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Abstract

We study continuity, and lack thereof, of thermodynamical properties for one-
dimensional dynamical systems. Under quite general hypotheses, the free energy is
shown to be almost upper-semicontinuous: some normalised component of a limit
measure will have free energy at least that of the limit of the free energies. From
this, we deduce results concerning existence and continuity of equilibrium states
(including statistical stability). Metric entropy, not semicontinuous as a general
multimodal map varies, is shown to be upper semicontinuous under an appropriate
hypothesis on critical orbits. Equilibrium states vary continuously, under mild
hypotheses, as one varies the parameter and the map. We give a general method
for constructing induced maps which automatically give strong exponential tail
estimates. This also allows us to recover, and further generalise, recent results
concerning statistical properties (decay of correlations, etc.). Counterexamples to
statistical stability are given which also show sharpness of the main results.
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CHAPTER 1

Introduction

1.1. General introduction

An ideal gas is a collection of particles interacting solely via random collisions.
Keeping track of individual particles is neither important nor feasible. Rather,
macroscopic thermodynamic quantities (such as pressure, temperature, free energy)
describe the system. One can use statistical mechanics to study dependence of equi-
librium states and of thermodynamic quantities on parameters. In a deterministic
(and for our purposes, discrete-time) dynamical system f : X → X, orbits of nearby
points remain close for a certain amount of time. If the system is expanding, the
orbits diverge and become decorrelated. If this decorrelation occurs sufficiently
quickly, the system exhibits random characteristics and chaotic behaviour. Indi-
vidual orbits lose importance, and macroscopic, typical, statistical properties are
of interest. In the 1970s, Sinai, Ruelle and Bowen [Si, Ru1, Bo] introduced ther-
modynamic formalism to dynamical systems to remarkable success1.

In dynamical systems, questions of existence of equilibrium states and contin-
uous dependence of the equilibrium state on parameters (aka statistical stability)
are of prime importance. Uniformly hyperbolic systems are well-understood: ex-
istence holds and one even has smooth dependence of the equilibrium state on
parameters [KKPW, Co, Ru3]. Non-hyperbolic systems are harder to study.
Existence need not hold; even when it does, dependence need not be continuous,
as we shall see. This article contributes a new tool to the study of such questions
in the context of one-dimensional dynamics. We give natural and general proofs
of new results concerning statistical stability and linear response (topics studied in
[K1, RS, Ts2, F, Ar, Ba1, FT, Ru5, BaS2, BBS, AS, VV]) or lack thereof,
and we generalise recent work concerning existence and uniqueness of equilibrium
states [IT1, PR2]. For families of maps we make important contributions, showing
under reasonable hypotheses that metric entropy is upper-semicontinuous and that
equilibrium states frequently vary continuously.

An equilibrium state is, roughly speaking, an invariant probability measure
maximising the free energy. The naive approach to find an equilibrium state—
taking a sequence of measures whose free energy converges to the supremum—
does not work in general. Failure occurs because the free energy does not depend
semicontinuously on the measure. We show that this unsophisticated approach has
its merits, thanks to some hidden semicontinuity properties.

Our techniques lead us to propose (and prove) the following principle. For a
large class of maps and potentials, the free energy is almost upper-semicontinuous.
Let us explain briefly. Let f be a piecewise-continuous map of the unit interval

1A striking early result of Ruelle concerned Hausdorff dimension of Julia sets of quadratic
complex polynomials [Ru2], a subject with, a priori, no connection to physics.
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8 1. INTRODUCTION

I say, let µ be an invariant probability measure with entropy h(µ), and let ϕ :
I → [−∞,∞] be a potential function. The free energy E(µ) of µ is defined to
be h(µ) +

∫
ϕdµ. 2 Let E+ denote the supremum of E(µ) (or equivalently of∫

ϕdµ) over ergodic invariant probability measures supported on repelling periodic
orbits. Take a convergent sequence of ergodic invariant probability measures µn
with uniformly positive entropies and with lim infn→∞E(µn) ≥ E+. Then some
component of the limit measure, when normalised, should have free energy at least
lim supn→∞E(µn).

This powerful principle is somewhat surprising as, if the potential is unbounded
above, µ 7→

∫
ϕdµ is often lower-semicontinuous, while (for a fixed map) entropy

is upper-semicontinuous. In particular, in the setting where f is C1 with derivative
Df and f has a critical point, the geometric potential −t log |Df | is unbounded
above for t > 0. A priori and in fact, the free energy is neither upper- nor lower-
semicontinuous, yet we have some sort of hidden upper-semicontinuity.

What may happen is the following. Lower-semicontinuity of the Lyapunov
exponent occurs when diminishing mass approaches the critical set and disappears
in the limit. A typical orbit passing near the critical set leads to a bound period
(not quite that of [BC]) where there is no freedom in the subsequent stretch of
orbit, until one reaches the large scale again. Such orbital stretches considered as
a whole make very little contribution to the free energy, so losing them in the limit
and normalising the remainder (which requires positive entropy) does not cause
free energy to drop. One may hope that some form of almost upper-semicontinuity
will hold in higher dimensions; currently we do not have the techniques at our
disposition to show this.

Hidden semicontinuity, which extends to families of maps, allows us to give
strikingly straightforward proofs of existence and (almost) continuous dependence
of equilibrium states for the geometric potentials −t log |Df |, generalising many
previous works. Continuous dependence as one varies the map is new, to the
best of our knowledge, even for the quadratic family (Raith [Ra] has shown that
the measure of maximal entropy varies continuously). As a bonus, our techniques
often give important statistical properties (in particular, the almost sure invariance
principle and exponential decay of correlations) and we derive regularity of pressure
functions.

Some of our main results are unavoidably quite technical, even to state, witness
§1.7. Prior to describing them, and at risk of minor repetition, we shall proceed by
presenting more readily accessible ones. The first, upper-semicontinuity of metric
entropy, follows. Then we detail a couple of results concerning absolutely continuous
invariant probabilities in Section 1.3. We define equilibrium states in Section 1.4
which enables us, in Section 1.5, to give applications of our results to the quadratic
family. Further applications can be found in [DT, DM].

1.2. Upper-semicontinuity of metric entropy

We shall eventually study free energy, the sum of metric entropy and the integral
of a potential. For sequences of maps, even metric entropy (of invariant measures)
is not necessarily semi-continuous [M2]. This would appear to render hopeless

2This is the convention in dynamics literature, see [K3, Chapter 6] and [BT1], while physi-
cists would consider E(µ) to be minus the free energy. With our convention, equilibrium states

maximise the free energy.



1.3. ABSOLUTELY CONTINUOUS INVARIANT PROBABILITY MEASURES 9

our endeavour to prove almost upper-semicontinuity of the free energy. However,
imposing a topological hypothesis allows us to surmount this obstacle and gives us
the following result, postponing formal definitions to Section 1.6.

Theorem 1.1 (Upper-semicontinuity of metric entropy). Let (fk)k≥0 be a se-
quence of piecewise monotone d-branched maps converging to f0 as k → ∞ with
decreasing critical relations. Suppose (µk)k≥1 is a convergent sequence of ergodic
fk-invariant probability measures. Then

h

(
lim
k→∞

µk

)
≥ lim sup

k→∞
h(µk).

Raith’s result [Ra] on continuous dependence of the measure of maximal en-
tropy for unimodal maps is the only one, of which we are aware, which leads in
this direction. The hypothesis, decreasing critical relations, is relatively weak: for
the quadratic family for example, only super-attracting parameters have an extra
critical relation in the limit.

1.3. Absolutely continuous invariant probability measures

Absolutely continuous (with respect to Lebesgue measure) invariant probability
measures (acips), when they exist, are important because they describe the typical
long-term dynamics of a positive Lebesgue measure set of points. They tend to be
equilibrium states for the potential − log |Df | (the same as the geometric potential
above but with t = 1). It is natural to ask how these measures (and properties)
vary as the parameters of a dynamical system change. The following result follows
from a more general version in Section 1.7.

Theorem 1.2. In the quadratic family, given ε > 0 and a sequence (fk)k≥1 of
maps with fk → f as k →∞, if each map fk has an absolutely continuous invariant
probability measure µk with entropy h(µk) ≥ ε, then f has an absolutely continuous
invariant probability measure µ and (µk)k≥1 admits a subsequence converging to an
f -invariant measure µ′ with µ absolutely continuous with respect to µ′.

