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Abstract

Social media platforms play a crucial role in how people communicate, particularly during crisis situ-
ations such as natural disasters. People share and disseminate information on social media platforms
that relates to updates, alerts, rescue and relief requests among other crisis relevant information. Hur-
ricaneHarvey andHurricane Sandy sawover tens ofmillions of posts getting generated, onTwitter, in
a short span of time. The ambit of such posts spreads across a wide range such as personal and official
communications, and citizen sensing, to mention a few. This makes social media platforms a source
of vital information to different stakeholders in crisis situations such as impacted communities, relief
agencies, and civic authorities. However, the overwhelming volume of data generated during such
times, makes it impossible to manually identify information relevant to crisis. Additionally, a large
portion of posts in voluminous streams is not relevant or bears minimal relevance to crisis situations.

This has steered much research towards exploring methods that can automatically identify crisis
relevant information from voluminous streams of data during such scenarios. However, the problem
of identifying crisis relevant information from social media platforms, such as Twitter, is not trivial
given the nature of unstructured text such as short text length and syntactic variations among other
challenges. A key objective, while creating automatic crisis relevancy classification systems, is to make
them adaptable to a wide range of crisis types and languages. Many related approaches rely on statisti-
cal features which are quantifiable properties and linguistic properties of the text. A general approach
is to train the classification model on labelled data acquired from crisis events and evaluate on other
crisis events. A key aspect missing from explored literature is the validity of crisis relevancy classifica-
tionmodels when applied to data from unseen types of crisis events and languages. For instance, how
would the accuracy of a crisis relevancy classification model, trained on earthquake type of events,
change when applied to flood type of events. Or, how would a model perform when trained on crisis
data in English but applied to data in Italian.

This thesis investigates these problems from a semantics perspective, where the challenges posed by
diverse types of crisis and language variations are seen as the problems that can be tackled by enriching
the data semantically. The use of knowledge bases such as DBpedia, BabelNet, and Wikipedia, for
semantic enrichment of data in text classification problems has often been studied. Semantic enrich-
ment of data through entity linking and expansion of context via knowledge bases can take advantage
of connections between different concepts and thus enhance contextual coherency across crisis types
and languages. Several previous works have focused on similar problems and proposed approaches us-
ing statistical features and/or non-semantic features. The use of semantics extracted through knowl-
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edge graphs has remained unexplored in building crisis relevancy classifiers that are adaptive to varying
crisis types and multilingual data. Experiments conducted in this thesis consider data from Twitter,
a micro-blogging social media platform, and analyse multiple aspects of crisis data classification. The
results obtained through various analyses in this thesis demonstrate the value of semantic enrichment
of text through knowledge graphs in improving the adaptability of crisis relevancy classifiers across
crisis types and languages, in comparison to statistical features as often used in much of the related
work.
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1
Introduction

Information is best valued when conveyed and acted upon in a timely fashion. De-

termining which information is valuable is pivotal during crisis situations. Crisis situations, generally,

refer to natural or human-induced disaster phenomena impacting safety and well being of people.

Nowadays, social media platforms play a crucial role in information dissemination during crisis situ-

ations. People tend to share posts across social media platforms, related to updates, alerts, rescue in-

10



formation, and relief requests among other content. During Hurricane Harvey, more than 7 million

tweetswere posted in just over amonth*. DuringHurricane Sandy,more than 20million tweeetswere

shared on Twitter† with the hashtags #sandy and #hurricane. The scope of social media platforms, in

general, has been shown to spread across a wide range of areas, such as personal communications, cit-

izen sensing, official communication, to name a few (Reuter et al., 2011; Reuter et al., 2012). In the

course of crisis situations, social media platforms have been found to be intensely used by people to

update their personal connections, such as with family or friends, to confirm their well-being or to

signal that they require assistance (Olteanu et al., 2015; Vieweg, 2012). This has acted as a motiva-

tion for systems such as Facebook’s Crisis Response & Safety Check system‡ which is aimed towards

channelising crisis response (Castillo, 2016).

Such a usage of social media platforms has turned them into a rich source of vital information in

the course of crisis events. A study conducted by Rice University§ found out that the damage maps

produced by the Federal EmergencyManagement Agency (FEMA) duringHurricaneHarvey, missed

nearly 46% of the actual damage which was in fact reported on Twitter by the impacted individu-

als. However, given the overwhelming volume of data that gets generated on social media platforms

makes it challenging to sieve through such a streammanually to identify relevant information. A vast

amount of datamakes these streams chaotic. Many of themessages found in such streams ofmessages

bear minimal or no relevance to particular crisis situations, even the ones that contain crisis-specific

hashtags. Many organisations and people that often deal with emergency management have high-

lighted that most of the messages they come across on social media during emergency situations do

not appear to be related and useful (Ludwig et al., 2015). However, despite these challenges, the sig-

*Hurricane Harvey Twitter Dataset, digital.library.unt.edu/ark:/67531/metadc993940/
†Mashable: Sandy Sparks 20 Million Tweets, https://mashable.com/2012/11/02/

hurricane-sandy-twitter/
‡https://www.facebook.com/about/crisisresponse/
§https://kinder.rice.edu/sites/g/files/bxs1676/f/documents/FinalTwitter%20report%20KI%

202018%20Research%20Report-Lessons%20from%20Harvey%203.pdf

11

digital.library.unt.edu/ark:/67531/metadc993940/
https://mashable.com/2012/11/02/hurricane-sandy-twitter/
https://mashable.com/2012/11/02/hurricane-sandy-twitter/
https://www.facebook.com/about/crisisresponse/
https://kinder.rice.edu/sites/g/files/bxs1676/f/documents/FinalTwitter%20report%20KI%202018%20Research%20Report-Lessons%20from%20Harvey%203.pdf
https://kinder.rice.edu/sites/g/files/bxs1676/f/documents/FinalTwitter%20report%20KI%202018%20Research%20Report-Lessons%20from%20Harvey%203.pdf


nificance of social media in the course of crisis events has beenwell identified by government and relief

agencies*.

This has driven a significant amount of research exploringmethods to automatically determine the

relevant information in crisis scenarios, from the voluminous streams of socialmedia data. Automatic

detection of crisis-relevant messages from social media platforms is not a trivial task, considering the

nature of the unstructured social media data such as short text length, colloquialism, and syntactic

variations in the text. A principal goal while creating such automatic classificationmethods is tomake

them adaptive and applicable to a wide range of crisis events across various crisis types and languages.

This is a significant limitation of most existing approaches that often focus on specific crisis types and

on data written in specific languages. Different types of crisis situations result in a wide spectrum of

data which gets posted online by people who are impacted in one way or another. Geographical and

demographic diversity also results in multilingual data.

Given the high volume of crises data, there is a need for automated methods to detect their rele-

vancy, and given the diversity in crisis types and languages, suchmethodsmust be able to process crisis

data regardless of such variations. In this thesis, we explore the use of semantic representation, link-

ing, and expansion to leverage the relations between words across varying crisis types and languages.

For example, the two words floods and earthquake are types of natural disasters, which is a common

concept linking both words. Creating automatic classification methods that are agnostic to varying

crisis types and languages is a key aspect for overcoming the challenges above.

In this thesis, we investigate the impact that semantics could have on building classificationmodels

to identify crisis related information across diverse crisis events and languages. In particular, we ex-

plore how such classificationmodels, based on semantic features or statistical features, perform under

discrete settings where the model is applied to a new crisis event, a type of crisis event, crisis event in

*https://www.fema.gov/news-release/2018/04/16/social-media-and-emergency-preparedness
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a new language, or a combination of these scenarios. Given Twitter’s* popularity during crisis situa-

tions, its public nature, and ease of access to its data, we used it for collecting social media data during

crisis events and performing the experiments. The research conducted in this thesis, broadly, makes

the following contributions:

• Hybrid classification models are developed by combining statistical and semantic features for

classifying Twitter data based on relevancy to crisis situations.

• Deepened understanding of how transferable the classifiers are when applied on (a) new crisis

events, (b) new types of crises, (c) crises from different languages, and (d) crises of a different

type in a different languages.

• Two approaches for classifying multilingual data are evaluated: using automatic translators,

and using semantic information extraction.

1.1 Motivation

In the course of crisis events there is usually an increase in content generation on social media and

also in content demand. Online searches related to crisis specific terminology tend to increase during

such events (Guo et al., 2013). On social media platforms, people often provide an account of their

experiences, and also seek information to raise their awareness or to support their decisionmaking. For

example, internet usage in the East Coast of the United States was reportedly found to have increased

by 114%whenHurricane Sandywas about to hit†. During the 2011 earthquake and tsunami in Japan,

there was a 500% increase in the tweets from Japan as people reached out to family and friends ‡. As

mentioned earlier, crisis events such asHurricaneHarvey andSandywitnessedmillions of tweets being

posted in a months period.

*Twitter, https://twitter.com/
†https://www.zdnet.com/article/internet-usage-rocketed-on-the-east-coast-during-sandy-report/
‡https://blog.twitter.com/official/en_us/a/2011/global-pulse.html
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Vieweg (Vieweg, 2012) stressed that the content generated during crisis situations does contribute

to situational awareness, and there are different categories among which the users tend to post their

tweets. Several other works have studied the presence of crisis related information in social media

posts generated across crisis events (Bruns et al., 2011; Kanhabua & Nejdl, 2013; Metaxas &Musta-

faraj, 2013; Munro & Manning, 2012; Olteanu et al., 2014; Qu et al., 2011; Starbird et al., 2010;

Thomson et al., 2012; Vieweg et al., 2010). It has also been reported that in the course of crisis events,

there is usually a decline in self-oriented and context-free posts, while an increase in goal-driven and

information oriented posts potentially increase (Naaman et al., 2010). Also, users tend to promote re-

tweeting (a term given to re-sharing someone else’ post on Twitter) (Heverin & Zach, 2010; Hughes

& Palen, 2009).

These findings provide enough evidence of the significance of social media platforms, particularly

Twitter, for people to rely on in the course of crisis situations to share and subscribe to relevant infor-

mation.

1.1.1 Crisis Relevancy Classification: Opportunities

There are several works that focus on building classificationmodels for crisis relevant data (Burel et al.,

2017b; Burel et al., 2017a; Imran et al., 2016b; Pedrood & Purohit, 2018; Li et al., 2015; Li et al.,

2017; Li et al., 2018a; Li et al., 2012b; Imran et al., 2013b). Many of these approaches rely on us-

ing statistical features from data. Statistical features reflect statistical (e.g., length, number of words,

special characters, etc.) and linguistic attributes (e.g., part of speech) of the text. Generally, related

works adopt the approach of training a classification model on labelled data from crisis events and

then evaluate themodel on other events. Amajor limitation observed, while covering the appropriate

literature in depth (as covered in detail in Chapter 2), was that while many of the works do undertake

this problem from a perspective of model adaptability where a supervised classification model should

be applicable to new unseen crisis data, they do not consider the distinctiveness in the type of crisis
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events. These works do not highlight the limitation experienced by the classification models when

they are applied to data from an entirely new type of crisis event. For instance, howwill a classification

model perform if it was trained on data from earthquake type of events and applied to data fromflood

type of events. The second limitation from the crisis data point of view is the language, which is a ma-

jor challenge in making language agnostic classification models. As a result of crisis events occurring

around the globe and demographic diversity, crisis data is multilingual in nature. In fact, sometimes

within a single crisis event there can be multilingual data. Variation in languages result in variations

in the vocabulary of the data. If we aim to develop crisis relevancy classification systems that are ap-

plicable to diverse crisis scenarios, it is essential to ensure that a given classifier holds its applicability

across varying languages. For instance, how will the classification model perform if it was trained on

crisis data in English and applied to crisis data in Spanish.

In this thesis, we identify these areas as potential opportunities. We explore these problems with

a semantics lens, where the diverse crisis types and variations in the language are envisioned as the

problems that can be tackled by enriching the data with semantics. The use of knowledge sources

such asWordNet*,Wikipedia†, andDBpedia‡, for enriching the text semantically for text classification

problems has often been studied (Siolas & d’Alché Buc, 2000; Hu et al., 2008; Abel et al., 2011).

Various works have established that knowledge bases such as WordNet or Wikipedia can be exploited

for identifying semantic similarities across different words (Agirre et al., 2009; Zhang et al., 2011). In

the context of crisis data, enriching the data with semantic representations such as entity linking and

expansion through knowledge bases canhelp in leveraging the connections betweendifferent concepts

across varying crisis types and languages. Thus enhancing the contextual coherency in crisis data across

crisis types and languages. We investigate multiple aspects of crisis data classification, and evaluate the

impact of semantics of the data on adaptability of the classificationmodels when the new unseen data

*WordNet, https://wordnet.princeton.edu/
†Wikipedia, https://www.wikipedia.org/
‡DBpedia, https://wiki.dbpedia.org/
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is uniquely different in its origin.

In the next section, we describe our research questions and the hypotheses.

1.2 ResearchQuestions andHypotheses

The principal research question investigated in this thesis is:

“Towhat extent could semantics improve crisis relatedness classification of Twitter data?”

As mentioned earlier, we aim to build crisis relevancy classification models that are adaptive to

new crisis events which might be of new types and languages. We breakdown our research into the

following research questions.

• RQ1 - How could the addition of semantics improve the binary classification of Tweets with re-

gards to their relevancy to crises?

Standard statistical features based classification models can be built to develop binary classifica-

tion models that classify the data as crisis related or not related (Li et al., 2012b; Karimi et al., 2013;

Zhang&Vucetic, 2016; Imran et al., 2016b). In this research question, we explore how using seman-

tic representations, in the form of labels of linked entities which are annotated via a Named Entity

Recognition (NER) service, and expansion to broader concepts such as hypernyms (broader concepts

of entities) from a knowledge base, as features impact the performance of the classification model.

HypothesesH1-Using semantic features such as labels of annotated entities (viaNER services such

as Babelfy) and hypernyms can help in dealing with the variations in language expressions. For exam-

ple, train station and railway station are two different terms with different word representation, but

the NER services built on word sense disambiguation techniques would normally point them both

to the same concept - railway station. This strategy helps to overcome variations in the vocabulary

which often refer to the same concepts. Similarly, expanding to broader concepts such as hypernyms
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can bring contextual coherency by bridging discrete words in the vocabulary that share the same hy-

pernyms. By bringing in such semantic features, the machine learning based classification approaches

could perform better when classifying crisis data from several crisis events. Statistical and linguistic

features such as part of speech, text length, etc., do not capture the contextual information which se-

mantic features can. Thus, semantic features might influence a classification model to identify crisis

relevant information where the attributes such as semantic similarities might be indicative of impor-

tance or vital with respect to the situation, which otherwise could be skipped by the classification

system.

• RQ2 -To what extent could semantics improve Tweets classification for new types of crisis events?

In this research question, we want to study the scenario when a model is trained on certain types

of events (e.g., earthquakes and train crashes) and tested on types of events which were not seen in

the training data (e.g., floods, typhoons, etc.). We will further analyse whether adding semantics can

boost the performance of the classifier model in such scenarios.

Hypotheses H2- We hypothesise that adding concepts and properties of entities (e.g., type of an

entity, label of an entity, category of an entity, hypernyms) improves the identification of crisis infor-

mation content across crisis domains, by creating a non-specific crisis contextual semantic abstraction

of crisis-related content.

• RQ3 -To what extent could semantics improve crisis-relevancy classification of Tweets written in

a new language?

In this research question, we explore the problem scenario when a classifier is strictly trained on

crisis events in a particular language (for example data in English), and then the classifier is applied to

data from crisis events which are in a different language (for example in Italian).

HypothesesH3- We hypothesise that semantic features such as concepts and properties of entities

(e.g., type of an entity, category of an entity, hypernyms) generalise the information representation of
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the crisis situations across various languages. In cross-lingual classification problems, we also hypoth-

esise that translation of the data to the same language, using automated machine translation systems,

can also help in achieving the same goal since translation can align the cross-lingual data in terms of

the vocabulary. We compare both the scenarios- adding the semantics and translation of the data.

• RQ4 - To what extent could semantics improve Tweets classification when the type of crisis event

and language change?

In this research question, we explore the problem scenario when a classifier is strictly trained on

certain types of crisis events and in some particular languages (for example data from earthquake events

inEnglish), and then the classifier is applied to data fromdifferent types of crisis eventswhich are also in

a different language (for example flood events in Italian). Quite often data in a certain crisis situation

can arrive in multiple languages and hence models need to be adaptive to both new types of crises and

new language at the same time.

HypothesesH4- Following the above two research questions, we hypothesise that for the data that

is from a new crisis type and in a new language at the same time, the semantic features along with

translation can enable the classification models to become more adaptable to new incoming data for

classifying. The semantics could not only handle the contextual alignment between diverse crisis do-

mains but also handle the cross-lingual alignment as mentioned above. Similarly, translating the data

can also align the cross-lingual data between the training and the test data. A combination of transla-

tion and semantic feature is expected to improve the performance of the classifier.

1.3 Methodology

The principalmotivation behind this thesis is to explore the impact of adding semantics in the classifi-

cation of crisis data across crisis types and languages. To this end, we propose a generic methodology,

which is adapted across different experiments to answer the research questions posed.
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Figure 1.1: Methodology Pipeline

In general we have the following phases:

• Data Collection: We collect a dataset which comprises of multiple crisis events, and contains

manually annotated labels reflecting the relatedness of documents (in this work we use tweets)

with the crisis.

• Feature Extraction and incorporation: We extract two types of features - Statistical Features

and Semantic Features. The Semantic Features are incorporated by concatenating with the

original text and are represented as unigrams in the vector space, while the Statistical Features

are used as unique features in the vector space. In some experimentswe also employ translation

services in order to analyse the impact of translation in multi-lingual crisis data. In Chapter 2,

in section 2.1 and 2.1.1 we provide background knowledge about the type of semantics that

we derive from text.

• Train and Test Data Segregation: We select the training data and test data of crisis events

based on the scope of the particular research questions being addressed in a given experiment.

• Classifier Training and Evaluation: We train the classifier on the selected training data and

evaluate the model across various combinations of test data.

Asmentioned, we have different scopes defined for each experiment and accordingly wemake vari-

ations in the adapted methodology. In some experiments we focus on the types of the crises, whereas
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Figure 1.2: Methodology pipeline across each chapter, and thesis contribu on outline

in others we focus on the language, and in other cases we focus on both. These factors drive the ways

in which we select the data sets. Figure 1.1 shows the phases as a pipeline of the general methodology.

We use Twitter labelled data for all our experiments. There are some prominent data sets publicly

available, which we have used in our experiments. In the evaluation phase, we compare the method-

ology with a particular baseline model which is developed in each set of experiment.

The thesis is structured as individual chapters, as follows:

• Chapter 2 - ‘Background and Literature Review’, we provide a background knowledge of

text classification approaches, machine learning methods, machine learning features, natural
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language processing, and semantics. Further, we describe the relevant literature focusing on

processing and classifying social media data in general and during crises situations.

• Chapter 3 - we present our work on using the semantics to classify the crisis related data

across different crisis events. We train the classifier on some crisis events and create a model

which is then validated on a new crisis event. We explore the impact of semantic features in

comparison to statistical features. In this chapter, we address the first research question.

• Chapter 4 - we present our work on using semantics to classify crisis related data across

different types of crisis events. We train the classifier on some types of crisis events and create a

modelwhich is then validated on a new types of crisis events. We explore the impact of semantic

features when the tested crisis type is not seen in the training data. In this chapter, we address

the second research question.

• Chapter 5 - we present our work on using the semantics, translation, and combination of

adding semantics and translation, to classify crisis related data across different languages. We

train the classifier on crisis events in a certain language and create a model which is then vali-

dated on new crisis events in a different language. We explore the impact of semantics, trans-

lation, and combination of adding semantics and translation when the tested crisis language

is not seen in the training data. In this chapter, we address the third research question.

• Chapter 6 - we present our work on combining the problem cases explored individually

in Chapter 4 and Chapter 5, i.e., how classification models perform when applied to crisis

events which are not only of a new type but also in a new language. We train the classifier on

certain types of crisis events in a certain language and create a model which is then validated

on new types of crisis events in a different language. We explore the impact of the semantics,

translation, and combination of adding semantics and translation, when the tested crisis is of
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a different type and language than what is seen in the training data. In this chapter, we address

the fourth research question.

• Chapter 7 -Discussion, we discuss the research work presented in the thesis, highlight the

scientific outcome, and point towards future work.

• Chapter 8 - Conclusion, we present the main conclusions of the thesis.

1.4 Publications

Each individual chapterwhich addresses a research question in this thesis is reflected in a peer reviewed

workshop/conference/journal paper. Here, we highlight the publications which are based on individ-

ual chapters of this thesis:

• Chapter 3

– Khare, P., Fernandez, M., & Alani, H. (2017). Statistical semantic classification of cri-

sis information. In 1st workshop HSSUES at International Semantic Web Conference,

Vienna, Austria.

• Chapter 4

– Khare, P., Burel, G., & Alani, H. (2018). Classifying crises-information relevancy with

semantics. In European Semantic Web Conference (pp. 367–383), Heraklion, Crete.:

Springer.

• Chapter 5

– Khare, P., Burel, G., Maynard, D., & Alani, H. (2018). Cross-lingual classification of

crisis data. In International Semantic Web Conference (pp. 617–633), Monterey, US.:

Springer.
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• Chapter 6

– Khare, P., Burel, G., & Alani, H. (2019). Relevancy identification across languages and

crisis types. IEEE Intelligent Systems Journal.
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2
Background and Literature Review

In the Chapter 1, we discussed the motivation and the opportunities that exist in analysing social me-

dia content, particularly Twitter during crisis situations. The work done in this thesis focuses on the

textual data generated on such social media data. In this chapter we will cover the background of the

techniques which are often used to handle and process text data, and cover an extensive literature on

various research works that focus on processing crisis oriented data. Many related approaches exploit

natural language processing tools and machine learning methods to generate insights from unstruc-
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tured text data. Natural language processing tools are primarily used to break down a natural language

text into several tokens which can individually be treated as features. Machine learning methods are

used for classification tasks in order to identify posts as belonging to a certain class based on how the

training data is labelled (explained more in section 2.2).

In the subsequent sections, we will cover fundamental approaches on natural language processing

and semantics of the text, machine learning methods for text classification, and then gradually focus

on a detailed literature review.

2.1 Natural Language Processing and Text Semantics

Twitter is one of themost prominentmicro-blogging online service, with almost 326millionmonthly

active users, as of the year 2018*. The platform enables people to post short text posts called Tweets,

of maximum length 280 characters (until the year 2017 it used to be 140 characters†) and also share

photos and/or videos along with the text post. Other popular micro-blogging platforms are Face-

book, YouTube, WhatsApp, LinkedIn, etc‡. Twitter makes public posts accessible via application

programming interface (APIs)§, while Facebook limits the access of user’s posts based on privacy set-

tings. Platforms such as LinkedIn are more focused towards professional discussions.

Let us look at a tweet posted during floods in Alberta in 2013:

RT@KaleighRogers: A 15-year-old High River (Calgary) boy is missing since floods . Call police if you see Eric #abflood

This tweet is a Re-tweet (re-shared by a user) of the original tweet posted by a user with the user

*https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
†https://www.washingtonpost.com/news/the-switch/wp/2017/11/07/

twitter-is-officially-doubling-the-character-limit-to-280/?noredirect=on
‡Global social networks ranked by number of users 2019 https://www.statista.com/statistics/

272014/global-social-networks-ranked-by-number-of-users/
§https://developer.twitter.com/en/docs/api-reference-index.html
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handle@KaleighRogers. This post says that a boynamedEric aged 15 years, from the townHighRiver

in Alberta, is missing because of the floods and report to the police if seen by anyone. While it may not

be a challenge for the humans, for the machines short text is not trivial to make sense of, due to often

vague and open interpretation, particularly when building computational models. The contextual

information is ambiguous and not substantive. Natural Language Processing (NLP) is the field of

study which focuses on programming computers to process and analyze natural language data*. In

this section, we will cover the Natural Language Processing (NLP) techniques, that will provide an

overview of the basic computational methods to process the natural language (in text form).

To begin with, we will look at some of the key text processing operations, as also highlighted by

Castillo (Castillo, 2016). These operations aim at converting an input text to a structured text seg-

ments.

–Character encoding/decoding - converts an input text string into an array of charac-

ters to an array of bytes and vice versa. A character encoding converts each character to its correspond-

ing byte code and decoding will look up into the character table to convert it back to the character.

Character encoding is done to ensure that the machine understands which particular character exists

in the text. For instance, UTF-8 is a popular character encoding.

–Tokenisation is a process of sequencing a set of strings (as in a sentence) to an array/list of

individual tokens.

‘A token is an instance of a sequence of characters in some particular document that are

grouped together as a useful semantic unit for processing.’ (Manning et al., 2008)

For instance, if we look at the above tweet, it should result in a list of 23 individual tokens- which is

each word in the sentence. An illustration below, in Table 2.1, shows another example.

One can also take into consideration theminimum length of the tokens. For instance, in the above

*Natural Language Processing, https://en.wikipedia.org/wiki/Natural_language_processing
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Table 2.1: Illustra ve example for tokenisa on

Text Breaking News: MET issues a storm warning
Tokenised Breaking | News | MET | issues | a | storm | warning

case if we consider minimum length as 2, then the tokenised formwill filter out the token ‘a’ from the

set of tokens. Trim (Trim, 2013) provides a more detailed approach towards tokenisation.

–Normalisation is the process of transforming the text to a single standard or canonical form,

thereby ensuring that the data is consistent in its format before performing operations. This phase

is application dependent, and can be designed as per the requirements. For instance, ‘BREAKING

NEWS’, ‘BreakingNews’, and ‘breaking news’ can be normalised by converting all the characters from

upper case to lower case. Another standard method is to handle abbreviations, so ‘U.S.A’ and ‘USA’

could be normalised by removing the punctuationmarks and briging all such variations to a common

representation. In some cases, the acronyms (for instance terms used in slang or urban vocabulary)

can be resolved to their more standard forms, such as ‘idk’ can be resolved to ‘i don’t know’. But this

is a very specific approach to focus on a certain type of data and it requires large scale lexicons and/or

dictionaries dedicated for such problems.

– Stop-word Filtering is aimed at removing the tokens (words) from the data that are not

treated as useful in a given scenario. In general, stop-words in any language are very commonly oc-

curring words (quite often are function words* such as the, is, for, of etc.). Such function words are

assumed to have no distinct context in themselves, and are usually used to connect different segments

of a sentence. The scope of stop-words is languages as well as application dependent. A simple repre-

sentation of stop-words filtering is shown below.

A large collection of stop-words across several languages can be collected †.

*https://en.wikipedia.org/wiki/Function_word
†https://code.google.com/archive/p/stop-words/
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With Stop-Words I started a T-Shirt campaign to benefit the #coloradoflood victims
Without Stop-Words started T-Shirt campaign benefit #coloradoflood victims

– Stemming and lemmatisation – Often for grammatical requirements varying forms

of a word are chosen for sentence construction such as conducting, conducts conducted, conduct. In

this case, stemming would trim the word if it ends with ‘s’, ‘ed’, ‘ing’ and replace it with the character

‘i’, thus bringing it to a form which can be consistent across a dataset. There are various rules to

stemming across languages. In English, most popularly used stemmer is Porter’s stemmer (Porter,

1980). Stemmingmay not necessarily result in an actual word (root word), but it helps in normalising

the data. In certain cases, thewords canbe a derivative of a rootword. For instance, run, running, runs,

ran are all varying form of the lemma run. Lemmatisation will not trim the word, as in Stemming,

and rather look for corresponding lemma of a given word depending on the part of speech a word

represents. The aim of, both, stemming and lemmatisation is to bring the words in a standard form

across a data set, and can also be treated as another form of normalisation.

–Part of Speech (POS) tagging – is the process of annotating words in a sentence with

a part of speech tag the words belongs to. Part of speech is a language dependent classification of the

class of words in any given sentence. Some well known and understood part of speech are noun, verb,

adjective, pronoun, adverb, conjunction etc. There are computational models available for automati-

cally annotating the part of speech in text. A piece of text is provided as an input and the automatic

taggers provide sequence list of annotations as an output. Stanford NLP POS tagger (Toutanova &

Manning, 2000; Toutanova et al., 2003) are widely used Part-of-Speech taggers for computational

automatic tagging, and has tagger models for multiple languages. A representation of POS tagging is

shown below.
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Text Thoughts with boulder flood affected
Tokens Thoughts with boulder flood affected
POS Noun Preposition Noun Noun Verb

2.1.1 Named Entities and Knowledge base

Named entities are the references of persons, locations, and/or organisations that can be denoted with

a proper name, in a text.

Text Obama has declared emergency in Colorado after flooding

For instance, in the text above,Obama is a Person andColorado is a location. Named Entity Recog-

nition (NER) is about finding such named entities. Many NER approaches have been derived from

statistical modelling methods such as Conditional Random Fields (CRF) sequence models. Several

CRF approaches have been studied (Lafferty et al., 2001; Sutton & McCallum, 2006; Sutton et al.,

2012). Stanford NER by Finkel et al. (Finkel et al., 2005) is a leading work for the contemporary

methods on Named Entity Recognition.

Once the named entities are recognised, it would help to generate extrameaning or semantics of the

entities, that will help in addressing the ambiguity regarding the exact concept being referred to in the

text. For instance, let us look at the two texts below.

Table 2.2: Example- En ty Disambigua on

Text1 We saw a bright Jaguar speeding on the motorway
Text2 We saw a Jaguar chasing after a prey in the jungle

The Jaguar in Text1, in Table 2.2, ismore likely to be referring to a JaguarCar*, whereas the second

*https://en.wikipedia.org/wiki/Jaguar_Cars
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reference inText2 is supposedly about a Jaguar, thewild animal*. This phenomenonof connecting the

recognised entities with a specific machine readable identifier is calledNamed Entity Linking (or also

Named Entity Disambiguation/Resolution). The context of a given entity is determined by the type

of concepts that co-occurwith it in the text. InText1, Jaguarwas seen alongwith the concepts such as

speeding and highway. Intuitively, if we are talking about a Jaguar on a highway, which is speeding, it is

more likely to thinkof a car/vehicle insteadof an animal. But this also requires a contextual background

where we are already aware of a car named Jaguar and also a knowledge where usually the cars are seen

on highways/motorways.

In order to link the entities to amachine readable identifier, it is required tohave such a large contex-

tual database. In the literature (Auer et al., 2007; Lehmann et al., 2015; Suchanek et al., 2007; Rebele

et al., 2016), such contextual databases are termed asKnowledge Base, and are often developed on top

of the knowledge extracted from encyclopedic form of information sources, such as crowd-sourced

free online encyclopedia Wikipedia†. Wikipedia has often been used for studying Named Entity Dis-

ambiguation techniques because of its huge size of documentation on awide range of topics (Bunescu

& Paşca, 2006; Cucerzan, 2007; Ratinov et al., 2011; Zhou et al., 2010)

There are many popular knowledge bases such as DBpedia (Auer et al., 2007; Lehmann et al.,

2015), YAGO (Suchanek et al., 2007; Rebele et al., 2016), and BabelNet (Navigli & Ponzetto, 2010;

Navigli & Ponzetto, 2012) to name a few. Many of such knowledge bases are a multilingual semantic

network of concept and entities, and extend beyond just Wikipedia in terms of knowledge source

aggregation. For instance, YAGO and BabelNet are integration of lexicographic and encyclopedic

knowledge fromWordNet (a lexical database of Englishwherewords are grouped as per theirmeaning

and in a hierarchy of hyponymy and synonymy), Wikipedia, and Wikidata. These knowledge bases

enable us to iterate through a variety of semantic relationships for any given concept/entity.

*https://en.wikipedia.org/wiki/Jaguar
†https://en.wikipedia.org/wiki/Main_Page
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There are several Named Entity Disambiguation services that are built on top of the aforemen-

tioned knowledge bases, such as AIDA (Hoffart et al., 2011) (built on YAGO), DBpedia-Spotlight

(Daiber et al., 2013; Mendes et al., 2011) (built on DBpedia), and Babelfy (Moro et al., 2014) (built

onBabelNet). These services not onlyperformNamedEntityDisambiguationbut alsoperformWord

Sense Disambiguation. Word Sense Disambiguation is an approach to disambiguate the meaning of

any word (instead of just Named Entities) in a given text, when the possibility is more than one. As

an example, consider the following text:

Text A 15 year old High River boy is missing due to flood. Call police if you see Eric St. Denis

Through the entity linking methods and further extension of information from knowledge bases,

we can determine that High River is a locality/town in Calgary, Canada. Also, it can be determined

that the wordmissing here implies being lost.

There are many such knowledge bases, also domain specific knowledge bases such as Geonames*,

which is a geographical database. One of the ways to find out diverse knowledge bases is via Linked

Open Data Cloud†, which links several open access knowledge bases.

We will subsequently use such natural language processing and semantic enhancing methods in

formulating our methodology to classify crisis related data from social media.

2.2 Text Classification

Social media data is not homogeneous in nature. The context, that determines the relevancy of a

post with a topic, might be very scattered on social media platforms. In addition, there is a substan-

tial amount of noise on social media‡, which impacts the quality of data collection and analysis if

*https://www.geonames.org/
†https://lod-cloud.net/
‡https://blog.insightsatlas.com/noise-on-social-media-explained
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not filtered out. Thus, the need to explore automatic text categorisation/classification methods is

paramount. The classification methods are aimed at categorising the heterogeneous data.

