003

process is stationary. A classical example since long recognized as a potential culprit in1004

the interpretation of climate variability [Wunsch, 1999] is the typical “red noise”1 structure1005

of climate records. A red noise (described by a simple first order autoregressive process)1006

can produce visually appealing trends despite being a stationary process, particularly in1007

the case of short time series.1008

Long-Range Dependence processes, for example described by Autoregressive Frac-1009

tional Integrated Moving Average models, are another type of stationary processes that can1010

produce apparent non-stationary behavior and local ’spurious’ trends. Since Long-Range1011

Dependence is a feature common in many geophysical time series, a crucial challenge in1012

the identification and estimation of trends is to discriminate between non-stationary pro-1013

cesses and stationary long-range dependent processes. The problem is, however, quite dif-1014

ficult since genuine trends generated by a non-stationary process and spurious trends from1015

a Long-Range Dependence process can coexist in the same time series. Disentangling the1016

different contributions to the observed temporal structure is not possible by visual inspec-1017

tion and even specific methodologies addressing the issue have to rely on substantial as-1018

sumptions and simplifications, for example on the type of non-stationary behavior, or the1019

dominance of one specific type of process. For instance, the approach proposed by Beran1020

and Feng [2002] of semi-parametric fractional autoregressive (SEMIFAR) models consid-1021

ers a trend function modeled non-parametrically, with the remaining components of the1022

model estimated by maximum likelihood. Despite the flexibility of SEMIFAR models, the1023

performance is poor in the case of short time series, and the trend is estimated based on1024

a subjective concept of smoothness. More importantly, discrimination between stochas-1025

tic and deterministic trends remains difficult to achieve, given that a significant amount of1026

1Red noise sometimes means that the spectral power increases with period scale. However, in climate science red noise

typically denotes the power spectrum of a first order autoregressive process which has first increasing power for increasing

period but then becomes white noise; also called Lorentzian spectrum. See Fig. 3 for an example.
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spurious trends associated with Long-Range Dependence behavior alone can be easily in-1027

cluded in the non-parametric trend estimation. The statistical test of Berkes et al. [2006]1028

aims to discriminate between stationary Long-Range Dependence time series and non-1029

stationary time series with change-points in the mean, but requires previous identification1030

of a small number of change points in the time series.1031

Shifting from a general trend model to a linear trend significantly constrains the1032

problem of trend identification in the presence of Long-Range Dependence. Although1033

such an assumption is hardly realistic and is theoretically limiting, it is nevertheless of1034

practical relevance since the overwhelming majority of trends in geophysical records are1035

reported as the slope from a linear regression model. Most studies are based on the up-1036

front assumption that a time series can be described by a non-stationary linear trend with1037

a stochastic Long-Range Dependence component (e.g. Rybski and Bunde [2009]; Lennartz1038

and Bunde [2009]; Franzke [2010, 2012]; Capparelli et al. [2013]; Bunde et al. [2014];1039

Ludescher et al. [2015]; Myrvoll-Nilsen et al. [2019]) and focus on the assessment of the1040

corresponding uncertainty (e.g. Cohn and Lins [2005], Koutsoyiannis [2006], and Kout-1041

soyiannis and Montanari [2007]).1042

A complementary approach is to test the assumption of a linear deterministic trend1043

itself. The PP test [Phillips and Perron, 1988] is a classical unit root test for testing non-1044

stationarity in the form of a random walk, which is a scaling process. The KPSS test1045

[Kwiatkowski et al., 1992] is a parametric statistical test which assumes as a null hypoth-1046

esis a deterministic linear trend plus a stationary stochastic noise. Although the two tests1047

can be applied independently, their joint use is recommended for trend assessment pur-1048

poses [Kwiatkowski et al., 1992; Carrion-i-Silvestre et al., 2001]. For a time series with1049

a random walk stochastic trend the PP test should not reject the null hypothesis and the1050

KPSS test should reject the linear trend null hypothesis. Conversely, for a time series with1051

a linear deterministic trend, the PP test should reject the null hypothesis but not the KPSS1052

test. In the case of a times series for which both tests fail to reject the null hypothesis,1053

then the time series or the tests are not sufficiently informative to distinguish between a1054

stochastic (random walk) trend and a deterministic trend. However, if both tests reject1055

their respective null hypothesis, this is an indication that alternative parametrisations for1056

long-term behavior need to be considered, such as Long-Range Dependence. Since Long-1057

Range Dependence is a common feature of geophysical time series, this outcome of re-1058

jection of both PP and KPSS test is quite common, for example in the case of air temper-1059
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ature [Fatichi et al., 2009] or global sea surface temperature [Barbosa, 2011]. Unfortu-1060

nately these tests require long time series (in order to meet asymptotic assumptions) and1061

are known to have low explanatory power particularly against Long-Range Dependence1062

alternatives (Lee and Schmidt [1996], Leybourne and Newbold [1999]).1063

A widely used trend test is the Mann-Kendall test [Mann, 1945; Kendall, 1948],1064

which in its original form is only valid for independent data. The Mann-Kendall test is1065

a non-parametric test which tests for the presence of a monotonic trend without making1066

any assumptions about the form of the trend. This is in contrast to most other trend tests1067

which have to assume some parametric trend form, e.g. a linear trend. The Mann-Kendall1068

test has been extended to also account for serial correlation in time series [Hamed and1069

Rao, 1998] and also for the presence of Long-Range Dependence [Hamed, 2008].1070

A further trend significance test has been developed by Lennartz and Bunde [2009,1071

2011]; Tamazian et al. [2015]. This method has been developed for the Detrended Fluc-1072

tuation Analysis method in the presence of Long-Range Dependence in the time series1073

[Ludescher et al., 2015; Bunde et al., 2014]. Based on Monte-Carlo simulations, they stud-1074

ied how the trend uncertainties vary with the strength of Long-Range Dependence, as well1075

as the data length. This method has been applied to evaluate trend significances of the1076

surface air temperature and the sea ice extent in Antarctica [Ludescher et al., 2015; Bunde1077

et al., 2014; Yuan et al., 2017].1078

Recent developments in temperature trend significance testing with long-range de-1079

pendent noise show how we can also incorporate information about forced global temper-1080

ature changes in the trend estimate [Myrvoll-Nilsen et al., 2019]. In that way, one avoids1081

attributing forced changes deviating from e.g. a linear trend as part of the stochastic vari-1082

ability [Gil-Alana, 2005; Fatichi et al., 2009; Franzke, 2012, 2014]. Results show that the1083

observed trends since 1900 are significant relative to the noise for most locations, and to a1084

larger degree than when assuming a linear trend [Løvsletten and Rypdal, 2016].1085