One could hope that the limit measure itself would necessarily be absolutely
continuous (as, indeed, we did). However, in the other direction we have the fol-
lowing. Consider the family of maps

fa : [0, 1]→ [0, 1],

with a > 0, defined by

fa(x) =

{
1− 2x, if x ∈ [0, 1/2];

a(x− 1/2)(x− 1) + 1, if x ∈ (1/2, 1].

Theorem 1.3. There exists a sequence (fak)k≥0 of such maps having decreasing
critical relations with fak → fa0 as k → ∞ and having the following properties.
Each fak , k ≥ 0, has an acip µk with entropy uniformly bounded away from 0; the
measures µk converge to a strictly convex combination of the acip µ0 for fa0 and a
Dirac mass on a repelling fixed point.

The family of maps (fa)a can be considered a toy model for a first return map to
an interval containing the critical point of a unimodal map. Such a first return map
will typically have one unimodal branch and infinitely many non-critical branches.
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Our toy model maps have one expanding branch and one unimodal branch. We
expect that in the quadratic family similar discontinuity of acips will hold.

Worse things happen without the lower bound on the entropy. Motivated by
Ruelle’s paper [Ru5] showing smoothness of dependence of the acip on parameter
for a family of unimodal Misiurewicz maps which remain in the same topological
class, we consider what happens if ever one leaves the class: Even restricting to
non-renormalisable Misiurewicz parameters, the limit measure can be more or less
anything, see Theorem 1.32.

1.4. Equilibrium states

Given a dynamical system f : I → I on a topological space I, and a potential ϕ :
I → [−∞,∞], both of which preserve the Borel structure, we define the (standard,
variational) pressure of (I, f, ϕ) to be

VPf (ϕ) := sup

{
h(µ) +

∫
ϕ dµ : µ ∈M and

∫
ϕ dµ > −∞

}
,

where h(µ) = hf (µ) denotes the (metric) entropy of µ and M = Mf denotes the
set of ergodic, f -invariant, probability measures. Spaces of measures are equipped
with the weak∗ topology.

Henceforth, let I be a bounded, non-degenerate interval. For a piecewise-C1

one-dimensional map f and µ ∈ Mf , the Lyapunov exponent λ(µ) of µ is defined
as
∫

log |Df | dµ. Ergodic measures with negative Lyapunov exponent have zero en-
tropy, are typically finite in number and are supported on attracting periodic orbits
(at least in the smooth case, see [Ri, Proposition A.1]). They do not contribute
much by way of knowledge. Often they are defined away by, for example, assum-
ing that the system is transitive. We shall rather consider the following pressure
function,

P (ϕ) = Pf (ϕ) := sup
µ∈M̃f

{
h(µ) +

∫
ϕ dµ :

∫
ϕ dµ > −∞

}
,

where

(1.1) M̃ = M̃f :=

{
µ ∈Mf :

∫
log |Df | dµ ≥ 0

}
.

Results for VPf can be deduced from those for Pf . If h(µ) > 0, then

λ(µ) ≥ h(µ) > 0

by Ruelle’s Inequality [H4, Theorem 1]. Hence any measure in Mf with positive

entropy is also in M̃f .
As is traditional in dynamical systems [K3], for an invariant measure µ, set

E(µ) = E(f, µ, ϕ) := hf (µ) +

∫
ϕ dµ

and call it the free energy of µ (with respect to (I, f, ϕ)). Note E(µ + αµ′) =
E(µ) + αE(µ′) for α ∈ R+.3 A periodic point x of period p is called (hyperbolic)

3Note that the definition of metric entropy extends to any finite measure.
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repelling if |Dfp(x)| > 1. We define

E+ = E+(f) = E+(f, ϕ) := sup

{
E(µ) :

µ ∈ M̃f is supported on a

repelling periodic orbit

}
.

If a measure µ ∈ M̃ maximises the free energy over measures in M̃, thus satisfying
h(µ) +

∫
ϕ dµ = P (ϕ), then we call µ an equilibrium state for (I, f, ϕ). Note that

we require equilibrium states to be ergodic.
The family of potentials {−t log |Df | : t ∈ R} is of especial interest; the integral∫

log |Df | dµ is the Lyapunov exponent of the measure. For example, since an f -
invariant measure which is absolutely continuous with respect to Lebesgue measure
describes the statistical behaviour of a set of points of positive Lebesgue measure,
such measures are of great import. It was shown in [L] that if f is C2 with non-flat
critical points, then a measure µ with positive entropy is an acip if and only if it is an
equilibrium state for the potential − log |Df | (the non-flat condition is unnecessary
[D2]). For quadratic maps, Lebesgue measure is ergodic and any acip has positive
entropy [BL]. Moreover, equilibrium states of other potentials −t log |Df | give
information on the Lyapunov spectrum, see for example [IT2].

The function t 7→ P (−t log |Df |) is convex (it can be viewed as a supremum
of lines t 7→ E(f, µ,−t log |Df |)) and in standard examples is analytic at all but
finitely many values of t. A point t0 where it is not analytic is called a phase
transition. If the function is differentiable at t and has an equilibrium state µt,
then the slope of the pressure function at t is minus the Lyapunov exponent of
µt. If h(µt) > 0, the measure µt has maximal dimension (equal to h(µt)/λ(µt)
by the Dynamic Volume Lemma [HR]) among measures with the same Lyapunov
exponent.

Let us set

P 0(ϕ) = P 0(f, ϕ) := sup{E(f, µ, ϕ) : h(µ) = 0 and µ ∈ M̃f}.

Of course, P 0(f, ϕ) ≥ E+(f, ϕ), the supremum in E+ being taken over repelling
orbits; for reasonable classes of maps one may expect equality. Consider

t− := inf
{
t : P (−t log |Df |) > P 0(−t log |Df |)

}
,

t+ := sup
{
t : P (−t log |Df |) > P 0(−t log |Df |)

}
.

These need not be finite; t+ especially depends strongly (often discontinuously) on
the map f . As in [IT2, Proposition 9.2], for example, if there is an acip of positive
entropy then t+ > 1. On the other hand, even for continuous functions, if there
is a wild attractor as in [BT3] and [AL, Theorem 10.5], or the map is infinitely
renormalisable as in [D1], we can have t+ ∈ (0, 1). There are interesting results on
maps for which t+ ∈ (1,∞) by Coronel and Rivera-Letelier [CR]. If we assume that
f has positive topological entropy, then P (0) > P 0(0), so t− < 0 and t+ > 0. For t ∈
(t−, t+), P (−t log |Df |) > P 0(−t log |Df |) and any equilibrium measure necessarily
has positive entropy. Moreover, whenever E(f,−t log |Df |, µ) > P 0(−t log |Df |)
then µ has positive entropy. One can think of the closure of the zone P 0 < E < P
as the region of possible application of our results, see Figure 1.

When considering the quadratic family, for example, maps with attracting pe-
riodic points are dense ([Ly, GS]); without excluding measures with negative Lya-
punov exponent from our consideration, t+ would frequently be close to 0, reducing
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P (−t log |Df |)

htop(f)

h(µ)

E(f, µ,−t log |Df |)
h(µ)
λ(µ)

t+t− 0

P 0(−t log |Df |)

P 0(−t log |Df |)

Figure 1. The zone of almost upper-semicontinuity of the free
energy. For a given t, if a sequence of measures µk have
E(f,−t log |Df |, µk) > P 0(−t log |Df |), our upper-semicontinuity
results apply.

the space of application of our results. For a single map, one could remove a neigh-
bourhood of an attracting orbit from the domain of definition of the map but, for
families, it makes more sense to define away the offending measures.

Existence of equilibrium states is non-trivial. For a continuously differentiable
interval map with finitely many critical points, for example, the entropy depends
upper-semicontinuously on the measure (see for example [K3, Theorem 4.2.4]),
but µ 7→ −

∫
log |Df | dµ is only lower-semicontinuous (and moreover, as in [BK],

there are natural cases where this function is not upper semi-continuous), so if one
naively takes a convergent sequence of measures whose free energies converge to
the pressure, the limit measure may not maximise the free energy. Limit measures
need not be ergodic.