There are two broad classes of classificationmethods studied: supervised classification and unsuper-

vised classification (Castillo, 2016). For the supervised classification, it is first required to curate a set

of manually classified data, using human annotators. This data is often termed as labelled training

data. This labelled training data is used to train a model, to classify new unseen data into the trained

categories. In the unsupervised classification, there is no prior labelled training data, instead the related

items are determined based on a similarity score/metric. There is also a semi-supervised classification

approach, where someof the available data is labeled butmajority of it is unlabeled, and a combination

of supervised and unsupervised techniques are used.

2.2.1 Supervised Classification

Most prominent use cases for supervised learning are: binary classification, multiclass classification,

andmultilabel classification (Castillo, 2016). Binary Classification is classification of data into either

of two disjoint classes. Multiclass Classification is a scenario when there are three or more disjoint

classes the data can be classified into. Multilabel Classification is a scenario when there are multiple

classes/labels but not necessarily disjoint, therefore the data can simultaneously belong to multiple

classes/labels. Supervised Classification are based on supervised learning. Supervised learning is de-

pendent on some input variables (X) and a mapping function f(x) that returns an output variable

(Y).

Y = f(X)

Supervised learning approximates the mapping function and learns to predict the output variable

for a given data. The term supervised indicates that themapping learns to predict by being trained via a
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training dataset. The functionmakes predictions and improves as it iterates through the training data.

When the function achieves an acceptable level of performance the learning stops. The outcome of

this learning, where the function is finally approximated, is also termed as amodel. And this process

of creating such models is calledmachine learning.

Broadly, the main elements of a supervised classification can be identified as follows:

• Labelled Training Data – Supervised classification methods require data/messages that are al-

ready labelled. These labels are the classes/categories the messages belong to. These labels are

usually tagged by human annotators (volunteers or experts) on the subject. The size of labelled

training data depends on the application or the system to be designed and also on the number

of classes the data is classified into. Scenarios where the nature of the data is likely to be of

a very diverse nature across the categories, as is often the case in social media data, the large

size of labelled training data (from hundreds to thousands) is required. The impact of larger

size yielding better results has been highlighted (Matykiewicz & Pestian, 2012). In the litera-

ture, training size used in supervised classification for social media data or text has ranged from

hundreds (Yin et al., 2015) to thousands (Imran et al., 2014b) or even tens of thousands in

some cases (Melville et al., 2013). Another important aspect of creating labelled training data

is sampling. Ideally, for training a model it is better to have substantial representation from all

classes/categories.

• Feature Selection – The input data is converted to a format, termed as features, that is suited

for the chosen algorithm (function). In a huge data size, the feature space can become very

high dimensional, which might impact the run-time of the system. Feature selection is the

process of selecting the appropriate ormost relevant features for the particular problem. These

features are expected to represent the data as a whole, and are the subset of the input features.

Some of the examples of feature selections methods are : Chi squared test, information gain,
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pointwisemutual information, and correlation coefficient scores. A reference to feature selection

methods can be found here (Guyon & Elisseeff, 2003). In our work we make use of some of

these metrics for different analysis such as Information Gain and Spearman’s rank correlation

coefficient .

• Machine Learning Algorithms – There are several supervised classification algorithms for text

classification. Among the well practiced algorithms are:

– Linear Classifiers: Logistic Regression, Naive Bayes Classifier

– Support Vector Machines

– Decision Trees

– Boosted Trees

– Random Forest

– Neural Networks

A detailed survey of text classificationmachine learning algorithms can be referred here (Sebas-

tiani, 2002). For instance,Naive Bayes classifier (Dai et al., 2007) is based onBayes theorem for

conditional probabilities, that quantifies the conditional probability of a class variable, given

the knowledge about the other set of variables (feature variables). To gather a fundamental

understanding about the Bayes theorem, it is used to determine the probability P(A|B), when

the probability P(A|B) cannot be determined directly from the data. But, if other prior prob-

abilities such as P(B|A), P(A), and P(B) are evaluated from the data, then P(A|B) can be stated

using the Bayes theorem as follows:

P(A|B) = P(B|A)P(A)
P(B)
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Logistic regression is a statistical model, often used in text classification (Genkin et al., 2007),

that uses a logistic function to model a binary class variable. However, it can also be used to

model non-binary class variable as well. Consider there is a vector Θ = (Θ0,Θ1...Θd) of d+1

parameters. The ith parameter Θi is the coefficient to the ith dimension in the feature set. Then

for a set of features X = (x1, x2...xd) , the probability of a class variable being, say, +1 or -1 is

given as follows:

P(C = +1|X) = 1
1+ e−(Θ0+

∑d
i=1 Θixi)

P(C = −1|X) = 1
1+ e(Θ0+

∑d
i=1 Θixi)

Support Vector Machines (more widely known as SVM), use separating hyperplanes as the

decision boundary between data from different classes. These are naturally tuned for binary

classification. However there are different methods to tune it intomulticlass classification (Ag-

garwal, 2015). In SVMs, the algorithm is optimised by determining the margin that separates

the classes. The maximum margin hyperplane is assumed to be the optimal solution. As-

suming that in the training data there are n data points each mapped with a class (X1,Y1)...

(Xn,Yn), where Xi is a d-dimensional vector representing the number of features and Yi is the

class label, say Yi ε {−1,+1}. The separating hyperplane can be defined as:

W · X+ b = 0

W is a d-dimensional row vector representing a normal to the separating hyperplane. An op-

timal solution is such that,
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W · Xi + b ≥ 0 : ∀iYi = +1

W · Xi + b ≤ 0 : ∀iYi = −1

An elaboration on various machine learning classification algorithms is provided by Aggar-

wal(2015).

• EvaluationMetrics – Evaluation metrics help in determining how well a classification system

has performed in comparison to other approaches. They help in weighing the importance of

different aspects in the results and thus influence the choices in the approach. Throughmetrics

we can gauge how efficient a given approach is. Therefore, if we have labelled evaluation data,

then a given classification approach can be evaluated simply by having a look at the number

of correct and incorrect classified data points. If this is represented in a tabular form, then

such a representation is called a confusion matrix. As an example look below, where there are

two classes positive and negative. True positives are correctly labelled positive class data points,

False positives are those data points which are originally negative but labelled as positive by the

classifier.

Accuracy is the simplest measurement of effectiveness. It calculates the proportion of correctly

classified data points. In the above case, the accurancy can be evaluated as:

Accuracy =
True Positive + True Negative

True Positive + False Positive + True Negative + False Negative

However, accuracy is not a sufficient metric to determine the performance of a classifier across

the classes*. In that case, we look formoremeasures such asPrecision andRecall. Thesemetrics

*Accuracy Paradox, https://en.wikipedia.org/wiki/Accuracy_paradox
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Figure 2.1: Confusion Matrix

can be measured for individual classes, for instance Precision for the positive class will be:

Pp =
TruePositive

TruePositive+ FalsePositive

This implies that it is a measure of number of correctly classified instances as positive, against

total number of instances classified as positive. Thus, Precision evaluates specificity. While,Re-

call evaluates sensitivity, the responsiveness of a classification system. TheRecall amounts for

correctly identified instances belonging to a class, against all the instances that actually belong

to that class. Recall for the positive class will be:

Rp =
TruePositive

TruePositive+ FalseNegative

Another parallel metric that combines both of these measures is F1 measure or Fmeasure. It is

generally represented as a harmonic mean of Precision andRecall:
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F1 = 2
PR

P+ R

In practice, there are variations of this harmonic mean.

Fβ = (1+ β2)
PR

β2P+ R

Here, β is a trade-off variable that can weigh precision over recall and vice-versa as required.

There are other techniques to assess the performance of a classifier, such as the Receiver Oper-

ating Characteristic (ROC). TheROCcurve is a plot of true positive rate (also aRecall) against

false positive rate. It can provide a visualisation based analysis and a way to select optimal mod-

els. A detail insight into such evaluation metrics and a comparative study can be made here

(Powers, 2011).

2.2.2 Unsupervised Classification

Unsupervised learning is an approach where the data is not labelled or categorised. The algorithm at-

tempts to discover structures or patterns in data and categorises the data based on theme. In text clas-

sification, clustering is a well accepted method based on unsupervised learning. Clustering algorithms

determine the similar data points (texts in text classification problems), based on certain similarity

functions. Similarity functions quantify the similarity between two data points vectors. A promi-

nently used similarity function is the Cosine Similarity (Baeza-Yates et al., 2011). The outcome of a

clustering algorithm is the number of clusters in which the existing data points, within each cluster,

are supposed to be similar or belonging to the same class. There can be two scenarios, one in which

clusters are supposed to be disjoint, called hard clustering, and another in which the classes can be

overlapping, called soft clustering. Some of the widely used clustering algorithms are described below.
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• The k-means clustering–Thismethodpartitions the observations (data points) into k clusters,

where each observation belongs to a cluster with amean that is nearest to it. The approach op-

erates in two steps: (i) assign an observation to a cluster which has the least Euclidean distance

of its mean, also the centroid of the cluster, with the observation. (ii) re-calculate the new

mean of each cluster with the new observations in the cluster. This process can be repeated

until a fixed number of iterations or till the reassignment stops changing the centroids any fur-

ther. The algorithm can be intialised by a random allocation of the initial centroids. This sort

of approach where each data point belongs to any one of the clusters, is an example of hard

clustering. A comparative study on intitialisation methods for k-means has been done (Celebi

et al., 2013). There are alternatives to k-mean, and can be referred to (Hamerly&Elkan, 2002;

Zaki et al., 2014).

• Topic Modeling Methods– These are statistical models for discovering abstract topics in a col-

lection of data (documents). It assumes that each topic is represented by a probabilistic distri-

bution of multiple words, and each document is represented by a probabilistic distribution of

topics. This is a type of soft clustering. Some of the well known topic modelling approaches

are Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) and Latent Direchlet

Allocation (LDA) (Blei et al., 2003). LDA is a generative probabilistic model, of a collection

of documents and words. These approaches do not guarantee a semantically cohesive topics

or topics built out of knowledge in a certain domain, but the topics are built on the word-

document distribution which is unknown in a large scale data. Hence, the use of the term

latent in the name of the methods, since these distributions are calculated using probabilistic

methods such as Expectation propagation (Minka, 2001; Minka & Lafferty, 2002) or Gibbs

Sampling (Griffiths & Steyvers, 2004).
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2.2.3 Semi-supervised Classification

Getting labeled data is not trivial, as it is expensive and time consuming, while unlabeled data is often

available in large quantities. Semi-supervised learning is an approach to make use of unlabeled data

to improve the accuracy of the learning algorithms. The unlabeled data can be used to determine the

low-dimensional structure of the data and also can be used to estimate the joint probability distribu-

tion of features (Aggarwal, 2015). Primarily, there are two types of techniques for semi-supervised

learning: a)meta-algorithms- use the existing classification algorithm for enhancing the classification

accuracy with unlabeled data. In this approach, we use the limited labeled data to classify the unla-

beled data anduse themost confidently labeled instances and add to the labeled data for re-training the

classifier, b) make use of modified variations of some specific classifiers such as Bayes classifier using

EM (expectation–maximization). In such approaches, the classifier is trained on the available labeled

data, and then make predictions on the unlabelled data. Next, retrain the classifier and then deter-

mine the total likelihood of the model. This is repeated until the total likelihood of the model stops

decreasing. A detailed study of the approach can be referred to (Aggarwal, 2015).

So far we have provided an overview of natural language processingmethods, semantics via knowl-

edge bases, and text classification approaches. Many of the related works discussed in the subsequent

sectionhave used such techniques. Wewill be usingmany of these approaches to propose ourmethod-

ology and perform experiments. Next, we will cover the related work in the literature that covers dif-

ferent works in the areas of crisis data processing.

2.3 Dimensions of SocialMedia Data During Crises

During disasters, affected people turn to platforms such as Twitter. But given the enormous data

people often do not know what kind of information they can expect to find on such platforms. Dif-

ferent works have studied and analysed the nature of the data that gets generated over Twitter during
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crises situations. Vieweg (Vieweg, 2012) demonstrated that social media posts can provide situational

awareness, that enhance the knowledge about a growing situation, which was also backed up by other

studies (Imran et al., 2014a; Olteanu et al., 2014; Olteanu et al., 2015; Starbird et al., 2010).

Olteanu and colleagues (Olteanu et al., 2014) generated a lexicon of terms that usually appear in

tweets during disasters. They gathered the data for six different crisis events based on keywords-based

samples and location-based samples. Further, the tweets were crowd-sourced for their relevancy with

the disaster scenario. The lexicon was created by annotating the unigrams and bigrams from the pos-

itive (crisis related) class, based on their likelihood to occur in disaster situations, and which tokens

are specific to a given situation. The terms were further weighted based on their frequency across dif-

ferent crises. This work was done in view of locating useful information on Twitter during disaster

events.

In another work, Olteanu and colleagues (Olteanu et al., 2015) analysed 26 different crisis events

between 2012 and2013. Itwas a very comprehensive analysis of nearly 25,000 tweets across these crisis

events. They determined the type of information types and informative content occurring in the social

media posts. The study revealed that there are various types of sources that post the content, many

of them are eye-witnesses. Study also revealed that the crisis related content did contain informative

content andwas spread across categories such asaffected individuals, infrastructure, donations, caution

& advice, sympathy. Such categories were found to be prevalent across all the crisis events.

There are several studies that have shown the presence of valuable information in social media data

in the course of crisis situations. Some of the examples quoted from the literature, that give an im-

pression of such critical information, are hereby shown:

• “OMG! The fire seems out of control: It’s running down the hills!” (Bush fire, France, 2009)

(De Longueville et al., 2009).

• “Red River at East Grand Forks is 48.70 feet, +20.7 feet of flood stage, -5.65 feet of 1997 crest.
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#flood09” (Red River Flood, 2010) (Starbird et al., 2010)

• “Anyone know of volunteer opportunities for hurricane Sandy? Would like to try and help in

any way possible.” (Hurricane Sandy, 2013) (Purohit et al., 2014)

• “My moms backyard in Hatteras. That dock is usually about 3 feet above water.” (Hurricane

Sandy 2013) (Leavitt & Clark, 2014)

• “Sirens going off now!! Take cover...be safe.” (Moore Tornado, 2013) (Blanford et al., 2014)

These are only some of the cases that represent how social media posts can imbibe valuable pieces

of information. Vieweg (Vieweg, 2012) analysed tweets from four different crisis events viz. 2009

Oklahoma Fires, 2009 Red River Floods, 2010 Red River Floods, and 2010 Haiti Earthquake. The

study analysed what proportion of the sample data was ‘off-topic’, ‘on topic and relevant to situational

awareness’, and ‘on topic but not relevant to situational awareness’. The data was further annotated

for information types, and each tweet was categorised into one or more of following labels: social

environment, built environment, and physical environment. These categories are very broad, and could

cover for a large range of crisis impact on humans and their response. Thus yielding a wide spectrum

of data. These environments have been defined as follows:

• Social environment is defined as any sort of human action/reaction during emergency event.

• Built environment is defined as information corresponding to civic and infrastructure in rela-

tion to the emergency situation.

• Physical environment relates to information about hazard, weather, and environment etc.

The information type was further subcategorised into 24 categories, which were at a more granular

level for example rescue, response, offer of help,missing, etc. Across the four events, among the related

and contributing to situational awareness labelled tweets, the top subcategories were status-hazard,
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advice-info, preparation, damage, and response. These subcategories amounted for 37%-53%of related

and contributing to situational awareness labelled tweets.

Two of theworks (Olteanu et al., 2015; Imran et al., 2015) generated the subcategories of informa-

tion types based on various categories of information identified across different crisis events analysed

in several related research works. The resulting categories of information types and corresponding

works are shown in table 2.3 below.

While in our approaches, proposed in this thesis, we have only focused on the content of the social

media posts, some of the works also analysed the author’s profile of the posts, who are the actual

source of the broadcasted information. These works have categorised these sources based on their

profiles, analysed by human annotators. The sources sharing information on social media during

such events have been identified as eye-witnesses (Bruns et al., 2011; Olteanu et al., 2015), government

agencies (Olteanu et al., 2014;Metaxas&Mustafaraj, 2013), andNGO’s (DeChoudhury et al., 2012;

Thomson et al., 2012) among other categories. In two separate works (Olteanu et al., 2015; Imran

et al.), a compilation of categories of sources explored across various works, as also shown in table 2.4

below, has been provided.

These information and the source categories shown in tables 2.3 and 2.4 highlight the fact that

in the course of crisis events, there is an appropriate participation of public/sources that channel the

relevant information on social media platforms. There are different information needs for different

types of stakeholders (e.g. relief seeker, relief provider, fund raisers, civic authorities, etc.). Thus,

justifying the need to explore the methods to identify crisis related information on social media.
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Table 2.3: Categories and dimensions of crisis data in related works

Categories Related Categories from other works
Affected Individuals medical emergency, trapped people (Caragea et al., 2011);

casualties, people missing & found (Imran et al., 2013a);
self reporting (Acar &Muraki, 2011);
fatality, injuries, missing people (Vieweg, 2012);
missing people (Qu et al., 2011);

Infrastructure & damage (Imran et al., 2013a);
Utilities environment reports (Acar &Muraki, 2011);

built environment (Vieweg, 2012);
damage, fire & police services (Hughes et al., 2014);
hospital services, sanitation, collapse structure (Caragea et al., 2011);
road & traffic conditions (Truelove et al., 2015);

Donation & funds, goods, services (Imran et al., 2013a);
Volunteering donations and volunteering (Olteanu et al., 2014);

help request, relief offer, relief coordination (Qu et al., 2011);
relief and resource donations (Hughes et al., 2014) ;
fundraising (Bruns et al., 2011; Shaw et al., 2013);
shelter and food (Caragea et al., 2011);
volunteer information (Vieweg et al., 2010);

Caution & caution and advice (Imran et al., 2013a);
Advice warnings (Acar &Muraki, 2011);

advice, preparations (Olteanu et al., 2014; Olteanu et al., 2015);
advice, warning, caution (Vieweg et al., 2010);
tips (Leavitt & Clark, 2014);
preparedness (Wukich &Mergel, 2015);
advice and instructions (Shaw et al., 2013);

Sympathy & condolences (Acar &Muraki, 2011);
Support prayers (Olteanu et al., 2014; Olteanu et al., 2015);

emotional support (Qu et al., 2011);
gratitude and thanks (Shaw et al., 2013);

Other Useful smoke and ash (Truelove et al., 2015);
Information emergency location/fireline, visibility (Vieweg et al., 2010);

other informative posts (Olteanu et al., 2014; Olteanu et al., 2015);
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Table 2.4: Source Categorisa on

Categories Related Categories from other works
Eyewitness citizen reporters & community (Metaxas &Mustafaraj, 2013; Olteanu et al., 2015);

eyewitness (Bruns et al., 2011; Diakopoulos et al., 2012; Kumar et al., 2013);
locals (Starbird et al., 2012; Vieweg et al., 2010);
direct reporting (Shaw et al., 2013; Truelove et al., 2015);

Government news org. & authority (Metaxas &Mustafaraj, 2013);
govt/administration (Olteanu et al., 2014; Olteanu et al., 2015);
police & services (Hughes et al., 2014; Denef et al., 2013; Bruns et al., 2011);
public inst. & agencies (Starbird et al., 2010; Thomson et al., 2012);

NGO’s non-profit org (De Choudhury et al., 2012; Thomson et al., 2012);
non-govt org (Olteanu et al., 2014; Olteanu et al., 2015);

Business commercial (De Choudhury et al., 2012);
enterprise (Thomson et al., 2012);
for-profit org (Olteanu et al., 2014);

Media news org (Metaxas &Mustafaraj, 2013; Olteanu et al., 2014);
journalist, media (De Choudhury et al., 2012; Diakopoulos et al., 2012);
professional news (Leavitt & Clark, 2014; Olteanu et al., 2015) ;
alternate media, freelancers (Thomson et al., 2012);
blogs, news-crawller bots (Starbird et al., 2010);

Others sympathizers (Kumar et al., 2013);
distant witness (Carvin, 2012);
remote crowd (Starbird et al., 2012);
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2.4 Crises Related Data Identification

Crisis data identification has been approached frommore than one perspective. Often this perspective

is dependant on the definition of the problem scope. Some approaches focus on identifying individual

posts from a stream of data through supervised classification, while some others focus on clustering

crises related posts based on certain criteria. A few other approaches begin by looking at when a crisis

event evolves. These approaches are often termed as Event Detection. And the process of tracking

the events and how they unfold over time is known as Topic Detection and Tracking. Topic detection

includes aspects such as new topic detection, new event detection (first story detection), and topic

tracking. Before looking into various works on crises data identification/classification, we will briefly

cover literature on event detection from social media data.

2.4.1 Event Detection and Tracking

An event is said to be an occurrence of anything significant associated with specific time and location

(Brants et al., 2003). On social media platforms, due to online presence of the masses, the occurrence

of an event has also been defined by an increase in the volume of messages around a particular topic

(Dou et al., 2012). Events have been categorised as new event, specified event, unspecified event, and

small scale event (Atefeh & Khreich, 2015; Castillo, 2016). A new event is not similar to any of the

earlier noted events. Specific events are predetermined type which can be monitored. Unspecific events

are any events that are detected in the incoming data streams. Small scale events are generally those

that do not generate too much traction for a particular situation, such as crisis events that last for a

long time may include sub-events of smaller scale or similar independent events.

New Event Detection, also termed as First Story Detection (FSD), is a sub-task within Topic De-

tection and Tracking (TDT) (Allan, 2002). Event detection in TDT was traditionally meant for the

newswire data, where each new topic was matched with the previous entries. The voluminous and
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streaming nature of social media platforms such as Twitter warrant the usage of streaming algorithms.

The streaming algorithm is a data processing model where the incoming data is chronologically ar-

ranged and is processed in bounded space and time as each new entry arrives (Muthukrishnan et al.,

2005). Petrovic and colleagues (Petrović et al., 2010) applied the first story detection methodology,

alongwith a clustering approach, on twitter data to identify new events. Becker and colleagues (Becker

et al., 2011) also exploited clustering methods for identifying real-world events. They created clusters

of related tweets and further classified a cluster as event or non-event. They extracted different types

of features such as temporal (messages posted in an hour are used to create clusters), social (clusters

refined using user interactions- retweets and replies), and topical features. For any new event theymea-

sure the cosine similarity between the new message and each cluster. They hypothesised that a high

percentage of retweets and replies do not indicate an event, and also that events are built around a cen-

tral topic, while the non-events clusters are formed around terms which do not form or reflect a cen-

tral theme (e.g. work, sleep, monday etc). Phuvipadawat (Phuvipadawat & Murata, 2010) proposed

grouping and ranking the messages collected via search queries (e.g. #breakingnews and/or #breaking

news). The messages similar to each other are grouped together forming a cluster of news articles for

a particular story. Message similarity was measured using TF-IDF, weight of nouns, and hashtags.

Another basic approach is the word frequency basedmethod to detect events, when there is a rapid

increase in the frequency of a single-word ormulti-word tokens. The periodic counters of the number

of messages are maintained, and as soon as the count of messages in a particular periodic window in-

creases above a threshold, an event is said to be observed. The frequency based analysis can be extended

to other activities which can reflect a sudden change in themasses’ behaviour, for example web traffic.

Osborne and colleagues (Osborne et al., 2012) took the previous approach (Petrović et al., 2010) as

a baseline and enhanced it with considering the traffic on the relevant Wikipedia* pages in the same

time intervals. They termed their approach asmulti-stream FSD. However, one potential limitation

*https://en.wikipedia.org/wiki/Main_Page
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of this approach is the dependency on web page traffic on third party platforms such as Wikipedia.

As the authors themselves point out that Wikipedia lags behind Twitter, in terms of activity, by a few

hours and hence itmight not be suited for a real time event detection. Also, such approaches are aimed

at identifying broad events, rather than identifying/classifying individual text documents into some

classes/labels.

Another related work is a system TwitInfo, by Marcus and colleagues (Marcus et al., 2011), that

collects posts based on an input keyword such as ‘earthquake’. The system kept track of frequency of

tweets perminute, and reported a potential event when the frequency in a particular timewindow ex-

ceeded the average frequency by two standard deviations. In a multi-word frequency based approach,

a system TwitterMonitor proposed by Mathioudakis and Koudas (Mathioudakis & Koudas, 2010),

identifies events by first exploring the rise in frequency of individual words, and then further grouping

them together based on co-occurrence (in same tweets). Some of the variations of such an approach

exploit multiple hashtags from the tweets (Corley et al., 2013). Another system, Twevent (Li et al.,

2012a) relies on determining frequency of tweets which contain data segments, which are generated

from segmenting the text into unigrams or bi-grams and extending them using Microsoft Web N-

Gram service*. An expected frequency of segments is evaluated using aGaussian distributionmodel†.

The segments forwhich the actual frequency exceeds the expected frequency, they are termed as bursty

segments. An obvious limitation of these approaches is that they are bounded by frequency thresh-

old, which curbs the applicability of such systems in scenarios where the crisis related information are

below the threshold and/or not carrying relevant vocabulary. Also, these approaches do not take into

consideration different types of events (crisis) and the content language, which we focus on in this

thesis.

The multi-word frequency can further be extended by generating graphs where nodes are words

*https://www.microsoft.com/en-us/research/project/web-n-gram-services/
†https://en.wikipedia.org/wiki/Normal_distribution
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or phrases and edges indicate weights cross-correlation between different nodes. Further, these graphs

can be segmented and clusters of nodes can be created (Sayyadi et al., 2009). Weng and Lee (Weng &

Lee, 2011) proposed a system EDCOW, which computes the subgraphs from the cross-correlation

graph, and label a subgraph as an eventwhen there is a high cross-correlationbetween thenodes (which

are the words). Interestingly, the cross-correlation graph is built on the criteria of words exhibiting

a similar burst pattern, i.e., similar frequency pattern. This system focused on events from sports,

music, politics etc. A similar burst detection approach was used to detect earthquakes (Robinson

et al., 2013), where the frequency of posts was monitored for search queries such as ‘#earthquake’

and ‘#eqnz’. We have already highlighted the difference between frequency based methods and the

approacheswe have adopted in the previous paragraphwhile comparingwith the other work (Li et al.,

2012a).

From the event detection perspective, Twitter has also been considered as a source of sensors, where

the users are social sensors. Sakaki and colleagues (Sakaki et al., 2010), used Twitter social sensors

(users) to detect earthquake events. They collected the tweets and performed semantic analysis for

phrases such as earthquake, shaking, now it is shaking. They also used classification approaches to

classify them as positive or negative class, i.e., they were either related to earthquake event or not. A

potential limitation of this work lies in the assumption that people may share relevant information

in only a certain variations of the text, and does not consider semantics at a more conceptual level.

However, this is an example of specific event detection. Another domain specific event detection system,

Twitter-based Event Detection and Analysis System-TEDAS was proposed by Li and colleagues (Li

et al., 2012b). The system specifically detected crime and disaster events. TEDAS was partially a rule

based systemwhich crawled over tweets based on certain rules, such as specific keywords and hashtags.

Next, the tweets are classified using a supervised learning. Within the event detection approaches,

these works focus on crisis specific data, which either focused on specific crisis events (earthquake) or

vocabulary (keywords and hashtags), thereby not scaling the applicability of the system to multiple
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crisis type andmultilingual crisis data. Table 2.5 shows a comparison of various works with regards to

the research scope of this thesis.

Some of the works focused on extracting events in the form of entities, dates, etc. Ritter (Ritter

et al., 2012) developed a system TwiCal to extract multi-type events relating to sports, politics, mu-

sic release, from Twitter and generate open-domain calendar. They used an in-domain trained entity

tagger (Ritter et al., 2011), instead of using Stanford Tagger. The system extracted entities, dates,

event phrases from the Twitter data. The use of Natural Language Processing techniques has been

exploited in more works to perform event detection. Elloumi and colleagues (Elloumi et al., 2013)

designed a two-step model for performing event detection. The first step performs relation extrac-

tion and creates binary relations between entities in the text. The second step arranges these relations

in a template, which can define an event. Popescu and colleagues (Popescu & Pennacchiotti, 2010)

applied supervised machine, using Gradient Boosted Decision Trees (Friedman, 2001), learning to

detect controversial events. For this they used a controvery lexicon fromWikipedia, bad words lexicon,

and an English dictionary. The English dictionary comprised of 100k part-of-speech tagged English

words, which was trained over Wall Street Journal and Brown Corpora*. The work reflected opti-

mistic results, however it was not catered for controversial events from diverse domains. Alsaedi and

colleagues (Alsaedi et al., 2016a) proposed a two stage classification system for identifying real-world

events from Twitter in Arabic language. First stage was a classification task where the data is cate-

gorised into events or non-events. The second stage was a clustering stage to cluster the data into

multiple potential events. For supervised classification task, a sample of 5000 Arabic tweets was man-

ually annotated into categories event and non-event. While the work focused on Arabic data, it only

demonstrated the event detection problem from a single language perspective. They used Arabic lan-

guage specific stemmer for pre-processing the data.

So far, we have covered the segment of the literature where the focused domain of information on

*https://www.sketchengine.eu/brown-corpus/
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social media is treated as an event, and the various approaches to detect the events. Next, we survey

the works which have focused on identifying crises oriented information from social media.

2.4.2 SocialMedia Data Processing in Crisis Situations

When it comes to crises events (natural or man made disasters), as we have seen that social media

emits information which can be valuable imminently to various stakeholders such as decisionmaking

bodies, first responders, impacted people, and even to the general public. But as we are aware of the

potential challenges that we face in extracting, filtering (Gao et al., 2011), classifying, and/or ranking

crisis related content from social media, we review various methods researched specifically to process

such information. As a reminder, in Table 2.5 we compare various works with respect to the research

questions being explored in this thesis.

Several systems have been proposed to extract crisis relevant information from social media. ESA-

(Emergency Situation Awareness) system (Yin et al., 2012; Power et al., 2014) was aimed to enhance

situational awareness with respect to natural disasters. The system performs this in a series of steps:

(i) beginning with a burst detection of tweets; (ii) performing clustering leading to clusters that reflect

events; (iii) filtering out tweets that are not high-value, via statistical classifiers using SVM; (iv) geo-

tagging each tweet based on the locationmentioned in the user profile. The eventswere geographically

bounded to Australia and New Zealand. Lie and colleagues (Li et al., 2012b), as earlier mentioned,

developed TEDAS which focused on crime and disaster related events on Twitter. The tweets were

collected based on predefined keywords. Further, using statistical features such asmentions, hashtags,

URL’s, the tweets were classified using a supervised learning. The system ranked the tweets by train-

ing a function based on content features (if tweet contains certain words), usage features (number of

re-tweets and likes), and user features (if it is a verified account, number of followers). To extract the

locations they relied on the geographical references in the text, as we briefed the concepts of entities

in the section 2.1. Rogstadius and colleagues (Rogstadius et al., 2013) proposed a disaster awareness
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system CrisisTracker. Using the predefined filters the system collects the tweets and through the lo-

cality sensitive hashing techniques clusters them as stories. Jadhav and colleagues (Jadhav et al., 2010)

developed Twitris by mining semantics of the tweets and considered spatio-temporal parameters of a

tweet. In relation to the research questions posed in this thesis, these works do not aim to explore the

applicability of proposed approaches in a new crisis type situation or crisis data in an unseen language.

Manyother supervised learning approaches have been studied. Karimi and colleagues (Karimi et al.,

2013) developed a statistical classifier for classifying crisis related data. They took the data frommul-

tiple crisis events and used human annotators to classify them as crisis related or not. Using statistical

features such as n-grams, presence of hashtags, number of hashtags, and user mentions, they trained

a SVM classifier. However, they analysed and validated their model only using k-fold cross vaidation

(Geisser, 1974), which does not evaluate the scenario when the classification model is applied and

tested on an entirely unseen data. They reported accuracy of roughly around 60%. Similarly, Stowe

and colleagues (Stowe et al., 2016) annotated nearly 8000 tweets for: sentiment, action, movement,

preparation, reporting, information. They opted for a supervised learning and used SVM for devel-

oping the classification model. Features such as whether a tweet is a re-tweet or not, base domain of

URL, unigrams from the previous two tweets, and n-grams were used. They also augmented each n-

gramwith its corresponding part of speech and the named entity. Furthermore, a word embedding of

all words was also augmented as a feature set. The embedding was generated by training a Word2Vec

model (Mikolov et al., 2013) on nearly 22 million tweets fromHurricane Sandy. The model was vali-

dated on a 5-fold cross validation technique (with a reported F1 score of 0.72 for classifying relevance

and a lowF1 score ranging between 0.36-0.52 for individual categories), and thus did not demonstrate

the validity of their model on a new type of crisis event.