4.2 Scaling for Climate Response and Sensitivity1086

Linear response models, which predict how the climate system will react to a change1087

in forcing, e.g. anthropogenic greenhouse gas emissions, have shown considerable success1088

in describing the global temperature response in climate model data, instrumental data1089

and in multi-proxy reconstructions [Held et al., 2010; Geoffroy et al., 2013; Caldeira and1090
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Myhrvold, 2013; Rypdal and Rypdal, 2014; Østvand et al., 2014; Rypdal et al., 2015; Love-1091

joy et al., 2015; Fredriksen and Rypdal, 2016]. In particular, Rypdal and Rypdal [2014]1092

demonstrated that a scaling linear response function provides a good description of the1093

global temperature response to radiative forcing over both the historical period, and to a1094

multi-proxy reconstruction of the temperature over the last millennium.1095

It has been known for several decades that Coupled Atmosphere-Ocean General Cir-1096

culation Models (AOGCM) exhibit climate responses on multiple time scales [Held et al.,1097

2010; Geoffroy et al., 2013; Caldeira and Myhrvold, 2013; Fredriksen and Rypdal, 2017],1098

i.e., there is more than one time constant involved in the response. The scaling response1099

studied in Rypdal and Rypdal [2014] could be considered an approximation to the multi-1100

ple time-scale response, bridging the responses on time scales from years to centuries, and1101

Fredriksen and Rypdal [2017] demonstrates how an energy balance box-model can provide1102

such an approximation.1103

In addition to describing the response to historical radiative forcing, the same scal-1104

ing response to a white noise stochastic forcing is also consistent with the observed inter-1105

nal variability. One way of extracting the internal variability from observed global tem-1106

perature is to compute the deterministic, historically forced variability from the response1107

model and subtract this from the observed record. The power spectrum of this estimated1108

internal variability compares well with a power-law [Rypdal and Rypdal, 2014]. This ten-1109

dency for a multi-box model to form a power-law spectrum is studied systematically in1110

Fredriksen and Rypdal [2017], and reflects a well-known result which states that a scaling1111

spectrum can be obtained from the aggregation over an ensemble of first order autoregres-1112

sive processes [Granger, 1980]; see also Sec. 2.5.3. Thus, Long-Range Dependence can1113

be caused by the constructive superposition of Short-Range Dependence processes.1114

The emergent scale invariance makes it possible to infer equilibrium climate sensi-1115

tivity (ECS) from a scaling frequency-dependent climate sensitivity R( f ) ∼ f β/2. This1116

scaling response implies infinite magnitude response as f → 0, and, therefore, there1117

must exist a lower frequency limit of where the scaling response is valid, and where the1118

response stabilizes as we go to even lower frequencies. R( f ) can be estimated for a given1119

climate model by exploiting the relation between the historic radiative forcing applied to1120

a model and the observed instrumental global temperature. Rypdal et al. [2018] applied1121

this to an ensemble of Earth system models, where the inferred values of R(f) evaluated1122
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at f = 1/1000yr−1 correlate strongly to estimates of equilibrium climate sensitivity from1123

idealized model runs. They could use the distribution of estimated R( f ) over the model1124

ensemble to constrain the distribution of equilibrium climate sensitivity obtained from the1125

ensemble of idealized runs. Thus, scale-invariant linear response models are useful tools1126

for the estimation of equilibrium climate sensitivity from observation data. The advantage1127

over multi-box energy balance models is that the scale-invariant models contain fewer free1128

parameters and are less prone to statistical over-fitting.1129

4.3 Scaling for Climate Prediction1130

The property of Long-Range Dependence in the climate system raises the question1131

whether models which explicitly include Long-Range Dependence can be used for skill-1132

ful predictions. The first attempt for climate predictions was tried by Baillie and Chung1133

[2002]. Recently, a model was developed for seasonal to decadal predictions, the Stochas-1134

tic Seasonal to Inter-Annual Prediction System (StocSIPS) [Lovejoy, 2015b; Lovejoy et al.,1135

2015, 2018]. StocSIPS is based on the low frequency limit of a fractional differential1136

equation, the Fractional Energy Balance model (FEBE). This model is valid for periods1137

between 20 days through 50 years, where intermittency is relatively weak so that a quasi-1138

Gaussian approximation can be used. StocSIPS forecast skill compares favorable with1139

operational long-range forecasting models based on traditional climate models. One ad-1140

vantage of StocSIPS is that data assimilation of observations is not necessary, since it can1141

directly be fitted to observed data. This also implies that down-scaling of forecasts is not1142

needed.1143

Yuan et al. [2013b, 2014] developed a method for the extraction of the Long-Range1144

Dependence using a fractional integrated statistical model. They proposed a new variable1145

memory kernel which clearly shows how the states from the distant past maintain their1146

impacts over time till the current time. Accordingly, climate variables with Long-Range1147

Dependence can be decomposed into two parts: i) the memory part, which represents the1148

influences accumulated from the past, and ii) the residual part, which is related to the cur-1149

rent dynamical forcing conditions. With the memory part extracted, one can at least de-1150

termine on what basis the considered time series will continue to change. By combining1151

this with the estimated residual part, it is possible to make predictions. Therefore, they1152

proposed a new perspective for climate prediction for climate variables with Long-Range1153
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Dependence. Because the influence from the past can be extracted quantitatively, one only1154

need to focus on the prediction of the residual part.1155

Also statistical models with non-Gaussian features have recently been developed.1156