Definition 1.4. Given a sequence of f -invariant probability measures, we call
an f -invariant measure µ a light limit measure provided some subsequence converges
to a measure µ′, µ� µ′ (µ is absolutely continuous with respect to µ) and µ(I) = 1.

In the above, if µ′ were ergodic, then µ would be µ′; if not, then one could
decompose µ′ into two non-trivial f -invariant measures; each one, when normalised,
would be a light limit measure. We do not require light limit measures to be ergodic.

There is a compatible extension of the definition of light limit measures to
families of maps.

Definition 1.5. Let (fk)k be a convergent sequence of d-branched piecewise-
monotone maps (see Definition 1.13) with d-branched limit f0 and with ergodic
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fk-invariant probability measures µk. We say an f0-invariant measure µ is a light
limit measure provided some subsequence of the µk converges to a measure µ′,
µ� µ′ and µ(I) = 1.

1.5. Applications to the quadratic family

The quadratic (or logistic) family

FQ := {fa : x 7→ ax(1− x), a ∈ [1, 4]}

is the primordial test-bed for ideas in non-linear, non-hyperbolic dynamics and is
the subject of vast literature, see [MeS] for example. Phenomena from quadratic
dynamics appear in the real world, for example period doubling [LLF]. Our results
apply (and are new) in this context. We present a simplified version of one theorem,
with the intention of conveying the concept and motivating the reader to delve
further into the article. We first require some definitions.

Given ε > 0 and a potential ϕ, let us write

Mε
f (ϕ) := {µ ∈Mf : E(f, µ, ϕ) ≥ E+(f, ϕ) and h(µ) ≥ ε}.

This is the class of measures from which one can hope for some good behaviour.
Limits of ergodic measures need not be ergodic. Let us call an f -invariant mea-
sure µ∗ hyperbolic if µ∗-almost every point x has positive (pointwise) Lyapunov
exponent, that is limn→∞

1
n log |Dfn(x)| > 0.

Definition 1.6. We say the free energy is almost upper-semicontinuous for
the quadratic family FQ and the potentials −t log |Df | (f ∈ FQ, t ∈ R) if, for every
ε > 0, for every sequence (ak, tk, µk)k such that

• (ak)k converges to a0 ∈ [1, 4] as k →∞,
• (tk)k converges to t0 ∈ R as k →∞
• and the measures (µk)k satisfy

µk ∈Mε
fak

(−tk log |Dfak |),

there exists a hyperbolic light limit measure µ∗ with

E(fa0 , µ∗,−t0 log |Dfa0 |) ≥ lim sup
k→∞

E(fak , µk,−tk log |Dfak |).

Theorem 1.7. The free energy is almost upper-semicontinuous for the qua-
dratic family and the potentials −t log |Df | with t ∈ R.

The proof of existence of equilibrium states µt, t ∈ (t−, t+) for the quadratic
family (and more general multimodal maps) has a long history, with partial results
by Hofbauer, Bruin and Keller, Bruin and Todd, Pesin and Senti [H1, H2, BK,
BT1, BT2, PSe] before Iommi and Todd [IT1] finally proved existence for all t in
this range. Recently Przytycki and Rivera-Letelier [PR2] gave another proof and
also showed analyticity of the pressure function and statistical properties, with all
these results holding for fixed maps. Another proof follows from our work: one can
always take a sequence of measures with free energies converging to the pressure;
sometimes (in particular, if t ∈ (t−, t+)) all measures with large free energy have
uniformly positive entropy; from Theorem 1.7, existence falls out naturally.

Corollary 1.8. For f ∈ FQ and t ∈ (−∞, t+), there exists an equilibrium
state µt for the potential −t log |Df |.
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If statistical properties of a dynamical system are described by invariant mea-
sures, it is natural to ask how these measures (and properties) vary as the param-
eters of a dynamical system change.

If, for example, a quadratic map has a hyperbolic attracting periodic orbit
(i.e., with negative Lyapunov exponent), then all nearby maps do too, and the
periodic orbit moves smoothly with the parameter. The equidistributions on the
periodic attractors are ergodic invariant probability measures which describe the
typical long-term dynamics of almost every point, since the basins of attraction have
full measure [MeS]. As these measures vary continuously, we say that statistical
stability holds at (hyperbolic) parameters with hyperbolic attracting periodic orbits.

At non-hyperbolic parameters, the dynamics is more interesting. Absolutely
continuous invariant probability measures, when they exist, describe the typical
long-term dynamics of a positive-measure set of points. The question then arises as
to the dependence of acips as a function of parameter. There is a natural measure
on FQ corresponding to Lebesgue measure on parameter space. Let F be a subset
of FQ and suppose that for all f ∈ F , f has an acip (acips are always unique for
maps in the quadratic family). We will say that acips are statistically stable in F
if the acip depends continuously on the parameter.

Rychlik and Sorets [RS] proved existence of such a set F having positive mea-
sure, where continuous dependence holds at Misiurewicz maps, a non-trivial but
zero-measure subset of maps. For a positive measure set F ⊂ FQ, Tsujii used
Benedicks-Carleson techniques to show statistical stability of acips in F [Ts2].
This was extended by Freitas and Todd to the more general case where F is any
set of non-renormalisable parameters satisfying a uniform summability condition
for the derivatives along the critical orbit [FT]. Recently, Baladi et al showed
Hölder continuity in Tsujii’s setting [BBS]. On the other hand, Tsujii and Thun-
berg [Ts2, Th] showed how renormalisation can lead to instability; we shall present
further obstructions to statistical stability, but first we shall give a positive result.

Definition 1.9 (Statistical quasistability). For each ε > 0, denote by FεQ the
subfamily of maps f in FQ for which f has an acip with entropy ≥ ε. We shall
say acips are statistically quasistable in the quadratic family FQ if, for each ε > 0,
for any f0 ∈ FεQ and sequence (fk)k≥1 of maps in FεQ converging to f0, some light
limit measure of the corresponding sequence of acips is the acip for f0.

Recalling that acips in the quadratic family are equilibrium states for the poten-
tial − log |Df |, Theorem 1.7 implies the following result, equivalent to Theorem 1.2.
Note that there is no assumption on the behaviour of the (derivatives along the)
critical orbit.

Corollary 1.10. Acips are statistically quasistable in the quadratic family
FQ.

There was hope in the community that statistical stability (and more) might
hold for non-renormalisable Collet-Eckmann parameters (those for which the deriv-
ative grows exponentially along the critical orbit), see [Ba1, Conjecture B]. How-
ever, even for the better-behaved Misiurewicz parameters, one has instability [even
worse, the limit measure can be almost anything at all, see Theorem 1.32:

Theorem 1.11. Statistical stability does not hold for acips for the subfamily of
non-renormalisable Misiurewicz quadratic maps.
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It follows from the work of Tsujii [Ts1, Ts2], though justification is beyond the
scope of this paragraph, that near (almost) every non-renormalisable Misiurewicz
parameter there is a positive measure set of non-renormalisable Collet-Eckmann
parameters whose acips are very close to that of the Misiurewicz parameter. Com-
pare the discussion in §1.11.8. From this and Theorem 1.11, one can deduce the
following.

Corollary 1.12. Statistical stability does not hold for acips for any (rela-
tively) full-measure subset of non-renormalisable Collet-Eckmann parameters in the
quadratic family.

Note that statistical quasistability is weaker than statistical stability, in that
only some component of the (not necessarily ergodic) limit measure need be the acip
of the limit map. While the examples of Theorem 1.32 have entropy decreasing to
zero, uniform positive entropy does not imply stability, as we show in Theorem 1.3.
One cannot expect better than quasistability – for actual statistical stability one
needs stronger hypotheses. Consider a sequence of (maps and) acips with uniform
positive entropy. Theorem 1.7 says that some light limit measure will be an acip.
However, another component of the limit measure may be an atom at a repelling
fixed point for the limit map, for example.

1.6. Piecewise-monotone families and upper-semicontinuity of metric
entropy

A quadratic map is a continuous 2-branched piecewise-monotone map. We shall
study a much broader class of maps, admitting discontinuities. In Sections 1.7–
1.10 we present results concerning almost-semicontinuity and statistical stability
for general piecewise-monotone families. There are also results pertaining to the
thermodynamic formalism for an individual map.