Zhang and Vucetic (Zhang & Vucetic, 2016) proposed a semi-supervised approach for classifying

crisis related data. A labelled corpus was used to train a logistic regression classifier, and an unlabelled

corpus was used to create clusters as features (most related words for each word). The use of proba-
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Table 2.5: A comparison across various works with respect to the problem scope in this thesis

Related Focus Cross- Cross Crisis Method Semantic Statistical Translation
Works Linguality Type Features Features
TwitInfo Event No No Frequency No No No
(Marcus et al., 2011) Detection Burst
Twevent Event No No Frequency No Yes No
(Li et al., 2012a) Detection Burst
EDCOW Event No No Clustering, No No No
(Weng & Lee, 2011) Detection Frequency
(Robinson et al., 2013) E’quake No No Frequency No No No

Events
(Sakaki et al., 2010) E’quake No No Classification Neighbour Yes No

Events words
TEDAS Crime & No No Classification No Yes No
(Li et al., 2012b) Disaster (content, user

profile)
ESA Natural No No Burst, No Yes No
(Yin et al., 2012; Disasters Clustering,
Power et al., 2014) Classification
CrisisTracker Disaster No No Clustering No Yes No
(Rogstadius et al.,2013)
(Karimi et al., 2013) Disaster No No Classification No Yes No
(Stowe et al., 2016) Natural No No Classification Yes (Word Yes No

Disaster Embeddings)
(Zhang & Vucetic, Natural No No (Only Clustering, No Yes No
2016) Disaster cross crisis) Classification
(Imran et al., 2013a; Natural No No Classification, No Yes No
Imran et al., 2013b) Disaster Extraction
(Agarwal et al., 2012) Factory No No Classification, No Yes No

Fire Extraction
(Schulz et al., 2013; Car No No Classification Yes Yes No
Schulz et al., 2015) Crash
STED Crisis, No No Classification- No Yes No
(Hua et al., 2013) civic semi-supervise
Twitcident Fire No No Classification Yes Yes No
(Abel et al., 2012) Events
Tweedr Disaster No No Classification, Yes Yes No
(Ashktorab et al., 2014) Clustering, (hypernyms)

Extraction
(Li et al., 2015) Natural No No (Only Classification No Yes No

Disaster cross crisis)
(Imran et al., 2016b) Natural Yes (Only Yes (Only Classification No Yes No

Disaster 2 language, 2 types)
lack rigorous
evaluation)

(Pedrood & Purohit, Natural No Yes (Only Classification No Yes No
2018) Disaster 2 events)
(Burel et al.,2017b Natural No No Classification Yes (Word Yes No
Burel et al.,2017a) Disaster Embeddings)
(Alam et al., 2018) E’quake, No Yes Classification Yes (Word No No

Floods Embeddings)
(Lorini et al., 2019) Floods Yes No Classification Yes (Word No No

Embeddings)
(ALRashdi & O’Keefe, Crisis No No Classification Yes (Word No No
2019) Embeddings)
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bilistic sequentialmodels such asHiddenMarkovModels, ConditionalMarkovModels, Conditional

Random Fields (CRF), etc, has also been observed in this problem space. The evaluation considered

the scenario where the training data was formed of tweets from different events than the test data.

Although, the authors did not take into consideration the type of a crisis event when defining the

training and the test data. The authors claimed that when the number of labeled tweets are less than

100, then their approach is superior to standard supervised classification approach based on bag of

words representation. Imran and colleagues (Imran et al., 2013a; Imran et al., 2013b) had applied

CRF to extract information from the tweets. They apply a two step process, where in step one they

classify tweets using a Naive Bayesian classifier into categories: infrastructure damage, donations, or

caution and advice. In the step two, relevant information for infrastructure, damages, or donations is

extracted. They used several textual and statistical featuers, such as (i) presence of usermention, URL,

hashtag, emoticon, any numeric character; (ii) length of the text; (iii) uni-grams, bi-grams, and part of

speech.

Agarwal and colleagues (Agarwal et al., 2012) deployed a four step process to detect factory fire

and labour union strikes: detection, message correlation, extraction, and event correlation. They used

locality sensitive hashing, supervised classification, and post information extraction. The detection

phase reports the messages that indicate occurrence of an event. It is a two step process: rejecting the

tweets that follow a certain regular expression and then using a supervised classification and boosting

as a next step. For supervised classification both Naive Bayes and SVM’s are used. Following features

were extracted and used by the classification model: (i) number of occurrences of location, people,

organisation, and URL’s in the text. (ii) occurrence of digital text (i.e. numbers), and further parsing

the data within a range, and using it as a feature. (iii) after stemming and stop word removal, used

remaining text as feature. Locality Sensitive Hashing is used to determine tweets similarity and tweets

are treated as new events in case of similarity being less than 75%. They also customised standard

NER tagger to extract out location entities from the text. Also, during the parsed tree traversal, if a
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subtree had an article “a” or “the” before the term factory ormill or plant, then all the words between

the article and the term would be extracted. As per the authors claim, this resulted in around 76%

accuracy. To differentiate between event’s locations, context of event was framed as a measure of time

and distance. If two events were recorded within 24 hours and within 100 km radius, then they were

treated as the same event.

Much like the above (Agarwal et al., 2012), there are more works which have focused on detect-

ing events that might relatively be assumed as small scale events. Schulz and colleagues (Schulz et al.,

2013) worked on proposing a real-time architecture for detecting car crashes from microblogs. The

approach is a supervised learning which incorporates text classification and semantic web. For text

processing, they relied on resolving the abbreviations via a dictionary compiled from an online slang

resource*. As a pre-processing step they also focused on fixing spelling errors viaGoogle Spellchecking

API. The classifier was trained using several statistical features such as number of special characters

(e.g. “!”, “?”), capitalised characters, mention of spatial and temporal terms, and also used Linked

Open Data features from FeGeLOD (Paulheim& Fürnkranz, 2012) to extract types and categories for

instance of dbpedia:ENTITY. For identifying the temporal references in the text, the authors applied

Heidel Framework (Strötgen&Gertz, 2013), which resolved the text into date and time. This work is

close to the way we have approached the crisis classification problem. However, the approach did not

target the associated problems of the crisis data with regards tomultiple languages or a diverse range of

crises, as we define in our research scope. Yet, this certainly makes use of LinkedOpenData and some

of the semantic properties. The authors report an accuracy of 89%. In another following up work,

Schulz and colleagues (Schulz et al., 2015) proposed an approach to extract properties that define an

event viz. location, time, and type while detecting small scale crises events such as fires and car crashes.

Following a supervised learning, they label the tweets for their crisis relevance. Along with many of

the statistical features (as highlighted in their previous work), they also use abstract features using Se-

*www.noslang.com
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mantic Abstraction (an updated version of the work is - Schulz et al., 2017). Semantic Abstraction

resulted in identifying all location entities and replacing them with a token “LOC”. Further, the co-

ordinates for locations were determined and polygons were drawn to narrow down the location area.

Rule based clusters were formed, where the rules were described as a triple - <incident type, radius,

time>. Those incidents falling under a particular radius and time interval were formed as one cluster

of an event. The authors used datasets representing four classes - fire, car crash, shooting, and NOT

Incident Related. It is important to note that most of social media posts are not geo-tagged, hence

in order to determine locations for most of the posts, we need to curate methods to determine them

from the text, as was demonstrated in this approach.

Hua and colleagues (Hua et al., 2013) proposed a system STED, to automatically detect crises, civil

unrest, or disease outbreak events from Twitter. This was a semi-supervised approach. First, the labels

are generated from public media sources by extracting named entities and action words (verbs) from

the news description. Next, the labels are propagated to the tweets, by determining if a given tweet

contains at least one of named entities or action words. Graph partitioning methods are used to cre-

ate an event-related group of words and generating clusters of tweets. Auto-correlation between the

words was used to filter out non-important words in the clusters. Support Vector Machine (SVM)

is used for supervised classification. TF-IDF (term frequency-inverse document frequency) was cal-

culated for each word and a threshold was used to only keep top words as the features. The location

was extracted from the geo-tagged tweets, and the tweets which contained similar terms and hashtags

were assumed to be from a similar location. The authors claim to have achieved 72% in precision and

74% in recall. However, the work only focused on events from Latin America and did not elaborate

in detail about the labelled data (number of tweets) used from different events for classification.

Use of semantic web techniques has also been observed. Abel and colleagues (Abel et al., 2012) de-

veloped a systemTwitcidentwhich focused specifically on detecting fire related incidents from tweets.

The system serves analysing, filtering, and searching of small scale incidents (which do not attract sig-
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nificant web traction). The tweets were annotated using DBpedia Spotlight* (Mendes et al., 2011).

The extracted concepts are represented as attribute-value pair such as location, dbpedia:Austin Texas.

Similarly, various concepts for different categories are extracted. The tweets are classified as report-

ing about casualties, damages or risks. They are classified via hand-crafted rules which operate both

on words in the text and attribute-value pairs. A recall of 0.61 is reported. While the usage of se-

mantic features is demonstrated, the performance of the semantic features is not evaluated over the

non-semantic approaches.

Ashktorab and colleagues (Ashktorab et al., 2014) proposed a system TWEEDR, which extracts

disaster relevant information for relief workers. The system worked in three phases: classification,

clustering, and extraction. The classification phase classified a tweet as disaster damage or casualty

information. Clustering phase merged the similar tweets, and in the extraction phase the system ex-

tracted the phrases or tokens which contained particular information about different aspects of in-

frastructure. The authors collected data for twelve different crises events, by querying in two parts: (i)

keyword queries based on terms and hashtags; (ii) geographical queries by bounding box coordinates

around the event location. The authors experimented with and compared a number of classification

algorithms such as k-nearest neighbours, decision trees, Naive Bayes, and Logistic Regression. The

datawas converted to standard unigram feature vector. In order to extract the nuggets of information,

the authors employed Conditional Random Fields (CRF), and inspected for capitalisation, pluralisa-

tion of the word, whether the term is numeric in nature, and if the term belongs to a transportation

lexicon. They also checked for the term’s hypernyms from WordNet, and the part of speech. The

authors reported a low average precision of 0.49. Evaluation was performed using a 10-fold cross vali-

dation approach on the entire data, and did not explore the cases when the system is applied on a new

type of crisis.

Stowe and colleagues (Stowe et al., 2018) focused on classifying user-evacuation behaviour dur-

*DBpedia Spotlight, https://www.dbpedia-spotlight.org/demo/
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ing hurricane events. The authors employed both SVM based and Convolutional Neural Network

(CNN) based approaches to predict relevancy of tweets users produce during a certain event. They

used temporal information, spatial information, and combinedwithword embeddings for generating

vector representation of user behaviour. The evaluation was performed using a 10-fold cross valida-

tion approach and the authors observed that the deep learning approach show lower results than other

classification approaches such as SVMandNaive Bayes. The authors explain that this was due to small

size of the dataset. This work only focused on one type of event, i.e., hurricane, and did not explore

the aspect of models being applicable to other forms of crises.

ALRashdi and O’Keefe (ALRashdi & O’Keefe, 2019) studied the application of different deep

learning architectures with word embeddings to classify different types of crisis related content. The

authors used CrisisNLP dataset (Imran et al., 2016a) for the study. The authors used two types of

word embeddings- GloVe (Pennington et al., 2014) and crisis embeddings which are generated from

almost 50k disaster related tweets. The dataset had labelled tweets from different crisis events and in

English. The tweets were labelled across different category: missing, infrastructure, sympathy, dona-

tion, and other information. The training set across different classes ranged between 700-1500. The

authors reported F1-score on the test data, which ranged around 59%-61%. This work did not explore

the applicability of classification models based on variations in the crises types and/or languages. The

evaluations did not consider whether or not the test data originated from the same crisis event or a

new one.

Cross Crisis Adaptation

While most of the above works have explored methods to efficiently classify crises data from social

media, many of them have not projected the problem of the applicability of the classification model

on new types of crisis events, i.e., how effective a model is when it is tried on a new crisis event. The

problem of developing crisis data classification models, and applying them to data from a new event
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has been observed as a domain adaptation problem in some literature (Li et al., 2015; Imran et al.,

2013b; Imran et al., 2016b; Li et al., 2017; Pedrood&Purohit, 2018; Li et al., 2018a). While domain

adaptation has widely been seen in the field of sentiment analysis (Peddinti & Chintalapoodi, 2011;

Tan et al., 2009; Blitzer et al., 2007), in crisis data classification it has been viewed from the perspective

of applying the models to events from new languages and unseen events. Li and colleagues (Li et al.,

2018a; Li et al., 2017) used a supervised learning model (Naive Bayes classifier). They used a popular

crowd sourced labelled crisis dataset CrisisLexT6 (Olteanu et al., 2014) and train-tested the events

in pairs (based on timelines of the two events), i.e., the test event was not seen in the training data.

A bag of word representation was used to represent the tweets as vectors. They adopted an iterative

expectation-maximisation approach (Li et al., 2015), where the classifier iteratively learns from the

target data by classifying a part of it and re-learning from it. However, the scope of the study did not

take into consideration the similarity of different types of events (e.g., hurricanes and floods can have

similarities in the social data given the nature of impact of events on people) and the languages. In

another similar work by Li and colleagues (Li et al., 2015), they adopted a nearly similar approach on

a much smaller data of two events: Hurricane Sandy and Boston Marathon. A Naive Bayes classifier

was used to build the classification model.

Imran and colleagues (Imran et al., 2016b), analysed the classification performance when it was

trained and tested on events from two types of crises events. While the authors collected the data from

AIDR platform (Imran et al., 2014b) and CrisisLexT26 (Olteanu et al., 2015) dataset, the study was

narroweddown to earthquakes andfloods. Standard statistical features such as uni-grams andbi-grams

were used. They demonstrated that a classifier, built on Random Forest algorithm, trained on Italian

is more likely to performwell on test events from Spanish, instead of English. However, the scope was

limited to two types of events which majorly originated in Italian and Spanish languages, and thus

lacked a rigorous cross-crisis and cross-lingual evaluation. Pedrood and Purohit (Pedrood & Purohit,

2018) attempted a transfer learning approach which learns from one type of crisis event and classi-
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fies a new type. They curated datasets from two events: Hurricane Sandy 2012 and Supertyphoon

Yolanda 2013. They used a sparse coding model and compared it with bag-of-word representation as

the feature representation. The scope was however limited to hurricanes and typhoons which might

often result in similar impacts of flooding. In recent times, more popular deep learningmethods have

also been applied to such problems ( Burel et al., 2017a; Burel et al., 2017b). Burel and colleagues

(Burel et al., 2017b) adopted Dual-CNN (convolutional neural network) to develop a crisis related-

ness classification model. This model was unique as it included two layers of word embedding, one

via the Google’s Word2Vec training model (trained on the data itself) (Mikolov et al., 2013) and the

other was the semantic concepts layer. The semantic concept layer composed of entities extracted via

Alchemy API * and their corresponding semantic sub-types, such as location, politician, non-profit or-

ganisation, extracted via knowledge bases (DBpedia, Freebase). They also used CrisisLexT26 dataset

(Olteanu et al., 2015) to train and evaluate the model. In a following up work, Burel and colleagues

(Burel et al., 2017a) adopted a nearly similar approach to identify different categories of information

in the crisis data. However, both works (Burel et al., 2017b; Burel et al., 2017a) do not consider de-

termining the adaptability of the model to unseen types of crisis or if the new crisis data was in an

entirely new language. The applicability of neural networks on text classification and their domain

adaptabilitywas earlier demonstrated byNguyen and colleagues (Nguyen&Grishman, 2015) on data

from newswire, usenet, telephone conversations, and weblogs. Similarly, Alam and colleagues (Alam

et al., 2018) demonstrated domain adaptation of crisis data classificationmodels, by training and test-

ing them on earthquake and flood events in iteration. They proposed a CNN architecture with word

embedding to train a domain adaptive classifier. The word embeddings were generated from crisis

data. They reported F1-score in the range of 59%-65%. Since there were only two events in the study,

i.e., one earthquake and one flood, the study lacked a comprehensive analysis of the approach.

*Alchemy API, http://www.ibm.com/watson/alchemy-api.html
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Multilingual Adaptation

Classifier adaptation (or domain adaptation) is a problem not only from the domain perspective, but

also from the language or NLP perspective, where the applicability of a model trained on a certain

language is determined in another language too. Acquiring training data in a new language each time

is not a trivial task. This problem has widely been realised in research fields such as sentiment analysis

(Ahmad et al., 2007; Araujo et al., 2016; Balahur&Turchi, 2014; Can et al., 2018; Dashtipour et al.,

2016; Denecke, 2008; Mihalcea et al., 2007). The problem of multi-linguality in sentiment analysis

has been addressed in various ways: translating the languages to one language (Araujo et al., 2016;

Balahur & Turchi, 2014; Kanayama et al., 2004), weakly supervised models (Deriu et al., 2017), and

using the lexical resources (such as SentiWordNet) (Denecke, 2008). In the crisis data scenario, varia-

tions in the language form an equally crucial aspect, as the variations in the type of crisis events. Crisis

situations can occur around the world thereby resulting in data originating in different languages. In

order to develop computational models that can identify crisis related content, we would also need to

consider their dependency or lack of dependency on a diversity of languages. Imran and colleagues

(Imran et al., 2016b) used crisis events from primarily in two languages and created classifiers using

statistical features to test the language adaptation of the classifiers. Li and colleagues (Li et al., 2018b)

used word embeddings for generalising the crisis data across several crisis events, however they used

crisis events only in English, thereby excluding multilingual analysis from their study. Zielinski and

colleagues (Zielinski et al., 2012) developed Naïve Bayes classifiers by mixing tweets from multiple

languages and used a simple bag of words approach for training the classifier. The accuracy observed

in their approach was fairly low across different language datasets. Alsaedi and colleagues (Alsaedi

et al., 2016b) proposed a two stage approach to classify events from tweets originating from Arabic

geographic locations, but data had a mix of tweets in English and Arabic. They create a bag of word

model based on dictionary/lexicons representing words from different topics such as weather, energy,
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health, politics etc. The evaluations were performed based on 10-fold cross validation approach, and

did not specifically demonstrate a language adaptation aspect of the problem. Lorini and colleagues

(Lorini et al., 2019) explored the impact of language agnostic and language aligned word embeddings

to create classifiers that identify floods related posts from social media data. The experimental setting

was a supervised binary classification problem. The authors experimented with SVM, Random For-

est, andConvolutionalNeuralNetwork (CNN), and observed that performance ofCNNwas similar

to that of SVM and Random Forest. They used GloVe embeddings derived from a tweet corpora as

the language agnostic embeddings. The authors also usedMUSE embeddings derived fromWikipedia

(Conneau et al., 2017). The reported a F-1 score in cross-lingual classification (where the training lan-

guage and target language were different), which ranged between 0.48-0.70, with an average F-1 score

of 0.59. While the data was multilingual in nature, the entire data originated from common type of

event (flood), which could havemeant a significant overlap in the vocabulary (entities). Thework also

did not report the performance ofmodels without the embeddings, which limits the judgement while

determining the impact of embeddings.

Lo and colleagues (Lo et al., 2016) used multilingual lexicon (in English, Malay) to build a po-

larity detection approach in Singapore English (Singlish) language. The machine translation or any

parallel corpus could not be used because it did not exist for Singapore English for detecting polar-

ity in the content. From the text classification point of view, for the cross-lingual sentiment analysis

task, Xiao and Guo (Xiao & Guo, 2014) used learning methods, by creating bi-lingual feature ma-

trix between source language and target language. A similar approach of representation learning was

observed by Zhou and colleagues (Zhou et al., 2016), where they map the semantic and sentiment

correlations between the bilingual text in the same embedding space. However, the semantic cor-

relations are established only by translated counterpart of the text. Duek and Markovitch (Duek &

Markovitch, 2018) proposed generating language-independent features fromknowledge sources such

as Wikipedia to facilitate cross-lingual text classification. This work is in some ways similar to our ap-
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proachof extractingbroader semantics from the knowledge graph, however they train the classifiers on

only language-independent features by relying on an ontology based on knowledge source. Although,

this work does present a hierarchy of concept based approach, training the classifier only on those ab-

stract concepts in a problem scenario where the data fromTwitter is short in length (thus have limited

context) might result in sparse information. In contrast to some of the works mentioned above, the

approaches adopted by us consider not only the impact translated version of the data can have, but

also explore the role contextual semantics (expanded via knowledge graphs alongwith retainedoriginal

information (in text) for maximised context) can have on cross-lingual crisis data classification.

2.4.3 Semantics in text classification

From sections 2.1 and 2.1.1, we understand that semantics imply the added knowledge corresponding

to the entities in the data. These semantics add context to the information, thereby enhancing the

knowledge regarding the data from any given domain. Figure 2.2 shows a conceptual representation

of adding the semantics to a text. From the text classification point of view, the supervised or unsu-

pervised machine learning methods rely on the information that is existing in the data. This would

imply that by enriching the contextual information in the data, the ability of the machine learning

classifiers to classify data into classes will get better. Semantics enhance the chances of implicit or

explicit relationships between different words in the data. Finding such relationships can encourage

finding words from such classes that can give a more coherent representation of the vocabulary in the

data. A coherent vocabulary is more likely to impact the accuracy of the classification algorithms on

a data which is, otherwise, very diverse and scattered in its representation. These aspects of semantic

knowledge can help us overcome the limitations of a prominently used bag-of-word approach on the

actual data itself (Hu et al., 2008), in the machine learning methods. We have seen that knowledge

bases are a valuable source to extract semantics for the words (Hu et al., 2008; Wang et al., 2016b).
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Figure 2.2: Conceptual representa on - Seman c expansion of a tweet

Several works have established the phenomenon of semantic similarities between different words

by exploiting knowledge bases such asWordNet orWikipedia (Agirre et al., 2009; Zhang et al., 2011).

In one of the earlier works, Siolas and colleagues (Siolas & d’Alché Buc, 2000) proposed a semantic

kernel for text classification, for newsgroup database, using SVMclassifier. They determined semanti-

cally closer concepts within the data based on their semantic proximity inWordNet (if present) where

the proximity is defined as the inverse of the distance between the two words. Thus, it weighted the

concepts/terms in the inverted index of the words based on semantic similarity apart from TF-IDF,

and was reflected in the feature vector passed to the SVM kernel.

Hu and colleagues (Hu et al., 2008), proposed an enhanced clustering approach for text data by

leveraging the semantic knowledge fromWikipedia. They highlighted the limitation of WordNet in

terms of its limited coverage and overly simple relationships. They first extracted several semantic re-
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lationships from Wikipedia such as synonym, hypernym, and associative relations and developed a

framework to enhance the similarity measure for text clustering by exploiting the extracted seman-

tic relationships. In order to develop the semantic thesaurus from Wikipedia, the authors exploited

the redirect property and extracted anchor texts for synonymy, disambiguation pages for polysemy,

extracted “is-a” relationship, based on another method (Ponzetto & Strube, 2007), to determine hy-

pernymy, and derived associative relationships based on content similaritymeasure between pages and

out-link category measure.

Abel and colleagues (Abel et al., 2011) experimented with enriching the tweets semantically and

then augmenting them with the news articles. They extracted named entities from the tweets using

Open Calais*. The annotations were in the form of DBpedia or Wikipedia URIs. The tweets are

linkedwith news articles after determining the similarity between the tweets and articles based onTF-

IDF similarity and URLs in the tweets. They provide a faceted search on such semantically enriched

tweets.

Hu and colleagues (Hu et al., 2009) extracted external concepts froma knowledge base and internal

concepts from the actual text, to improve the clustering of the shot text. They generate three levels of

features: word level, phrase level, and external semantic features. A Solr† index ofWikipedia is created,

and for each seed phrase the authors retrieve titles and bold terms (links) from each page returned by

querying the index for any phrase query. The external features are filtered by applying heuristics, and

also regulated in the total number of extracted features. By comparing their approach against the

bag-of-words baseline, they were able to show that extracted semantic features improve the clustering

accuracy in the range of 3-10%. They used two datasets, one fromReuters and the other fromGoogle

trends. In order to specificallywork on short texts, they discarded the textswhich containedmore than

50 words. Two clustering methods were used: k-means, and ExpectationMaximization Clustering.

*Open Calais, http://www.opencalais.com/
†Apache Solr, http://lucene.apache.org/solr/
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Wang and collagues (Wang et al., 2016a) proposed text as a network classification framework. The

text is represented as a heterogeneous information network. The structured and typed information

network is generated via semantic expansion using the knowledge bases. In the approach, the authors

not only take the extracted entities from the knowledge base (Freebase), but also the path (meta-path)

between any two entities of the text in the knowledge base into the consideration. They use Naive

Bayes algorithm for classification, and project the probability of the classifier as the product of two

separate classification probabilities: one based on bag-of-words of entities, and other on the links gen-

erated by the path. In another work, Genc and colleagues (Genc et al., 2011) first map the tweets

to corresponding Wikipedia pages, and then compute the distance between the pages to determine

the semantic similarity between the tweets. The pages are determined by checking if there is a dedi-

cated page for a word in a given tweet. This results in multiple candidate pages for each tweet. Then

a score is calculated for each page, by determining the number of occurrences of words (of the tweet)

in the page. The page with highest score gets assigned to the tweet. The similarity between pages is

determined by calculating the number of links between the categories associated with any two pages.

They also used String Edit Distance and Latent Semantic Analysis as alternative methods to measure

the semantically closer tweets. They compared the three approaches by mapping the tweets on a two-

dimensional plane by using themulti-dimensional scaling of distance between the tweets. This helped

in visualising the clusters based on the three approaches. Using a Discriminant function analysis they

measured which technique predicted the category of the tweets better.

In another approach Song and colleagues (Song et al., 2011) undertook a probabilistic approach

on top of the knowledge base information to conceptualise the short socialmedia posts (tweets). They

used Probase (Wu et al., 2011;Wu et al., 2012) to determine the conceptual attributes and further ap-

plied Naive Bayes inference method to find out a more broader concept. For instance, they assumed,

if the attributes refer to population, language, and currency, then there is a high probability of them

referring to a subject as country. Although with no mention to any specific country. With the ex-
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tracted semantic features using the approach, they perform clustering over the tweets using k-means

clustering. They were able to show that their approach (probabilistic semantic conceptualisation)

performed better than traditional bag-of-word statistical methods. A few other similar approaches

indicate the usage of knowledge base oriented concepts for cluster labeling (Carmel et al., 2009) or

enhancing classification and ranking of short social media posts (Wang et al., 2014).

Tang and colleagues (Tang et al., 2012) attempted to enhance the semantic information for the

text by two methods: first augmented the knowledge with the translation of the original text to mul-

tiple languages, and then extracted synonyms from WordNet for each concept. They also extracted

titles and keywords from Wikipedia as additional semantics for the words. They applied this on the

data pulled from Facebook and Twitter corresponding to top 30 topics derived fromGoogle Trends*.

These topics were used as queries to Twitter and Facebook APIs to collect the data. Two clustering

approaches k-means and LDAwere applied on data sets to compare the baseline features and features

generated from their proposed approach.

The TRECMicroblog track (2011-15)† has boosted the research in the social media data classifi-

cation by providing large size corpus (each track has millions of tweets) and hand-annotated subsets

of it. Tao and colleagues (Tao et al., 2012), alongside the keyword and tweet syntax features such as

hashtags, also exploited entity-based semantic features generated byDBpedia Spotlight to show better

results in determining the relevance of a tweet with respect to a query. There are a few detailed surveys

covering the usage of semantic techniques inmining the social media data (Bontcheva &Rout, 2014;

Ristoski & Paulheim, 2016).

In recent times, word-embedding has become quite popular in the neural network based text classi-

fication approaches. Word-embeddings‡ are a distributed representation of words which are likely to

have similarmeanings or used in the same context. Individual words are represented as vectors formed

*Google Trends, https://trends.google.com/trends/
†TRECMicroblog Track, https://trec.nist.gov/data/microblog.html
‡Word-Embedding, https://en.wikipedia.org/wiki/Word_embedding
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of such terms (similar context), which are generated from a large corpus. These embeddings are then

used as dense and high/low dimensional matrix in neural networks. These embeddings, conceptually,

behave as external semantics generated from a large scale corpora. The obtained word embedding are

meant to be combined with the original text data in a meaningful representation. They can either

be converted to a vector using one-hot encoding or as in more popular approaches multi-layer per-

ceptron or convolutional/recurrent neural networks (Hu et al., 2014). These approaches require a

fixed length input, or use aggregation operations such as k-max pooling (Kalchbrenner et al., 2014;

Xu et al., 2015) to bring it down the dimensionality for entire input.

Lai and colleagues (Lai et al., 2015) created a recurrent neural network for text classification. In

theirwork, they created a recurrent structure for the text, which is a bi-directional recurrent neural net-

work, to capture the context. Eachwordwas structuredwith theword on the left of it and on the right

of it, ensuring that each word is always structured with its neighbouring terms to establish the imme-

diate context. Each neighbouring word is similarly defined by its neighbouring context. Additionally,

they use a pre-trained word embedding which was trained on English andChineseWikipedia dumps.

Similarly, in a work described earlier, Burel and colleagues (Burel et al., 2017b) used extracted seman-

tic information from knowledge base along with word embedding layer by training on a Word2Vec

model, to classify the social media data. Similarly, in some other related works, embeddings have been

used to generate feature representations for the clustering of the short text (social media posts) (Xu

et al., 2015).

2.5 Summary andDiscussion

Social media platforms are now widely considered as a crucial source for mining critical information

during crises situations. Distinctworks have shown the validity of crucial informationbeingpresent in

socialmedia data. But given the overwhelming amount of data getting generated in short timeperiods,
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it is nearly impossible to manually monitor and record crisis related information. At the same time

every crisis related information is informative with respect to enhancing awareness about an event.

Such related information is pertinent to crisis situations inmultiple dimensions such as relating to in-

frastructure damages, affected individuals/communities, medical support, donations, sympathy and

support. Other than the images and videos, most of the data is available in text. There are several

machine learning based approaches explored to classify such data into appropriate categories. Within

the machine learning scope there are supervised and unsupervised learning methods. Supervised learn-

ing methods, as discussed in section 2.2.1, rely on a training data which is labelled in categories, and

these labels are treated as the ground truth. The unsupervised learning methods, as discussed in sec-

tion 2.2.2, look for similaritymetrics between data points to create clusters which are similar in nature

based on a certain aspect. The supervised and unsupervisedmethods are based on the features that are

generated from the data. Features are the attributes in the data, which are passed to the algorithms in

a certain format. In the scope of current research exploration we focus on the text data. In order to

generate the features from the text, we require natural language processing techniques, as discussed in

section 2.1. Some of the key text processing operations are normalisation, tokenisation, character en-

coding, stop word filtering, stemming, lemmatisation, and part of speech tagging. All these operations

are critical in order to generate features from the text. Since text is basically the morphological repre-

sentation of any language, the text processing techniques are strongly specific to different languages.

For instance, there are POS tagger models available for different languages.

One of the key natural language processing techniques isNamed Entity Recognition (NER). NER

is the process of identifying the presence of named entities such as person, location, organisation, ob-

ject in the text usingNLP techniques. The extracted entities can further be enriched withmore infor-

mation about them, also referred to as semantics. Linking the entities to specific identifiers which can

establish the exact reference to the entity is calledNamed Entity Linking/Resolution. This helps in de-

termining the exact context of the concept andobtain contextual information. This is usually achieved
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via knowledge bases. Knowledge bases are contextual databases that consolidate relational knowledge

about various concepts, entities, etc., in a graph form. The nodes are entities and are connected via

properties that establish their relationships. Named Entity Resolution addresses the ambiguity which

might occur due to similar naming of different entities. To achieve this, the neighbouring concepts

contribute to determine the exact context in which the entity is being referred to, thus disambiguate

or resolve the conflict. Wikipedia, an online crowd-sourced encyclopedia, is a popular consolidated

knowledge source often used for studying Named Entity Disambiguation methods. Wikipedia has

also been used, alongwith other knowledge sources, to create large scalemultilingual knowledge bases

such as YAGO, BabelNet, DBpedia etc. There are also language based lexical resources such asWord-

Net. Several Named Entity Disambiguation services are known to function over these knowledge

bases such as AIDA, DBpedia Spotlight, Babelfy, and IBM Alchemy, to name a few. These services

also perform Word Sense Disambiguation along with Named Entity Disambiguation. But there are

more than just the linked entities that contribute to extended knowledge when it comes to enriching

the semantics. Knowledge bases can contribute to extracting several degrees of information related to

an entity, such as what type of entity it is or what are its other similar connections in a certain context.

For instance, if a person is born at some place we can determine other important people who were

born at the same place or which country is that place in or what is the population of that place.

Further, to classify the text, as we mentioned earlier, there are supervised and unsupervised clas-

sification methods. Some of the widely used supervised classification methods are Linear Regression,

Logistic Regression,Naive Bayes, SVM,DecisionTrees, andNeuralNetworks. Among the unsupervised

methods we have seen an extensive use of k-means, LDA, PLSA etc. It has been observed in the litera-

ture, when there is a labelled data available, that has beenmanually annotated and has inter-agreement

by multiple annotators, supervised classification methodologies are generally followed since there are

pre-defined classes available on the data that can be used to guide the algorithm. Supervised classifi-

cation approaches suit the problems where the data has been well labelled into classes. In this thesis,
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we have relied on humanly annotated datasets, and hence opted for supervised learning approaches

instead of unsupervised. We rely on different evaluationmetrics to determine the performance of any

given method. Most widely used metrics are precision, recall, F-1 score, Receiver Operating Character-

istic.

Classifying information from a stream of data is also perceived as an Event Detection problem (sec-

tion 2.4.1). NewEventDetection or First StoryDetection is a subtask withinTopic Detection andTrack-

ing (TDT). TDT, initially meant for newswire data, was approached and applied on online data as

well. Several approaches focused on identifying a new event based on clustering, comparing messages

based on similarity functions, frequency of single word or multiple words, etc. We saw such methods

being applied to identify crisis events such as earthquakes. These methods relied both on frequency

burst and also clustering them together based on co-occurrence of words. Another interesting inte-

gration of frequency burst and co-occurring words is observed by analysing the burst frequency of

multiple words which have a strong cross-correlation in a subgraph of words occurring in the data.