For instance, Önskog et al. [2018] show that the forecast skill of the North Atlantic Os-1157

cillation [Feldstein and Franzke, 2017] increases in a Short-Range Dependence statisti-1158

cal model when non-Gaussian noise is used. Graves et al. [2017b] developed a Bayesian1159

framework for Autoregressive Fractional Integrated Moving Average models with various1160

non-Gaussian noises and demonstrated its usefulness using the t- and the α-stable distribu-1161

tion.1162

5 Outlook and Open Questions1163

Here we have provided an overview of scaling methods and their relevance for un-1164

derstanding the climate system and its variability on time scales of days to millenia and1165

ice ages. Scaling methods have improved our understanding of the climate system. The1166

climate community mainly distinguishes between weather and climate, even though it is1167

not well defined were weather ends and climate starts. Weather systems evolve over a few1168

days, with the weather prediction limit at about 10-14 days [Zhang et al., 2019], while cli-1169

mate starts at time scales of about 30-40 years. This leaves a large gap in between. The1170

area between weather and climate, the weather-climate interface, consists of the active re-1171

search areas of sub-seasonal-to-seasonal (S2S) up to decadal predictions.1172

Through scaling analysis we have now a better understanding of the climate system1173

and that it consists of different scaling regimes distinguished by their scaling exponents.1174

While in the weather and climate regimes the variability strongly increases with time1175

scale, this is not the case for the regime in between where the increase is rather weak.1176

The exact ranges of these scaling regimes and their robustness and meaning is still a mat-1177

ter of debate [e.g. Nilsen et al., 2016; Huybers and Curry, 2006]. On longer time scales,1178

such as decadal time scales, the effect of global warming might already affect the variabil-1179

ity making the observed scaling likely not a product of internal climate processes but a1180

response to external forcing and non-stationarity. More research is needed to clarify this1181

point.1182

An important future research question is to understand these differences and to elu-1183

cidate how predictable sub-seasonal-to-seasonal and decadal processes are. Forecasts on1184
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these time scales are of societal importance and currently an important research topic. In1185

this context it is also an important research question how the slope of the scaling relation-1186

ship determines predictability? While the predictive skill in weather forecasts has signif-1187

icantly improved over the last few decades the skill of seasonal forecasts is rather limited1188

and for decadal forecasts only the climate change signal and perhaps the El Nino-Southern1189

Oscillation phenomenom are currently the predictable components.1190

Scaling of paleo-climate data has received a lot of attention [e.g. Schmitt et al., 1995;1191

Huybers and Curry, 2006; Laepple and Huybers, 2013; Nilsen et al., 2016; Fredriksen and1192

Rypdal, 2016; Lovejoy and Schertzer, 2013; Lovejoy and Varotsos, 2016; Rypdal and Ryp-1193

dal, 2016a; Bunde et al., 2014; Zhu et al., 2019] and has been used in evaluating how well1194

climate models reproduce observed long-term climate variability [Østvand et al., 2014;1195

Fraedrich and Blender, 2003; Blender et al., 2006]. While global mean temperature vari-1196

ability on inter-annual to millennial time-scales seem to be consistent between climate1197

models and climate reconstructions, the strong discrepancy of slow climate variability at1198

regional scales calls for continued research on the temporal and spatial structure of climate1199

variability but also on improving the interpretation and quality of paleo-climate records.1200

How well scaling can contribute to the reconstruction of past climate needs to be assessed.1201

Over longer timescales there are several unanswered questions in paleoclimate where1202

scaling approaches may help our understanding of the climate system. One of the great1203

puzzles of Quaternary science is the transition from the 41kyr world before 1 million1204

years ago to the current 100 kyr glacial-interglacial regime, without any external forcing1205

changes. Potential explanations for this change have involved ice sheet dynamics [Clark1206

and Pollard, 1998], the progressive cooling of Earth’s temperature throughout the Quater-1207

nary [Snyder, 2016], the amount of dust in the atmosphere [Chalk et al., 2017], or conti-1208

nental distribution [Kender et al., 2018]. However, all studies acknowledge that the transi-1209

tion period between the 41kyr cycle ∼1.2 Myr ago and the 100 kyr cycle since ∼600 kyr1210

ago is poorly defined and not well characterized. The recovery of the 800 kyr long EPICA1211

ice core allowed a first look into the younger part of that transition section [Jouzel et al.,1212

2007]. The soon to be started oldest ice project aims to recover an Antarctic ice core that1213

will reach back to the 41 kyr world, 1.2 million years ago and provide a high-resolution1214

record throughout the Mid-Pleistocene Transition (MPT), which denotes the fundamen-1215

tal change in the behavior of glacial cycles around 1 million years ago. Before the MPT1216

the glacial cycles were dominated by a 41,000 year period, after the MPT they followed1217
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less regular cycles with an approximate period of 100,000 years. The statistical techniques1218

described in this review could provide a robust description of the data variability upon1219

which physical and dynamic models can be chosen to explain the observed changes.1220

Another interesting paleo-climatic question has been why human civilization has1221

evolved during the Holocene and not during any of the previous interglacials [Robin-1222

son et al., 2006]. Has the Holocene climate been exceptionally stable in time or in space1223

[Kopp et al., 2017]? While Greenlandic ice-core records provide evidence for a very sta-1224

ble Holocene [Ditlevsen et al., 1996] the dependency of climate variability on the climate1225

state seems to be much smaller in the rest of the world [Rehfeld et al., 2018]. A related1226

question is whether conditions in the fertile crescent during previous interglacials were1227

markedly different from the Holocene. Scaling analyses could help answer these questions1228

by providing a description of both temporal and spatial variability at different times during1229

the Pleistocene.1230

A still open question is the mechanism of Long-Range Dependence in the climate1231

system. While the evidence is strong for Long-Range Dependence, it leads to counterintu-1232

itive implications, i.e. that the distant past still influences the present. There are also stud-1233

ies who show that inhomogeneities on station time series increase the strength of Long-1234

Range Dependence [Mills, 2007; Rust et al., 2008]. These inhomogeneities take on the1235

form of jumps or shifts due to changes in the station instruments or location. The fact1236

that jumps lead to increased Long-Range Dependence strength would be consistent with1237

the fact that volcanic eruptions improve the reproduction of Long-Range Dependence in1238

climate models [Vyushin et al., 2004]. Maraun et al. [2004] point out the difficulty in dis-1239

tinguishing between Long-Range Dependence and the superposition of Short-Range De-1240

pendence processes in practice. However, that Long-Range Dependence could be due to1241

the superposition of Short-Range Dependence representing the climate system on different1242

time scales would be physically meaningful. More work on the physical origin is needed;1243

especially it has to be examined whether the climate system indeed has long memory,1244

even on long time scales, or whether the observed Long-Range Dependence is the result1245

of the superposition of short memory effects or non-linearities. Whichever of the two is1246

the case would not only affect climate sensitivity but also the climate evolution on long1247

time scales.1248
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As we have shown here, scaling is an ubiquitous feature of the climate system for a1249

multitude of time scales. Hence, it also should be included in our climate models. The1250

parameterization problem can be seen as a model reduction problem and as discussed1251

above the Mori-Zwanzig formulism predicts the presence of memory terms [Gottwald1252

et al., 2017; Franzke et al., 2015a], however, most current weather and climate prediction1253

models do not include memory terms [Berner et al., 2017]. Recent research showed the1254

benefit of including such memory terms [Sakradzija et al., 2015; Frederiksen et al., 2017;1255