Definition 1.13. For d ≥ 2, a map f defined on a pairwise-disjoint collection
I1, I2, . . . , Id of non-degenerate subintervals of a bounded interval I is called a (d-
branched) piecewise-monotone map if f maps each Ij into I and, on each Ij , f is
continuous and strictly monotone.

We shall assume throughout the article, without loss of generality, that d ≥ 2.
Otherwise the entropy of the map, and thus of any invariant measure, would be
zero.

In the presence of more than one such map, we write Ij(f) for Ij . A branch Ij
of f is called full if it is mapped by f onto I. We do not specify here whether the
subintervals Ij are open or closed. Since the domain of f need not be the whole
interval I, iterates for some points may not be defined. However, for any invariant
probability measure, almost every point has all iterates defined. Moreover, almost
every point is recurrent.

Definition 1.14. We call F a d-branched piecewise-monotone family on I if
each f ∈ F is a d-branched piecewise-monotone map.
F is called a piecewise-monotone family if it is a d-branched piecewise-monotone

family for some d ≥ 2.

Definition 1.15. Let F be a d-branched piecewise-monotone family. We say a
sequence of fk ∈ F converges to f in F as k →∞ if f ∈ F and there is a sequence
of homeomorphisms hk : I → I such that, for 1 ≤ j ≤ d,
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• hk(Ij(fk)) = Ij(f),

• hk ◦ fk ◦ h−1
k converges in C0 to f (on the domain of definition of f) as

k →∞,
• hk converges in C0 to the identity on I as k →∞.

This definition is equivalent to uniform convergence on compact subsets of

d⋃
j=1

I̊j(f),

where I̊j(f) denotes the interior of Ij(f), provided the fk and f are uniformly
Lipschitz. For f as above, set

E(f) :=

d⋃
j=1

∂Ij .

The Hofbauer extension, a Markovian extension of an original system, was in-
troduced in [H3]. This powerful idea lies behind a host of results in one-dimensional
dynamics. The structure of the Hofbauer extension depends on the post-critical or-
bits. In recent work on statistical stability [FT] where Hofbauer extensions were
used, the limit maps studied were assumed not to have critical orbits which in-
tersect or self-intersect. That unsatisfactory assumption excludes post-critically
finite maps and many more; it was necessary to obtain convergence of Hofbauer
extensions. We introduce the following definition to deal with this issue, eventually
embedding Hofbauer extensions in some ambient space and examining convergence
properties there.

Definition 1.16. Let f be a piecewise-monotone map and let c ∈ E(f). Let
σ ∈ {−1,+1}. Suppose there is some minimal n ≥ 1 for which

lim
ε→0+

fn(c+ σε) = c′ ∈ E(f).

We call this a critical relation of order n. This is a purely topological condition,
defined by (c, c′, σ, n). We say that a sequence (fk) such that fk → f0 as k → ∞
has decreasing critical relations if to each critical relation (c0, c

′
0, σ, n) of f0 there

is a corresponding critical relation (ck, c
′
k, σ, n) of fk, where h−1

k (c0) = ck and

h−1
k (c′0) = c′k.

Of course, a sequence will have decreasing critical relations if all maps from
the sequence share the same critical relations. For multimodal maps, there may be
many critical relations. This is not true for unimodal maps.

Remark 1.17 (Critical relations for unimodal maps). Consider a quadratic
map fa : x 7→ ax(1− x). It maps the interval [0, 1] into itself for a ∈ (3, 4], the pa-
rameters of interest. Extend the domain of definition to [−ε, 1 + ε] for some ε > 0.
Then the boundary points are mapped outside the domain so they contribute no
critical relations. The orbit of the critical point 1

2 never leaves [0, 1], so it can only
cause a critical relation if it is periodic and (thus) super-attracting. These critical
relations are negligible: If one is only interested in positive-entropy measures, no
mass lies in the basin of attraction. Remove a small neighbourhood of 1

2 contained
in the basin of attraction and the critical relation disappears. If the neighbour-
hood shrinks to nothing quickly, as one changes the parameter, the conditions for
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being a piecewise-monotone family remain verified. We only used the C1 nature of
quadratic maps, so the same holds for general C1 unimodal maps.

As discussed in §1.11.7, some assumption regarding critical relations is nec-
essary in our work. In particular, there are examples showing metric entropy is
not necessarily upper-semicontinuous as one varies both map and measure. On
the other hand, Raith has shown that for unimodal maps f , under a condition on
the orbits of points in E(f) which implies decreasing critical relations, the measure
of maximal entropy varies continuously [Ra] (hence topological entropy is upper
semi-continuous). This admits a strong generalisation, Theorem 1.1 on upper semi-
continuity of metric entropy, proven in Chapter 4.

1.7. Almost upper-semicontinuity of free energy

Theorem 1.20, below, is the principal technical result of the article; its proof oc-
cupies Chapters 2-6 and part of Chapter 7. Its statement requires the introduction
of regularity of piecewise-monotone families.

Definition 1.18. We that say a piecewise-monotone map f has non-positive
Schwarzian derivative if, on the interior of each Ij , f is a C2 diffeomorphism and

1/
√
|Df | is convex. If the convexity is strict, the map has negative Schwarzian

derivative.

Non-positive [M1, p.24] or negative Schwarzian derivative [MeS, §IV.1] is a
standard property which gives good distortion control for iterates via the Koebe
Lemma (see Lemma 5.2). It is not especially restrictive ([Ko]). Maps from the
quadratic family fa : x 7→ ax(1 − x) with a ∈ (0, 4] are (2-branched) piecewise-
monotone maps with negative Schwarzian derivative. One can readily check that
maps with non-positive Schwarzian derivative have bounded derivative. The de-
creasing critical relations hypothesis allows one to obtain uniform Koebe space for
some natural induced maps (see Lemma 2.22).

Definition 1.19. Let FNSD denote the class of piecewise-monotone families F
such that for each f ∈ F ∈ FNSD, f has non-positive Schwarzian derivative and
supf∈F sup |Df | < +∞.

By Definition 1.14, each element of FNSD is a d-branched family for some d. In
our applications of this notion, we will often take some sequence (fk)k ∈ FNSD.

Theorem 1.20 (Free energy is almost upper-semicontinuous). Let (fk)k>0 ∈
FNSD be a sequence converging to f0 as k → ∞ with decreasing critical relations.
Suppose that
(a) tk → t0 as k →∞;

(b) (µk)k≥1 is a convergent sequence of measures µk ∈ M̃fk ;
(c) E(fk, µk,−tk log |Dfk|) converges to a limit EL as k →∞;
(d) EL ≥ lim infk→∞E+(fk,−tk log |Dfk|);
(e) lim supk→∞ h(µk) > 0.
Then, writing E(µ∗) for E(f0, µ∗,−t0 log |Df0|), some light limit measure µ∗ is
hyperbolic and satisfies one of the following statements:

• E(µ∗) > EL;
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• µ∗ = limk→∞ µk and, for some strictly increasing subsequence (kn)n,∫
log |Df0| dµ∗ = limn→∞

∫
log |Dfkn | dµkn ,

h(µ∗) ≥ lim supn→∞ h(µkn) and E(µ∗) ≥ EL;

• E(µ∗) ≥ EL and h(µ∗) > lim supk→∞ h(µk).

If EL = P (−t0 log |Df0|), one of the last two alternatives holds and some light limit
measure is a positive entropy equilibrium state for this potential.

Consequent results, detailed below and proven (where not immediate corollar-
ies) in §7.2, follow with little extra work.

Theorem 1.20 and Remark 1.17 imply the following corollary, equivalent to
Theorem 1.7.

Corollary 1.21. The statement of Theorem 1.20 holds for the quadratic fam-
ily FQ, without the decreasing critical relations hypothesis.

We shall later treat analyticity of the pressure function and statistical proper-
ties, but for now let us just consider existence of equilibrium states. Existence was
shown in [IT1, Theorem A] and again in [PR2]. Compared with those settings, we
allow discontinuities, parabolic points and holes ([PR2] allows holes), while both
[IT1, PR2] impose a non-flatness condition on critical points (see also §1.11.4).
The following corollary implies Corollary 1.8.