Some of the approaches monitored the social media streams for keywords and phrases to gather the

data and then use rule based methods to classify the data.

We found many machine learning based approaches to identify crisis related data from the social

media data. Different systems have been proposed for filtering, classifying, searching the crisis data

such as TEDAS, ESA, Twitinfo, Twitcident, TWEEDR, etc. These approaches show an extensive

use of classical machine learning methods such as SVM and Naive Bayes algorithms. Some of the

works that focus on extracting specific nuggets from the data also use theConditionalRandomFields.

Majority of these works rely on statistical features and social media specific features (such as hashtags

on Twitter). Other features such as presence of - user mentions, URLs, emoticons, numeric characters

are also observed in some methods. While there are several machine learning based approaches to

classify the crisis related data, not many of them attempt to contextualise the data by enriching the

feature set through expanded semantic information. However, a couple of approaches do exhibit

71



extracting attributes such as types and categories fromDBpedia but they did not target different types

of crises or crises in different languages in their problem scope.

We have observed that there is plenty of literature which highlights the use of semantics in text clas-

sification problems (section 2.4.3). The semantics enhance the contextual information, which can

result in a better definition of the boundaries between data from different classes. Semantics tend to

improve the implicit or explicit relationship between different words in the data, thereby yielding a

more coherent representation of the overall vocabulary in the data, whichmight otherwise be a diverse

set. Thus, knowledge bases serve as a valuable source to extract the semantic information of thewords.

Many works established the increase in semantic similarities between different concepts by exploiting

knowledge bases. Different types of knowledge bases serve different purposes. For instance,WordNet

is an English lexical database. Nouns, verbs, adjective, and adverbs are grouped together into sets of

cognitive synonyms, called synsets, where each group represents a certain concept. The synsets are in-

terlinked in a network via conceptual relations and lexical relations. Such a knowledge base allowus to

bridge and relate concepts at amacro or amicro level based on synonymy or hypernymy. Another type

of knowledge base are built on large scale encyclopedia like Wikipedia. Some of the popular knowl-

edge base areDBpedia, BabelNet, Freebase, Google KnowledgeGraph, YAGO, etc. These knowledge

bases compound large scale entities and relationship between them in a graph format. Extensive re-

search has been done to classify text after incorporating semantics from such knowledge bases. Some

of the approaches enrich the data andprovide a faceted search on top of the enriched data. An effective

approach is to first performNER on the text though NERAPIs such as Babelfy, DBpedia Spotlight,

IBM Alchemy, etc. These API’s can return a specific Wikipedia/DBpedia URI which in turn can

be used to extract further relationships for any given entity. Most of the classification methods en-

hance the vector space by enriching the vocabulary with the semantics. Some works apply additional

filtering or refining methods to incorporate the semantics, such as probabilistic approaches to refine

the concepts. Recently, the TREC Microblog (2011-15) catalised the research in social media data
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classification by providing a large scale corpus, and annotated subsets.

Word-embeddings are another popular approach. Word-embeddings are distributed representa-

tion of words which are likely to occur together or represent similar context. They are generated from

large scale text corpus. These embedding can be used as dense and high dimensional matrix in neu-

ral network based classification approaches. These embedding behave as explicit semantics generated

from large scale corpora based factors such as co-occurrence.

Social media crisis data represents widespread classes of data and all of which are crisis relevant,

whether it is a post which mentions donation drives or posts that report any emergency situation or

posts conveying sympathy with the affected ones. Different crises situations might yield a different

nature of data and can often occur in multiple languages. It is neither practical nor always feasible to

train a new classifier each time a new type of crisis occurs or a new language that is seen or for specific

classes such as donations or infrastructure, etc. In the literature study we saw several classification

methods but most of the approaches do not take the adaptability to a new type of crisis or to a new

language into consideration. The applicability of semantics in the crises domain has not been much

explored either, as it has been observed in other text classification problems. This motivates us to

exploit the scope of semantics to address the diversity in data across different types of crises and across

different languages. In the subsequent chapters we will answer the research questions which we have

posed earlier.
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3
Classifying Crisis Data - A Hybrid

Statistical Semantic Approach

In Chapter 1 we highlighted the scope of the problem pertaining to the crisis relevant information

on social media platforms. We defined our research scope and proposed the research questions and

hypothesis in Section 1.2. In Chapter 2, we provided a study of relevant techniques and related liter-

ature, and compared different works covered in the literature with the research scope defined in this
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thesis. As we move ahead, we perform experiments to address every individual research question one

by one. In this chapter, we focus on addressing the first research question -

• RQ1 - How could the addition of semantics improve the binary classification of Tweets with re-

gards to their relevancy to crises?

Different crisis events generate a varying vocabulary of data. Often there might be contextual sim-

ilarities across crisis data, but this is not easy to capture. For machine learning based classification

systems, this variation in the data across different crisis data poses a challenge when they are applied

to unseen crisis data, particularly when they are trained on some crisis events and applied to unseen

crisis events. Semantic features can enhance capturing the context of such data, as they can capture

context of a piece of information contained in a text. To address research question RQ1, we explore

the use of semantic features, extracted via named entity recognition techniques and knowledge bases,

in enhancing a binary classificationmodel’s adaptability in classifying crisis related tweets. In the liter-

ature, a wide range of statistical features andmachine learningmethods have been researched in recent

years to automatically classify such information. We compare the semantically enrichedmodel with a

baseline statistical features model, and demonstrate that semantic features enhance themodels’ ability

to identify crisis related content from new crises events. The contributions of the work done in this

chapter can be summarised as follows:

• Show the impact of adding different types of semantic features to the feature set for training a

classification model which can identify crisis related information from Twitter.

• Exhibit that using a hybrid combination of semantic features and statistical features improves

the classifier’s performance when classifying the data from new crisis events which were not

part of the training data.
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3.1 Introduction

The 2016WorldHumanitarianData andTrends report byUNOCHA* reported around 102million

people, across 114 countries, being affected by natural disasters in the year 2015 alone, and causing

an estimated damage of $90 billion. There is a massive surge of real time content on social media

platforms during such scenarios, often containing information valuable to many stakeholders. There

was a 500% increase in the frequency of tweets observed in Japan during 2011 earthquake†. As we

have earlier seen in Chapter 2, many of such messages hold relevance to crises scenarios with respect

to the information they convey and enhance the situational awareness. This information brings in

value to various stakeholders such as impacted communities, relief agencies (for example American

Red Cross‡, All Hands Volunteers§), civic authorities etc. But given the voluminous nature of data

generated on social media platforms, particularly onTwitter¶, it is nearly impossible tomanually filter

or sieve relevant and actionable content (Gao et al., 2011). Hence, it is essential to develop automated

tools that can robustly perform such filtering. In practice, such tools are largely unavailable and in

addition the social media data characteristics (short length, colloquialism, lack of syntactic structure)

make it even more challenging to automatically process and generate understanding.

In this thesis, the larger goal that we aim to achieve is to propose classification approaches that

are able to identify crisis related information from voluminous social media steams, and filter out

irrelevant content. While we have seen a number of approaches focusing on crisis data identifica-

tion/classification in the literature, a key aspect of adaptability of such systems to new crisis events (or

new types of crisis or new in new languages) has largely been missing. It is important for such classifi-

cation systems to be valid and adaptive to new crisis events. When the classifier is applied on to a new

*UNOCHA https://data.humdata.org/dataset/world-humanitarian-data-and-trends
†https://blog.twitter.com/official/en_us/a/2011/global-pulse.html
‡American Red Cross, https://www.redcross.org
§All Hands and Hearts, https://www.allhandsandhearts.org
¶Twitter, https://twitter.com/
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crisis event, the test data might differ from the training data (which the classifier has been trained on)

in terms of the vocabulary in the data. Despite the variation the data vocabulary between the training

and the test events, there might be a contextual similarity between the data sets. But capturing this

context is not straightforward, when vocabulary of the data differs.

We hypothesise that semantic features, extracted through knowledge bases, can enhance capturing

of the context, and alleviate the variations between the training and the test data. Semantic features

can also align different concepts which are inter-related via different relationships in knowledge bases

(e.g. hypernyms, synonyms, same as, type of, etc.). Such features can boost the keyword-query based

search of information. As earlier cited in Chapter 1, section 1.2, in course of crisis situations we may

look for relevant information using keywords such as “building damage AND/OR airport, building,

hotel etc.”, and eventually figure out that it is difficult to cover every possible infrastructure oriented

aspect. The challenge of varying crisis data can becomemore evident when there is a new crisis event.

In such scenarios, when a trained classification model is applied on unseen crisis data from new crisis

events, the classifiers are likely to under perform due to inconsistency between the vocabulary of the

training and the test data. Semantic features should be able to incorporate the contextual consistency

across varying crisis data (events) in machine learning based classification models.

Following this hypothesis, in this chapter we aim to answer the first research question:

RQ1 - How could the addition of semantics improve the binary classification of Tweets

with regards to their relevancy to crises?

As earlier seen in Chapter 2, much of previously explored research on classification of crises data

into related and not related has focused on supervised (Li et al., 2012b; Karimi et al., 2013; Stowe

et al., 2016; Zhang & Vucetic, 2016) and unsupervised (Rogstadius et al., 2013) machine learning

methods. Manyof thesemethods use features such as n-grams and statistical features (text length, POS

presence in the text, presence of URL’s, number of hashtags). As mentioned earlier, in this chapter
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we aim to explore the impact of extracted semantic information as features in identifying crisis related

information, in a binary classification system. Most of these approaches use SupportVectorMachines,

Naive Bayes, and/or Conditional Random Fields (Power et al., 2014; Stowe et al., 2016; Imran et al.,

2013b). Unsupervisedmethods usually rely on clustering and keyword processing approaches. In this

chapter, we propose a hybrid approach where both statistical and semantic set of features play a role

in building the binary classificationmodel. The semantic features, explained in more detail in section

3.2.2, include extracted entities and hypernyms from knowledge base BabelNet (Navigli & Ponzetto,

2010; Navigli & Ponzetto, 2012).

In this chapter we will explore whether the semantic features are effective in improving the ap-

plicability of the classification models on previously unseen crisis events. We use a labelled dataset

of multiple crisis events named CrisisLexT26 (Olteanu et al., 2015). We elaborate more on the data

used in the experiments in this chapter in section 3.2.1. The results show that adding semantic infor-

mation to the model along with statistical features enhances the classifier’s performance to identify

crisis related tweets when applied to unseen crisis events as compared to the baseline of only statistical

features.

The rest of the chapter is organised as follows: Section 3.2 elaborates onour classification approach.

Section 3.2.1 describes the dataset used, and selection of the labelled data and events. Section 3.2.2

describes the feature engineering, and types of features: statistical and semantic. Section 3.3 details

our experimental set up and results. We discuss the findings in section 3.4 and summarise the work in

section 3.5.

3.2 Crisis Related Information Classification

To differentiate crisis related content from not related in social media data, we propose a binary clas-

sification approach. In our case, we perform experiments on tweets fromTwitter. Tweets are publicly
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shared posts by users on Twitter platform. In this section we will elaborate on dataset, feature engi-

neering, and classifier selection.

3.2.1 Dataset

To this end, we have used CrisisLexT26 (Olteanu et al., 2015) dataset. This data set has been used in

some of the works (Imran et al., 2016b; Burel et al., 2017b; Burel et al., 2017a) covered in the litera-

ture study in Chapter 2. This is an annotated dataset of 26 crisis events that occurred between 2012

and 2013. Each event has 1000 labelled tweets. The tweets were originally collected using the stan-

dard techniques of using specific hashtags and/or impacted location name paired with canonical form

of disaster such as Queensland Flood or a meteorological name. The labels are categorised into four

categories: Related and Informative, Related and Not Informative, Not Related, and Not Applica-

ble. The label Related and Informativemeant that a given tweets conveyed some useful information

which assists in understanding about the crisis event. Related and Not Informativemeant that while

the tweet was conveying an information which was referred to the crisis event but did not contain

useful information. Not Related were the ones, as the name suggests, were not related to a crisis, and

Not Applicable were the ones that were not readable or too short. Additional information about the

CrisisLexT26 data set can be found on the CrisisLex website*.

In this particular work, we focus on tweets in English. Hence from 26 crisis events, we selected

the events which were dominantly in English. We selected the following events: Australia Bushfire

(ABF), Boston Bombing (BOB), Colorado Flood (CFL), ColoradoWildfire (CWF), Los Angeles Shoot-

ing (LAS), Queensland Flood (QFL), Savar Building Collapse (SBC), Singapore Haze (SGH), and

West Texas Explosion (WTE). In order to facilitate a binary classification system, we need a two label

dataset. For this to happen we merged the tweets those labelled asNot Related andNot Applicable as

Not Related class, thus obtaining a total of 1539 tweets asNot Related. For the other class, wemerged

*CrisisLex, http://www.crisislex.org/
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Table 3.1: Event data distribu on per class

Event Class -1,0 Size Total
1 (Related) 0 (Not Related)

West Texas Explosion (WTE) 111 89 200
ColoradoWildfire (CWF) 247 247 494
Colorado Flood (CFL) 89 75 164
Australia Bushfire (ABF) 250 250 500
Boston Bombing (BB) 79 71 150

Los Angles Shooting (LAS) 130 120 250
Queensland Flood (QFL) 320 281 601

Savar Building Collapse (SBC) 261 239 500
Singapore Haze (SGH) 80 67 147

Related and Informative with Related and Not Informative, thus creating the Related class and ob-

tained 7461 Related class tweets. We can see there is a huge disparity between the size of Related and

Not Related tweets. Thus, to reduce this disparity we further randomly selected 1667 crisis Related

tweets. This disparitywas addressed at each individual event level. This gave us a near balanced dataset

of 3206 binary labelled tweets from two classes Related andNot Related. Table 3.1 shows final data

distribution across classes for each selected event (classRelated representedby ‘1’ and classNotRelated

represented by ‘0’).

3.2.2 Features

In our binary classification approach to classify social media posts as crisis Related andNot Related,

we generate two type of features; Statistical Features and Semantic Features. As elaborated in Chap-

ter 2, Statistical Features have widely been studied and used in several text classification methods (Li

et al., 2012b; Karimi et al., 2013; Stowe et al., 2016; Zhang & Vucetic, 2016). We use the Statistical

Features as a baseline approach for the binary classification task. These statistical features reflect the

quantifiable properties of the text as well as linguistic properties. Semantic Features reflect the named
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entities emerging from the tweets, as well as their hierarchical information (hypernymy) extracted us-

ing an external knowledge graph.

Statistical Features

Given a text post, we extract the following as statistical features:

• Number of nouns: Nouns generally can refer to entities such as location, person, organisations,

etc, involved in the scope of crisis event. It forms the part of Part of Speech (POS) features, as

explained in Section 2.1.(Imran et al., 2013a; Imran et al., 2013b; Stowe et al., 2016)

• Number of verbs: Verbs can indicate that any action is being undertaken or occurring in course

of the crisis event. It forms the part of Part of Speech (POS) features.(Imran et al., 2013a;

Imran et al., 2013b; Stowe et al., 2016)

• Number of pronouns: Much like nouns, pronouns may also refer to the actors, locations, or

resources that are named in a given text posted during the crisis event. It forms the part of Part

of Speech (POS) features.

• Tweet Length: Total number of characters in a given post. The length of a post may be related

to the amount of information contained in it.(Imran et al., 2013a; Imran et al., 2013b; Sakaki

et al., 2010)

• Number of words: Similar to the length to the post, number of words may also be an indicator

of the amount of information present in the post.(Imran et al., 2013b; Karimi et al., 2013)

• Number of Hashtags: Hashtags are social media specific features, which often indicate the

themes of the post and are manually generated by the posts’ authors. These features are in-

dicated by any alph-numeric phrase beginning with a ‘#’ sign in the text. The presence or ab-
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sence of the number of hashtags can be important discriminatory feature.(Imran et al., 2013a;

Imran et al., 2013b; Karimi et al., 2013)

• Readability: We use Gunning fog index which uses average sentence length (ASL) and the

percentage of complex words (PCW): 0.4 * (ASL + PWC). This feature aims to determine

how complex a post is for humans to parse*.

• Unigrams: Unigrams provide a keyword-based representation of the content of the posts, thus

enabling a vector based representation of the overall data.(Imran et al., 2013a; Imran et al.,

2013b; Karimi et al., 2013; Li et al., 2012b; Stowe et al., 2016; Zhang & Vucetic, 2016)

We usedWeka data mining software† to perform pre-processing of the data and transforming into

unigrams, byusing its StringToWord functionality. Furtherwe converted all the tokens into lower case

and performed stemming (using Lovins’ algorithm)‡, stopword removal, and tf*idf transformation.

We have explained these pre-processing techniques on text data in Chapter 2 in section 2.1. This

resulted in a total unigram size of 10655. For extracting thePart of Speech (POS) tags and the statistical

features listed above (top five), we availed awidely used tool, the StanfordCoreNLP software§ in Java.

We count the number of Hashtags by identifying the number of times the character ‘#’ is used in the

text, and readability is computed using the Gunning fog index in Java.

Semantic Features

We generate the semantic features inmultiple steps, as shown in Fig. 3.1. This extraction of semantics

is done in three steps: (i) semantic annotation, (ii) semantic expansion, and (iii) semantic filtering.

*https://en.wikipedia.org/wiki/Gunningfogindex
†Weka, https://www.cs.waikato.ac.nz/ml/weka/
‡http://www.mt-archive.info/MT-1968-Lovins.pdf
§Stanford Core NLP, https://stanfordnlp.github.io/CoreNLP/
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Each individual step generates a different kind of semantic feature and we explore each of them by

trying different combinations of features, for the binary classification task.

Figure 3.1: Seman c Features: Annota on, Expansion, & Filtering

• Semantic Annotation Features (SemAF): The first step is to extract the annotated entities in

the tweets viaNamed Entity Recogniser (NER) services. We used Babelfy* (Moro et al., 2014)

for this purpose. Babelfy performs multi lingual word sense disambiguation and entity link-

ing, by linking the entities to BabelNet- a multi lingual knowledge base (Navigli & Ponzetto,

2010; Navigli & Ponzetto, 2012). For each entity that Babelfy annotates in a given text, it re-

turns a unique identifier in the form of a Synset ID for each identified entity. This Synset ID

is a unique identifier for any particular concept/entity in the knowledge base BabelNet. For

each Synset IDBabelNet storesmulti-dimensional semantic information such asmulti-lingual

senses, hypernyms, synonyms, similar-as, etc, relationships and these can be extracted from the

knowledge base. In this semantic feature set, once we get a Synset ID from Babelfy, we extract

main sense of each Synset ID in English from BabelNet. As an example if we look at Fig. 3.2

(a screenshot of Babelfy API’s web interface), for a given post,

*Babelfy, http://babelfy.org/
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Figure 3.2: Seman c Annota on Example via Babelfy

“A 15-year-old High River boy is missing due to the flood. Call police if you see Eric

St. Denis #abflood”

Babelfly identifies and annotates entities such as High River, Boy, Flood, etc. Annotating the

entire data resulted in 12,006 unique concepts.

• Semantic Expansion Features (SemEF): In this step, after extracting the annotations, we ex-

pand the semantics via BabelNet knowledge base. For each extracted entity/concept (Synset

ID) we retrieve every hypernym, at a distance 1 (which implies direct hypernyms only, and not

hypernyms of hypernyms), of these entities. Hypernyms are the words with a broader meaning

of another word, thus constituting a category into which words with more specific meanings

fall*. For example, fruit is a hypernym of apple. We hypothesise that hypernyms reflect the a

broader/upper level concept to each entity, thus encapsulate the broader semantics of the crisis

related information. As an example, let us consider the entities fireman and policeman often

occur in the crisis related posts. If we expand the semantics to the hypernym level of both of

*https://www.lexico.com/en/definition/hypernym

84

https://www.lexico.com/en/definition/hypernym


these entities, we observe that both have at least one common hypernym - defender. Hence,

when a new post arrives containing an entityMP (Military Police), then it is more likely to be

crisis related since it also has defender as a hypernym. We expanded semantics for each concept

that got annotated and yielded in an additional 7032 unique concepts.

• Semantic Filtering Features (SemFF): The process of semantics expansion of extracted entities,

sometimes can yield very generic or broad level of concepts which eventually hold a very low

discrimination power between crisis related and not related content. For instance, the con-

cept Person is hypernym to many entities and it appears in both crisis related and not related

posts. Considering that every single concept which relates to a person/individual will have its

hypernym as person, and instance of every such concept will have its hypernym as person. For

instance, concepts such asneighbour, sportsman, relative, collector, baby, socialiser amongmany

others, have their hypernym as person. This make a concept such as person a very broad con-

cept in itself. For such issues we propose a filtering approach which aims to curb on semantics

from expanding to a very broad range of concepts. Our filtering approach is based on com-

putationally determining the depth of a concept in the hierarchy of BabelNet. To determine

the depth of a concept, we iterate through the hierarchy of BabelNet through REST API, via

11653 unique BabelNet Synset IDs collected after annotation and hypernym extraction. To

create this hierarchy, for each Synset ID, we iterate through BabelNet via 2 relationships- hy-

pernyms (thus generating a network of concepts above it) and hyponyms (generating a network

of concepts below it). This process resulted in a network of 3.9million relations, for nearly 3.5

million concepts, which are put in a Directed Graph, where the node which has the highest

betweeness centrality is determined as the most abstract concept of the network. To this end,

we used NetworkX* graph library in Python. We identified the most abstract node as the fol-

*Networkx, https://networkx.github.io/
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lowing Synset ID - ‘bn:00031027n’, which relates to the conceptwith itsmain sense as ‘Entity’.

Next, the shortest path between any given concept, out of 3.5 million concepts, and the node

‘Entity’ is defined as the depth of that particular concept in the hierarchy. We defined level

0 (zero) as the depth of the node ‘Entity’, and found the maximum depth reaching 21. We

plotted the discriminative features from the data, by calculating Information Gain score, and

plotted them against the depth in the hierarchy. We did this across each event and observed

the depth/levels at which the features tend to be most the informative (based on Information

Gain) were between 3 and 7. In Fig. 3.3 and Fig. 3.4, we show these plots for the training data

corresponding to Singapore Haze and Australia Bushfire events. The darker and bigger dots

show features with higher Information Gain. We attach the plotted graphs for all the events

in the Appendix A, from Figure A.1-A.7. In the filtering phase, we filter out concepts whose

depth does not fall between the level 3 and 7. This resulted in 574 concepts getting filtered out

across the balanced data from the selected 9 events.

Figure 3.3: Informa on Gain/Level:Training Data-Singapore Haze
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Figure 3.4: Informa on Gain/Level:Training Data-Australia Bushfire

3.2.3 Classifier Selection

While selecting the binary classification algorithm, we kept in mind the following:

A. For future unseen data, it is important to avoid over-fitting approaches.

B. Not aiming to perform a memory costly operation.

C. Limited training instances (nearly 3200) & high dimensionality (unigrams).

Keeping the above aspects in consideration, we opted for Support Vector Machine (SVM) (Cris-

tianini et al., 2000) with Linear Kernel for classification. Also, the use of SVM in text classification

problems is a widely followed and acceptable methodology (Lorini et al., 2019; Stowe et al., 2018;

Stowe et al., 2016; Agarwal et al., 2012). In the recent times, some of the related works have also

proposed crisis data classification methods based on deep learning approaches such as Convolutional

Neural Networks (CNN) using word embeddings (ALRashdi & O’Keefe, 2019; Lorini et al., 2019;
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Alam et al., 2018; Burel et al., 2017a; Nguyen et al., 2017). Some of these approaches (Lorini et al.,

2019; Alam et al., 2018) used pre-trained large scale word embeddings such as GloVe embeddings

(Pennington et al., 2014) or Google word embeddings (Mikolov et al., 2013). However, if the size

of dataset is quite small the deep learning approaches do not exhibit better performance than other

classification approaches such as SVM and/or Naive Bayes (Stowe et al., 2018).

For our experiments, the training data always varied between 2800-3200 depending on the com-

bination of the events for training and excluded test dataset. The features (unigrams of tweets or

unigrams of tweets + semantic expansion) varied in the range of 15,000-18,000. So it is evident that

the number of features were exclusively high in comparison to the number of training samples. Ex-

planations can be referred to understand the usage of linear kernel over other kernels*. Radial Basis

Function (rbf) kernel or a Polynomial Kernel may cause an over-fitting problem, hence we opted for a

linearly separable hyperplane. Also, we compared the SVM (with linear kernel) with a standard Con-

volutionalNeuralNetwork (CNN) architecture usingword embeddings (Kim, 2014), and found out

that in the given dataset the CNN based model does not perform as well as the baseline SVM based

model built on statistical features. The details of the CNNwithword embeddings architecture set up

is provided in section 3.3.1 under Crisis ClassificationModel scenario.

We also validated this by comparing the statistical significance of SVMLinear Kernel over RBF and

Polynomial (degree 3) kernel using thePaired-TTest. Over 10 iteration of 10-fold cross-validationover

the entire dataset (1667 crisis related, 1539 not related) under all 5 feature sets (explained further), on

an average - SVMLinear Kernel had an accuracy of 88%, Polynomial (3 degree) 68%, and RBF had an

accuracy of 66%.

*http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
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3.3 Experiments

In this section we describe the design of our experimental set up in which we create different models

based on a combinationof different features, and selectionof training and test data. Further, we report

our findings and discussions on how semantics impact the classifier performance in classifying crisis

related data from new/unseen events. And thus answer the first research questionRQ1.

3.3.1 Experimental Setup

In this work, we design two main experimental scenarios:

• Crisis ClassificationModel: In this set up we aim to compare the performance of the classifier

based on statistical featureswith the classifier based on combination of statistical and semantic

features, and analyse if adding semantics boosts the classifier’s performance. For this experi-

ment, we take the entire data as mentioned in section 3.2.1 and train the model and validate it

following a 10 iteration of 10-fold cross validation approach. To this end, we used theWEKA

software (v.3.8)* to generate the classifiers. We create the following models:

– SF : A classifier generated with statistical features; our baseline.

– SF+SemAF: A classifier generated with statistical features, and semantic annotation fea-

tures.

– SF+SemAF+SemEF: A classifier generated with statistical features, semantic annotations,

and their hypernyms, i.e., the Semantic Expanded Features.

– SF+SemFF: A classifier generated with statistical features, and filtered semantic annota-

tions, along with their hypernyms, i.e., the Semantic Filtered Features

*http://www.cs.waikato.ac.nz/ml/weka/
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Asmentioned in section 3.2.3, we also compare the abovementionedmodelswith a deep learn-

ingmodel based onCNNarchitecture usingword embeddings. The architecture of theCNN

model is similar to a widely adopted architecture proposed by Kim (Kim, 2014) using an em-

bedding layer. We used GloVe embeddings that are a vector (of dimensionality 100) obtained

from large scale corpora of tweets (2 billion tweets, 27 billion tokens, and 1.2 million vocabu-

lary) (Pennington et al., 2014). The input sequence of data (tweets in the dataset) and embed-

dings are fed to a sequential network of convolutional layers with 128 convolutional filters of

sizes 3, 4, and 5. The output layer performs a binary classification (of crisis relevancy) using a

sigmoid activation and usedRMSprop optimizer. We performed 10 iterations of 10-fold cross

validation. We used Keras* (based on Tensorflow†) for building the model in Python 3. The

results are shown in Table 3.2, with the model named asCNN-embeddings.

• Unseen-Crisis Event Classification: In the second scenario of the experimental set up, we retest

the classifier models we built above, by applying them to a new crisis data that was not part of,

or not seen, in the training set. In this experimental set up, we generate the four classifiers, as

mentioned in the previous task. However, since themodel is to be tested and applied on a new

crisis event each time, we use 8 out of 9 crisis events to train themodel, and apply themodel on

the single crisis event that was left out of the training data for validation (test data). Since there

are four types of models and 9 overall events, we end up performing 36 different classification

experiments.

3.3.2 Results: Crisis ClassificationModel

In this part we highlight the results from the first experimental set up, where we analyse the perfor-

mance of various feature models based on 10 iterations of 10-fold cross validation. The results are
*Keras, https://keras.io/
†Tensorflow, https://www.tensorflow.org/
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shown in the Table 3.2, where it presents Precision (P), Recall (R), F-measure(F1) value (from 10-fold

cross validation), mean of F-measure (F1mean) of 100 results from 10 iterations, standard deviation in

F-measure (σ), ΔF/Fmean which shows the increment of Fmean over the baseline, and p-value which

reflects the significance of the Fmean score of any givenmodel in comparison to the baseline. p-value is

calculated using 2 sample t-test*, where we take into consideration themean Fmean score and standard

deviation of two compared models, i.e. baseline and any other model.

FromtheTable 3.2, ifwe compare theFmean, the two semanticmodels, SF+SemAFandSF+SemAF+SemEF,

show an improvement over the baseline SFmodel. However SF+SemAF (annotations) shows a better

performance than SF+SemAF+SemEF (annotations and hypernyms), with still a very marginal gain

of 0.6% over the baseline. The CNN-embeddings model shows Fmean score of 0.845 which is signifi-

cantly less than the baselinemodel SF.This is similar to the observationsmade by Stowe and colleagues

(Stowe et al., 2018), as the overall size of data is merely around 3200 tweets, with almost 1500 tweets

in each class. The deep learning models are likely to under-perform in such a small size of data. Based

on the performance of CNN-embeddings, and the amount of time it requires to train a deep learning

model, we chose to focus on rest of the SVMbased classificationmodels and treat SFmodel (based on

statistical features) as the baseline in further experiments.

*2 sample t-test, https://select-statistics.co.uk/calculators/two-sample-t-test-calculator/

91

https://select-statistics.co.uk/calculators/two-sample-t-test-calculator/


Table 3.2: 10 itera ons of 10-fold Cross Valida on, showing performance of sta s cal seman cs classifiers vs sta s cal
classifier.

Features P R F1 F1mean Std. Dev. σ ΔF/F1mean p-value

(for F1mean)

SF (Baseline) 0.864 0.865 0.865 0.872 0.017 - -

SF+SemAF 0.871 0.871 0.87 0.877 0.017 0.0057 0.039

SF+SemAF+SemEF 0.868 0.868 0.868 0.873 0.017 0.0011 0.67

SF+SemFF 0.863 0.864 0.864 0.873 0.018 0.0011 0.68

CNN-embeddings 0.851 0.846 0.843 0.845 0.049 -0.09 < 0.001

3.3.3 Results: Unseen-Crisis Event Classification

In Table 3.3 we report the results of experiments conducted for this unseen-crisis event classification

scenario, where we leave one crisis event entirely out for validation, and train the classification model

on rest of the eight events*. In the table each row depicts the particular crisis event that was left out of

the training data and is used as a test data to validate the model created on the remaining nine crises

events. The size of each test data and corresponding training data can be determined from the Table

3.1. We created four different classification model, as shown above, for each of these 9 events in the

dataset- the one using only statistical features (SF), which we use as baseline, and the semantically

enhanced ones: (i) SF+SemAF, (ii) SF+SemAF+SemEF and, (iii) SF+SemAF+SemFF.

The results, in the Table 3.3, report Precision (P), Recall (R), F1-measure (F) and the increment of

F measure over the baseline, ΔF/F for each of the nine tested crisis event across all the four models.

*Each model was tested on the 8 event dataset it was trained on using 10 fold cross-validation to ensure its
accuracy before applying it to the 9th event data. There accuracy drops around 17% on average when applied
to new events.
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Table 3.3: Unseen-Crisis Event Evalua on- SF, SemAF, SemEF, and SemFF feature sets (best set of features highlighted
in bold)

SF SF+SemAF SF+SemAF+SemEF SF+SemFF
Test P R F P R F ΔF/F P R F ΔF/F P R F ΔF/F
Event
WTE 0.806 0.805 0.804 0.813 0.81 0.808 0.005 0.819 0.815 0.812 0.010 0.828 0.825 0.823 0.024
CWF 0.643 0.64 0.638 0.633 0.623 0.617 -0.033 0.716 0.715 0.714 0.119 0.712 0.711 0.71 0.113
CFL 0.784 0.774 0.774 0.796 0.793 0.793 0.025 0.79 0.787 0.787 0.017 0.797 0.793 0.793 0.025
ABF 0.776 0.774 0.774 0.782 0.778 0.777 0.004 0.811 0.8 0.798 0.031 0.803 0.79 0.788 0.018
BB 0.713 0.707 0.702 0.693 0.693 0.693 -0.013 0.734 0.733 0.732 0.043 0.761 0.76 0.759 0.081
LAS 0.811 0.808 0.808 0.777 0.776 0.776 -0.040 0.777 0.776 0.775 -0.041 0.789 0.788 0.787 -0.026
QFL 0.699 0.694 0.694 0.702 0.696 0.695 0.001 0.702 0.691 0.69 -0.006 0.704 0.692 0.691 -0.004
SBC 0.618 0.594 0.58 0.651 0.64 0.636 0.097 0.619 0.584 0.561 -0.033 0.617 0.586 0.565 -0.026
SGH 0.716 0.66 0.648 0.744 0.68 0.669 0.032 0.737 0.68 0.67 0.034 0.732 0.673 0.662 0.022
Avg. 0.714 0.718 0.009 0.727 0.0194 0.731 0.0251
% 0.9% 1.94% 2.51%

The three semantic feature models, i.e. SF+SemAF, SF+SemAF+SemEF, SF+SemFF, on aver-

age enhance classification results in all cases. As an observation, SF+SemAF improves the classifi-

cation over the baseline SF, in 6 out of 9 case, with an average of 0.9% increase in F-1 measure (no-

tice the number of positive ΔF/F). As opposed to our observation in 10-fold cross-validation setup,

SF+SemAF+SemEF performs much better in the unseen-crisis event scenario, where the model is ap-

plied on a new crisis event. SF+SemAF+SemEF shows improvement over the baseline in 6 out of 9

tested events,with an average gainof 1.94%over thebaseline. Also, tobenoted is that SF+SemAF+SemEF

improves over SF+SemAF in 5 out of 9 cases. The semantic filtering of abstract concepts approach

SF+SemFF (appliedover SF+SemAF+SemEF) results in improvementofperformanceover SF+SemAF+SemEF

in 7 out of 9 cases (average of 0.6% gain over SF+SemAF+SemEF). This observation validates the as-

sumption that certain abstract concepts potentially induce noise and thus filtering them out could aid

in enhancing the classifier’s performance. The filtering model SF+SemFF, on an average, gains 2.51%

in performance over the baseline.
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Table 3.4: Examples of posts that were misclassified by the sta s cal classifier, but classified correctly by the seman c
classifiers.