Vissio and Lucarini, 2018], although some difficulties in implementing the approach in1256

simple climate models were reported [Demaeyer and Vannitsem, 2018]. Hence, whether1257

memory terms in parameterization schemes are useful needs more research.1258

As already discussed, the presence of Long-Range Dependence hampers the detec-1259

tion of externally forced trends especially if the form of the trend is not a priori speci-1260

fied and, thus, non-parametric. Furthermore, there is also evidence of scaling breaks in1261

temperature time series for the Holocene period [Lovejoy and Schertzer, 2012a] and the1262

Central England Temperature time series [Graves et al., 2015]. However, how robust these1263

breaks are is still a matter of debate [Nilsen et al., 2016] and improved statistical meth-1264

ods are needed. The existence of scaling breaks would also create new questions about the1265

origin of Long-Range Dependence in climate. If Long-Range Dependence is an intrinsic1266

property of the equations of motion then one would not expect scaling breaks; at least not1267

without changes in external forcing or experiencing of a bifurcation (which are unlikely1268

for the Holocene and Central England Temperature periods).1269

This review provided evidence for the relevance of scaling in the climate system1270

and how it can affect the detection of trends, the estimation of climate sensitivity and the1271

skill of long-range predictions. We also discussed various physical mechanisms which can1272

cause scaling in the climate system.1273
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Glossary2019

Brownian Motion Brownian motion is a continuous-time stochastic process, also called2020

Wiener process. The increments of Brownian motion are Gaussian distributed inde-2021

pendent random variables.2022

Fractal A fractal is a self-similar object, i.e. when shrinking or enlarging a fractal pat-2023

tern, its appearance remains statistically unchanged. A good introduction is given2024

by Feder [1988].2025

Heavy-tailed Distribution Heavy-tailed distributions are distributions whose tail decays2026

slower than exponential. In particular, its tail is heavier than for a corresponding2027

Gaussian distribution. A good introduction is given by Sornette [2006].2028

Leptokurtic A leptokurtic distribution has a kurtosis which is larger than 3. The Gaus-2029

sian distribution has a kurtosis of 3. Hence, a leptokurtic distribution has fatter2030

tails than the corresponding Gaussian distribution.2031

Long Memory Synonym for Long-Range Dependence2032

Long-Term Persistence (LTP) Synonym for Long-Range Dependence2033

Long-Range Dependence Long-Range Dependence is the property of the autocorrela-2034

tion function of a time series to decay according to a power-law. Consequently, the2035

power spectrum of such a time series has increasing power for lower frequencies2036

and a singularity at zero frequency.2037

Mono-fractal Mono-fractals are fractals described by a single scaling exponent2038

Multi-fractal Multi-fractals are fractals described by multiple scaling relationships and2039

whose exponents are functions of scale2040

Power Law A power law describes a functional relationship between two variables where2041

a change in one variable results in a proportional relative change in the other vari-2042

able. Mathematically it is of the following form: f (x) = ax−k where k is the power2043

law exponent.2044

RandomWalk Also known as Drunkards walk, has scaling power spectrum with slope2045

-2, variance increases as
√

t. A good introduction is given by Sornette [2006].2046

Red Noise Red noise means that the spectral power increases on longer time scales. How-2047

ever, in climate science red noise typically denotes the power spectrum of a first2048

order autoregressive process which has first increasing power for increasing period2049

but then becomes white noise; also called Lorentzian spectrum2050
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Scaling In mathematical form we can express scaling as follows:2051

F(at) d= aγF(t), (14)

where F is the fluctuation function, γ the scaling exponent, a is a rescaling factor2052

of time t and d
= denotes equality in distribution. a can be seen as the factor with2053

which one is zooming in or out and the scaling property now means that the statis-2054

tical properties of the data stay the same [Mandelbrot, 1982; Feder, 1988; Franzke2055

et al., 2012] and this is the same property as fractals have.2056

Short-Range Dependence Short-Range Dependence is the property of the autocorrelation2057

function of a time series to decay exponentially. Consequently, the power spectrum2058

of such a time series has almost constant power at lower frequencies.2059

Self-Similarity A self-similar object is exactly or approximately similar to a part of itself.2060

When zooming in or out one sees similar structures. Self-similarity is a property of2061

Fractals.2062

Unit Root A Unit Root is a characteristic of stochastic processes. In particular, it denotes2063

that a stochastic process is non-stationary without necessarily having a trend. A2064

good introduction is given by Box et al. [2015].2065

Volatility clustering Volatility clustering refers to the observation that in many time se-2066

ries large changes are followed by large changes of either sign, while small changes2067

are followed by small changes of either sign.2068
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Figure 1. a) Daily precipitation at Xichang, China, b) Probability Density Function of precipitation (Red

dashed line: corresponding power-law fit with exponent 4.97; black dashed line: corresponding exponential

Probability Density Function with parameter 8.21); c) Annual mean Central England Temperature (CET).