Corollary 1.22. Given a d-branched map f with non-positive Schwarzian
derivative, for t ∈ (−∞, t+), there exists an equilibrium state µt for the potential
−t log |Df |. For t ∈ (t−, t+), there exists such µt with positive entropy.

From the pressure function, one can read off certain properties. For example,
the following result generalises [IT1, Proposition 1.1].

Proposition 1.23. The map t 7→ P (−t log |Df |) is differentiable at t+ if
and only if there is no equilibrium state with positive entropy for the potential
−t+ log |Df |. The same holds for t− in place of t+.

Concerning statistical stability of equilibrium states, we obtain strong, new
results.

Theorem 1.24 (Smooth pressure and uniform pressure gap imply statistical
stability). Let (fk)k ∈ FNSD be a sequence converging to f0 as k → ∞ with de-
creasing critical relations. Take ε > 0 and assume that
(a) tk → t0 as k →∞;
(b) for each k ≥ 0, P (fk,−t0 log |Dfk|) ≥ P 0(fk,−t0 log |Dfk|) + ε.
Then for each k ≥ 0, there is an equilibrium state µk for fk and the potential
−tk log |Dfk|. If t 7→ P (f0,−t log |Df0|) is differentiable at t0, then any limit mea-
sure of the sequence (µk)k is a convex combination of equilibrium measures for f0

with the potential −t0 log |Df0|.

Jumping ahead a little, for non-renormalisable quadratic maps, f is transitive
on J(f) so positive entropy equilibrium states are unique, see Theorem 1.29. More-
over the pressure is analytic on (t−, t+), see Theorem 1.30. In the quadratic family
FQ, we immediately obtain:

Corollary 1.25 (Statistical stability in the quadratic family). Suppose that
f0 ∈ FQ is non-renormalisable, t0 ∈ (t−, t+) and P (f0,−t0 log |Df |) > 0. For (t, f)
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in a neighbourhood of (t0, f0) in R × FQ, an equilibrium state µt,f (for f and the
potential −t log |Df |) exists. The map (t, f) 7→ µt,f is continuous at (t0, f0).

This significantly improves upon [FT], where stability was shown for t close to
1 under multiple further hypotheses, including non-uniform expansion, and upon
[Ra], where stability was shown when t = 0. The result would be false if we did not
exclude measures supported on periodic attractors from being equilibrium states.

1.8. J(f) for a piecewise-monotone map f

Definition 1.26. Given a piecewise-monotone map f : ∪dj=1Ij → I, the set of
critical points is denoted

E(f) :=
⋃
j

∂Ij ,

while the set of critical values is denoted

V(f) :=
⋃
j

∂f(Ij).

Definition 1.27. Given a piecewise-monotone map f , we denote by J(f) the
set of points x such that

• x is recurrent, so x ∈ {fn(x)}n≥1;
• x is accumulated on both sides by points from ∪n≥0f

−n(E(f)), that is, for
all ε > 0, there exist l, r ∈ ∪n≥0f

−n(E(f)) with x−ε < l < x < r < x+ε;
• fn(x) /∈ E(f) and f−n(fm(x)) ∩ V(f) = ∅ for each n,m ≥ 0;
• x is accumulated on both sides by points with the above three properties.

It is easy to check that J(f) is forward-invariant, f(J(f)) ⊂ J(f). For any
ergodic, invariant, positive-entropy measure, the set J(f) has full measure – we
shall justify this statement in Lemma 2.1. On the other hand, some zero-entropy
measures may give no mass to J(f). This definition of J(f) is related to, but more
restrictive than, the definition of Julia set used in [Ri], the main differences being
recurrence and that we require our accumulation from both sides. Of course, J(f)
is not a closed set.

Remark 1.28. Quadratic maps fa : x 7→ ax(1−x) with a ∈ (3, 4) are not tran-
sitive on the unit interval [0, 1]. However, for certain values of a, in particular when
fa is non-renormalisable, they may be transitive on the interval [f2

a (1/2), fa(1/2)].

In such cases, J(fa) would coincide with this forward-invariant dynamical core
[f2
a (1/2), fa(1/2)] and fa would be transitive on J(fa). The only ergodic invariant

probability measure outside the core would be the Dirac mass at 0. If one extends
the domain to [−ε, 1 + ε], exclusion of isolated recurrent points means 0 /∈ J(fa).

1.9. Uniqueness of equilibrium states, analyticity of pressure, decay of
correlations

One could ask how many equilibrium states there are for a given potential,
compare [Pi] (see [H2] for the case of constant potentials). Depending on the
potential and the map, the answer may be infinitely many (see the final paragraph
of [D1]). Restricting to those with uniformly positive entropy, we shall provide a
finite bound on the number; this bound only depends on the number of branches
and the entropy. With a transitivity assumption (on the chaotic part of phase
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space), there is only one equilibrium state. The bound allows us to pass from
the final statement of Proposition 6.1, where one finds a convex combination of
equilibrium states, to Theorem 1.20, where one finds a light limit measure which is
an equilibrium state.

Theorem 1.29 (Bounds on the number of equilibrium states). Given d ≥ 2
and ε > 0, there is a number N ∈ N such that the following holds. If f is a
d-branched piecewise-monotone map with non-positive Schwarzian derivative and
t ∈ R, there are at most N equilibrium states with entropy greater than ε for the
potential −t log |Df |.

If f is transitive on J(f), then there is at most one equilibrium state with
positive entropy for the potential −t log |Df |.

Understanding the pressure function t 7→ Pf (tϕ) and its smoothness properties
can give information on the statistical properties (large deviations and multifrac-
tal spectra, for example) of the system (I, f). We note that if there exists an
equilibrium state µs for sϕ, and t 7→ P (tϕ) is differentiable at t = s, then

(1.2)
∂P (tϕ)

∂t

∣∣∣∣
t=s

=

∫
ϕ dµs.

The proofs of the following two results depend on thermodynamic formalism
for shifts on an infinite alphabet. They correspond to [PR2, Theorem A]. Again
recall, we do not exclude parabolic points and do not assume non-flatness of critical
points.

Theorem 1.30. Let f be a piecewise-monotone map with non-positive Schwarzian
derivative. If f is transitive on J(f), the pressure function t 7→ P (−t log |Df |) is
real-analytic on the interval (t−, t+).

Suppose that (I, f, µ) is an ergodic dynamical system. Following [MN, The-
orem 1.2], we say that ϕ : I → R satisfies the Almost Sure Invariance Principle
(ASIP) if there exists γ > 0, a sequence of random variables {SN}N and a Brown-
ian motion W with variance σ2 ≥ 0 such that

N−1∑
j=0

ϕ ◦ f j

N

= {SN}N in distribution

and, almost everywhere,

SN = W (N) +O(N
1
2−γ) as N →∞.

For a pair of function spaces C1, C2, we say that we have decay of correlations,
against (C1, C2) observables, if there exists a function ρ : N → [0,∞) such that
ρ(n)→ 0 as n→∞ such that for each pair ϕ ∈ C1, ψ ∈ C2 there exists a constant
Cϕ,ψ > 0 such that for any n ∈ N,∣∣∣∣∫ (ϕ ◦ fn)ψ dµ−

∫
ϕ dµ

∫
ψ dµ

∣∣∣∣ 6 Cϕ,ψρ(n).

If ρ(n) = O(e−αn) for some α > 0, we say that we have exponential decay of
correlations.

For β > 0, let Hβ denote the set of β-Hölder continuous observables ϕ : I → R.
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Theorem 1.31 (Decay of correlations and the ASIP). Let β > 0 and let f be
a piecewise-monotone map with non-positive Schwarzian derivative. Assume f is
topologically mixing on J(f). For each t ∈ (t−, t+), the (unique) equilibrium state
for the potential −t log |Df | has exponential decay of correlations against (L∞,Hβ)
observables. The ASIP holds for zero-mean observables in Hβ.