PostID Text Label
Post1 I GET 5078 REALL FOLLOW-

ERS! http://t.co/qrF5dpD3 #Be-
stRap,#boulderflood,#PutinsFlik,#Rem #in

Not Related

Post2 @Stana_Katic Can we get some loveballs in Col-
orado? We need it after all the flooding! Love you!
Xo

Not Related

Post3 RT@LarimerCounty: #HighParkFire burn area map
as of Monday night 10 p.m. http://t.co/1guBTcXX

Related

Post4 Colorado wildfires their worst in a decade
http://t.co/RtfLmfds

Related

Post5 RT @RedCross: Thanks to generosity of volunteer
blood donors there is currently enough blood on the
shelves to meet demand. #BostonMarathon

Related

3.3.4 Feature Analysis

Wemanually analyse some of the tweets thatweremisclassified by the statistical baselinemodel SF, but

classified correctly by the semantic models. This will help us in better understanding the impact of

the semantics in such a problem scenario. In this context, wemanually analyse some of the tweets that

weremisclassified by the statistical baseline model, but were correctly classified when using semantics

(see Table 3.4). The analysis is complimented by taking into consideration the InformationGain (IG)

score as well, to determine the discriminatory nature of any given feature.

When the InformationGain (IG)was calculated for the features corresponding to the baseline clas-

sifier SF, we found that number of hashtags was the most relevant feature. On performing a manual

analysis of some of the tweets, we noticed that tweets belonging to the Not Related class tend to ei-

ther have zero hashtags (e.g. Post 2 in Table 3.4) or might contain too many hashtags (e.g. Post 1 in
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Table 3.4). Among the other discriminative statistical features we found number of nouns and num-

ber of pronouns. This explains our hypothesis behind using the statistical features such as nouns and

pronouns, as crisis related posts tend to mention persons, resources, and/or locations in the course of

crisis. Further, in the semantic models (semantics feature added with the statistical features) we ob-

served that semantic annotations, and hypernymswere among the highly ranked features based on the

InformationGain (IG) score. Hypernyms such asHappening andEvent, which are hypernyms of con-

cepts such as incident, fire, crisis, disaster, and death, were among the top 10 IG score features (among

almost 800 features which had IG > 0). Annotations such as Structural_and_Integrity_Failure were

also among such features.

If we look at Post 3, in Table 3.4, it was wrongly classified by the statistical feature model. The

post contains the term burn, which does not (or barely) occur in the corresponding training data,

instead fire is more prominent in the training data. In statistical feature model, there is no semantic

information to relate the term burnwith the crisis related class. However, this post is correclt classified

by the SF+SemAF model, because the term burn is enriched by the semantic annotation process and

now adds the concept Fire to the post. Burn and Fire belong to the same BabelNet synset and are

therefore identified by the same ID within the semantic annotation features.

Post 4 was wrongly classified by the SF+SemAF model, but semantic expansion by adding hyper-

nyms in the SF+SemAF+SemEFmodel resulted in correct classification of this instance. The semantic

expansion of the annotated term wildfire returned the concept Fire which is a feature with a high IG

score.

Post 5 shows the case where expanding the semantics via adding the hypernyms did not help in

correct classification, instead it brought in concepts which had low discriminatory powers. Expand-

ing to hypernyms of the annotations such as Thanks andMeet returned concepts such as Virtue and

Desire, which were not only very abstract but very low in their IG score. Thus it contributed towards

adding the noise. The semantic filtering model SF+SemFF aided in removing the abstract concepts
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and thus resulting in increased informative nature of rest of the features such asVolunteer, Benefactor,

andDonor.

3.4 Discussion

In this chapter, we demonstrated that when a classifier model trained on some crisis data is applied to

identify crisis related information from a new crisis event, the model trained via mixing the semantic

features and the statistical features performs better at the task in comparison to the model built only

on statistical features. This addressed the research question RQ1 we had posed. Through various it-

erations of experiments and feature analysis we were also able to prove our hypothesis that semantic

features can improve the classification performance when applied to an unseen crisis event. We used

knowledge graphs to enrich the semantic and thus enhance the vocabulary by incorporating entity

sense and hypernyms. This captured the broader context of tweets which are otherwise very limited

in their context due to shorter length. Although, the inclusion of semantics can also potentially in-

duce noise by including very broad and abstract concepts, which We observed in the feature analysis

section. One of the reasons for expansion to bring in very broad/abstract concepts could be the un-

symmetrical mappings of hypernym-hyponym relationship in BabelNet, due to which the hierarchical

expansion returned abstract concepts. Perhaps using a strictly symmetrical resource such asWordNet*

might prevent such issues fromhappening, but in that case it will not cater to information about other

entities which a large scale knowledge graph such as BabelNet or DBpedia† can offer. Expanding the

semantics to beyond the hypernymy or synonymy and incorporatingmore information about entities

and their types can also play a role in classification. Also, expanding this model to a bigger data size

can boost the classifier’s learning abilities.

While the experiments have enabled us to answer the research question RQ1, we need to further

*WordNet, https://wordnet.princeton.edu/
†Dbpedia, https://wiki.dbpedia.org/
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examine how the classifier would behave if it was not only a new crisis event it was applied to, but also

an entirely new type of crisis event. For example, a crisis classification model trained on the data from

earthquake type crisis events, is applied on data fromfloods orwildfires type of crisis event. This forms

part of our research questionRQ2, and we will expand our approach from this chapter to address the

research questionRQ2 in the next chapter.

3.5 Summary

Semantics help in broaden the contextual information, thus enhancing the classification algorithms’

performance in identifying crisis related information from new crisis events. In this chapter we pre-

sented our work on creating a hybrid systemwhich incorporates both statistical and semantic features

to classify crises events when they have not been seen in the training data, thus aiming to answer the

first research question RQ1- “How could the addition of semantics improve the binary classification of

Tweets with regards to their relevancy to crises?”.

We extracted the semantic features in two stages: (i)main sense of the entities annotated via Babelfy;

(ii) extracted hypernyms and their senses for each annotated entities via BabelNet. The statistical fea-

tures, which are usually the quantified linguistic and structural properties of the text, were computed.

A binary classification approach, based on SVM classifier, was adopted to classify the tweets as crisis

related and not related. We also observed that in some cases the semantic enrichment resulted in addi-

tion of very abstract concepts, which are not descriminative in their nature. To address the problem

of abstract concepts, we proposed a filtering model which filters out abstract concepts based on their

hierarchy. The hierarchy was created using the hypernym-hyponym relationship network in the Ba-

belNet, and later identified the depth of the informative features (based on Information Gain score)

in the hierarchy.

We were able to demonstrate, and thus answer the research questionRQ1, that adding the seman-
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tics to the statistical features in a binary classification model enhances the performance and helps the

classifier in identifying crisis related information from new unseen crises events.
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4
Classifying Crisis Information Relevancy

Across Crisis Types

Semantic features enhance the accuracy of the classifier, as seen in Chapter 3, when classifying

crises posts fromnew events according to their relevancy to crises. In this chapter, we take the problem

scenario a step beyond the scope of Chapter 3, where the training and test data were independent of
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the type of the event such as floods, earthquakes, and train crashes. This chapter focuses on addressing

second research question -

• RQ2 -To what extent could semantics improve Tweets classification for new types of crisis events?

For instance, how will the classification model behave if it was applied to data from events such as

floods, while it was trained on different type of events such as earthquakes and train crashes. In this

chapter, we will analyse how do semantic features impact the adaptability of the classifiers when the

types of crises events tested by the classifier are different than the type of crises events the classifier is

trained on.

4.1 Introduction

In the previous chapter, we explored the role of semantics in classifying the crisis related information

when the tested event was not seen in the training data. However, what we did not take into account

was the type of crisis the event reflected such as floods, earthquakes, train crashes etc. If the model was

strictly trained on certain types of events, they are not likely to perform well when tested on different

types of crises events, given the model is built only on statistical features. Given the real time need of

identifying the relevant information in themidst of crises, re-training themodel on a new type of crises

is not a viable solution due to lack of well labelled training data for a new type. Some previous works

focused on domain adaptive classifiers which were trained on some crises type events and applied to

different types (Li et al., 2018a; Pedrood&Purohit, 2018; Imran et al., 2013b). However, a limitation

of these approaches is centered around not considering enough types of events (limited to 2). Imran

and colleagues (Imran et al., 2013b), tried a domain adaptive approach by considering two disasters:

Joplin 2011 tornado and Hurricane Sandy. A model trained on a subset of Joplin tornado data was

applied toHurricane Sandy and the remaining part of Joplin tornadodata. Aswe cannotice, thiswork

was limited to only two crises, a hurricane and a tornado, which can often result in similar type of data
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due to the similarity in their nature of impact. Also, they did not consider the aspects of semantics,

that could have improved themodel’s adaptability inmultiple types of crises. Some approaches such as

adversarial training andgraph embeddinghave alsobeen seen indomain adaptiveproblems todifferent

crisis events (Alam et al., 2018), although they were tested with just two crisis types with one event in

each type.

In this chapter we aim to address the second research question:

RQ2 -To what extent could semantics improve Tweets classification for new types of crisis

events?

We aim to analyse the performance of a model trained on certain types of events (e.g., earthquakes

and train crashes), when applied to types of events which were not seen in training data (e.g., floods,

typhoons, etc.). We will further analyse whether adding the semantics can boost the performance of

the classifier model in such a scenario. Our hypothesis for using the semantics in cross crises domain

classification is that adding the concepts and properties of entities (e.g., type of an entity, category

of an entity, hypernyms) improves the classifier’s adaptability in identifying crisis information con-

tent across different crises domains, by creating a non-event specific contextual semantic abstraction

of crisis-related content. The contributions of the work done in this chapter can be summarised as

follows:

• Build ahybrid statistical-semantic classificationmodelwith semantics extracted fromtwoknowl-

edge bases: BableNet andDBpedia.

• Conduct the experiments for classifying relevancy of tweets from 26 crisis events of various

types.

• Create classification models with multiple combination of features.

• Analyse the classifier models when crisis types are included/excluded from the training data.
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• Demonstrate that adding the semantic features increases the classification accuracy on unseen

crisis types by +7.2% in F1 in comparison to non-semantic models.

The rest of the chapter is organised as follows: Section 4.2 elaborates onour classification approach.

Section 4.2.1 describes the dataset used, and selection of the labelled data and events. Section 4.2.2

describes the feature engineering, and types of features: statistical and semantic. Section 4.3 details

our experimental set up and results. We discuss the findings in section 4.4 and summarise the work in

section 4.5.

4.2 Semantic Classification of Crisis Relevancy Across Crises Types

Tocreate an automated crisis relevancybinary classificationmodelwhich is adaptive across crises types,

we require a labelled dataset spanning across various crises types, various statistical and semantic fea-

tures, and a machine learning classification algorithm. In the following sub-sections, we present (i)

the dataset used for training and testing the classifiers in Section 4.2.1, (ii) the statistical and semantic

set of features used for building the classifiers in Section 4.2.2, and (iii) the classifier selection process

in Section 4.2.3.

4.2.1 Dataset

As in the previous chapter, we use the CrisisLexT26 dataset* (Olteanu et al., 2015) for this study as

well. The data contains 1000 labelled tweets for each of the 26 different crises events in the following

categories: ‘Related and Informative’, ‘Related but not Informative’, ‘Not Related’ and ‘Not Applica-

ble’. For this study, we selected all 26 crises events. To create a binary classification system we merged

the Related and Informative and Related but not Informative into the Related class, and merged the

Not RelatedwithNot Applicable to create theNot Related class.

*CrisisLexT26 http://crisislex.org/data-collections.html#CrisisLexT26
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Table 4.1: Crisis events data, balanced between related and not-related classes

Category Category

Nb. Id Event Related Not-Related Total Nb. Id Event Related Not-Related Total

1 CWF ColoradoWildfire 242 242 484 2 COS Costa Rica Earthquake 470 470 940
3 GAU Guatemala Earthquake 103 103 206 4 ITL Italy Earthquake 56 56 112
5 PHF Philippines Flood 70 70 140 6 TYP Typhoon Pablo 88 88 176
7 VNZ Venezuela Refinery 60 60 120 8 ALB Alberta Flood 16 16 32
9 ABF Australia Bushfire 183 183 366 10 BOL Bohol Earthquake 31 31 62
11 BOB Boston Bombing 69 69 138 12 BRZ Brazil Nightclub Fire 44 44 88
13 CFL Colorado Floods 61 61 122 14 GLW GlasgowHelicopter Crash 110 110 220
15 LAX LAAirport Shoot 112 112 224 16 LAM LacMegantic Train Crash 34 34 68
17 MNL Manila Flood 74 74 148 18 NYT NY Train Crash 2 1 3
19 QFL Queensland Flood 278 278 556 20 RUS Russia Meteor 241 241 482
21 SAR Sardinia Flood 67 67 134 22 SVR Savar Building 305 305 610
23 SGR Singapore Haze 54 54 108 24 SPT Spain Train Crash 8 8 16
25 TPY Typhoon Yolanda 107 107 214 26 WTX West Texas Explosion 81 81 162

Further, we reduced the data redundancy by removing the replicated instances of the tweets by

comparing each tweet in pairs after removing the user-handles (i.e., ‘@’ mentions), URL’s, and special

characters. After removing duplicates there were 21378 documents (tweets) annotated with the Re-

lated label and 2965 annotated with theNot Related label. This distribution between the two classes

was highly skewed. Thus, to avoid classification bias caused by the imbalance in the size of the classes

in the data, we balanced the data bymatching the number ofRelated documentswith theNotRelated

ones across each crisis event. Following this, the overall size of the data resulted in 5931 tweets (2966

Related and 2965 Not Related documents). Table 4.1 shows the distribution of selected tweets for

each event.

4.2.2 Features

As in the previous chapter, we generate two types of features for the binary classification problem to

classify the tweets as crisis related and not related: statistical features and semantic features. The im-

portance of statistical featureswas highlighted in Chapter 2, and was also used in addressing research

question RQ1 in Chapter 3. For research question RQ2 addressed in this chapter, we use the Statis-
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tical Features as the baseline approach as well. The statistical features contain the linguistic properties

and quantifiable properties of the text. In the Semantic Featureswe use two types of semantic features

from two knowledge base, i.e., BabelNet andDBpedia. Further, we provide more details about both

type of features.

Statistical Features

For every tweet in the dataset, we use the same statistical features as those in Chapter 3:

• Number of nouns: Nouns generally refer to entities such as location, person, and organisations

involved in the scope of crisis event (Imran et al., 2013a; Imran et al., 2013b; Stowe et al.,

2016).

• Number of verbs: Verbs can indicate that an action is being undertaken or occurring in the

course of a crisis event (Imran et al., 2013a; Imran et al., 2013b; Stowe et al., 2016).

• Number of pronouns: Much like nouns, pronouns may also refer to the actors, locations, or

resources that are named in a given text posted during the crisis event.

• Tweet Length: Total number of characters in a given post. The length of a post may be related

to the amount of information contained in it (Imran et al., 2013a; Imran et al., 2013b; Sakaki

et al., 2010).

• Number of words: Similar to the length of the post, number of words may also be an indicator

of the amount of information present in the post (Imran et al., 2013a; Karimi et al., 2013).

• Number of Hashtags: Hashtags are social media specific features, which often indicate the

themes of the post and are manually generated by the posts’ authors. The presence or absence

or the number of hashtags can be important discriminatory features (Imran et al., 2013a; Im-

ran et al., 2013b; Karimi et al., 2013).
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• Unigrams: Unigrams provide a keyword-based representation of the content of the posts, thus

enabling a vector based representation of the overall data (Imran et al., 2013a; Imran et al.,

2013b; Karimi et al., 2013; Li et al., 2012b; Zhang & Vucetic, 2016; Sakaki et al., 2010).

To extract the Part of Speech (POS) featureswe used the spaCy library*. The tokenswere converted

to lower case. Stop-words were removed using a stop-word list†. The tokens were stemmed using the

Porter Stemmer. Converted the data to theunigramsusing the regexp tokeniser provided in theNLTK

library‡. In the end,we applied theTF-IDFnormalisationon the tokens toweigh the importantwords

(tokens) in the data as per the relative importance within the entire dataset. This process resulted in

the generation of a total of 10757 unigrams (total vocabulary size) for the overall balanced data.

Semantic Features

As explained in earlier chapters, semantic features are aimed at generalising the crises information rep-

resentation across the data. In this case, we hypothesise that the semantic features can generalise the

information across various types of crises events. For this work, we extracted the named entities using

Named Entity Recogniser (NER) service Babelfy,§ and used two knowledge bases for expanding the

semantics: (1) BabelNet,¶ and; (2) DBpedia‖

• Babelfy Entities and BabelNet Senses (English): the NER and word sense disambiguation ser-

vice Babelfy built on top of BabelNet extracted the entities (e.g., news, sadness, terremoto). For

each of these entities (returned by Babelfy in the form of Synset IDs), we extract the associated

English sense/labels fromBabelNet (e.g.,news→news, sadness→sadness, terremoto→earthquake).

*SpaCy Library, https://spacy.io
†Stop Words List, https://raw.githubusercontent.com/6/stopwords-json/master/stopwords-all.

json
‡Regexp Tokenizer (NLTK), http://www.nltk.org/_modules/nltk/tokenize/regexp.html
§Babelfy, http://babelfy.org
¶BabelNet, http://babelnet.org.
‖DBpedia, http://dbpedia.org.
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• BabelNet Hypernyms (English): we extract the English sense/label of all the direct hypernyms

(at distance-1), of each annotated entity, from BableNet. Hypernyms, by their nature, can

broaden the context of an entity, thereby enhancing the semantics of a document (e.g., broad-

casting, communiucation, emotion).

• DBpedia Properties: Babely returns aDBpediaURI for each annotated entity (if available). We

extract a list of properties associated with each DBpedia URI* by querying the SPARQL end-

point: dct:subject, rdfs:label (only inEnglish), rdf:type (onlyof the typehttp://schema.org

andhttp://dbpedia.org/ontology), dbo:city, dbp:state, dbo:state, dbp:country anddbo:country

(the locationproperties fluctuatebetweendbp anddbo) (e.g., dbc:Grief, dbc:Emotions, dbr:Sadness).

In the previous chapter we saw that hypernyms enriched the context of the text by adding the se-

mantics. The text documents with different entities but with similar hypernyms can be correlated.

Consider the following entities fireman, policeman,MP (Military Police), and garda (an Irish word

for police). These four entities, while uniquely different in their morphological representation, share

a common English hypernym: defender.

Also, there are multilingual tweets in the datasets, and formulating the semantics in English helps

in preventing the data sparsity which might, otherwise, result from diverse morphological forms of

entities and concepts across different languages (refer toTable 4.2 to see an example). The entity senses

and hypernyms are extracted fromBabelNet. The semantic expansion viaBabelNet semantics resulted

in vocabulary expansion by an additional 3057 unigrams (in comparison to statistical features).

DBpedia properties were extracted to obtainmore information for each entitywhichwere reflected

by subject, label, and location specific properties. The semantic expansion via DBpedia semantics

expanded the vocabulary size by 1733 unigrams (in comparison to statistical features).

*Ontology Namespaces: dct: http://purl.org/dc/terms/; dbo: http://dbpedia.org/ontology/;
dbp: http://dbpedia.org/property/; rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#; rdfs:
http://www.w3.org/2000/01/rdf-schema#

106



Table 4.2: Seman c expansion with BabelNet and DBpedia seman cs.

Post A Post B

Feature ‘Sad news to report from
#Guatemala -at least 8
confirmed dead, possibly
more, by this morning’s
major earthquake.’

‘Terremoto 7,4 Ricther
Guatemala deja 15 falle-
cidos,casas en el suelo, 100
desaperecidos, 100MIL
personas sin luz FO’

Babelfy Entities news, sadness, dead, de-
scribe, earthquake

terremoto, casas, suelo, luz,
fallecidos

BabelNet Sense (En-
glish)

news, sadness, dead, de-
scribe, earthquake

earthquake, house, soil,
light, dead

BabelNetHypernyms
(English)

broadcasting, communica-
tion, emotion, feeling, peo-
ple, deceased, inform, nat-
ural disaster, geologica phe-
nomenon

natural disaster, geo-
logical phenomenon,
building, Structure,
residential_building
granular material, people,
deceased

DBpedia Properties dbc:Grief,
dbc:Emotions,
dbr:Sadness,
dbc:Demography,
dbr:Death,
dbc:Communication,
dbr:News,
dbc:Geological_hazards,
dbc:Seismology,
dbr:Earthquake

dbc:Geological_hazards,
dbc:Seismology,
dbr:Earthquake,
dbc:Home,
dbc:Structural_system,
dbc:Light, dbr:Death,
dbc:Demography
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To create a binary classification system for classifying crisis related information across crises types,

weuseboth types of semantics featuresBabelNet semantics (SemBN)andDBpedia semantics (SemDB)

as individual semantic features, and in combination as well (SemBNDB). Combination of both types

of semantic features resulted in vocabulary expansion of 3824 unigrams.

4.2.3 Classifier Selection

For a binary classification problem, the rationale behind the choice of classification algorithm was

explained in Chapter 3. Combination of various features resulted in a high dimensionality, in the

range of 10-15k, in comparison to the relative size of the training data (around 6000). Considering

this high dimensionality and the need to avoid over fitting, we opted for Support Vector Machine

(SVM) with a Linear Kernel as the classification algorithm. SVM has been found effective for such

classification tasks*.

In addition, we re-validated the suitability of SVMLinear Kernel to our task in comparison toRBF

kernel, Polynomial kernel, and Logistic Regression. By performing 20 runs of 5-fold cross-validation

of different feature combination, we found that SVM Linear Kernel was statistically significant with

a higher mean F1 value of 0.8118 and a p-value of< 0.00001 (via 2 tailed t-test). The codebase and

data generated in this chapter is accessible from the shared Github repository†.

4.3 Experiments

In this section, we elaborate on the experimental set up, combination of features for creating the clas-

sification models, and selection of different types of events for training and test data for cross-crisis

classification scenario.
*A Practical Guide to Support Vector Classification, http://www.csie.ntu.edu.tw/~cjlin/papers/

guide/guide.pdf
†https://github.com/pkhare/crisc_codebase
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4.3.1 Experimental Setup

We design the experiments in two scenarios:

• Crisis Classification Models: For the first experiment, we train and evaluate the classification

models on the entire dataset comprising of all the 26 crisis events (Table 4.1). We create various

models, by combining different features, and aim to analyse whether the impact of semantics

boosts the binary classification. We perform this on the entire data and validate the model

through numerous iterations of 5-fold cross validation. To this end, we used scikit-learn li-

brary* for the task. The various classification models based on different feature combinations

are as follows:

– SF: This classification model is built on the statistical features only. This also happens

to be the baseline model for these experiments.

– SF+SemBN: This classification model is built on the combination of statistical features

and the semantic features from BabelNet Semantics (entity sense, and their hypernyms-

in English).

– SF+SemDB: This classificationmodel is built on a combination of the statistical features,

and the semantic features from DBpedia Semantics (label, type, and other DBpedia

properties).

– SF+SemBNDB: This classification model is built on a combination of the statistical fea-

tures, and the semantic features from both BabelNet and DBpedia Semantics.

• Cross-Crisis Classification: In the second scenario of the experiment design, we aim to evalu-

ate the models on types of events which were not observed in the training data. For instance,

*Scikit-learn, http://scikit-learn.org
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training the model on data from flood type events, and testing it on data from earthquake type

events. The models are again created based on a combination of different features as shown in

the above experiment design. However, in this case we define the training and test data based

on two different criteria:

A. Identify crisis related posts from a crisis event, when the type of event is already included

in the training data (e.g., apply themodel on tweets from anewflood type incidentwhen

tweets from other flood type crises are in the training data).

B. Identify crisis related posts from a crisis event, when the type of the event is not included

in the training data (e.g., apply themodel on tweets from anewflood type incidentwhen

training data do not contain tweets from any other flood type crises).

The criteria in the Cross-Crisis Classification are based on the type of events. To enable such an

analysis, we distributed the 26 crisis events broadly in 11 types, as shown in Table 4.3. The categorisa-

tion of the events into types is based on personal understanding of the nature of any given crisis event,

and how related the events might be based on their effects. For example, floods and typhoons are quite

similar considering that typhoons often result in floods.

4.3.2 Results: Crisis Classification

We report the results from the first experiment where we perform 20 iterations of 5-fold cross valida-

tion on each feature model on the entire dataset (26 crises events across all 11 event types). Table 4.4

presents the results and reports the mean of Precision (Pmean), Recall (Rmean), and F1 score (Fmean)

from 20 iterations of 5-fold cross validation, the standard deviation in F1 score distribution (σ), and

percentage change of F1 score compared to the baseline (ΔF/F).

*NYT has only 3 tweets in total.
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Table 4.3: Types of events in the dataset

Event Type (Nb.) Event Instances Event Type (Nb.) Event Instances

Wildfire/Bushfire (2) CWF, ABF Haze (1) SGR
Earthquake (4) COS, ITL, BOL, GAU Helicopter crash

(1)
GLW

Flood/Typhoon (8) TPY, TYP, CFL, QFL,
ALB, PHF, SAR,MNL

Building collapse
(1)

SVR

Terror Shooting/Bombing
(2)

LAX, BOB Location Fire (2) BRZ, VNZ

Train crash (2) SPT, LAM* Explosion (1) WTX
Meteor (1) RUS

Table 4.4: Crisis-related content classifica on results using 20 itera ons of 5-fold cross valida on, ΔF/F (%) shows
percentage gain/loss of the sta s cal seman cs classifiers against the sta s cal baseline classifier.

Model Pmean Rmean Fmean Std. Dev () ΔF/F (%) Sig. (p-value)

SF (Baseline) 0.8145 0.8093 0.8118 0.0101 - -

SF+SemBN 0.8233 0.8231 0.8231 0.0111 1.3919 < 0.00001

SF+SemDB 0.8148 0.8146 0.8145 0.0113 0.3326 0.01878

SF+SemBNDB 0.8169 0.8167 0.8167 0.0106 0.6036 0.000011

In Table 4.4 we can see that the semantic feature classifiers show a gain in Fmean in comparison

to the baseline classifier, although very small. A noticeable gain (improvement) against the baseline

classifier is observed in SF+SemBN (1.39%) and SF+SemBNDB (0.6%). Both the improvements from

SF+SemBN (1.39%) and SF+SemBNDB (0.6%) are found to be statistically significant (p < 0.05)

based on a 2-tailed one-sample t-test, where the Fmean of SF is treated as the null-hypothesis. A t-test

can be evaluated as:
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x̄− μ
s/
√
n

(4.1)

x̄ is the mean (Fmean) of the 100 results from each classifier, μ is the mean of the null hypothesis

(which is the Fmean of the baseline classifier), s is the standard deviation of the sample (which is the

new classifier, other than the baseline), and n is the size of the sample (100 results).

4.3.3 Results: Cross-Crisis Classification

In this section we look at the results when different classification models had to deal with the type of

crisis events. As described in Section 4.3.1, we have set up 2 criteria for evaluating the classifiers: (i)

when the model has seen the type of the tested event in the training data (Criteria 1), (ii) when the

model has not seen the type of the tested event in the training data (Criteria 2).

Criteria 1 - Already seen event types

In this sub-task, themodelswere evaluated on anew crisis event instance of an event typewhich already

existed in the training data of the model. For example, we evaluated a new earthquake type event on a

model which was trained on a data that contained other earthquake type events. In this task, we train

each classifier on 25 crisis events out of 26 events, and use the 26th event as a test event data. To carry

out the evaluation, we select the following event types and events as test data events:

• Flood/Typhoons -TyphoonYolanda (TPY),TyphoonPablo (TYP),Alberta Flood (ALB),Queens-

landFlood (QFL),ColoradoFlood (CFL), Philippines Flood (PHF) andSardinia Flood (SAR).

• Earthquake -GuatemalaEarthquake (GAU), ItalyEarthquake (ITL),BoholEarthquake (BOL)

and Costa Rica Earthquake (COS).
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Table 4.5: Cross-crisis relatedness classifica on: criteria 1 (best F1 score is highlighted for each event).

Instances SF SF+SemBN SF+SemDB SF+SemBNDB

Test Train Test P R F1 P R F1
ΔF/F P R F1

ΔF/F P R F ΔF/F
event (in %) (in %) (in %)

TPY 5717 214 0.808 0.804 0.803 0.777 0.776 0.776 -3.44 0.772 0.771 0.771 -4.01 0.780 0.780 0.780 -2.83
TYP 5755 176 0.876 0.864 0.863 0.853 0.841 0.840 -2.66 0.831 0.83 0.829 -3.84 0.861 0.852 0.851 -1.29
ALB 5899 32 0.72 0.719 0.718 0.754 0.75 0.749 4.25 0.845 0.844 0.844 17.41 0.845 0.844 0.844 17.41
QFL 5375 556 0.791 0.784 0.783 0.80 0.793 0.792 1.18 0.780 0.772 0.77 -1.66 0.789 0.782 0.781 -0.22
CFL 5809 122 0.82 0.803 0.801 0.835 0.828 0.827 3.28 0.806 0.762 0.754 -5.88 0.796 0.77 0.765 -4.41
PHF 5791 140 0.764 0.764 0.764 0.769 0.764 0.763 -0.13 0.772 0.771 0.771 0.93 0.744 0.743 0.743 -2.83
SAR 5797 134 0.684 0.612 0.570 0.747 0.694 0.677 18.79 0.702 0.664 0.648 13.70 0.696 0.664 0.650 14.10

GAU 5725 206 0.788 0.782 0.780 0.739 0.728 0.725 -7.1 0.798 0.786 0.784 0.51 0.779 0.772 0.770 -1.30
ITL 5819 112 0.595 0.589 0.583 0.619 0.589 0.562 -3.58 0.667 0.634 0.615 5.49 0.659 0.616 0.588 0.98
BOL 5869 62 0.743 0.742 0.742 0.732 0.726 0.724 -2.38 0.758 0.758 0.758 2.20 0.684 0.677 0.674 -9.07
COS 4991 940 0.794 0.790 0.790 0.773 0.770 0.770 -2.56 0.740 0.739 0.739 -6.42 0.751 0.750 0.750 -5.08

Avg. 0.745 0.746 0.52 0.753 1.67 0.745 0.50

SDV 0.091 0.077 6.89 0.068 7.78 0.079 8.05

For example, to understand this list of event types and events, consider the case when test event

is Typhoon Yolanda (TPY), the classification model is trained on the rest of 25 crisis events. It is un-

derstood from the events list (see Table 4.1) that there are multiple typhoons and floods events in the

dataset.

The results for Criteria 1 are shown in Table 4.5. We observe that the improvement shown by

the semantic feature classifiers is small and inconsistent across the test cases. SF+SemBN improves

over the baseline in 4 out of 11 test cases. SF+SemDB improves over the baseline in 6 out of 11 test

cases. On an average the percentage gain (ΔF/F) ranges between +0.52% (SF+SemBN) and +1.67%

(SF+SemDB) with a standard deviation varying between 6.89% to 7.78%. This shows that when the

model has already seen a type of crisis in the training data, the semantic features are not too responsive

in improving classifier’s performance significantly, against the baseline statistical features model’s F1

score.
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Criteria 2 - Unseen event types

Unlike Criteria 1, in this task we ensure that the classification model is validated and applied to the

type of crisis events that it is not trained on, i.e., not seen in the training data. To ensure that the

training dataset never observes any data from a crisis type on which the classificationmodel is applied,

the training and the test data sets are always selected from different types of crises. For carrying out the

evaluation, we select the following event types and events as training and test data events:

• Training data: All the event types excluding Terror Shooting/Bombing and Train Crash. Test

Data: Los Angeles Airport Shooting (LAX), LacMegantic Train Crash (LAM), Boston Bombing

(BOB), and Spain Train Crash (SPT). All the test events are shooting/bombing/train crash type

of crises.

• Training data: All the event types excluding Flood/Typhoon. Test Data: TPY, TYP, ALB, QFL,

CFL, PHF, and SAR. All the test events are flood/typhoon type of crises.