Red line: Non-Linear trend, Magenta line: 11-year running mean and blue line: Decadal scale fluctuations

as derived from an Empirical Mode Decomposition (EMD), and d) Detrended Fluctuation Analysis (DFA)

plot with d=0.25: Circles: fluctuation function and red line: straight line with slope 0.25. e) Autocorrelation

function of CET (Black line) and the red dashed line indicates a power-law decay.
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Figure 2. Schematic diagram of important spatial and temporal scales in the climate system. The solid

lines denotes an estimate of the relative variance of climate variability. The dashed lines denotes the vari-

ance contribution to the total variance from climatic processes with characteristic spatial scales smaller than

those indicated on the x-axis. The periodic climate components are denoted by spikes of arbitrary width. See

Mitchell [1976] for more details. Figure source Mitchell [1976].
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Figure 3. Time series with scaling and non-scaling behavior. a) A time series with scaling behavior (Long-

term persistence parameter d=0.495) and b) zooms in the time period between 400 and 600 time units of

a). After zooming in, the time series in b) shows a similar pattern as the time series in a). c) A time series

without scaling behavior (First order autoregressive process xt+1 = 0.5xt + ζt ) and d) zooms in the time

period between 400 and 600 time units of c). e) Fluctuation Functions for a Short-Term Dependent process

(first order autoregressive process) (Black line) and scaling model in form of a Long-Term Dependent process

(Red line) with regression lines with slopes of 0.5, which corresponds to d=0.0 (blue line), and slope of 0.75,

which corresponds to d=0.25 (green line). f) Power spectrum of the Short-Term Dependent process (black),

and the Long-Term Dependent process (red) plotted in a) and c). The blue line is the theoretical slope line of

a Long-Term Dependent process with slope β = -0.5 (d=0.25), and the red green line is the theoretical slope

line of the Short-Term Dependent process with slope β = 0.0 (d=0.0). The relationship between slopes of the

power spectrum β and the DFA is as follows: β = 2(d + 0.5) − 1.
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Figure 4. Time series with scaling and non-scaling behavior. a) Probability distribution function of an

α-stable distribution with linear axis scaling and b) with logarithmic axis scaling. The case α = 2 corresponds

to the exponential Gaussian distribution while α values less than 2 correspond to power-laws.
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Figure 5. Estimates of relative variance of climate over all periods of variation in the climate system.

Source: Mitchell [1976]
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Figure 6. Example time series for fractional Brownian motion (fBm) and the corresponding fractional

Gaussian noise (fGn; lower panel) for a) H=0.7 (fGn is persistent), b) H=0.5 (fGn is uncorrelated white noise)

and c) H=0.3 (fGn is anti-persistent). The fractional Brownian motion has self-similarity exponent H, and if H

is greater than 0.5 is long range dependent, as in the H=0.7 case above.

2098

2099

2100

2101

–74–

©2020 American Geophysical Union. All rights reserved. 



Confidential manuscript submitted to Reviews of Geophysics

a)
Time Scale

<
 ∆

 T
>

1e+00 1e+02 1e+04 1e+06

1e
−

05
5e

−
05

5e
−

04
5e

−
03

1e
−

10
1e

−
08

1e
−

06
1e

−
04

<
 ∆

 T
2  >

q=1, C=0.010
q=2, C=0.010

b)
Time Scale

<
 ∆

 T
>

1e+00 1e+02 1e+04 1e+06

1e
−

05
5e

−
05

5e
−

04
5e

−
03

1e
−

10
1e

−
08

1e
−

06
1e

−
04

<
 ∆

 T
2  >

q=1, C=0.015
q=2, C=0.015

c)
Time Scale

<
 ∆

 T
>

1e+00 1e+02 1e+04 1e+06

1e
−

05
5e

−
05

5e
−

04
5e

−
03

1e
−

10
1e

−
08

1e
−

06
1e

−
04

<
 ∆

 T
2  >

q=1, C=0.015
q=2, C=0.015

Figure 7. (a) First and second moments, q = 1,2, of the first mode of the streamfunction field as a function

of time scale for a wind stress drag coefficient C = 0.010 kg m−2 s−1 and ocean layer depths h = 164.8 m; (b)

as in (a) for C = 0.015 kg m−2 s−1 and h = 164.8 m; (c) as in (b) for C = 0.015 kg m−2 s−1 and h = 41.2 m.
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Figure 8. Time series (lower left) and spike plot (upper left) of a 2048 point multi-fractal time series simu-

lation. Its corresponding power spectrum is display on the right (black line). In the spike plots the horizontal

dashed lines correspond to the 10−5 and the 10−10 probability levels. The blue curve in the power spectrum

plot is the averaged spectrum over 5000 multi-fractal simulations. Above the blue curve, is an orange 2 stan-

dard deviation curve, and (red), 3, 4 standard deviation curves (probabilities 0.1%, 0.003% respectively). The

arrows indicate spikes with Gaussian probability p<0.05. See Lovejoy [2018] for more details of the used

multi-fractal model. Figure is from Lovejoy [2018]
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Figure 9. Detrended Fluctuation Analysis fluctuation functions F(τ) for daily temperature data at the indi-

cated stations. The lines show the exponents (slopes) H = 0.65. Dashed vertical lines at 1-year and 15-years

indicate the time range denoted as decadal here.
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Figure 10. Fluctuation exponent H in observed sea surface and near surface air temperatures from Had-

CRUT2 data (Climatic Research Unit, University of East Anglia, Norwich) estimated by Detrended Fluctua-

tion Analysis with quadratic trend for the decadal scale (see the slopes in 9).
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Figure 11. Detrended Fluctuation Analysis fluctuation functions for the Greenland ice cores GRIP, GISP2,

and simulated sea surface temperature (model CSIRO) close to 30W, 65N. The slopes indicate the exponents

H = 0.5 (no memory) and 0.7,0.84.
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Figure 12. (a) Red: the Moberg Northern hemisphere (NH) temperature reconstruction [Moberg et al.,

2005]. Blue: NH surface temperature in a NorESM simulation with historical forcing. (b) (b) Haar fluctua-

tion functions for various signals. Red bullets: the NH reconstruction shown in panel (a). Blue bullets: the

NorESM simulation shown in panel (a). Green bullets: The same NorESM simulation with the spikes due to

volcanic eruptions removed, as shown by the green curve in panel (d). The full curves are Haar fluctuation

functions for 20 realizations of an fGn with H=0.9. (c) A close-up on panel (a) to illustrate that the fast re-

sponses du to volcanic eruptions are almost absent in the reconstruction. (d) The green curve illustrates how

we have chopped off the volcanic responses from the NorESM signal.

2121

2122

2123

2124

2125

2126

2127

2128

–80–

©2020 American Geophysical Union. All rights reserved. 



Confidential manuscript submitted to Reviews of Geophysics

Table 1. Table of scaling exponents. d is used in the statistics community in Autoregressive Fractional Inte-

grated Moving Average models. These models are asymptotically self-similar. H is used in the physical and

climatological communities and can be a measure of Long-Range Dependence or self-similarity in systems

with Gaussian fluctuations. Here, we use H only as a measure of Long-Range Dependence.