1.10. Necessity of positive entropy for statistical quasistability

A C2 map f ∈ F ∈ FNSD is called Collet-Eckmann if for each critical value
v ∈ V, all forward iterates are defined and lim infn→∞

1
n log |Dfn(v)| > 0. A C2

map f ∈ F ∈ FNSD is called Misiurewicz if all periodic points are hyperbolic
repelling and if, for all critical points c (in the standard sense that Df(c) = 0),
the orbit of c avoids a neighbourhood of the critical set. By Mañé’s theorem (see
for example [MeS, Theorem III.5.1]) or [M1], any Misiurewicz map is also Collet-
Eckmann. A C2 Collet-Eckmann map f ∈ F ∈ FNSD with non-flat critical points
has an acip [CE].

Sometimes, given a piecewise-monotone map of an interval, a subinterval will
be forward-invariant under some iterate of the map. One refers to this property as
renormalisability, see [MeS, §II.5a] for definitions and details. One can study the
dynamics restricted to such forward-invariant subintervals independently from the
dynamics of points that never enter these subintervals. Repeated renormalisability
entails a stratification of the phase space. As a potential varies, equilibrium states
may jump from one level to another in a non-smooth fashion, as considered in [D1].
This does not happen for non-renormalisable maps under reasonable transitivity
assumptions.

Our next theorem goes in the other direction to Theorem 1.2 (equivalently,
Corollary 1.10): even if we restrict to the well-behaved class of non-renormalisable
Misiurewicz maps, we do not have statistical quasistability of acips without (for
example) the uniform entropy condition, once we leave the topological class. Con-
trast with [Ru5], which gives linear response when one remains within the class
and suggested it may hold if one remains tangential to the class.

Theorem 1.32 (Varying entropy implies instability). Let F ∈ FNSD denote
the class of C2 unimodal maps f with non-positive Schwarzian derivative, having
f(∂I) ⊂ ∂I and |Df|∂I | > 1, endowed with the C0 topology. Consider a continuous
one-parameter family of maps (ft)t∈[0,θ) ⊂ F , for some θ > 0. Suppose that f0

is non-renormalisable and has all periodic points repelling, and that the topological
entropy of ft is not locally constant at t = 0. Let C > 0 and suppose that for all
t ∈ [0, θ),

∫
I

log |Dft(x)|dx > −C. Let p be a non-boundary periodic point of f0.
Then there is a sequence tk → 0 for which each ftk is a non-renormalisable Mi-

siurewicz map with acip µk and for which the measures µk converge to the equidis-
tribution on the orbit of p. Moreover, h(µk)→ 0.

Since any f0-invariant probability measure (not supported on ∂I) can be ap-
proximated by equidistributions on periodic orbits (noting f0 is Misiurewicz, this
is easy to show), there are tk such that the µk converge to whatever f0-invariant
probability measure we please. That the entropy tends to zero follows from Theo-
rem 1.20.

As a remark, the condition on the integral of log |Dft(x)| just says that the
critical points are uniformly not too flat. It is clearly satisfied by non-trivial qua-
dratic maps of the interval. See [BM, D2] for results concerning existence of acips
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under this condition and non-existence when it fails. Theorem 1.32 immediately
implies Theorem 1.11.

Equilibrium states do not vary continuously (in general), even if their entropy
is bounded away from zero, see Theorem 1.3.

1.11. Background

For many classes of uniformly hyperbolic dynamical systems, statistical stabil-
ity is well-established (in this article we will think of a dynamical system as the
dynamics f : I → I, plus some associated measure µ on I). In particular, sta-
bility holds for systems where the dynamics f : I → I has an underlying (finite)
Markov structure and the measures µf are equilibrium states for Hölder potentials
ϕf : I → R. Indeed, for many such systems, it is known that the measures do
not merely vary continuously with the map, but actually vary differentiably. For
example, if ft : M → M are C3 Axiom A diffeomorphisms of a manifold M , each
with a unique physical measure µt, and the family t 7→ ft is C3, then the map
t 7→

∫
ψ dµt is differentiable at t = 0 for any real-analytic observable ψ : M → R,

see [KKPW, Co, Ru3]. This theory has been further developed, placing it inside
a general theory of ‘linear response’ for dynamical systems, see example [Ru4] and
references therein, as well as comments on the work of Baladi and Smania below.

1.11.1. Physical measures. An invariant measure is said to be physical if
there is a positive (full-dimensional) Lebesgue measure set of points x ∈ M for
which the average of Dirac measures along the orbit of x converges to the invariant
measure. Any ergodic acip, if it exists, is a physical measure. Alternatively if there
is a periodic attractor, i.e. a point x with fp(x) = x and |Dfp(x)| < 1, then
the equidistribution on the orbit of x is a physical measure. For smooth unimodal
maps in general, physical measures can be very strange. For example, a quadratic
map with a physical measure which is the Dirac mass on a repelling fixed point
was constructed in [BK], developing a construction in [Jo]. Perhaps even more
surprisingly, topologically transitive, unimodal maps of high critical order can have
their physical measure supported on an absorbing Cantor set [BKNS].

1.11.2. Acips for smooth interval maps. For example, let FQ be the class
of quadratic interval maps fa : x 7→ ax(1 − x), for 0 < a ≤ 4, and consider the
potential ϕ(x) := − log |Df | for f ∈ FQ. By [BL], Lebesgue measure is ergodic.
Any acip is a physical measure. Moreover it is an equilibrium measure with respect
to the potential ϕ, this following from [L] and [P]. On the other hand, if the map
is hyperbolic, so it has a (hyperbolic) attracting periodic orbit, then the physical
measure is the equidistribution on the attracting orbit. Hyperbolic parameters form
an open, dense subset of (0, 4] ([Ly, GS]), yet the set of parameters for which fa has
an acip, by [J, BC], has positive Lebesgue measure. There are further parameters
for which acips do not exist, see for example [HK, ABJ]. This gives an indication
of the complexity of the possible behaviour within the quadratic family.

There are positive results regarding statistical stability in FNSD. In [Ts2, F,
FT] it was shown that for large families F ∈ FNSD of smooth maps with acips, the
acips depend continuously on the map. In the first two of these papers, the maps
had to have some exponential growth along the critical orbit, while in the final one,
subexponential growth was sufficient. However in all cases it was essential that
the growth constants which defined F had to be uniform in the family. For the
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purposes of the current article, we should point out that these uniform constants
lead to uniform tail estimates (which correspond in our setting to TR∆ = 0, see §6,
and a uniform lower bound of the entropy of the acips for all maps in F).

1.11.3. Prior results for fixed maps. For a positive measure set of qua-
dratic parameters near a = 4, Pesin and Senti showed existence of equilibrium
states and analyticity of the pressure for t in a neighbourhood of [0, 1] and the
potential −t log |Df | [PSe]. In [BT2, IT1], these results were extended to eventu-
ally give existence of equilibrium states for t ∈ (t−, t+) and differentiability of the
pressure function for transitive (multimodal) maps. Recently, in [PR2], existence
of equilibrium states and analyticity of the pressure were proven by Przytycki and
Rivera-Letelier. Ideas were further developed in [GPR]. The paper [PR2] trans-
ferred some results of [PRS, PR1] for rational maps to the interval setting. In
the same paper, strong results concerning alternative definitions of pressure and
concerning non-uniform hyperbolicity (Topological Collet-Eckmann condition, etc.)
were proven. They also show statistical properties such as decay of correlations and
the Central Limit Theorem. Compared with that paper, ours has a very different
(and, we feel, more canonical) method of constructing induced maps. We focus
more on convergence properties of measures and thermodynamic quantities, while
they concentrate on the pressure. Our results on almost upper-semicontinuity of
the free energy are surprising. We have slightly weaker (see §1.11.4) hypotheses
too, not requiring critical points to be non-flat, and allowing discontinuities and
indifferent points. Of course, our article is geared towards proving results about
families of maps; that we obtain both new and (slight generalisations of) recent
results for fixed maps is a bonus.