• Training data: All the event types excludingEarthquake. TestData: GAU, ITL,BOL, andCOS.

All the test events are earthquake type of crises.

The results for Criteria 2 are shown in Table 4.6. From the table we can see that the average best

performance is exhibited by theDBpedia semanticsmodel SF+SemDB, with an average gain of +7.2%

(with a Std. Dev. of 12.83%) in F1 score (ΔF/F) over the baseline SF classifier. The SF+SemDB

shows improvement in F1 score, against the baseline, in 10 out of 15 test cases. Out of the remaining

5 test cases where the improvement is not seen, in 2 test cases the percentage loss in F1 score (ΔF/F) is

-0.034% and -0.56%.

The combination of both the semantic features and the statistical features SF+SemBNDB model

produced an improvement, over the baseline, in 9 out of 15 test cases with an average percentage

gain of +2.64% in F1 score. Comparing this with Criteria 1, semantic features (particularlyDBpedia
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semantics) improve the classifier’s performance significantly and consistently, over the statistical fea-

tures, when the model has not seen the type of test event in the training data. This shows that while

semantics may not improve the classifier’s performance much when the type of events in the train-

ing and testing data are the same, however, semantic feature appear to be making a significant impact

when the model is applied to a totally new type of crisis, that the model was not trained on. This

makes semantic feature-basedmodels more appropriate for such situations, where themodel needs to

be applied to a new type of crisis.

Table 4.6: Cross-crisis relatedness classifica on: criteria 2 (best F1 score is highlighted for each event).

Instances SF SF+SemBN SF+SemDB SF+SemBNDB

Test
Train Test P R F1 P R F1

ΔF/F
P R F1

ΔF/F
P R F

ΔF/F

event (in %) (in %) (in %)

LAX 5407 224 0.664 0.656 0.652 0.681 0.679 0.677 3.90 0.666 0.665 0.665 1.95 0.657 0.656 0.656 0.58

LAM 5844 68 0.655 0.632 0.618 0.642 0.632 0.626 1.2 0.619 0.618 0.616 -0.34 0.638 0.632 0.628 1.62

BOB 5407 138 0.669 0.630 0.608 0.663 0.645 0.635 4.40 0.613 0.609 0.605 -0.56 0.628 0.616 0.607 -0.19

SPT 5844 16 0.573 0.563 0.547 0.690 0.688 0.686 25.56 0.767 0.750 0.746 36.5 0.69 0.688 0.686 25.56

TPY 4409 214 0.714 0.664 0.642 0.715 0.640 0.606 -5.67 0.69 0.664 0.651 1.39 0.676 0.617 0.582 -9.45

TYP 4409 176 0.769 0.699 0.678 0.802 0.705 0.679 0.12 0.742 0.682 0.661 -2.54 0.733 0.642 0.603 -10.99

ALB 4409 32 0.727 0.719 0.716 0.771 0.719 0.705 -1.63 0.833 0.813 0.81 13.02 0.742 0.719 0.712 -0.63

QFL 4409 556 0.734 0.694 0.681 0.728 0.676 0.657 -3.51 0.733 0.707 0.698 2.58 0.741 0.707 0.696 2.23

CFL 4409 122 0.792 0.779 0.776 0.736 0.713 0.7060 -9.04 0.707 0.705 0.704 -9.27 0.755 0.754 0.754 -2.87

PHF 4409 140 0.589 0.564 0.532 0.672 0.607 0.566 6.52 0.662 0.643 0.632 18.9 0.617 0.586 0.556 4.67

SAR 4409 134 0.663 0.590 0.537 0.660 0.597 0.553 2.93 0.658 0.619 0.595 10.69 0.691 0.642 0.617 14.84

GAU 4611 206 0.610 0.553 0.487 0.584 0.549 0.495 1.62 0.692 0.650 0.630 29.39 0.667 0.621 0.593 21.79

ITL 4611 112 0.546 0.536 0.509 0.632 0.571 0.516 1.26 0.633 0.589 0.553 8.54 0.661 0.598 0.555 8.93

BOL 4611 62 0.732 0.726 0.724 0.656 0.645 0.639 -11.73 0.684 0.677 0.674 -6.86 0.606 0.597 0.588 -18.77

COS 4611 940 0.595 0.560 0.515 0.626 0.554 0.480 -6.71 0.618 0.578 0.538 4.56 0.645 0.580 0.527 2.33

Avg. 0.615 0.615 0.61 0.652 7.2 0.624 2.64

SDV 0.090 0.076 8.66 0.071 12.83 0.065 11.74
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4.3.4 Feature Analysis

In order to gain a better understanding of the impact of the semantic features on the classification

models, we analysed the most informative features across the designed statistical feature model and

two semantic feature models. The informative features were derived by calculating the Information

Gain (IG) score for all the features in each of the three model scenario (over the entire data across

26 crisis events, see Table 4.1). A list of top informative features (IG score) across different models

is shown in Table 4.7. We notice very event-specific features in the statistical feature SF model, such

as collapse, terremoto, fire, earthquake, #earthquake, flood, typhoon, injured, and quake. In the top 50

features we observe at least 7 hashtags, which indicates that event specific vocabulary is more crucial

for the classifier in determining the crisis relevancy of the tweet. This may impact the performance of

classifiers when the data is from new types of crises and contains a different type of vocabulary.

We also observed thatNo.ofHashtag turned out to be a key statistical feature, across all the models.

Exploring further, we found that out of 2966 crisis related tweets 1334 tweets contained zero hashtags

(45% of the crisis related tweets), while only 15% of not related tweets had zero hashtags (471 out

of 2965 tweets). In the two semantic models, i.e., SF+SemBN and SF+SemDB, concepts such as

natural_hazard, structural_integrity_and_failure, conflagration, geological phenomenon, perception,

dbo:location, dbo:place, dbc:building_defect, and dbc:solid _mechanics were seen to be amongst the IG

score features (Table 4.7). When we looked deeper, we found that Structural_integrity_and_failure

represented the annotated entity form for terms such as building collapse and collapse. These terms

occurred often in several crisis events such as earthquake, floods, and building collapse. Since there are

many floods and earthquake events, such semantics are expected to be informative. Natural_disaster

is a hypernym and a type (DBpedia property) to several concepts occurring in the data such as flood,

landslide, and earthquake. This shows that adding semantics not only homogenises the vocabulary,

but also enhances the ability of the classificationmodel to correctly identify crisis related content from
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Table 4.7: IG-Score ranks of features for: SF, SF+SemBN and SF+SemDB.

SF SF+SemBN SF+SemDB

R. IG Feature IG Feature IG Feature

1 0.106 No.OfHashTag 0.106 No.OfHashTag 0.106 No.OfHashTag
2 0.046 costa 0.056 costa 0.044 No.OfNouns
3 0.044 No.ofNoun 0.044 No.OfNouns 0.036 costa_rica
4 0.044 rica 0.044 rica 0.035 dbc:countries_in_central_americ
5 0.035 collapse 0.036 costa_rica 0.035 collapse
6 0.033 terremoto 0.035 central_american_country 0.031 terremoto
7 0.026 TweetLength 0.032 collapse 0.027 dbo:place
8 0.025 7 0.031 terremoto 0.026 TweetLength
9 0.024 #earthquake 0.026 TweetLength 0.024 #earthquake
10 0.023 bangladesh 0.026 fire 0.024 dbo:location
11 0.022 No.OfVerb 0.024 #earthquake 0.023 dbo:populatedplace
12 0.022 #redoctober 0.023 structural_integrity_and_failur 0.023 dbc:safes
13 0.021 No.OfWords 0.023 coastal 0.022 structural_integrity_and_failure
14 0.018 tsunami 0.022 information 0.022 dbc:building_defect
15 0.017 fire 0.022 financial_condition 0.022 dbc:solid_mechanics
16 0.016 building 0.022 No.OfVerbs 0.022 dbc:engineering_failure
17 0.016 rt 0.022 #redoctober 0.022 bangladesh
18 0.015 factory 0.021 No.OfWords 0.022 dbc:flood
19 0.014 toll 0.020 shore 0.022 dbr:wealth
20 0.014 flood 0.020 building 0.022 No.OfVerbs
21 0.013 #bangladesh 0.019 anatomical_structure 0.021 No.OfWords
22 0.013 #colorad 0.019 phenomenon 0.02 dbc:coastal_geography
23 0.012 alert 0.018 natural_disaster 0.019 dbc:article_containing_video_clip
24 0.012 hit 0.018 failure 0.018 dbc:natural_hazard
25 0.012 typhoon 0.017 conflagration 0.017 fire
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unseen events, by considering highly informative semantic features.

While the semantic models have not shown to significantly outperform the statistical feature mod-

elswhen themodel is applied to already seen typesof events, wehavebeen able todemonstrate potential

limitations of statistical feature models when they are applied to new unseen event types. It appears

that the features in statistical feature models are quite tied to event specific features whereas semantic

features overcome that limitation.

4.4 Discussion

In this chapter we demonstrate the impact of mixing the statistical features and the semantic features

to address the problem of classifying crisis related content from new and unseen types of crisis events.

Two sources of semantic features,DBpedia Semantics andBabelNet Semantics, were found to enhance

the classifier’s accuracy for most of the test case events. However, DBpedia Semantics were seen to

be more consistent and significant in their impact, more likely due to a wider coverage of extracted

semantics provided by DBpedia.

We analysed some of the tweets which were wrongly classified by either the statistical classifier (SF)

or the semantic classifiers (SF+SemBN and SF+SemDB) in Criteria 1 and 2. We made the following

observations: (i) semantic features tend to generalise the context in comparison to the event specific

vocabulary as seen in the statistical feature models and thus are more adaptable to new types of events.

For instance, the following tweet- “EU, Canada release aid money for PHL flood victims: European

Union and Canada are supporting Philippine efforts.” is a crisis-related tweet from Philippines Flood

(PHF) which was wrongly classified by the statistical model. In the statistical SF model, none of the

terms occurring in the text were observed to be informative features (based on IG-score). However,

when DBpedia semantics were added to the training and test sets, in SF+SemDB feature classifier,

properties such as dbc:flood and dbc:weather_hazardwere found amongst the informative features.
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These properties are related to flood and money aid in the original tweet; (ii) semantic features can

also bring in too generic and broad entities/concepts and such features may not contribute towards

improving a classifier’s accuracy. Such features can be weakly discriminative features in the training

data and can be found in tweets fromboth the classes; (iii) often the semantic extraction tools can yield

rather non-relevant entities and thus expand the semantics towards irrelevant aspects. For instance,

the following tweet- “Scary. RT @AmyFreeze7: Super Typhoon in Philippines is 236 mph It’s roughly

the top speed of Formula 1 cars” is from event Typhoon Yolanda (TPY). The semantic feature based

classifiers misclassified this tweet, while it was correctly classified by the SF classifier. A look into the

features and information gain shows that the terms typhoon and scarywere highly ranked feature in SF

features’ training data. On adding the semantics, the tokens in the post expanded to multiple related

entities about Formula 1, which were not relevant to the crisis related features in the training data.

This indicates the type of challenges which semantic expansion pose.

The experiments were performed across different crisis event types. One of the limitations of the

event typedistribution, as seen inTable 4.3, is the imbalancednumberof events across each type. Some

crisis types have more events than the others. The imbalanced distribution in the number of events

(leading to number of tweets) across crises types could lead to classification bias. Having a wider range

of crisis types with a higher number of events across each type, should help in making the classifiers

more adaptive to various domains.

In this work, we considered that different crisis types are distinct from each other. The type of each

crisis is basically the officially identified nature of any given event (e.g., flood, typhoon, earthquake).

However, it is not a strict condition that different crises types will always yield uniquely distinct con-

tent, as there are chances of an overlap in the nature of the content. In our experiments, we have not

taken into account the actual difference in the content that different crisis events generate, and rather

only segregated the training and test data based on crisis types. Therefore, we cannot rule out the pos-

sibility that while the training and test data are distinct in their crisis types, there might be a certain
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overlap or similarity in the content. We discuss the potential way to address this as a future work in

Chapter 7 (Discussion and FutureWork) in Section 7.2.

The work done in this chapter has contributed towards answering research question RQ2. The

data used in this work originated in multiple languages. As a next step, we aim to analyse how the

semantics or translation techniques can assist the classifiers to become adaptive to multilingual crisis

data to identify crisis related information. This forms part of our research questionRQ3, and we will

expand our study to answer this research question in the next chapter.

4.5 Summary

The work done in this chapter is aimed towards answering research question RQ2 - “To what ex-

tent could semantics improve Tweets classification for new types of crisis events?”. We hypothesised that

adding semantics in the formof entities, properties of entities (e.g., type of an entity, category of an en-

tity, hypernyms) will enhance the ability of classification models to identify crisis related information

in new types of crises events. We demonstrated this by creating mutiple classificationmodels by merg-

ing statistical features with the semantic features. We created semantic features using two different

external knowledge bases: DBpedia and BabelNet. To conduct the experiments we created two crite-

ria: (i) apply the classifier to a new crisis type event, when the classifier has already seen another event

of a similar type of crisis in the training data, (ii) apply the classifier to a new crisis type event, when the

classifier has not seen a similar type of crisis in the training data. We observed that semantics, particu-

larlyDBpedia semantics, enhance the classifier’s accuracy when applied to a new type of crises which

was not seen in the training data. On average the DBpedia features, when combined with statistical

features, show a performance of F1 score of around 0.652 (Table 4.6), which when compared to other

parallel works on cross-domain crisis data classification (Pedrood& Purohit, 2018; Alam et al., 2018;

Imran et al., 2016b) is noteworthy. For instance, the F-measure in the cross-domain model adapta-
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tion (cross-crisis classification), in the work by Imran and colleagues (Imran et al., 2016b), which used

textual features such as uni-grams, bi-grams, and part of speeches, varied between 0.22-0.58.

We also performed feature analysis and an initial error analysis to understand how the semantics

played a role. The semantics make the vocabulary representation of the events more broader and less

event specific. This results in an increment of the discriminative/informative property of such features

(entities) which aremore likely to be existing inmultiple types of crises events, instead of event specific

vocabulary (as observed in the statistical feature models).

We were able to demonstrate, and thus answer research question RQ2, that adding the semantics

(particularlyDBpedia semantics) to the statistical features in a binary classificationmodel enhances the

performance and helps the classifier in identifying crisis related information from new types of crises

events.
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5
Classifying Crisis Information Relevancy

Across Multiple Languages

Crisis Data is multilingual in nature. Not only crisis events occur globally, resulting in online data

sources from various languages, we also observe multilingual data getting generated within a single

crisis event as well. Thus, language forms a very important aspect of creating automated classification
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tools to identify crisis related information. In the previous chapters we explored the type of clas-

sifiers that can enhance the classification accuracy while identifying crisis related information from

new/unseen crises events and crises types. In this chapter, we take the problem of crises data classifi-

cation towards the language aspect of the data, where the classification models are analysed for their

performance when applied to the data from a new unseen language. This chapter focuses on address-

ing the third research question -

• RQ3 -To what extent could semantics improve crisis-relevancy classification of Tweets written in

a new language?

For instance, if a model is trained on crises data in Italian, how will the classifier perform when

the test data, on which it is applied to, is in English or Spanish. This is the problem of cross-lingual

classification of the crises data. We will determine whether or not adding the semantics or translating

the test data to the language of the training data, or a combination of the translation and addition of

semantics, would help the classification model tackle the problem of data in a new language.

5.1 Introduction

InChapter 4we demonstrated that adding semantics such asDBpedia properties enhanced the adapt-

ability of the classificationmodels to new types of crises, in order to identify crisis related information.

The data used for creating and evaluating different classificationmodels comprised of 26 crises events,

which were spread across several crises types (we categorsied them in 11 different types). These events

occurred at diverse geographical locations. It is evident that the overall dataset is multilingual in na-

ture, which we did not fully investigate in the previous chapters while addressing research questions

RQ1 andRQ2. It is crucial to ensure the applicability of crises classification models to new languages

for multiple reasons. Firstly, the data can always come in a new language, not only in the course of a

new crisis in a different geographical location, but also within the same crisis events, data can occur in

123



multiple languages. Secondly, it is not feasible to train a newmodel for a new language every time due

to lack of time and labelled data in real time. Also, it is infeasible to produce amodel that is trained on

all languages. Language adaptive classification tasks are, in general, NLP problems given the lack of

sufficient data across languages to train the classificationmodels on. In this chapter we aim to address

the third research question:

RQ3 - To what extent could semantics improve crisis-relevancy classification of Tweets

written in a new language?

Imran and colleagues (Imran et al., 2016b) had shown that a classifier trained on data in Italian

language is more likely to perform better when applied to posts in the Spanish language than in the

English language. Although, their approach lacks in a rigorous cross-language analysis, as it focused

on two types of events occurring in only two languages. Broadly following types of solutions to the

problem of cross-linguality have been seen: (a) translation of the data/resource from one language to

the target language, and then train the models (Araujo et al., 2016;Mihalcea et al., 2007); (b) using

weakly-labelled data (without supervision) to build the models (Deriu et al., 2017); (c) using mul-

tilingual word representation using knowledge resources such as Wikipedia (Wick et al., 2016). To

answer research question RQ3 in this chapter, we test two similar approaches aimed to classify the

cross-lingual crisis data for their relevancy in crisis situations: (a) translate the data to a single lan-

guage; (b) use semantic features in English to supplement the training data of target language(s). We

analyse how the addition of semantics and translation of the data to a common language amplifies the

performance of classifiers, while dealing with data from a new language, for identifying crisis related

information.

The contributions of the work done in this chapter can be summarised as follows:

• We generate hybrid statistical-semantic classification model by extracting semantics from two

different knowledge bases: DBpedia and BabelNet.
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• We conduct experiments to classify relevancy of tweets spanning across 30 crises events in 3

languages (English, Spanish, and Italian).

• We perform relevancy classification of tweets by translating them into a single language, as well

as with performing the classification on the cross-lingual datasets.

• We are able to demonstrate that adding semantics enhanced the accuracy of cross-lingual classi-

ficationby8.26%-9.07% in averageF1 scorewhen compared to the traditional statisticalmodels.

The rest of the chapter is organised as follows: Section 5.2 elaborates onour classification approach.

Section 5.2.1 describes the dataset used, and selection of the labelled data and events. Section 5.2.2

describes the feature engineering, and types of features: statistical and semantic. Section 5.3 details

our experimental set up and results. We discuss the findings in section 5.4 and summarise the work in

section 5.5.

5.2 Cross-Lingual Classification of Crisis Data

To build a language adaptive crisis relevancy binary classification model, we require a labelled dataset

spanning across multiple languages to train the model on. As shown in the problems addressed in the

previous chapters, we also require different statistical and semantic features, and a machine learning

classification algorithm. In the following sub-sections, we present (i) the dataset used for training and

testing the classifiers in Section 5.2.1, (ii) the statistical and semantic set of features used for building

the classifiers in Section 5.2.2, and (iii) the classifier selection process in Section 5.2.3.
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5.2.1 Dataset

To conduct this study, we chose multiple datasets from the CrisisLex library*. We shortlisted 3 data

collections: CrisisLexT26 (Olteanu et al., 2015), ChileEarthquakeT1 (Cobo et al., 2015), and SOSI-

talyT4 (Cresci et al., 2015). We have used CrisisLexT26 in the previous chapters as well, it is a la-

belled dataset of tweets spanning across 26 different crisis events which occurred between 2012 and

2013. The dataset has 1000 labeled tweets for each events categorised into the following labels: ‘Re-

lated and Informative’, ‘Related but not Informative’, ‘Not Related’, and ‘Not Applicable’. Since these

events occurred at diverse geographical locations around the world, they covered a range of languages.

ChileEarthquakeT1 is a dataset of 2000 labelled tweets in Spanish collected during the 2010 Chilean

earthquake). In ChileEarthquakeT1 all the tweets were labeled for their relatedness (relevant or not

relevant). The SOSItalyT4 contains the set of labelled tweets for 4 different natural disasters (2 earth-

quakes and 2 floods) which occurred in Italy between 2009 and 2014. It contains almost 5.6k tweets

labeled based on the type of information they convey (“damage”, “no damage”, or “not relevant”).

As per the guidelines of the labeling (as provided by the authors), both “damage” and “no damage”

indicated relevance of the tweet to the crisis.

Labelled tweets from all the 3 collections were considered. As in the previous chapters, we con-

verged some of the labels into binary class labels, in order to create a system for binary classification as

we are interested in classifying the tweets as crisis related or not related. The labels in CrisisLexT26

were merged as follows: ‘Related and Informative’ and ‘Related but not Informative’ were merged

into theRelated category, andNot Related andNot Applicablewere merged into theNot Related cat-

egory. The ChileEarthquakeT1 labeled dataset is already binary labeled for crisis relatedness. From

the SOSItalyT4 data, we treated the tweets labelled as damage and no damage to theRelated category

(the original guidelines considered the label no damage as relevant to crisis but not indicating tweets

*CrisisLex, crisislex.org/
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pertaining to damage), and tweets labelled as not relevant to theNot Related category.

Next, we filtered out duplicate instances from each dataset to prevent redundancy in the data and

bias in themodel. The duplicates were identified bymatching the tweets, one by one, after removal of

special characters, URLs, and user-handles (i.e., ‘@’mentions). As andwhen the two stringsmatched,

we discarded the new one. Following this there were 21,378 Related and 2965Not Related tweets in

the CrisisLexT26 data set, 924 Related and 1238 Not Related in the Chile Earthquake data set, and

4372Related and 878Not Related in the SOSItalyT4 data set.

As a next step, we detected the language each tweet was written in. To this end, we used 3 different

language detection APIs: detectlanguage*, langdetect†, and TextBlob‡. For each tweet, the language

label was the one which was agreed by at least 2 of the language detection APIs. Following this, the

entire data showed to have been constituted of more than 30 languages, where the major proportion

of almost 92% of the tweets (29,141 out of 31755) were composed of English (en), Spanish (es), and

Italian (it). Considering this aspect of the language distribution, we chose to focus our study on the

tweets from these 3 languages. First, we created an unbalanced data set (unbalanced in terms of mu-

tual distributionbetween the languages) by randomly selecting tweets across the 3 languages (seeTable

5.1-unbalanced). We tested the unbalanced set, as in the real world scenario an imbalance in the data

between different languages might occur. Further, we remove the imbalance across the languages and

also the tweets forRelated andNot Related classes, and create a balanced data with an equal distribu-

tion throughout, to avoid any kind of bias (Table 5.1- balanced).

Additionally, we also provide an overview of the language distribution across each crisis event in

the original data sets, in the Table 5.2.

*https://detectlanguage.com
†https://pypi.python.org/pypi/langdetect
‡http://textblob.readthedocs.io/en/dev/
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Table 5.1: Data size for English (en), Spanish (es), and Italian (it)

Unbalanced Balanced

Train Test
Language Not Related Related Not Related Related Not Related Related

English (en) 2060 2298 612 612 201 200
Italian (it) 813 812 612 612 201 200
Spanish (es) 1039 1124 612 612 201 200

Total 3912 4234 1836 1836 603 600

Table 5.2: Language Distribu on (in %) in Crises Events Data

Language (%) Language (%)

Event en it es Other Event en it es Other

ColoradoWildfire 99.30 0 0.09 0.61 CostaRica Quake 45.67 1.96 44.03 8.33
Guatemala Quake 23.84 1.20 69.56 5.40 Italy Quake 18.53 71.10 9.70 0.77
Philippines Flood 91.31 0 0.98 7.71 Typhoon Pablo 81.22 0.22 4.40 14.17
Venezuela Refinery 8.93 0.22 89.8 1.06 Alberta Flood 99.48 0 0 0.52
Australia Bushfire 98.94 0.0 0.10 0.97 Bohol E’quake 86.5 0.12 0.12 13.25
Boston Bombing 93.22 0.21 2.12 4.34 Brazil Club Fire 31.6 0 1.79 66.61
Colorado Floods 99.67 0 0.11 0.22 GlasgowHelicopter 99.86 0 0.11 0.03
LA Airport Shoot 97.07 0.11 1.30 1.52 LacMegantic Train 52.57 0.21 1.16 46.06
Manila Flood 72.40 0.22 0.22 27.16 NY Train Crash 99.86 0.14 0 0
Queensland Flood 99.56 0.09 0 0.35 Russia Meteor 87.56 0.64 2.56 9.24
Sardinia Flood 10.93 88.49 0.12 0.46 Savar Building 86.90 0.82 5.19 7.09
Singapore Haze 97.47 0.0 0 2.53 Spain Train Crash 43.13 0 54.67 2.20
Typhoon Yolanda 91.59 0.11 1.83 6.47 Texas Explosion 94.99 0 3.00 2.01
L’Aquila Quake 4.89 88.58 1.43 5.10 Emilia Quake 1.02 87.99 0.34 10.65
Genova Flood 2.09 95.12 0 2.79 Chile Quake 10.82 0.19 82.00 6.99
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5.2.2 Features

Similar to the work in the previous chapter, in this chapter as well we generate two types of features

for the binary classification problem to classify the tweets as crisis related and not related: statistical

features and semantic features. For the research question RQ3 addressed in this chapter, we treat the

Statistical Features as a baseline approach. The statistical features represent the linguistic properties

and quantifiable properties of the text. The Semantic Features are associated with the named entities

and the hierarchical contextual information. Further, we elaborate on both types of features.

Statistical Features

For every tweet we extract the same statistical features seen earlier in Chapter 4, which can be referred

to in the Section 4.2.2, under subsection Statistical Features.

As we are calculating the number of nouns, verbs, and pronouns, which represent the Part of

Speeches (POS), we rely on the spaCy library* to extract the POS. To tokenise the data into unigrams,

we use the regexp tokenizer provided in NLTK†. In order to remove the stop words a dedicated list‡

is used. We also convert the tokens to lower case. In the end, we perform the TF-IDF normalisation

on the unigrams to weigh the relevance of tokens in the documents (tweets) as per their relative im-

portance within the overall data. The data is represented as vectors. Following this, the vocabulary

size of unigrams (for overall individual language data set in the balanced data) is as follows: English

(en)-7495, Spanish (es)-7121, and Italian (it)-4882.

*SpaCy Library, https://spacy.io
†http://www.nltk.org/_modules/nltk/tokenize/regexp.html
‡https://raw.githubusercontent.com/6/stopwords-json/master/stopwords-all.json
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Semantic Features

In this research problem, the semantic features are aimed towards generalising the data representation

of the crises situations across the languages. The semantic features are extracted in a way in order to

bemore generic in context and less crisis-specific, thus addressing the problem of data sparsity. To this

end, we extract the same semantic features, from BabelNet and DBpedia, as seen earlier in Chapter 4,

and can be referred to in the Section 4.2.2, under subsection Semantic Features.

In the previous chapters we showed how semantics can bridge the contextual gaps between diverse

concepts. By generalising the semantics to one language (in this case English), we overcome the chal-

lenge of data sparsity whichmight arise fromdifferentmorphological forms of entities across different

languages. As an example we can look at Table 5.3, where we compare the two tweets, originally in dif-

ferent languages, exhibiting similarities in context after inclusion of semantics. We also show how the

Google translation service can impact the representation. Inclusion of semantic information, through

BabelNet Semantics (entity sense andhypernyms), resulted in a vocabulary size of unigrams across each

language data set as follows: English (en)-12604, Spanish (es)-11791, and Italian (it)-8544.

Similarly, extraction ofDBpedia properties of the entities, as mentioned above, resulted in a vocab-

ulary size of unigrams across each language data set as follows: English (en)-21905, Spanish (es)-15388,

Italian (it)-10674. We analyse both sets of semantics features, BabelNet and DBpedia, individually

with the statistical features as well as in combination to build a binary classification model.

5.2.3 Classifier Selection

In the problems explored in previous chapters, we highlighted the reasons of opting for the Support

Vector Machine (SVM) with a Linear Kernel as the classification model such as high dimensionality

of the data and avoiding the over-fitting problem. In the earlier chapters we also demonstrated that

SVM Linear Kernel was statistically significant in performing better than other kernels such as RBF
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Table 5.3: Seman c expansion with BabelNet and DBpedia seman cs

Post A Post B

Feature ‘#WorldNews! 15 feared
dead and 100 people
could be missing in
#Guatemala after quake
http://t.co/uHNST8Dz’

‘Van 48 muertos por
terremoto en Guatemala
http://t.co/nAGG3SUi vía
@ejeCentral’

Babelfy Entities feared, dead, people, miss-
ing, quake

muertos, terremoto

BabelNet Sense (En-
glish)

fear, dead, citizenry,
earthquake

slain, earthquake

BabelNetHypernyms
(English)

geological_phenomenon,
natural disaster, group

geological_phenomenon,
natural disaster, dead

DBpedia Properties dbr:Death,
dbc:Communication,
dbr:News,
dbc:Geological_hazards,
dbc:Seismology,
dbr:Earthquake

dbc:Geological_hazards,
dbc:Seismology,
dbr:Earthquake,
dbr:Death

Google Translation To es-‘ #¡Noticias del
mundo! 15 muertos
temidos y 100 personas
podrían estar desapare-
cidas en #Guatemala
después terremoto
http://t.co/uHNST8Dz’

To en-‘48 people killed by
earthquake in Guatemala
http://t.co/nAGG3SUi via
@ejeCentral’
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kernel, Polynomial kernel, and Logistic Regression. In this case as well the training data instances var-

ied between 1200-4500 through different experiments, and the dimensionality of the features ranged

between 9000-20000. Also, Burel and colleagues (Burel et al., 2017a) discuss a better performance

shown by SVM in comparison to other common methods such as classification and regression trees

(CART) and Naive Bayes in related classification problems. They also discuss the near similar per-

formance of SVM and CNNmodels in the classification of tweets. Based on this, we opted for SVM

Linear Kernel for this task as well.

5.3 Experiments

In the following subsections we will provide details of the experimental set up where we create and

validate multiple classification models based on statistical features, semantic features, and translation

of the data.

5.3.1 Experimental Setup

We design the following classification models:

• SF : This model is built on only the statistical features; this model is our baseline.

• SF+SemBN : This model is built on the combination of statistical features with semantic fea-

tures from BabelNet (entity sense, and their hypernyms in English, as explained in Section

5.2.2).

• SF+SemDB: This model is built on the combination of statistical features with semantic fea-

tures fromDBpedia (label in English, type, and other DBpedia properties).

• SF+SemBNDB: This model is built on the combination of statistical features with semantic

features from both BabelNet andDBpedia.
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Next,wedefine following experimental scenarios for applying andvalidating the classificationmod-

els for cross-lingual crises data:

A. Monolingual Classifica on with Monolingual Models: In this scenario, the model is trained on data

from one particular language, and then applied and validated on a test data in the same lan-

guage. Here, we analyse the value of semantic features over the baseline classifier, when the

language of the training and test data is the same.

B. Cross-lingual Classifica on withMonolingual Models: In this scenario, themodel is trained on data

fromaparticular language, and then applied and validated on a test data in a different language.

For instance, the classifier is evaluated on crises data in Italian, while it is trained on crises data

in English or Spanish.

C. Cross-lingual Classifica on with Machine Transla on: In the third scenario, a model is trained on

data in a particular language (say Spanish), and then applied to crisis data which has been trans-

lated using automated tools from other language(s) (say English or Italian) to the language of

the training data. For automated translation we use the Google Translation API*. In order to

perform this experimental scenario, we translate the crises data in each of the three languages

to other two languages one by one.

We perform all the experiments on both the (i) unbalanced data set, to analyse the scenario where

the languages might be imbalanced in their distribution and (ii) on the balanced dataset, to analyse

the scenario where there is no bias in the training of the classifier with regards to any language. It is

to be noted, that the default reference to the results in the chapter is of the balanced data set, unless

specifically mentioned about the unbalanced data set results. We report the results by providing the

metrics Precision (P),Recall (R), F1 score (F1), and ΔF1. We calculatedmacro values for these metrics,

*https://cloud.google.com/translate/
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Table 5.4: Monolingual Classifica on Models – 5-fold cross-valida on (best F1 score is highlighted for each model). en,
it, and es refer to English, Italian, and Spanish respec vely.

Unbalanced Data (from Table 5.1-unbalanced)

SF SF+SemBN SF+SemDB SF+SemBNDB

Test Size P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1
en 4358 0.833 0.856 0.844 0.84 0.858 0.849 0.59 0.826 0.844 0.835 -1.07 0.829 0.845 0.836 -0.95
it 1625 0.703 0.721 0.711 0.712 0.714 0.713 0.28 0.696 0.706 0.701 -1.4 0.702 0.715 0.708 -0.42
es 2163 0.801 0.808 0.804 0.812 0.809 0.810 0.75 0.799 0.795 0.797 -0.87 0.798 0.798 0.798 -0.75

Avg. 0.786 0.791 0.54 0.778 -1.1 0.781 -0.71

Balanced Data (from Table 5.1-balanced)

SF SF+SemBN SF+SemDB SF+SemBNDB

Test Size P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1
en 1224 0.832 0.830 0.831 0.835 0.805 0.820 -1.32 0.835 0.799 0.816 -1.80 0.829 0.808 0.818 -1.56
it 1224 0.690 0.729 0.709 0.703 0.722 0.712 0.42 0.689 0.716 0.702 -0.99 0.708 0.718 0.712 0.42
es 1224 0.798 0.765 0.781 0.794 0.783 0.789 1.02 0.779 0.754 0.766 -1.92 0.780 0.773 0.776 -0.64

Avg. 0.774 0.774 0.04 0.761 -1.57 0.769 -0.59

which is an unweighted mean of metric for each label (in our case a balanced representation of two

labels). ΔF1 is the % change (gain or loss) in comparison the baseline- (semantic model F1−SF F1)∗100
SF F1 , where

SF F1 is the F1 score in SF model.