2129

2130

2131

2132

Exponent Name Relationship to other exponents

γ general power-law exponent

γSS self-similarity exponent

H Hurst exponent H := β+1
2 where H measures Long-

Range Dependence

α stability exponent

β power spectrum exponent from a station-

ary process

β := 2H − 1 where H measures

Long-Range Dependence

d Long-Range Dependence parameter d := H − 1
2 for Gaussian processes

τ(q) Multi-fractal exponent/Renyi scaling

exponent
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A: Fractionally Integrated Processes2133

Integration, or the inverse procedure differentiation, is a standard procedure in time2134

series analysis to deal with non-stationary time series [e.g. Box et al., 2015]. For instance,2135

a linear trend can be removed from a time series by examining the time series increments2136

instead; higher order trends can consequently be removed by repeating differentiation mul-2137

tiple times and examining the resulting increment time series. Hence, repeated application2138

of differentiation can make every time series stationary. The resulting increment time se-2139

ries can be modeled with an Autoregressive Moving Averaging time series model. In or-2140

der to represent the original time series the modeled time series would be subsequently2141

cumulatively summed up as many times as differences have been taken before. This re-2142

sults in an Autoregressive Integrated Moving Average model. A fractional Brownian mo-2143

tion (see appendix B: ) is an example of a non-stationary time series; its variance goes to2144

infinity with increasing time. Its increments, fractional Gaussian noise (see appendix B: ),2145

on the other hand, are stationary.2146

In standard time series analysis only integer order integration or differentiation is2147

used. However, the integration and differentiation processes can be generalized to also use2148

non-integer integration orders, so-called fractional integration and differentiation [Samorod-2149

nitsky, 2016]. This allows to mathematically model Long-Range Dependent time series.2150

The fractional integration parameter d is introduced as follows: let (Xn) be a frac-2151

tionally differenced process with2152

(1 − B)dXn = Zn, d ∈ IR,

where (Zn) is white noise with zero-mean and unit variance, and2153

(1 − B)d =
∞∑
j=0

Γ( j − d)
Γ( j + 1)Γ(−d)

B j,

where Γ(z) =
∫ ∞

0 xz−1e−xdx,R(z) > 0, is the Gamma function. Hence,2154

Xn =

∞∑
j=0

Γ( j + d)
Γ( j + 1)Γ(d)

Zn−j .

Observe that2155

Γ( j + d)
Γ( j + 1)Γ(d)

∼ Γ(d)−1 jd−1, j →∞

and for d ∈ (0,0.5)2156

γ( f ) ∼ Kd f 2d−1, f →∞, (A.1)
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where Kd := π−1Γ(1 − 2d) sin(πd). Note that the auto-covariance Eq. (A.1) has the same2157

(asymptotic) power-law decay as the auto-covariance Eq. (B.2).2158

B: Fractional Brownian Motion2159

Brownian motion is an important stochastic process [e.g. Embrechts and Maejima,2160

2007]. Brownian motion (also called the Wiener process) is the limit of the symmetric2161

Random Walk. While the Random Walk is a discrete-time process, Brownian motion has2162

continuous sampling paths and is a continuous-time process, while at the same time it is2163

nowhere differentiable.2164

Brownian motion has independent increments. In contrast, fractional Brownian mo-2165

tion has dependent increments. These increments Xn are called fractional Gaussian noise2166

and the strength of the dependence is measured by the parameter H:2167

Xn = BH (n + 1) − BH (n), n = 1,2, . . . , (B.1)

where H is often called the Hurst exponent and can take values in (0,1]. Fractional Gaus-2168

sian noise is a discrete-time increment process of fractional Brownian motion. For frac-2169

tional Gaussian noise even those values that are far apart in time are still serially corre-2170

lated. Hence, even the distant past affects the current values. If H = 1
2 then the process2171

is standard Brownian motion, if H > 1
2 then the increments are positively correlated,2172

while for H < 1
2 they are negatively correlated and anti-persistent, which is the opposite2173

of Long-Range dependence because the process will wildly fluctuate.2174

Note that the stationarity of the increments of fractional Brownian motion implies2175

that this is a stationary zero-mean Gaussian process whose autocorrelation function, acf(h):=2176

E(XnXn+h), satisfies [e.g. Beran et al., 2013]2177

acf(h) ∼ H(2H − 1)h−2(1−H), h→∞, (B.2)

provided that H ∈ [0,1]. If H ∈ [0.5,1] then the correlations are not summable, thus, they2178

go to infinity, and we say that Xn exhibits Long-Range Dependence and H measures its2179

intensity. If, on the other hand, H ∈ [0,0.5] we say that Xn is anti-persistent.2180

Fractional Brownian motion is self–similar. By considering probability distributions2181

it can be shown that2182

BH (at)
d

| a|H BH (t) (B.3)
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The Hurst exponent describes the raggedness of the time series, with a higher H2183

leading to smoother time series. Examples for persistent, white noise (serial uncorrelated2184

time series) and anti-persistent time-series are displayed in Fig. 6. Fractional Brownian2185

motion was introduced by Kolmogorov [1940]. More rigorous treatment of fractional2186

Brownian motion can be found in the books by Embrechts and Maejima [2007] and Be-2187

ran et al. [2013].2188

C: Details of Long-Range Dependence parameter estimators2189

C.1 Time-domain methods2190

C.1.1 R/S estimator2191

The R/S method was the first Long-Range Dependence estimator. For a time series2192

X1, . . . ,XN , the R/S statistic [Hurst, 1951; Beran, 1994] is given by2193

Rn

Sn
=

max0≤i≤n
(
Yi − i

nYn
)
−min0≤i≤n

(
Yi − i

nYn
)√

1
n

∑n
i=1(Xi −

1
nYn)2

=:
I − I I√

1
n

∑n
i=1(Xi −

1
nYn)2

,

where Yi =
∑i

j=1 Xj . I measures how far the partial sums, Yi , exceed the straight line they

would follow if all observations were equal (to the sample mean). I − I I is the difference

between the highest and lowest positions of the partial sums with respect to the straight

line of uniform growth. For either fractional Gaussian noise or the Autoregressive Frac-

tionally Integrated Moving Average model

E(Rn/Sn) ∼ KH · nH , n→∞,

here KH is a positive, finite constant which depends on H. H > 0.5 for data with Long-2194