1.11.4. Non-positive Schwarzian derivative and bounded distortion.
For the proof of Theorem 1.20, we need distortion bounds and lower bounds on the
derivative, see Lemma 5.3. Uniformity of the bounds for the sequence of maps is
important and follows from non-positive Schwarzian derivative and the uniform ex-
tensibility (aka Koebe space) for the induced maps. If we assume the conclusions of
Lemma 5.3 hold for our sequences, we can prove Theorem 1.20. For further results,
we just need some iterate of our induced maps to be expanding—the uniformity
of Lemma 5.7 is unnecessary (N,K may depend on f) for our purposes. Expan-
sion follows from uniform bounded distortion for iterates of the induced maps. For
fixed maps, therefore, we could just assume some distortion bounds as done in
[PR2, Definition 1.10]; for sequences of maps we would need to assume unifor-
mity in these bounds. For simplicity we assume non-positive Schwarzian deriv-
ative. We choose non-positive rather than negative because if one considers an
infinitely-renormalisable quadratic map, the limit maps in renormalisation theory
[Su, Theorem 1] automatically have non-positive Schwarzian derivative, and this
will be useful in applications of this work, see [DM].

1.11.5. Return maps in the Hofbauer extension. First return maps in
the Hofbauer extension [H3] were introduced in [B] and used more recently to
good effect in [BT2, IT1], for example. However, those works just look at the first
return to a single interval, or ‘extensible column’ in the extension, which engenders
full-branched induced Markov maps. The tail estimates for such maps, however,
are quite weak and led to difficulties in applications.
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An important technical advance in this work is to take return maps to a possibly
large, but finite, union of intervals in the extension. Combinatorial estimates then
give strong control on the tails of the corresponding induced maps, see Lemma 2.11.

For convergent sequences of maps, Hofbauer extensions need not converge.
This problem was defined away in [FT] by excluding some possible limit maps,
including any map with a preperiodic critical point. We overcome this difficulty
by embedding our return maps in an ambient space, where a subsequence of the
return maps converges. This limit return map will be an induced map for the limit
base map, but may not correspond to a return map in the limit map’s Hofbauer
extension.

1.11.6. Upper-semicontinuity of entropy. In piecewise-monotone fami-
lies, topological entropy is lower-semicontinuous (note the number of branches is
fixed). Misiurewicz has produced examples which show one cannot do better than
lower-semicontinuous [M2], see also [ALM, Section 4.5]. Measures of maximal
entropy exist and have the same entropy as the map [H1, H2]. Therefore metric
entropy is not upper-semicontinuous in general (free energy is neither, then). In
[MS], conditions are given for topological entropy to be continuous at a map (in
terms of periodic orbits containing singularities). They consider all convergent se-
quences; we limit ourselves to those with decreasing critical relations but obtain
more limit points, so there is some but not complete overlap. We prove upper
semi-continuity of the metric entropy. This additionally implies that topological
entropy is continuous at the limit map (for that sequence of maps).

1.11.7. Keller’s example. In [K1], Keller considers a sequence of continuous
expanding, piecewise linear maps of the interval with four branches in the form of
a W. The two external branches can be assumed to be full. The internal branches
meet at a tip just above the diagonal, and have slope approximately 2 − ε. The
fixed point near the tip and its symmetric preimage define a restrictive interval on
which the map is a tent map with slope 2− ε. The acip for the map is supported
on the restrictive interval. It has entropy equal to log of the slope of the internal
branches, thus bounded away from zero. In the limit (where ε→ 0), the tip meets
the diagonal and the restrictive interval vanishes. The limit of the acips is an atom
on the tip; meanwhile the limit map has its acip. This shows lack of quasistability.
It can occur because the limit map has an extra critical relation: the turning point
at the tip becomes a fixed point. This example has been further developed in
[LGBPE, EM], where all maps are transitive; the limit map still has an extra
critical relation. On the other hand, the examples of Theorems 1.32, 1.3 have
decreasing critical relations.

1.11.8. Failure of statistical stability for acips for smooth interval
maps. Tsujii showed that, in the quadratic family, the Chebyshev parameter 4
is accumulated by a positive measure set of once-renormalisable Collet-Eckmann
parameters whose acips converge, as the parameters converge to 4, to the Dirac
mass on 0 [Ts2, Remark 1.2]. These ideas were further developed by Thunberg
[Th]. In particular, statistical stability does does not hold for any full measure set
of Collet-Eckmann parameters in the quadratic family. This lack of stability was
due to renormalisation.
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In Theorem 1.32, we show that statistical stability of acips does not hold even
if one restricts to the very well-behaved, non-renormalisable Misiurewicz parame-
ters (or in Corollary 1.12, if one restricts to full-measure sets of non-renormalisable
Collet-Eckmann parameters). At the boundary of Tsujii’s and Thunberg’s renor-
malisation intervals are parabolic maps. Developing ideas of Homburg and Young
[HomY], we find non-renormalisable and almost-parabolic Misiurewicz maps whose
measures approximate the equidistribution along the parabolic orbit. Showing con-
vergence of measures is somewhat technical, requiring us to keep track of constants
in the proof of existence of the acips, unlike say in the related estimates of Benedicks
and Misiurewicz in [BM]. The entropy of the acips along our sequences of maps
tends to zero. The proof of the theorem occupies §8. In Theorem 1.3, we show that
a lower bound on entropy does not guarantee statistical stability.

1.11.9. Stronger versions of statistical stability. In many works, see for

example [RS, Al, AV, AS] the convergence in L1(m) of the densities
dµf
dm of acips

µf is called strong statistical stability. The notion of statistical stability of mea-
sures we use here is sometimes referred to as weak statistical stability. One can
also ask for even stronger results. Baladi, in [Ba1, §1], see also [Ba2, §3.2], asks
about the smoothness of measure-parameter dependence for Collet-Eckmann uni-
modal maps. Our Theorem 1.32 implies that some sort of uniformity condition
on the Collet-Eckmann constants is required for continuity (let alone smoothness).
Baladi and Smania, in [BaS1], showed that the physical measure µ0 (an acip) for a
tent map f0 actually depends differentiably if the family of tent maps (ft)t∈(−ε,ε),
with corresponding physical measures (µt)t∈(−ε,ε), is chosen to be tangent to the
topological class of f0. On the other hand, for unimodal maps with critical points,
the corresponding result in [BaS2] (see also [Ru5]) requires that the maps stay in
a fixed topological class. That requirement implied (see Appendix A of [BaS2])
uniformity of the Collet-Eckmann constants, as well as constant topological en-
tropy. While this manuscript was being prepared, a paper of Baladi, Benedicks and
Schnellmann appeared proving sharp results on statistical stability for a subset of
the Collet-Eckmann parameters [BBS]. These are stronger conclusions, but for a
much less general class of maps than those considered here.

1.11.10. Higher dimensions. For results on statistical stability for non-
uniformly hyperbolic maps in higher dimensions, see [V] and [ACF] where partially
hyperbolic diffeomorphisms and Hénon maps are considered. See also [Al, Ar]. The
results in the current article are restricted to the one-dimensional case, but we ex-
pect that some analogue of our results carries over to the higher-dimensional case,
probably requiring sufficiently large entropy as in [Bu] – the main difficulty is then
to build families of Markov extensions with the right properties for this setting.

1.12. Method and structure

First we give an overview of how almost-semicontinuity of the free energy may
hold. The structure of the article is then presented.

1.12.1. Method. Due to the presence of critical points, it is convenient to

use the Hofbauer extension (Î , f̂) of the original system (I, f). In Definition 2.10

we introduce the important (canonical) level-R induced map (X̂(R), F̂ , τ), where

X̂(R) ⊂ Î is a certain finite union of R-cylinders in the Hofbauer extension, F̂ is
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the (Markovian) first return map to X̂(R) with return time function τ . Note that

X̂(R) is a finite union of intervals and that branches of the first return map will
not be surjective.

Positive-entropy measures in Mf lift to measures on the extension (Î , f̂).
Counting arguments on the extension imply that if R ≥ 8d and d ≥ 2,

(1.3) ε(R) = ε(R, d) := 8
logR

R
,

and

(1.4) η(R, d)) :=
ε(R)2

2R(log d)2
,

then any measure µ ∈ Mf with entropy at least 2ε(R) must lift to a measure µ̂
with

µ̂(X̂(R)) ≥ η(R, d).

The normalised restriction ν̂ of the measure µ̂ to X̂(R) is F̂ -invariant. Kac’ Lemma
implies that ∫

τ dν̂ ≤ 1

η(R, d)

(see [A, §1.5], for example, for a proof of both of these facts). The counting argu-
ments of Lemma 2.8 are an important refinement of the ideas in [H3, Theorem 9],
and better implemented than in [BT2, Lemma 4].