5.3.2 Results: Monolingual ClassificationwithMonolingualModels

In this scenario, we tested the model on data from the same language as the model was trained on.

To this end, we adopted a 5-fold cross validation approach and conducted the experiments across

the indiviaul datasets of each language, i.e., English, Italian, and Spanish. Results, in the Table 5.4,

indicate that when the language of the training and the test data are similar, the addition of semantic

features does not impact the classification accuracy over the baseline model (SF model).
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5.3.3 Results: Cross-lingual ClassificationwithMonolingualModels

In this scenario, we tested the model on data from another language, as the model was trained on.

In this case, we trained the model on one of the three languages, one by one, and evaluated them

on the crisis data in the other two languages. From the results, as shown in the Table 5.5, it can be

seen that the baseline model SF has an average F1 score of 0.557. The addition of semantic features

enhances the classification accuracy, in terms of ΔF1, on an average by 8.26%-9.07%, with a standard

deviation (SDV) between 10.9%-13.86% across all three semantic models and all test cases. On the

unbalanced dataset the semantic models increase the classification accuracy, on an average, by 7.44%-

9.78%. SF+SemDB shows an average gain in F1 score (ΔF1) of 8.71% with a standard deviation of

13.86% over the baseline (for the balanced data). While, the SF+SemBN shows an average gain in F1

score (ΔF1) of 8.26% with a standard deviation of 10.94% over the baseline.

5.3.4 Results: Cross-LingualCrisisClassificationwithMachineTransla-

tion

In this scenario, we train the models on crises data in one of the three languages, and apply it to crisis

data in the other two languages, but only after translating them into the languagewhich themodel has

been trained on. We evaluate these models one by one across all three languages. For instance, when

the training data is in Engslish (en), the Italian (it) posts are first translated to English (it2en) and then

used as a test data. There are two aspects that we aim to analyse: (i) the impact of the semantic features

on the classification of the translated data; and (ii) the performance of the classifiers on the translated

data as compared to cross-lingual classification as seen in the previous section 5.3.3.

The results are presented in the Table 5.6, and average F1 and % change ΔF1 for the translated cases

(it2es, en2es, etc.) are provided. SF+SemBN performs better over the baseline in 4 out of the 6 cases

(when both the test and training data are both in the same language after translation). SF+SemDB
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Table 5.5: Cross-Lingual Classifica on Models (best F1 score is highlighted for each model).

Unbalanced Data (from Table 5.1- unbalanced)

Size SF SF+SemBN SF+SemDB SF+SemBNDB

Train Test P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1
en 4358

it 1625 0.576 0.522 0.417 0.598 0.562 0.518 24.2 0.595 0.576 0.553 32.6 0.609 0.588 0.568 36.2
es 2163 0.674 0.633 0.604 0.663 0.654 0.645 6.79 0.653 0.649 0.643 6.46 0.649 0.641 0.633 4.8

it 1625
en 4358 0.469 0.474 0.449 0.547 0.545 0.538 19.82 0.508 0.508 0.504 12.25 0.516 0.516 0.516 14.9
es 2163 0.635 0.610 0.586 0.643 0.627 0.612 4.43 0.601 0.60 0.596 1.70 0.625 0.620 0.614 4.78

es 2163
en 4358 0.633 0.62 0.604 0.60 0.572 0.532 -11.9 0.623 0.618 0.610 0.99 0.606 0.592 0.571 -5.46
it 1625 0.536 0.533 0.521 0.529 0.529 0.528 1.34 0.526 0.526 0.526 0.96 0.539 0.539 0.539 9.78

Avg. 0.530 0.562 7.44 0.572 9.16 0.573 9.78

SDV 0.082 0.053 13.08 0.053 12.3 0.044 14.47

Balanced Data (from Table 5.1-balanced)

Size SF SF+SemBN SF+SemDB SF+SemBNDB

Train Test P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1
en 1224

it 401 0.539 0.515 0.429 0.588 0.571 0.549 28 0.569 0.568 0.568 32.4 0.578 0.576 0.572 33.3
es 401 0.689 0.688 0.688 0.669 0.668 0.668 -2.9 0.647 0.644 0.641 -6.8 0.666 0.661 0.659 -4.2

it 1224
en 401 0.521 0.521 0.521 0.581 0.581 0.580 11.3 0.558 0.552 0.539 3.5 0.550 0.546 0.538 3.3
es 401 0.655 0.646 0.640 0.672 0.655 0.647 1.1 0.638 0.636 0.635 -0.78 0.637 0.633 0.631 -1.4

es 1224
en 401 0.609 0.593 0.578 0.657 0.620 0.597 3.3 0.667 0.666 0.665 15 0.660 0.653 0.650 12.4
it 401 0.529 0.522 0.489 0.534 0.534 0.532 8.8 0.551 0.546 0.533 9 0.555 0.551 0.543 11

Avg. 0.557 0.596 8.26 0.597 8.71 0.599 9.07

SDV 0.096 0.053 10.94 0.057 13.86 0.054 13.6

136



Table 5.6: Cross-Lingual Crisis Classifica on with Machine Transla on (best F1 score is highlighted for each event).

Unbalanced Data (from Table 5.1- unbalanced)

Size SF SF+SemBN SF+SemDB SF+SemBNDB

Train Test P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1
en 4358

it2en 1625 0.644 0.613 0.591 0.635 0.611 0.593 0.34 0.582 0.568 0.548 -7.27 0.597 0.580 0.561 -5.0
es2en 2163 0.681 0.681 0.681 0.667 0.667 0.667 -2.0 0.669 0.661 0.659 -3.2 0.664 0.661 0.660 -3.1

it 1625
en2it 4358 0.609 0.601 0.588 0.636 0.618 0.597 1.53 0.570 0.570 0.569 -3.2 0.575 0.574 0.571 -2.9
es2it 2163 0.647 0.629 0.612 0.675 0.636 0.607 -0.81 0.609 0.595 0.578 -5.5 0.620 0.603 0.583 -4.7

es 2163
en2es 4358 0.643 0.626 0.609 0.661 0.634 0.610 0.16 0.654 0.654 0.653 7.2 0.649 0.648 0.646 6.07
it2es 1625 0.585 0.584 0.583 0.590 0.590 0.589 1.03 0.581 0.580 0.580 -0.51 0.586 0.585 0.584 0.17

Avg. 0.611 0.611 0.03 0.598 -2.1 0.60 -1.6

SDV 0.036 0.029 1.3 0.046 5.1 0.04 4.2

Balanced Data (from Table 5.1-balanced)

Size SF SF+SemBN SF+SemDB SF+SemBNDB

Train Test P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1
en 1224

it2en 401 0.624 0.583 0.546 0.622 0.598 0.577 5.7 0.561 0.558 0.554 1.46 0.594 0.588 0.581 6.4
es2en 401 0.675 0.671 0.669 0.704 0.696 0.693 3.6 0.701 0.671 0.658 -1.6 0.695 0.674 0.664 -0.74

it 1224
en2it 401 0.583 0.578 0.572 0.639 0.631 0.625 9.3 0.547 0.546 0.545 -4.7 0.551 0.551 0.551 -3.6
es2it 401 0.638 0.621 0.609 0.703 0.668 0.653 7.2 0.619 0.603 0.590 -3.1 0.610 0.596 0.582 -4.4

es 1224
en2es 401 0.686 0.678 0.675 0.691 0.670 0.661 -2.0 0.691 0.691 0.691 2.3 0.683 0.683 0.683 1.2
it2es 401 0.594 0.594 0.593 0.586 0.586 0.586 -1.2 0.580 0.576 0.570 -3.9 0.579 0.576 0.571 -3.7

Avg. 0.610 0.633 3.75 0.601 -1.59 0.605 -0.83

SDV 0.052 0.045 4.57 0.059 2.9 0.054 4.14

performs better over the baseline in 2 out of the 6 cases (when the test and training data are both in the

same language after translation). On average, SF+SemBN shows an improvement over the baseline

(SF) of 3.75% in F1 score with a standard deviation (SDV) of 4.57%.

If we compare the translation models with the overall baseline for the cross-lingual classification,

i.e., with the SF model (without translation) from Table 5.5, the SF+SemBN (with translation, Ta-

ble 5.6) shows an average F1 gain (ΔF) of 15.23% (with a standard deviation of 12.6%). Similarly,

SF+SemDB (with translation, Table 5.6) shows an average F1 gain (ΔF) of 9.82% (with a standard de-

viation of 14.6%) over the baseline SF (without translation, Table 5.5). Also, the SF (with translation)
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shows an increment of 11.25% against the overall baseline SF (without translation) with a standard

deviation of 13%.

5.3.5 Cross-Lingual Ranked Feature Correlation Analysis

In order to get a better understanding of how the addition of semantic features and translation of

the data impacted the informative/discriminatory nature of the cross-lingual data, we performed a

correlation analysis of the ranked features between the datasets of all three languages and across all the

models. We took the entire balanced datasets of each language, used in each model (by merging the

training and the test data into one). Following this, we calculated the Information Gain (IG) score

over every discrete dataset, across all the 4 models (SF, SF+SemBN, SF+SemDB, SF+SemBNDB). To

be reminded, that the datasets for the semantic models (SemBN, SemDB, SemBNDB) had semantics

included in them. Also, the IG was calculated for the translated datasets as well (en2es, it2es, en2it,

es2en, es2it, and it2en). This resulted in a ranked list of features, based on IG score, across each dataset.

Next, we take each pair of datasets, say English (en) and Spanish (es) (represented in the Table 5.7

as en - es), and determine the common ranked features in the ranked feature list based on IGscore > 0.

This provides us two different ranked lists of common features with IGscore > 0. We calcualte the

Spearman’sRankOrderCorrelation (ranges between [−1, 1]) between the two lists of ranked features.

In the cases where the translation was applied, we considered the pairs where the second language was

translated to the first language. For example, if English (en) and Italian (it) are to be correlated, we

considered English (en) and Italian translated to English (it2en). Next, we repeat this process in the

other order too, i.e., Italian (it) and English translated to Italian (en2it).

The analysis in Table 5.7, shows variations in the correlation across different datasets. Such vari-

ations can result from a number of factors. One of the key factors is the overlap of crises events in

the data samples for each language. It is to be noted that while segregating the language data we only

took the language into consideration, and did not take the discreteness of the crises events (Table 5.2)
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into consideration. This could imply that under different datasets of the languages, there might be an

overlap of some of the crises events. This could be observed in the correlation between en-es, which

does not increase in the SF+SemBN and SF+SemDB, while just translating them mutually to each

other’s language does not impact the correlation much (slightly decreases). In fact, the highest corre-

lation between en-es is observed in the SF model (without translation). This also justifies the better

performance of the SF model (without translation), in comparison to the semantic models, in the

cross-lingual classification (Table 5.5). In the SF model the correlation between en-it is ~-0.179, that

reflects a near ‘no correlation’. The addition of semantics enhances the correlation for en-it in both

SF+SemDBand SF+SemBN, and alsowith the translation. Similarly for es-it, the correlation increases

after semantic inclusion (which justifies the performance of semantic features in Table 5.5).

The greater correlation between discriminative features of data in different languages can be at-

tributed to the addition of semantics in English (Section 5.2.2), which resulted in the cross-lingual

vocabulary to match semantically as well as linguistically. It is important to be reminded again, that

we considered features with IGscore > 0 to bemore specific with the discriminatory features in cross-

lingual datasets.

Translation also helped in an increased correlation between the, otherwise, cross-lingual data. This

is an expected outcome for multiple reasons. Firstly, translation to the same language enables having

similar features such as verbs, adjectives as well along with nouns across the datasets. Secondly, as

we earlier mentioned that there is a potential overlap of different types of events covered in different

languages such as earthquakes and floods, which can trigger a contextual overlap in the nature of the

information.
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Table 5.7: Spearman’s Rank Order Correla on between ranked informa ve features (based on IG) across models and
languages

Data/ SF SF+ SF+ SF+ Translation
Model SemBN SemDB SemBNDB

en− es 0.573 0.385 0.349 0.373 0.515(en-es2en) 0.449(es-en2es)
en− it -0.179 0.402 0.111 0.315 0.266(en-it2en) 0.594(it-en2it)
es− it 0.418 0.222 0.503 0.430 0.678(es-it2es) 0.612(it-es2it)

5.4 Discussion

In this chapter, to answer research question RQ3, we analysed the impact of adding the semantic

features with the statistical features, and translating the data to a common language, in facilitating

a cross-lingual crises data relevancy classification. The aim was to explore the methodologies which

can assist in developing language-agnostic classification models. However, given the nature of the

data, this analysis was limited to three languages: English, Italian, and Spanish. Gathering large scale

annotated crises oriented data across several languages is challenging. One of the ways to address this

could be translating the data to multiple languages using automated machine translation tools.

From the results, we see that when the data is cross-lingual (not translated) adding the semantics

(bothDBpedia and BabelNet) improve the cross-lingual classification accuracy in comparison to the

baseline. Also, just translating the data also enhances the classification performance in comparison to

the baseline SF (statistical features model). Adding the semantics after translation enhances the classi-

fication performance, but not by much. We can say that, if the data was to be translated then just the

translationmodelsmight be sufficient. In the case where translation is not viable (if the translation ac-

curacy is too inaccurate) then adding the semantics (without translation) can be recommended along

with the statistical features for its higher accuracy. We have not evaluated the accuracy of translation

services in our analysis.
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In thework done in this chapter, the training and the test datawere curated based on the languages,

and it was quite natural for data across the languages to have a certain terminological overlap such

as names of the crisis, locations, or people due to possible shared crises events. The scenario where

languages and the crises events and/or event types are both discrete at the same time is another aspect

of the problem, which we address in the next chapter.

While extracting the semantics fromBabelNet (Section 5.2.2)we extracted them inEnglish primar-

ily. We found BabelNet (version 3.7) to be more enriched with English than with other languages. At

the time of this work, it (BabelNet) recorded almost 17million word senses in English, while the next

highest number of word senses were noted to be in French with 7 million word senses*. Similarly in

DBpedia, we found maximum instances per class (person, actor, athlete, politician, place etc.) in En-

glish†. Finding this bias towards English language, adding the semantics in English would have not

only enabled us to extract maximum amount of labels/senses/properties but also helped in adding

more concepts in one single language. Thus, also helping tackle the problem of data sparsity due to

differences in the morphological forms of the languages. This resulted in an advantage gained by the

semantic models over the purely statistical feature model.

For the cross-lingual classification, in this chapter, we performed 6 test cases. Extending such anal-

ysis to more languages will help in establishing the gains in classification performance observed by

the semantic models over the baseline statistical features as statistically significant. As an alternative,

multiple sets of train and test splits for each test case could also cater to the requirement of multiple

iterations of experiments, which was not feasible in this particular study due to the limited overall size

of the data. Although, we performed 10 iterations of 5-fold cross validation over the entire dataset

and found SF+SemBN (BabelNet Semantics) better than rest of the models (particularly against the

baseline with a statistically significant value of p = 0.0192, on a two-tailed t-test).

*BabelNet Statistics, http://live.babelnet.org/stats
†DBpedia Statistics, https://wiki.dbpedia.org/services-resources/datasets/dataset-statistics
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The need for classification models being able to handle multiple languages is clear, since the lan-

guage of information on social media during crises events varies significantly. Therefore, the ability

of classification models to handle multi-lingual data is an advantage.

5.5 Summary

The work done in this chapter was aimed towards answering the research question RQ3 - “To what

extent could semantics improve crisis-relevancy classification of Tweets written in a new language?”. We

considered data frommultiple crises events, and narrowed it down to data in three languages: English,

Italian, and Spanish. We extracted statistical and semantic features for the data. We hypothesised that

adding the semantic features could enahnce the similarity across data from different languages. Next,

we created multiple classification models based on statistical and semantic features. The experiments

for cross-lingual classification were designed in two ways: (i) training the model on crises data from a

language and evaluating themodel on crises data from a new language; (ii) training themodel on crisis

data from a language and evaluating themodel on crises data from anew language but after translating

the language of the test data to the language of the training data. This work explores the impact of

semantic features in cross-lingual crisis data classification, which has not been explored in previous

related works (Imran et al., 2016b; Li et al., 2018b; Lorini et al., 2019).

Wewere able to demonstrate, and thus answer research questionRQ3, that models built on a com-

bination of statistical and semantic features enhanced the classification accuracy when they were ap-

plied to crisis data from a new language. Also, the translation of the data to the same language enabled

the classifiers to identify the crisis related information from a new language after translation.

The experiments conducted in this chapter have contributed towards answering research question

RQ3. While answering research questions RQ2 and RQ3, two distinct problems of crisis types and

crisis data language have been explored respectively. However, in real world these two unique prob-
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lems can co-occur, i.e., the classificationmodel can encounter a previously unseen type of crisis and in

a new language in the testing data. This forms part of our research questions RQ4, and we perform

an in-depth study to answer this research question in the next chapter.
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6
Classifying Crisis Relevancy Across

Languages and Crisis Types

In the previous chapters we explored two discrete problems, (i) how the various classification models

respond when they are trained on crises data in a certain language and applied to crises data in a new

language; and (ii) how the various classificationmodels respond when they are trained on data from a

certain type of crisis and applied to data from a different type of crisis. So far, in the previous chapters
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these two aspects of the crises data have been treated as distinct problems. However, these two aspects

can co-occur, where the classification model is applied to a new type of crisis which contains data in

a new language. In this chapter, we will address our last research questionRQ4, where we determine

what type of classificationmodels are able to classify crises information relatedness when the type and

language of the crisis event change at the same time.

6.1 Introduction

In Chapter 5, we explored how the classification models can respond to cross-lingual crises data. We

saw that crisis events, across or within the same geographic locations, can result in multilingual data.

Also, in Chapter 4 we saw that crises events can be of various types, depending on the nature of crisis

event. In order to create classification models for crisis management/information systems, it is im-

portant to generate models that are adaptive to new crisis types and to data in new languages. So

far, in the earlier chapters, we have shown how the inclusion of semantic features amplifies the classi-

fier’s accuracy in the scenario when the model is trained on certain types of crises events (e.g., floods)

and evaluated on crises events of different types (e.g., earthquakes, fires). Similarly, we also showed

the impact of semantic features inclusion and automated translation services in making classification

models more language agnostic. What is yet to be explored is the performance of the classification

models when these two problem scenarios exist together, i.e., when the data, on which the model is

applied, is not only from a new crisis type but also in a new language. As discussed earlier in related

works some of the works tried to address domain adaptation of crisis classification models on differ-

ent crises events. Imran and colleagues (Imran et al., 2016b) considered crises data from two types of

events earthquakes and floods, which was formed of data in more than one language. While the work

did not exhibit a rigorous cross-lingual evaluation by limiting the analysis to only two crisis events in

two languages, they did show that a classification model trained on data in Italian is more likely to
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perform better when applied on crisis events in Spanish instead of English.

In this chapter, we aim to answer the fourth research question:

RQ4 -Towhat extent could semantics improve Tweets classification when the type of crisis

event and language change?

In this chapter, we deal with the problem when a classification model is strictly trained on certain

types of crises events and in a particular language (for example data fromearthquake events inEnglish),

and is evaluated on different types of crises events, in a different language (for example flood events in

Italian). This is performed by creating a multi-lingual crises dataset by translating the data into 6

different languages, and then designing cross-crisis type classification on cross-lingual data sets. In

these experiments, we analyse the impact of adding semantic features and translation of the data to

the same language. The evaluation is conducted in two scenarios: (1) when the cross-crisis type data is

not in the same language as of the training data; and (2) when the cross-crisis type data is in the same

language as of the training data (bringing the data to same language via translation).

The contributions of the work done in this chapter can be summarised as follows:

• We generate hybrid statistical-semantic classification model by extracting semantics from two

different knowledge bases: DBpedia and BabelNet.

• We use data from 26 different crises events, spanning across 7 types (floods, typhoons, earth-

quakes, shooting, explosion, bombing, and train crashes), and in 6 different languages (En-

glish, Spanish, Italian, German, Portuguese, and French), to classify crisis relatedness in a cross-

crisis cross-lingual set up.

• Evaluate classifiers with multiple features, languages, and type of crises, resulting in a total of

1728 experiments.
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• Show that data translation to the same language and then combining the DBpedia semantics

outperforms the baseline statistical features by 16.42%, on average, in a cross-lingual cross-crisis

classification scenario. While, adding the DBpedia semantics without translating to the same

language outperforms the baseline statistical features, on average, by 11.24%.

6.2 Relevancy Identification Across Language and Crisis Types

As we mentioned earlier, we have the following aims: (i) analyse the performance of the classification

models in classifying crisis-related tweets, when the type of crises events and the language of the train-

ing data, which the model is trained on, is different than those of the data the model is applied to (for

example the model is trained on data from floods in English and applied to data from earthquakes in

French), and (ii) analyse the impact of themachine translation and semantic features in alleviating the

bias of the crises type and language due to the training data, and thus evaluating their impact on the

performance of the classifiers.

The proposed approach for creating and evaluating the binary classification model comprises of

the following phases, as also shown in Figure 6.1:

A. Input Data and Preprocessing: A binary label annotated dataset comprised of crisis events

of multiples types is processed for alleviating training and evaluation bias towards a particu-

lar class or crisis types in certain languages. This is achieved by balancing the dataset across

both the classes and then creatingmono-lingual datasets in 6 languages, for all the crisis events.

Thus, ensuring that all crisis events are covered in all the considered six languages.

B. Training/Evaluation Sets Generation: We segregate the datasets into training and evaluation

sets in away to evaluate the classificationmodels in a cross-crisis-type and cross-lingual scenario.

C. Feature Engineering: Build the statistical and semantic features which are used for generating
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the binary classification model.

D. Model Selection and Training: We train the classifier using the training data.

E. Model Usage and Evaluation: We evaluate the classificationmodel on the held-out data (while

segregating the training and evaluation data). Depending on the approach, if it involves bring-

ing the evaluation data to the same language as of the training data, the language of the evalu-

ation documents may be reconciled with the training language using machine translation.

Figure 6.1: Pipeline for relevancy iden fica on across language and crisis types
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6.2.1 Input Data and Preprocessing

In order to train cross-lingual and cross-type binary classifiers that can identify crisis-related and not

related documents, we need to havemultiple mono-lingual andmono-crisis-type datasets so that data

in a particular crisis-type and language can be used as the training data while the other crises-types in

other languages can be used as the evaluation data.

Even though existing crisis-related Twitter datasets tend to provide tweets that are easily separable

by their crisis-types (e.g., floods, fires, explosions, etc.), these datasets are usually composed of du-

plicates (e.g., retweets) and multilingual tweets that need to be taken care of before being used for

training a cross-type and cross-language classification model. In particular, duplicate tweets may lead

to an over-fitted model for certain types of tweets. Similarly, the presence of multilingual tweets may

invalidate the cross-lingual setting that is needed for performing our cross-language experiment. Fi-

nally, annotated datasets may also be unbalanced. As a result, it is also important to enforce that a

binary classifier has the same amount of positive and negative samples during its training phase for

avoiding any kind of bias towards a specific class.

We identify duplicate tweets by matching the tweets, one by one, in pairs after removing user-

handles (i.e., ‘@’ mentions), special characters, and URLs. If the strings match, the new one is dis-

carded. Similarly, different methods can be used of identifying and dealing with specific languages in

tweets. In this work, we perform an ‘identify and translate’ language normalisation approach where

we first identify the language of a tweet using automatic methods and then use machine translation

tools for generating monolingual versions of crises-types datasets.

Similarly to the previous chapter, to get an idea of the languages used in the dataset, we use 3 differ-

ent language detection APIs to determine the language of each document (tweet) : detectlanguage*,

*detectlanguage, detectlanguage.com
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langdetect*, and TextBlob† and label the language of each tweet with what is agreed by at least 2 of

the APIs. To this end, more than 30 languages are found in the dataset with English (en), Italian (it),

Spanish (es), and Portuguese (pt) representing nearly 93% of the data.

Although in principle the manual translation of each tweet would lead to better translation accu-

racy, we decide to use automatic translation tools since they are more scalable than manual annota-

tion. We create a multilingual dataset for 6 languages (Figure 2): English (en), Italian (it), Spanish

(es), French (fr), German (de), and Portuguese (pt) by relying on theGoogle Translation API (Neural

Machine Translation System), which was found to be most accurate over other automatic translation

methods (Wu et al., 2016). Each tweet is translated to the rest of the 5 languages, one by one, if it

is already in one of the 6 chosen languages. If the tweet is not in any of these 6 languages, then we

translate it to all 6 languages. Following this, each annotated tweet is available in 6 different language

(as shown in Fig. 6.2), and thus we create multiple mono-lingual and mono-crisis-type datsets.

6.2.2 Training & Evaluation Sets Generation

In the previous steps, we created mono-lingual datasets for 6 languages. Based on these mono-lingual

datasets we can selectively generate the training and evaluation data. As we aim to have the training

datasets be represented only in a certain language and of selected crises types, we first select a mono-

lingual dataset (in any one of the languages) and then further select the crises events, which are partic-

ularly not of the types thatwe aim to evaluate the classifier on. To create the test data sets, onwhichwe

evaluate the model, we pick up another mono-lingual dataset in a different language than the training

data, and specifically select those crises events which are of the type we want to evaluate themodel on.

These test data events do not occur in the training data as they were held out.

*langdetect, pypi.org/project/langdetect/
†TextBlob, textblob.readthedocs.io/en/dev/
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Figure 6.2: Mul lingual dataset for crises events via transla on
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6.2.3 Features

As in the previous chapter, we generate two types of features for the binary classification task of clas-

sifying the tweets as crisis related and not related: statistical features and semantic features. To ad-

dress the research question RQ4 in this chapter, we consider the Statistical Features as the baseline

approach. The semantic features represent the named entities and associated semantic information

extracted from the knowledge graphs.

Statistical Features

For every tweet we extract the same statistical features as earlier seen in the chapters 4 and 5, which can

be referred to in the Section 4.2.2, under subsection Statistical Features.

In order to extract the statistical features for multiple languages, we chose spaCy* library to extract

Part of Speech (POS) features. We tokenise the data to unigrams by regexp tokenizer in NLTK†. We

use a dedicated list of words to filter out the stopwords‡. Furthermore, TF-IDF vector normalisation

is applied over the unigrams to weigh the tokens in accordance with their relative importance within

the dataset, and represent the data in the vector space. In the models, where we include the seman-

tic features, the tokenisation, removal of stopwords, and TF-IDF normalisation is performed after

semantic feature inclusion.

Semantic Features

Semantic features are aimed towards forming amore generic representation of crisis data information

across languages and crisis types. The features are designed to broaden the context of documents

and by making them less crisis-specific, thereby alleviating the issues of data scarcity in, otherwise,

*spaCy, www.spacy.io
†NLTK, www.nltk.org
‡Stop-words list, raw.githubusercontent.com/6/stopwords-json/master/stopwords-all.json
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event specific vocabulary. As in the previous chapters 4 and 5, we extract the same semantic features,

from BabelNet and DBpedia, and can be referred to in the Section 4.2.2, under subsection Semantic

Features.

Given the multilingual nature of these knowledge bases, semantics are extracted in English regard-

less of the language of the post, thus bringing cross-lingual data closer contextually via the added se-

mantic vocabulary. Generalization of semantics in one language also reduces potential data sparsity

resulting from varying morphological forms of entities across languages. The semantic features will

also bring the data from different types of crisis contextually closer. A conceptual representation of

semantic expansion for an example is shown in the Figure 6.3.

Figure 6.3: Conceptual representa on of a seman cally annotated post

Babelfy performs NER using the multilingual knowledge base BabelNet. BabelNet is structured

153



in a way where a common synset represents a certain entity/concept across all its variants in multiple

languages. For example, the terms police and policia (in Spanish) are both represented by the same

SynsetID in BabelNet with its English sense as police. So a same SynsetID and DBpedia URI is re-

turned for the two terms in different languages. Further, we extract hypernyms and DBpedia proper-

ties to associate various entities across different languages. As an example, guardie di sicurezza (‘secu-

tiry guards’ in Italian) and police share the sameDBpedia subject - security_guard. Consequently, data

from a wide range of crises events as well as languages get contextually aligned via semantic features.

Let us look at two tweets for an example, in Table 6.1, which originated in two different events and

in two different languages. Post A originated in an earthquake event and is in English, while Post B

originated during floods and is in Italian. FromTable 6.1, we can see the two tweets gaining contextual

similarity with the semantic features. We also see the similarity gained by the translation of the tweets

mutually into each other’s language.

6.2.4 Model Selection and Training

We need to train different models using the training datasets and engineered features, created in the

previous steps, using a suitable supervised model. In the previous chapters, the appropriateness of

SVM Linear Kernel was validated over RBF kernel, Polynomial kernel, and Logistic Regression. As

a consequence, we opt for Support Vector Machine (SVM) with a Linear Kernel as the classification

algorithm.

Multiple classification models can be constructed using different subsets of the generated features

such as the statistical features and the semantic features. We design three different types of models as

follows, and evaluate them separately:

• SF : This model uses only the statistical features and is the baseline.

• SFSemBN : The statistical features and semantic features from BabelNet are combined (entity
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Table 6.1: Seman c expansion with BabelNet and DBpedia seman cs

Post A Post B

Feature ‘#WorldNews! 15 feared dead
and 100 people could be missing
in #Guatemala after quake’

‘Inondazioni in Sardegna,
recuperato il cadavere di un
poliziotto: almeno 10 tra morti
e dispersi: E’ morto uno d...’

Babelfy Entities feared, dead, people, missing,
quake

Inondazioni, recuperarto, ca-
davere, poliziotto, morti, dis-
persi, morto

BabelNet Sense (English) fear, dead, citizenry, earth-
quake

floods, catch, dead body, police
woman, dead, death, missing

BabelNet Hypernyms
(English)

geological_phenomenon, natu-
ral disaster, group

Geological_phenomenon,
natural disaster, hydrology,
human_body, biological process

DBpedia Properties dbr:Death,
dbc:Communication,
dbr:News,
dbc:Geological_hazards,
dbc:Seismology,
dbr:Earthquake

dbc:Death,
dbc:Geological_hazards,
dbr:Death, dbr:flood

Google Translation To it-‘#Notizie dal mondo!
15 temuti morti e 100 per-
sone potrebbero mancare a
#Guatemala dopo il terremoto ’

To en-‘Floods in Sardinia, re-
covered the corpse of a police-
man: at least 10deadandmiss-
ing: He died one d...’
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sense in English, and their hypernyms in English as well, as explained earlier).

• SFSemDB: This model combines statistical features with semantic features fromDBpedia (la-

bels in English, type, and other DBpedia properties).

6.2.5 Model Usage and Evaluation

To evaluate the models, we use the held-out data as mentioned in Section 6.2.2. To evaluate the per-

formance of the models we determine the precision (P), recall (R ) and F1-measure (F1). For the eval-

uation, two scenarios are considered: (i) themodel is evaluated directly on the target document (from

a different crisis type event and in a different language) by generating different features mentioned in

the above section; (ii) in the second scenario, before generating the features of the target document

(which is from a different crisis type event and in a different language), it is translated to the language

of the corresponding training data usingmachine translation services. However, in both scenarios the

test and the training data represent the data of different types of crisis.

For the first scenario, we use the same notations for the models as mentioned in the above section:

SF, SFSemBN, and SFSemDB. For the second scenario, which uses machine translation on the test

document before generating the features we use the following notations for the model:

• SFT: The model uses only the statistical features but the test data is translated to the language

of the training data.

• SFSemBNT: The model is the same as SFSemBN but the test data is translated into the same

language as the training language.

• SFSemDBT: The same model as SFSemDB but the test data is translated to the same language

as the training language.
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6.2.6 Dataset

For this study aswell, we use theCrisisLexT26 (Olteanu et al., 2015) datasetwhich comprises of anno-

tated tweets from26 different crises events. There are 1000 labelled tweets from each event categorised

into the following labels: ‘Related and Informative’, ‘Related but not Informative’, ‘Not Related’ and

‘Not Applicable’. As shown in Table 6.2, we have broadly categorised the events into 11 types (the ta-

ble also shows the language distribution across each crisis category). The categorisation approach is

similar to the one used in Chapter 4, and is based on a broad understanding of the crisis events. For

example, we treated floods and typhoons belonging to the same crisis type, since typhoons often result

into floods.

As in previous chapters, since thiswork also focuses on the binary classification scenario, wemerged

the documents labeled as Related and Informative with the documents labeled as Related but Not

Informative to form theRelated class, andmerged documents labeled asNotRelatedwith documents

labeled asNotApplicable to form theNotRelated class. Following this, we remove the duplicate tweets

using the method described earlier. To this end, there were 21378 unique tweets labeled as Related

and 2965 unique tweets labeled asNot Related.

Next, to avoid the bias between theRelated andNot Related classes, we balance the data by under

sampling the majority class and matching the number of Related tweets with with the Not Related

ones via a random selection process, across each crisis event. This result is a final dataset with overall

size of 5931 tweets (2966 Related and 2965 Not Related). And as described earlier, we perform lan-

guage normalisation to create 6 versions of the monolingual datasets, using Google Translation API,

of the following languages: English (en), Italian (it), Spanish (es), Portuguese (pt), German (de), and

French (fr).