Range Dependence. Following Taqqu et al. [1995], the methodology for estimating H2195

comprises the following steps: subdivide the time series X1, . . . ,XN , into K blocks of size2196

r := N/K . For each lag n, compute Rri ,n/Sri ,n, starting at points ri = iN/K + 1, for2197

i = 1,2, . . . , such that ri ≤ N − n. Plot (log Rri ,n/Sri ,n) versus log(n) by fitting a straight2198

line. The slope of the line gives H. However, this R/S approach does not result in reliable2199

estimates and its use is no longer recommended [Rea et al., 2009; Franzke et al., 2012].2200

C.1.2 Variance-type estimator2201

As a more robust alternative, Taqqu et al. [1995] proposed the aggregated variance2202

method to estimate H. Variance-type estimators are a popular method to estimate the2203
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Long-Range Dependence parameter. The variance-type estimator of Taqqu et al. [1995]2204

takes the form2205

Ĥ = −
S2
m

log(m)
, (C.1)

where2206

S2
m = [m/N]

[N/m]∑
k=1

©­«X (m)
k
− [m/N]

[N/m]∑
j=1

X (m)j

ª®¬
2

with [·] denoting the integer part, and X (m)
k

is the aggregated series of order m2207

X (m)
k
=

1
m

m∑
i=1

Xi+(k−1)m, k = 1,2, . . . .

A major drawback of this variance-type estimator is that its bias is of order no less than2208

1/log(N) so that only when dealing with very long time series such an estimator can pro-2209

vide reliable point estimates for H. Thus, Giraitis et al. [1999] introduced the following2210

refined estimator of (C.1)2211

Ĥ = −

∑m1
j=m0

aj log(S2
j )∑m1

j=m0
a2
j

, (C.2)

where2212

aj := log( j) −
1

m1 − m0

m1∑
i=m0

log(i),

for m0 < m1, such that m0 → ∞ as N → ∞ and N/m1 → ∞. Giraitis et al. [1999]2213

proved that the estimator in (C.2) is less biased than (C.1). Specifically, this method plots2214

the logarithm of the variance of an aggregated (averaged) process against the logarithm2215

of the aggregation level. A least-squares line is then fitted to the data, the slope of which2216

provides an estimate of H.2217

C.1.3 Detrended Fluctuation Analysis estimator2218

The Detrended Fluctuation Analysis (DFA) is a variant of the above method [Peng2219

et al., 1994; Koscielny-Bunde et al., 1998; Kantelhardt et al., 2001; Lennartz and Bunde,2220

2009; Rybski and Bunde, 2009; Lennartz and Bunde, 2011; Bunde et al., 2014; Ludescher2221

et al., 2015] and estimates the variability of a time series, Xt , on different time scales.2222

First, a profile is computed by Y (i) =
∑i

t=1 Xt . The profile is then split into Ns non-2223

overlapping segments of equal length s and then the local trend is subtracted for each seg-2224

ment v by a polynomial least-squares fit. Linear (DFA1), quadratic (DFA2) or higher-order2225
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polynomials can be used for detrending. In the nth-order Detrended Fluctuation Analysis,2226

trends of order n in the profile, and of order n − 1 in the original time series, are elimi-2227

nated. Next, the variance for each of the Ns segments is calculated by averaging over all2228

data points i in the vth segment:2229

F2
s (v) :=< Y2

s (i) >=
1
s

s∑
i=1

Y2
s [(v − 1)s + i]. (C.3)

By computing the average over all segments and taking the square root we obtain the fluc-2230

tuation function:2231

F(s) =

√√√
1

Ns

Ns∑
v=1

F2
s (v). (C.4)

For time series with Long-Range Dependence, F(s) will increase with s as a power-law,2232

F(s) ∼ sH (C.5)

with the exponent H>0.5. Unlike most algorithms, the DFA algorithm developed by Løvslet-2233

ten [2017] is capable of dealing with missing data. The R package nonlinearTseries pro-2234

vides code for Detrended Fluctuation Analysis. The Detrended Fluctuation Analysis method2235

is biased for H < 0.5 [Franzke et al., 2012].2236

C.1.4 Wavelet-based estimators2237

The Long-Range Dependence parameter can also be estimated using wavelets. A2238

Wavelet (WL) ψ is a localized wave function with zero average and is normalized to one.2239

A family of Wavelets is generated by scaling the wavelet ψ by a factor s and translating2240

it by u (ψu,s(t)) = 1√
s
ψ( t−us ). The Wavelet transform allows one to construct a time-2241

frequency representation of a signal, the Wavelet spectrum. One can then infer the self-2242

similarity parameter from the Wavelet spectrum via ordinary least squares at large Wavelet2243

scales [Stoev and Taqqu, 2005; Abry and Veitch, 1998]. A widely used wavelet for scaling2244

analysis is the Haar wavelet [Lovejoy and Schertzer, 2012b,a; Lovejoy, 2014]. The Haar2245

wavelet mother function is given by:2246

ψ(t) =



1 if 0 ≤ t < 1
2

−1 if 1
2 ≤ t < 1

0 if otherwise

(C.6)

In the Haar wavelet technique, one usually considers the original time series X1, . . . ,XN2247

and divides the time series into Ns segments of length s. For each segment v, one first2248
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determines the mean value x̄v of the data, then considers the quantity G2
v(s) = (x̄v)

2 for2249

a zeroth order wavelet (WT0), G2
v(s) = (x̄v − x̄v−1)

2 for first order wavelet (WT1), and2250

G2
v(s) = (x̄v − 2x̄v−1 + x̄v−2)

2 for second order wavelet (WT2). By averaging G2
v(s) over2251

all segments and taking the square root, the wavelet fluctuation function can be obtained2252

as [Bogachev et al., 2017],2253

G2(s) =

√√√
1

Ns

Ns∑
v=1

G2
v(s) (C.7)

For time series with Long-Range Dependence, the parameter can be estimated according2254

to the relationship2255

G2(s) = G2(1)sH−1 (C.8)