It is important to mention, that for language reconciliation tasks for the models SFT, SFSemBNT,

and SFSemDBT, to avoid a repetition of task, we do not re-translate the data from a given language to
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the other. Instead, as we have already created 6 mono-lingual datasets following the translation of the

entire dataset to all 6 languages as language normalisation task, we reuse the corresponding translated

monolingual datasets to generate the test data for the relevant held-out crises-type events and consider

it as a translated version of the test data. As a whole, we had 26 crises events, across 10 crises types,

and in 6 versions of monolingual datasets. For the experiments, we chose the following crises types:

floods/typhoons, earthquakes, train crashes, and bombing/explosion/shooting.

6.3 Experiments

In the following sectionswewill provide details of the experimental set upwherewe create and validate

multiple classification models based on statistical features, semantic features, and translation of the

data.

6.3.1 Experimental Setup

As these evaluations are about the cross-crisis types and cross language, we select the following crises

types and events for the experiments:

• We train the classificationmodels on the rest of crisis event types exceptBombing/Shooting/Explosion

and evaluate themodel onLAX,BOB, andWTX.All the test events areBombing/Shooting/Explosion

type of crises.

• We train the classificationmodels on the rest of crisis event types except train crash and evaluate

the model on SPT and LAM. All the test events are train crash type of crises.

• We train the classificationmodels on the rest of crisis event types exceptfloods and typhoons and

evaluate the model on typhoons- TPY, TYP and floods- ALB, QFL, CFL, PHF, and SAR; all

the test events are flood/typhoon type of crises.
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Table 6.2: Event types and original language distribu on (en:English, it:Italian, es:Spanish)

Event Type Event Instances Event Type Event Instances

Wildfire/Bushfire Colorado Wildfire
(CWF), Australian
Bushfire (ABF)
en-99.1%, it-0%, es- 0.1%,
other-1.6%

Haze Singapore (SGR)
en-97.47%, it-0%, es- 0%,
other-2.53%

Earthquake Costa Rica (COS), Ital-
ian (ITL), Bohol (BOL),
Guatemala (GAU)
en-43.6%, it-18.6%, es-
30.9%, other-6.9%

Helicopter crash Glasgow (GLW)
en-99.89%, it-0%, es-
0.11%, other-0%

Flood/Typhoon Typhoon- Yolanda (TPY),
Pablo (TYP)
Flood- Colorado (CFL),
Queensland (QFL), Al-
berta (ALB), Philippines
(PHF), Sardinia (SAR)
en-82%, it-12.7%, es-
1.1%, other-4.2%

Building collapse Savar Building (SVR)
en-86.9%, it-0.82%, es-
5.19%, other-7.1%

Terror/Shooting/
Explosion

Los Angeles (LAX),
Boston Bomb (BOB),
West Texas (WTX)
en-95.1%, it-0.1%, es-
2.1%, other-2.7%

Location Fire Brazil Pub (BRZ), Vene-
zuela Refinery (VNZ)
en-20.3%, it-0.1%, es-
45.8%, other-33.9%

Train crash Spain Train (SPT), Lac
Megantic (LAM)
en-47.9%, it-0.1%, es-
28%, other-24%

Meteor Russia (RUS) en-
87.56%, it-0.64%, es-
2.56%, other-9.24%
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• We train the classification models on the rest of crisis event types except earthquakes and eval-

uate the model on earthquake- GAU, ITL, BOL, and COS. All the test events are earthquake

type of crises.

Further, the evaluations are designed in two ways, as defined in Section 6.2.5:

A. Train and test in cross-lingual set up (i.e., the language of the training and the test data are

different). These would be carried out using the models: SF, SFSemBN, and SFSemDB

B. Test data language reconciled with training data (i.e., the test data is brought to the same

language as that of the training data). These would be carried out using the models: SFT,

SFSemBNT, and SFSemDBT.

It is important to remind ourselves, here, that all the crises events are available in all the 6 mono-

lingual datasets, i.e., in all 6 different languages. For each model in cross-lingual evaluation (SF, SF-

SemBN, and SFSemDB), whenever the training data is in a certain language, the test data can be in

other 5 languages. This counts to 30 cross-lingual evaluations for each test event. As there are 16

events, this makes it 480 evaluation cases across each model. Given that there are 3 models (SF, SF-

SemBN, and SFSemDB), we have a total of 1440 cross-lingual evaluation experiments. For themodels

where the test data is reconciled with the language of the training data, i.e., SFT, SFSemBNT, and

SFSemDBT, there are 6 evaluation cases for each test event in eachmodel as both the training and test

data are available in 6 languages. For the 16 events, it makes 96 evaluation cases in each translation

model. Given that there are 3 translation models, we have 288 such evaluation cases. Thus, overall

there are 1728 unique evaluation experiments performed in the entire analysis.

We now describe the results of each of the above scenario.
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6.3.2 Results: Train and test in cross-lingual set ups

In this section we measure the performance of the two semantic models SFSemBN and SFSemDB,

over the baseline model SF. Figure 6.4 shows the violin plots comparing an overall distribution across

480 observations each in SF, SFSemBN, and SFSemDB. From the plots in Fig. 6.4 (which shows the

violin plots of the F1 score distribution across each model) and from Table 6.3 we can see that SF-

SemDB performs outrightly better than the baseline SF, with an increased overall mean F1 score and

a reduced deviation. While SFSemBN also shows an overall increment in the mean F1 score, a lesser

standard deviationmakes SFSemDBmore consistent. SF has an average F1 score of 0.556 with a stan-

dard deviation of 0.07, SFSemBN has an average F1 score of 0.566 with a standard deviation of 0.07,

and SFSemDB has an average F1 score of 0.610 with a standard deviation of 0.06. The performance of

SFSemDBwhen compared to baseline SF was found to be statistically significant (via 2 sample t-test)

with a p-value<0.001. While the SFSemBN had a higher mean than baseline SF, it was not found to

be statistically significant with a p-value=0.289.

6.3.3 Results: Test data language reconciled with training data

In this section we measure the performance of the translation models, where the language of the test

data is reconciled with the language of the training data, i.e., SFT, SFSemBNT, and SFSemDBT over

the baselinemodel SF. FromFigure 6.5 (which shows the violin plots of theF1 score distribution across

eachmodel) andTable 6.4, we observe thatwhen the test data is reconciled to the same language as that

of the training data, the average F1 score increases (with and without the semantic features). Addition

of semantic features reduces the deviation in the performance (as can be visualised from the violin

plots of the F1 scores in Figure 6.5). Highest mean F1 score of 0.638 and lowest deviation of 0.058 is

observed in the SFSemDBT, with a more consistent distribution in comparison to the other models

and also found to be statistically significant over the baseline with a p-value<0.001. SFT has an average
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Figure 6.4: Violin plots: F1 score distribu on across SF, SFSemBN and SFSemDB

F1 score of 0.626with a standard deviation of 0.07 (also being statistically significant over the baseline).

SFSemBNT has an average F1 score of 0.620 with a standard deviation of 0.07, while being statistically

significant over the baseline with a p-value<0.001.

6.3.4 Results: Overall Performance Across AllModels

Figure 6.4 and Figure 6.5 show the violin plots for all the models, and by also considering the Tables

6.3 and 6.4, we can say that while both semantic models enhance the performance of the classifier, the

best performance is achievedwith the combinationof theDBpedia semantics and the translation in the

SFSemDBT model. SFSemDBT shows an average F1 score of 0.638 and an average gain of 16.42% over

the baseline SF model. If we do not take translation to same language into consideration, SFSemDB

is the best performing model with an average F1 score of 0.606 and an average gain (across all the test

162



Table 6.3: Average overall performance and average performance across crises types, for the models:SF, SFSemBN, and
SFSemDB

SF SFSemBN SFSemDB

P R F1 P R F1 P R F1
Floods/Typhoons

AVG. 0.618 0.583 0.551 0.666 0.607 0.567 0.684 0.648 0.628

Earthquakes

AVG. 0.556 0.551 0.529 0.589 0.561 0.519 0.622 0.608 0.584

Bombing/Explosion/Shooting

AVG. 0.598 0.586 0.571 0.626 0.613 0.601 0.607 0.602 0.598

Train Crash

AVG. 0.644 0.618 0.608 0.613 0.607 0.602 0.603 0.592 0.583

Overall

AVG. 0.602 0.580 0.556 0.633 0.597 0.566 0.644 0.623 0.606

STD. 0.08 0.06 0.07 0.07 0.05 0.07 0.06 0.06 0.06

p-value 0.289 <0.001

events) of nearly 11% over the baseline. We also observe that SFT model also shows a substantial and

statistically significant improvement over the baseline, with an average F1 score of 0.626. We can see

that both, translation and addition of DBpedia semantics help in overcoming the over fitting of the

models to a specific language or crisis types occurring in the training data.

We also analysed the performance of the classification models across different languages, i.e., when

the training and the test data were in same or different languages as shown in Figures 6.6, 6.8, and 6.7.

It is to be noted that when languages are the same, they indicate the case of translation models across

all the test events in that particular language, i.e., SFT, SFSemBNT, and SFSemDBT. In SFT, German

(de) had the highest average F1 score of 0.653 (with a standard deviation of 0.085) and Italian (it)
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Figure 6.5: Violin plots: F1 score distribu on across SF, SFT, SFSemBNT and SFSemDBT

with the lowest average F1 score of 0.606 (standard deviation of 0.09). In the SFSemDBT, French (fr)

showed the highest average F1 score of 0.65 (standard deviation 0.07) and Italian (it) with the lowest

F1 score of 0.62 (standard deviation of 0.05).

If we observe and compare the bar graphs in the Figure 6.6 and 6.7, we see a definite improve-

ment in the train-test language combination in the SFSemDBmodels (including translation model),

in comparison to the corresponing case in the SF model.

6.4 Discussion

In this chapter, we aimed at answering the fourth research questionRQ4 by generating hybridmodels

that use statistical and semantic features to classify the crises data as related and not related, and are

to some extent language as well as crisis type agnostic at the same time. As compared to the work
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Table 6.4: Average overall performance and average performance across crises types, for the models:SFT, SFSemBNT, and
SFSemDBT

SF SFT SFSemBNT SFSemDBT

P R F1 P R F1 P R F1 P R F1
Floods/Typhoons

avg. 0.618 0.583 0.551 0.698 0.66 0.643 0.707 0.663 0.644 0.711 0.683 0.672

Earthquakes

avg. 0.556 0.551 0.529 0.604 0.589 0.569 0.623 0.597 0.567 0.638 0.625 0.608

Bombing/Explosion/Shooting

avg. 0.598 0.586 0.571 0.631 0.627 0.623 0.638 0.631 0.626 0.609 0.605 0.602

Train Crash

avg. 0.644 0.618 0.608 0.708 0.691 0.685 0.644 0.635 0.630 0.625 0.613 0.604

Overall

avg. 0.602 0.580 0.556 0.663 0.640 0.626 0.665 0.637 0.620 0.663 0.645 0.638

std. 0.08 0.06 0.07 0.08 0.06 0.07 0.07 0.06 0.07 0.066 0.059 0.058

p- <0.001 <0.001 <0.001
value

done in the previous chapter, we expand the languages to 6 languages via machine translation APIs

and scale the experiments to cross-crisis types simultaneously. It is a challenging task to get a large

scale annotated data which spans across several languages and several crises event types. Hence, we

simulated the multilingual crises data scenario by recreating multilingual versions of different crises

events via translation of the original data. We translated from the original data (for each crisis event)

to 6 different languages using Google Translation API, i.e., English (en), Portuguese (pt), Italian (it),

German (de), Spanish (es), and French (fr). For the experiments, relying on the translation service was

not a time costly process, as Google Cloud allows translation of a maximum of 10 million characters

per 100 seconds per project*.

*Google Cloud quotas, https://cloud.google.com/translate/quotas
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Figure 6.6: SF and SFT across languages

Much like NLP tools and semantic expansion via knowledge bases, machine translation also does

not guarantee complete accuracy and can have different levels of accuracy in translations between dif-

ferent languages or might not be even available for a lot of non-European or low-resourced languages.

But in order to simulate the cross-lingual cross-crisis scenario we considered it as an appropriate way

to determine the feasibility of such methods in such problems. Some of the statistical features are,

however, language independent. We did observe that both translation and semantic features (particu-

larlyDBpedia semantics) enhances the performance. The translation of the data brings the data to the

same language, which catalysis the alignment of the vocabulary in the same language (entities, parts of

speech, etc). The semantic features align the context across different crises types. DBpedia semantics
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Figure 6.7: SFSemDB and SFSemDBT across languages

show more impact than the BabelNet semantics, a possible reason is that DBpedia features include

higher number of properties which connect the entities at a deeper level. It is to be noted, that once

the test and the training data is brought into a same language, the problem fundamentally converts

into a cross-crisis classification, which is the problem explored in Chapter 4 (we did not consider the

aspect of language in Chapter 4). If the translation is not viable, then the SFSemDB turns out to be

the best performing feature model for cross-lingual cross-crisis classification.
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Figure 6.8: SFSemBN and SFSemBNT across languages

6.5 Summary

Thework done in this chapter is aimed towards answering the researchquestionRQ4 - “Towhat extent

could semantics improve Tweets classificationwhen the type of crisis event and language change?”. In this

chapter, we took a broader andmore realistic aspect of the problemwhere the incoming crises oriented

datamight vary in terms of language and the crisis type. Adivergence in the language and the nature of

the crisis event can impact the validity of any crisis-relevancy classificationmodel. We created different

models based on statistical features, translation of the data, and addition of the semantic features. We

were able to show that both translation and addition of semantics help in addressing the problem.

If translation is not viable, then combining the statistical features with DBpedia features results in
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the best performing model. With translation, it is statistical features with DBpedia features extracted

from the translated data that performs the best on such a problem.
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7
Discussion and Future Work

In this thesis, we have investigated different aspects of the crisis data classification problem. We in-

vestigated the impact of semantic features in cross-crisis and cross-lingual crisis classification. We also

explored howautomatedmachine translation could complement in building a language agnostic crisis

data classifiers. Throughout the experiments we followed a general methodology as defined in Section

1.3 andbuilt hybrid classificationmodels, based on statistical and semantic features, to classify the data

as crisis related and not related. The overall research scope of this thesis was explored via four research
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questions, as seen in Section 1.2. Evaluations performed across various experimental settings, while

addressing the research questions, broadly demonstrated that adding the semantics is an effective ap-

proach over statistical feature approaches, to develop crisis relatedness classification systems which are

applicable to not only new types of crisis events but also in new languages. In the following sections

of this chapter, we will discuss the challenges, limitations, and potential future directions we have

identified in the course of this thesis.

7.1 Semantic Extraction

Throughout our experimental settings, we had a scenario where we enrich the data by adding the ex-

tracted semantics via knowledge bases. We observe that the hybrid semantic features models (with the

combination of statistical features) generally outperformed the non-semantic feature models. This

was a general observation in the experiments addressing different research questions. However, se-

mantic extraction poses its own challenges. These challenges often pertain to theway knowledge bases

are built or the extent to which semantics need to be expanded. For example, if we are using BabelNet

to extract hypernyms of associated entities/concepts in a text, then there is a possibility that among

the hypernyms we end up extracting a very broad/abstract entity as we noticed in some of the cases in

Chapters 3 and 4. The knowledge bases are not always strictly adhering to the hierarchy of concepts

because of various automated approaches adopted to create them (since it is nearly impossible toman-

ually curate knowledge graphs representing millions of entities). Such scenarios highlight the need to

determining the abstractness of any concerned semantic (concept). As an attempt to address this, in

Chapter 3 we created a hierarchy of concepts extracted from BabelNet and analysed the ranking of

levels of informative concepts by plotting the InformationGain score of the concepts against their hi-

erarchy level. Further, based on such a hierarchy the abstract conceptswere filtered out, which showed

aminor improvement in the performance of the classifier. Though the improvements in the classifier’s
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performance were not large, they demonstrated the potential value of using concept filtering based on

abstractness, and the need for future research to explore and improve this approach further.

Similarly, extracting semantics via knowledge bases such as DBpedia has another set of challenges.

We retrieve the semantics of entitieswhich are annotatedbyNamedEntityRecognition services (NER).

Firstly, the NER services can sometimes be inaccurate and link with a wrong entity. Secondly, ex-

panding the semantics through a knowledge base such as DBpedia can sometimes lead to irrelevant

and completely out of domain concepts, which can add to noise in the data and confuse the classifier.

For example, in the given tweet - ‘Scary Super Typhoon in Philliphines is 236 mph. It’s roughly the top

speed of Formula 1 cars.’, we can comprehend the context of the text as being related to a crisis situa-

tion. However, the NER service will return all the annotated entities, and in this case it returns a link

of the phrase Formula 1 with the corresponding entity Formula One in the knowledge graph. How-

ever, while expanding the semantics for the entity Formular One through various properties such as

type and subject, the context of the overall text gets drifted towards concepts related to Formula One,

as it is linked with a number of concepts from that domain (FormulaOne car racing event). Whenwe

expand the semantics, it is not trivial to establish which are the relevant semantics and which are the

ones that can potentially contribute to noise. Constructing domain-specific relevancy of a knowledge

graph is explored in some of the works (Lalithsena et al., 2016; Lalithsena et al., 2017; Perozzi et al.,

2014). Some of theseworks have been explored from a recommender systemperspective in themovies

or books domain. Generating domain specific knowledge graphs is an extensive research area on its

own. While, in this thesis our focus was on building classification models to identify crisis related in-

formation from social media and enhancing the applicability of such systems across crisis types and

languages, refining the type of semantics (via knowledge graphs) within the premises of crisis situa-

tions is a potential next step as a future course of the work proposed in this thesis.
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7.2 Multiple Crisis Type Data

Our research scope has revolved around developing classification models applicable across distinct

crisis events and of distinct types. We managed to utilise a dataset which was spread across multiple

crisis events. It is challenging to create datasets showcasing a huge representation of diverse types of

crisis events. Additionally, it is also not trivial to manage a substantial volume of data (related and not

related tweets) across each event and each crisis type. In our study, the data which we used was not

uniformly distributed in two aspects: (a) number of tweets across each crisis type; (b) number of crisis

events across each crisis type. Although, we did manage to create balanced data sets for individual

events inmost of our experiments, which enabled us to train the classificationmodels with a relatively

mitigated bias. In order to build systems that are applicable to unseen crisis events, training them on

a wide range of situations will boost their ability to be adaptive.

While, it is imperative to learn from a diverse set of crisis situations, it is also important to ensure

that a diverse range of information is also fed to the classification models to learn from. In our work,

the crisis events were regarded as belonging to a certain type based on how the event was identified

by the official agencies (e.g., typhoon, earthquake, flood). What we did not analyse about the data

was whether or not different types of crisis events were generating different type of content. There is a

possibility that certain eventsmight generate similar content (e.g., typhoons andfloods). Therefore, in

terms of training the classification system which can identify crisis related information from a diverse

content, we can think of analysing the content similarity across the data as a future step. Thus, being

selective with the nature of content being used for training and testing. One of the possible methods

to induct this into the methodology, in future, is to use cosine similarity between tweets of different

types and to determine a threshold value based on which criteria can be established while curating

training and testing data.
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7.3 Multilingual Crisis Data

Language forms a very critical aspect of crisis data classification problem. The classification systems

are valuable when they are responsive to the content in a new language. In our research scope, we

kept this aspect of the problem as one of our core research questions. In order to build up crisis data

classification systems, we took the data from different crisis events which resulted in a multilingual

data source. However, this did not yield a large scale multilingual data set equally (or significantly)

distributed across all the found languages in the data, instead it was skewed in its distribution across

various languages. In Chapter 5, we experimented with the data originating in three languages, while

in Chapter 6 we curated a multilingual data source by using the automated machine translation ser-

vice. Findingor curating a large scalemultilingual crisis data evenly distributed across several languages

is a challenging task. Firstly, not every crisis event that happens across the globe might come to notice

to be able to collect data. Secondly, there might not be a sufficient volume of data getting generated

online in certain geographical locations, thus effecting the amount of the data in a language promi-

nent in that area. Thus, to simulate themultilingual scenariowedecided to rely on automaticmachine

translation systems. Machine translation systems are not absolutely efficient in translation and there

is a possibility of an incorrect translation or not a completely accurate translation. Nevertheless, auto-

matic machine translation certainly helps in developing a proof of concept for developing crisis data

classification models.

Different languagesmight have lexical or syntactic similarities due to common roots in the language

evolution tree. Considering these relationship between the languages, as a future work, we can per-

form an in-depth exploration of the connection between the languages based on lexical similarities

of the data in different languages and how the classifiers behave across different languages. In Chap-

ter 5, we tried to determine the ranked order correlation metric of informative features between the

data originating from two different languages. However, it can certainly be extended to an elaborative
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study to establish the similarities between the languages, and determinewhether or not translating the

data necessarily works well in each cross-lingual scenario.

7.4 Experiment Results

Across the different experiments conducted in this thesis, we analysed how semantic features extracted

from knowledge graphs can be exploited to generate machine learning based classifiers to identify cri-

sis related information in social media data. We used two different knowledge graphs; DBpedia and

BabelNet for extracting the semantic features. We observe that while both the types of semantic fea-

tures (i.e. DBpedia semantics and BabelNet semantics) show improvement over the baseline in many

test cases, the BabelNet semanticswere not consistent. DBpedia semantics show a consistent improve-

ment across the test cases, in general, throughout all the research questions. One of the possible ex-

planation is that we use a higher number of properties fromDBpedia to extract additional contextual

information in comparison to BabelNetwherewe only extract hypernyms. We began our exploration,

addressing research question RQ1, with initial experiments on classifying crisis related data on new

crisis events, in Chapter 3. We trained our classifiers on random crisis events, predominantly in En-

glish, and used an unseen crisis event as the test data. Here, the crisis events in the training and test data

were only segregated on the criteria of distinct events and not on type of crisis or language the event

represented. In Chapter 4, addressing research question RQ2, when the crisis type of the test event is

not seen in the training data, we foundDBpedia semantics as the best and most consistent feature set

up. In Chapter 5, addressing the research question RQ3, when the language of the crisis data is not

seen in the training data, we tested two scenarios: (i) keeping the test data as it is and adding the seman-

tics, (ii) translating the test data to the language of training data and then adding the semantics. In

both cases, the semantic features show a better performance over the actual baseline (statistical feature

model without the translation). DBpedia semantics had shown a consistent performance when the
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data was cross-lingual and had not been translated. We also found the Spearman’s Rank Order Cor-

relation between ranked informative features (based on IG) being improved across all pairs of cross-

lingual data while using DBpedia semantics. Spearman’s Rank Order Correlation between ranked

informative features was a way to determine that by adding the semantics, how the actual data gets

effected in terms of valuable information. The addition of semantics enabled the cross-lingual data to

reflect more similarity with respect to the informative information/features across the languages. In

Chapter 6, we combined the two unique research problems of cross-crisis type and cross-lingual data,

which is more likely to occur in real crisis situations, where a new type of crisis event can reflect data

in multiple languages. We created six monolingual versions of the dataset (in six different languages)

by using automated machine translation service. This enabled us to create unique experiment cases

of selectively choosing training and test data in certain crisis types and in a certain language. We ob-

served that in this scenario (experiments for addressing research question RQ4), the most consistent

improvement was exhibited by theDBpedia semanticmodels, with and without translation.

Another potential aspect of crisis information identification problem could be to identify the tem-

poral trends of semantics or topics across crisis events. Analysing the temporal trends could help in

determining if different topics, within crisis events, exhibit a pattern in their life span during crisis. A

possible approach, as a future work, could be to create the topic clusters and visualise them in tem-

poral order, thus being able to analyse the gain or loss in traction of different topics. Such an analysis

could aid in fine tuning the classification systems to focus on the content which is more likely to be

relevant at a certain point of time, as the life span of a crisis event progresses. This could be a potential

area for future research.

It should be stated that the approaches explored in this thesis rely on natural language processing

tools, knowledge bases, and translation services (if opting for translation based models). These tools

are not always absolutely accurate, particularly on socialmedia datawhere the text often does not com-

ply thoroughly with the grammatical and lexical standards. However, the scientific studies conducted
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in this research thesis, by defining the scope of experiments spread across different research questions,

are meant to explore the potential methods that can be adopted to tackle a genuine challenge faced by

global communities, i.e., of identifying relevant information when it matters the most- during crises!
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8
Conclusion

The broad research objective of this thesis was to explore classification strategies for identifying crisis

related information from social media data. We focused on Twitter, as a use case, to collect the data

for this study. A wider research question investigated in this thesis was:

“Towhat extent could semantics improve crisis relatedness classification of Twitter data?”

To this end, we directed our research exploration to the following four research questions:
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• RQ1 - How could the addition of semantics improve the binary classification of Tweets with re-

gards to their relevancy to crises?

• RQ2 -To what extent could semantics improve Tweets classification for new types of crisis events?

• RQ3 -To what extent could semantics improve crisis-relevancy classification of Tweets written in

a new language?

• RQ4 - To what extent could semantics improve Tweets classification when the type of crisis event

and language change?

We addressed the above research questions individually in Chapters 3, 4, 5, and 6 respectively. We

hypothesised that enriching the tweets with semantics extracted through entity extraction and knowl-

edge graphs can be an effective approach to deal with diverse crisis data across crisis types and lan-

guages. Semantics extracted via knowledge graphs can homogenise the context in the data by estab-

lishing the relationships which exist between various concepts. In this chapter, we will summarise our

findings from individual chapters that addressed each research question.

8.1 Classifying Crisis Data - AHybrid Statistical Semantic Approach

In Chapter 3, we focused on addressing the first research question,

• RQ1 - How could the addition of semantics improve the binary classification of Tweets with re-

gards to their relevancy to crises?

To address this research questionwe considered the crisis events, fromCrisisLexT26 dataset, which

were in English. We considered 9 crisis events for the analysis. To extract the semantic featureswe used

NER service Babelfy to link entities in the tweets and BabelNet to extract hypernyms for linked en-

tities. To extract the statistical features, quantified linguistic and structural properties of text were
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computed. To classify the tweet as crisis related or not related, a binary classification approach was

adopted. We used SVM (support vector machine) with Linear Kernel as the classification algorithm.

To determine how the classifier responds to unseen crisis events, the classifier was trained on 8 out of 9

crisis events, and the left out event was treated as the testing data. Our analysis showed that when the

classifier is applied to unseen crisis events, the semantic features enhance the accuracy of the binary

classification. We also observed that semantic enrichment, sometimes, results in the inclusion of very

abstract concepts. To address this, we proposed a filtering mechanism of abstract concepts based on

the hierarchy of concepts in BabelNet and information gain score of informative features. The hierar-

chy fromBabelNetwas createdusing hypernym-hyponymrelationship of the concepts, which allowed

us to iterate through the relationship tree of concepts in the data. The filtering approach showed some

improvement over the semantic featuremodel.

The main conclusion from the work conducted in this chapter was that semantic features do en-

hance the classifier’s performance when it is applied to an unseen crisis event. We did not take into

consideration the type of crisis events in the training or the testing data. This formedpart of the second

research questionRQ2, addressed in Chapter 4.

8.2 Classifying Crisis Information Relevancy Across Crisis Types

In Chapter 4, we focused on addressing second research question,

• RQ2 -To what extent could semantics improve Tweets classification for new types of crisis events?

To address this research question, we explored a specific scenariowhere the classificationmodelwas

trained on data from certain types of crisis events, and applied to data from new types of crisis events.

For instance, we analysed how will the model perform when it is trained on data from crisis events

other than earthquakes, and applied to earthquake type crisis events. We observed that when the clas-

sifier is applied to new types of crisis events (i.e., the classifier has not seen the testing type events in the
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training data), the accuracy drops on average by around 17% (see SF model average F1 scores in Table

4.5 and 4.6), in the statistical featuresmodel (SF). However, when we include semantic features, the

classification accuracy of the model on unseen crisis types increases by +7.2% in F1 in comparison to

non-semantic models. We noticed that semantic features, particularlyDBpedia semantics, enhanced

the classifier’s adaptability to identify crisis related information from unseen crisis types. The inclu-

sion of semantic features made the vocabulary of crisis events more broader and less event specific.

This increased the scope of broader concepts becoming discriminative/informative, which are likely

to exist in unseen crisis events as well.

8.3 ClassifyingCrisis InformationRelevancyAcrossMultiple Languages

In Chapter 5, we focused on addressing third research question,

• RQ3 -To what extent could semantics improve crisis-relevancy classification of Tweets written in

a new language?

Crisis data is oftenmultilingual, not only across diverse crisis events fromdifferent geographic loca-

tions, but it could also be multilingual within the same event. Hence, language forms a crucial factor

of crisis relevancy classification models, so that they are adaptive to crisis data in new languages. It is

neither feasible to train a model from scratch in a new language in real time nor is it feasible to build

a model trained on all languages. We conducted the study to determine how the classifier would per-

form when the model is trained on crisis events in a certain language, and applied to crisis events in a

new language. Other than the statistical features model, we tried two approaches; adding the seman-

tic features, and translating the test data from its original language to the language of training data.

We considered all the events fromCrisisLexT26 dataset and narrowed down our analysis to three lan-

guages (English, Italian, and Spanish), which the original CrisisLexT26 data set primarily existed in.

We hypothesised that semantic features can aid in enhancing the morphological (vocabulary), along
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with contextual, similarity across data from different languages. We investigated two scenarios: (i)

when the model is trained on crisis data from a certain language and evaluated on data from a new

language; (ii) the model is trained on crisis data from a certain language and evaluated on crisis data

from a different language but only after translating the test data from its original language to the lan-

guage of the training data.

Our findings in this chapter demonstrated that a combination of statistical and semantic features

enhances the performance (average F1 score) of classifier by 8.26%-9.07%, in comparison to the tradi-

tional statistical models, when dealing with cross-lingual classification. Also, translating the data to

the same language improves the classifier’s performance in identifying crisis related information from

crisis events in a new language.

8.4 Classifying Crisis Relevancy Across Languages and Crisis Types

In Chapter 6, we focused on addressing the last research question,

• RQ4 - To what extent could semantics improve Tweets classification when the type of crisis event

and language change?

InChapters 4 and 5, we focused on two discrete problems of varying types of crisis events andmul-

tilingual data across crises. In this chapter, we considered the situation when both of these problems,

of varying crisis type and crisis data language, occur at the same time. In real world scenarios, this

is more likely to be the case where a new type of crisis event occurs and the incoming data is in an

entirely new language than what the classifier has been trained on. To explore this scenario, we con-

sidered the data from 26 crisis events, fromCrisisLexT26 dataset. This data spanned across 7 types of

crisis (floods, typhoons, earthquakes, shooting, explosion, bombing, and train crashes). We created 6

mono-lingual versions of the dataset in 6 languages by translating the data using automated machine

translation service.
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To answer the research question, we created two experimental scenarios: (i) evaluate the crisis rel-

evancy classification model’s performance on tweets, when the type of crisis events and the language

of tweets in the training data are different to what the model is tested on (for instance, we train the

model on tweets from earthquake type of events in English and apply the model on tweets from flood

type of events in Spanish); (ii) we evaluate the same scenario as the previous one, but the test data is

brought into the same language as that of the training data (we do this by referring to the test event in

the mono-lingual dataset, in the same language as the training data is in). In the two scenarios men-

tioned above, we evaluate statistical and semantic feature models, with and without translation. We

performed a total of 1728 experiments across different combinations of languages and crisis types in

training and test datasets. We were able to show that translation of the test data to the same language,

as of training data, and then enriching with DBpedia semantics outperforms the baseline model of

statistical features, on average, by 16.42% (compare average F1 score of SFSemDBT model in Table 6.4

with average F1 score of SF model in Table 6.3) in a cross-lingual cross-crisis classification. Whereas,

when translation to the same language is not performed, thenDBpedia features outperforms the base-

linemodel of statistical features, on average, by 11.24% (compare average F1 score of SFSemDBmodel

with average F1 score of SF model in Table 6.3).
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A
Information Gain vs Hierarchy Level

In Chapter 3, Section 3.2.2 discusses Semantic Filtering Features by filtering out concepts based on

hierarchy generated fromBabelNet. Figures 3.3 and 3.4, show plotting of semantic features, for train-

ing data corresponding to Singapore Haze and Australia Bushfire, between Information Gain score

and levels indicating the depth in the hierarchy generated using hypernym-hyponym relationship in

BabelNet knowledge graph. A similar analysis was conducted for the training data across all the test

events. The following graphs show the plotting for informative features against their depth in the hi-
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erarchy. To be noted that crisis event name in each graph is indicative of the fact that the analysis is

performed on the training data corresponding to the mentioned crisis event (which is the test data for

that particular case).

Figure A.1: Informa on Gain/Level:Training Data-Colorado Wildfire
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Figure A.2: Informa on Gain/Level:Training Data-Colorado Flood

Figure A.3: Informa on Gain/Level:Training Data-LA Shoo ng
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Figure A.4: Informa on Gain/Level:Training Data-Boston Bombing

Figure A.5: Informa on Gain/Level:Training Data-Queensland Flood
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Figure A.6: Informa on Gain/Level:Training Data-Savar Building Crash

Figure A.7: Informa on Gain/Level:Training Data- West Texas Explosion
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