Similar to the orders of detrended fluctuation analysis, the different orders of wavelet2256

methods also indicates trend elimination. For example, in WT2, effects of the linear ex-2257

ternal trends are eliminated.2258

C.2 Frequency-domain methods2259

Spectral methods are also widely used for estimating the Long-Range Dependence2260

parameter.2261

C.2.1 Geweke-Porter-Hudak estimator2262

A widely used method is the Geweke-Porter-Hudak (GPH) estimator [Geweke and2263

Porter-Hudak, 1983]. Spectral methods find d by estimating the spectral slope. The peri-2264

odogram, an estimate of the spectral density of a finite-length time series, is given by2265

f (λj) =
1
N
|

N∑
t=1

xte−i2πtλ j |2, j = 1, . . . , [N/2], (C.9)

where λj = j/N is the frequency and the square brackets denote rounding towards zero.2266

A series with Long-Range Dependence has a spectral density proportional to |λ |−2d close2267

to the origin. Since f (λ) is an estimator of the spectral density, d is estimated by a re-2268

gression of the logarithm of the periodogram versus the logarithm of the frequency λ.2269

Thus having calculated the spectral density estimate f (λ), semi-parametric estimators fit2270

a power law of the form f (λ, b, d) = b|λ |−d , where b is the scaling factor. The R package2271

fracdiff provides code for GPH.2272
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C.2.2 Whittle estimator2273

The Whittle estimator is based on the periodogram. Specifically, it involves the2274

function2275

G(θ) :=
∫ π

−π

I(λ)
f (λ, θ)

dλ,

where I(·) represents the periodogram, f (·, ·) is the spectral density at frequency λ, and2276

θ denotes the vector of unknown parameters. The Whittle estimator corresponds to the2277

value of θ which minimizes the function G(·). In the case of fractional Gaussian noise or2278

fractional Autoregressive Integrated Moving Average model, θ = {H}. The R package2279

longmemo provides code for the Whittle estimator.2280

D: Hurst Exponent and Long-Range Dependence2281

Examining water levels of the Nile river, Harold E. Hurst discovered that if the vari-2282

ance is computed for windows of different sizes and then plotted against the window size2283

he obtained a power-law behavior [Hurst, 1951, 1957]. This has been named the Hurst2284

phenomenon and the exponent of this power-law is the Hurst exponent.2285

The Hurst exponent, as we defined it here, is related to Long-Range Dependence2286

[Talkner and Weber, 2000]. The tail exponent, which measures the power-law decay of2287

Probability Density Functions, does not affect Long-Range Dependence but does affect the2288

self-similarity exponent [Franzke et al., 2012].2289

The Long-Range Dependence parameter, d, can be related to H in mono-fractal2290

Gaussian systems as H = d + 1
2 . However, it is typically used with Autoregressive Frac-2291

tionally Integrated Moving Average models that are only asymptotically self-similar.2292

E: Estimation of multi-fractality2293

For some climatic time series, it may be not sufficient to characterize the scaling be-2294

havior using only one constant exponent. This is the so-called multi-fractality. To quantify2295

this property, a traditional method is the partition function,2296

Zq(s) =
Ns∑
ν=1
|Y (νs) − Y ((ν − 1)s)|q ∼ sτ(q), (E.1)

where τ(q) is the Renyi scaling exponent and Y (i) =
∑i

t=1 xt is the profile of the time2297

series xt as for Detrended Fluctuation Analysis. When τ(q) is linear in q, the time series2298
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is considered mono-fractal, otherwise it is multi-fractal. In recent years, the multi-fractal2299

DFA (MF-DFA) has gained increasing popularity [Kantelhardt et al., 2002].2300

MF-DFA is a generalized version of Detrended Fluctuation Analysis (DFA), as shown2301

below,2302

Fq(s) = [
1

Ns

Ns∑
ν=1
[F2
ν (s)]

q/2]1/q . (E.2)

For q = 2, the mono-fractal Detrended Fluctuation Analysis (DFA) is retrieved. Analogous2303

to Eq. (25), for each q, the generalized fluctuation exponent h(q) can be defined as2304

Fq(s) ∼ sh(q) (E.3)

Since it is easy to verify that Zq(s) is related to Fq(s) by Fq(s) = [(1/Ns)Zq(s)]1/q , the2305

Renyi scaling exponent τ(q) can be connected with h(q) as [Bogachev et al., 2017],2306

h(q) = [τ(q) + 1]/q. (E.4)

Another way to characterize the multi-fractality is the singularity strength k (or Holder2307

exponent) and the singularity spectrum f (k) [Koscielny-Bunde et al., 2006]. Based on a2308

Legendre transform, the singularity spectrum f (k) can be derived as2309

f (k) = qk − τ(q) (E.5)

where k is given by2310

k =
dτ(q)

dq
. (E.6)

Using Eq. (30), k and f (k) can be related to h(q) as,2311

k = h(q) + q
dh(q)

dq
, (E.7)

and2312

f (k) = q[k − h(q)] + 1. (E.8)

Accordingly, the strength of the multi-fractality can be estimated from MF-DFA, by calcu-2313

lating the width of the singularity spectrum (the differences between the maximum and the2314

minimum k.2315

While MF-DFA is equivalent to the wavelet transform modulus maxima (WTMM)2316

method, it is much easier to implement on a computer [Muzy et al., 1991; Arneodo et al.,2317

2002].2318

–89–

©2020 American Geophysical Union. All rights reserved. 



Confidential manuscript submitted to Reviews of Geophysics

F: Power Spectrum P( f ) and 1/ f noise2319

Power spectra are important to understand temporal variability [Kay and Marple,2320

1981]. Power spectra are especially useful for detecting (quasi)-periodic signals like the2321

diurnal and annual cycles which constitute an important aspect of climate variability. How-2322

ever, power spectra can also reveal the background variability of the climate system [Huy-2323

bers and Curry, 2006].2324

A power spectrum displays the fraction of squared amplitudes at different frequency2325

ranges after Fourier transformation of a time series [von Storch and Zwiers, 2003; Wilks,2326

2011]. The most common ways of computing a power spectrum are via the Fourier trans-2327

form or the maximum entropy method [von Storch and Zwiers, 2003].2328

1/ f noise has a power-law form of f −1 in which the squared amplitudes increase2329

with decreasing frequencies; hence, longer time scales exhibit a stronger variability. 1/ f2330

is a generic term which also applies to 1/ f β where the power-law has a different exponent2331

β.2332
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