For convergent sequences of d-branched maps, level-R induced maps need not
converge to a level-R induced map for the limit system. Embedding the induced
maps in some ambient space, some subsequence of the induced maps does converge
to a well-defined limit map, with controlled properties.

The estimates hitherto depend only on R and d, so they hold for sequences
of maps. We study convergence of induced measures ν̂ embedded into the ambi-
ent space. The limit induced measure will spread (Definition 3.5) to a light limit
measure for the limit map (which may or may not be the one desired).

Tail estimates on the first return times then come into play. Our counting
arguments imply that the number of branches with return time equal to n grows
at most at a small exponential rate, bounded by exp(nε(R)). This implies in some
vague sense that the branches with high return time make little contribution to the
entropy.

Drops in the Lyapunov exponent in the limit occur when diminishing mass for
the induced measures has non-diminishing integral of log |DF |, where F represents
the induced maps. This bit of integral gets lost in the limit. This only happens if
there is also a drop TR∆ in the integral of the return time.

If TR∆ = 0 for some R, then the Lyapunov exponent is continuous (for the
original sequence of measures). This continuity remains true, merely assuming
limR→∞ TR∆ = 0. As entropy is upper-semicontinuous (Theorem 1.1), for these
cases free energy will also be upper-semicontinuous. Otherwise, if the limit is
positive, the spread of the limit induced measure will have entropy strictly greater
than the limit of the entropies. Either this measure will have free energy greater
than or equal to the limit or, to balance out, some bit of free energy gets lost in the
limit. In this latter case, some other similarly-constructed measure must have free
energy strictly greater than the limit free energy, or one can approximate the lost
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free energy (a quantity greater than E+) by a periodic orbit, giving a contradiction.
Almost upper-semicontinuity of the free energy is obtained.

We induce F again to obtain a full-branched Markov map with (exponential)
good tail estimates. This useful result is stated as Theorem 7.14. Application of
thermodynamic formalism and ergodic theory for countable state Markov shifts
gives analyticity of the pressure and uniqueness of equilibrium states, under transi-
tivity assumptions. The almost sure invariance principle and decay of correlations
follows, since our full-branched induced map can be viewed as a Young tower with
exponential tails.

1.12.2. Structure. In Section 2.1, we detail some properties of J(f). We
introduce, in Section 2.2, notions concerning the Hofbauer extension and its topo-
logical structure; important counting arguments are carried out in Lemma 2.8.
Canonical level-R induced maps are introduced in Definition 2.10. In the subse-
quent section, we examine convergence of cylinder sets in Hofbauer extensions. In
Chapter 2.4, we embed the Hofbauer extensions (and thus X̂(R)) into an ambient
space, obtaining convergence of the induced maps there to some limit map. Con-
tinuing on the topological side, we then show in Chapter 2.5 that given some orbit,
there is another orbit which mimics the part of the orbit corresponding to large
return times. The error term is uniform for a given sequence of maps.

Up until this point, everything was topological. Next, in Chapter 3, we describe
the correspondence between measures on the interval and measures for induced
maps. The lift of a positive entropy measure to the Hofbauer extension cannot
have much mass near the boundary of X̂(R), we show. From this tightness-type
result, we obtain limit induced measures in Chapter 4. Any drop in (metric) entropy
is small compared to the (possible) drop TR∆ in the integral of the inducing time.
Upper-semicontinuity of metric entropy is proven.

We present some standard distortion and expansion estimates for maps with
non-positive Schwarzian derivative in Chapter 5. All except the final statement of
Theorem 1.20 is proven in Chapter 6, with a casewise analysis depending on the
behaviour of TR∆ . For the final statement, to pass from a convex combination of
equilibrium states to some light limit measure actually being an equilibrium state,
we need a bound on the number of equilibrium states.

In Chapter 7, we present some Katok theory (with self-contained, simple proofs)
and, in Section 7.2, several results depending on Theorem 1.20 and Katok theory.
In Section 7.3, facts concerning ergodic theory and thermodynamic formalism for
countable state Markov shifts are reviewed. We obtain a full-branched induced
map with exponential tails (with respect to the lift of the equilibrium measure).
Thanks to the estimates for our first return maps defined earlier, thermodynamic
formalism almost automatically gives analyticity of the pressure and uniqueness of
equilibrium states, at least under a transitivity assumption. Without the transi-
tivity assumption, we obtain a bound on the number of equilibrium states with a
given entropy and complete the proof of Theorem 1.20. We obtain the almost sure
invariance principle and decay of correlations.

In Chapter 8 we prove Theorem 1.32 which, we recall, shows that for any
natural family of unimodal maps and corresponding measures, uniform positive
entropy is necessary for quasistability.

Finally, in Chapter 9, we show, for a toy model, that uniform positive entropy
does not imply stability of acips.
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CHAPTER 2

Topological structures

2.1. Piecewise preliminaries

Lemma 2.1. Given a piecewise-monotone map f , each positive-entropy measure
µ ∈Mf must have µ(J(f)) = 1.

Proof. To show this, note first that µ is ergodic with positive entropy. Hence
it must be non-atomic, so any countable set has measure zero. Moreover, µ is
invariant so almost every point is recurrent. It suffices, therefore, to show that
almost every point is accumulated on both sides by points from ∪n≥0f

−n(E). Recall
that J(f) and E were defined in §1.8.

Consider the set

E = I \
⋃
n≥0

f−n(E ∪ ∂I).

It is an open set, so its connected components consist of a countable number of
intervals. Note that E is forward-invariant, f(E) ⊂ E. Fix some connected compo-
nent Ej of E. If fn(Ej) ∩ Ej 6= ∅ for some n > 0, then fn(Ej) ⊂ Ej . Either some
iterate of f is not defined anywhere on Ej or all iterates are defined and homeomor-
phic on Ej . Either way, it follows from ergodicity, invariance and positive entropy
that µ(Ej) = 0. The boundary points of the components Ej form a countable set,
therefore with measure zero. Let E∗ be the union of the closures of the connected
components of E. Thus I \ (E∗∪∂I) has full measure. But this is exactly the set of
points accumulated on both sides by points from ∪n≥0f

−n(E). We conclude that
almost every point is in J(f). �

Uniqueness of equilibrium measures will rely on the following rather general
lemma. Its proof is very similar to that of Lemma 5.2 of [D2]. Here we assume
transitivity; in the setting of [D2], ergodicity was assumed, giving transitivity on a
set of full measure.

Lemma 2.2. Let f be a piecewise-monotone map, transitive on J(f). Suppose
there is an open interval W containing a point from J(f) and l ≥ 1 such that
W ⊂ f l(W ). Then there exists N ≥ 1 such that

J(f) ⊂
N⋃
j=1

f j(W ).

Proof. We can assume, without loss of generality, that l = 1, since f l would
also be a piecewise-monotone map. Let

Wj =

j⋃
i=0

f i(W ) = f j(W ).

29
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Since E = E(f) is finite, there is an N such that for all j > N , Wj \WN does not
form a one-sided neighbourhood of any point of E .

Suppose j ≥ N and V is a connected component of Wj \ E . Suppose there is
some k ≥ 1 such that fk(V ) ∩WN 6= ∅ and let l be the least such k. Then f l|V is
continuous.

For each connected component V of WN \ E , let nV be the minimal k ≥ 1
such that fk(V ) ∩ WN 6= ∅ if such a k exists; otherwise set nV = 0. Let M
be the maximum of the nV , noting that WN has a finite number of connected
components. Let X be a connected component of Wj for some j ≥ M . Suppose
X does not contain a connected component of WM . Let y ∈ X and let l ≥ 1 be
minimal such that y ∈ f l(V ), where V is some component of WN \E . Then l > M .
In particular, nV = 0, so f i(y) /∈ WN for all i ≥ 0. This holds for each y ∈ X.
Therefore f i(X) ∩WN = ∅ for all i ≥ 0. By transitivity, X ∩ J(f) = ∅.

Let V1, . . . , Vr denote the connected components of WM . For j ≥ M and
1 ≤ k ≤ r, let V jk denote the connected component of Wj containing Vk. These are
the only connected components of Wj which may contain points from J(f).

Let W∞ =
⋃
j≥0Wj . We shall say that a point x has the one-sided property

if W∞ contains nested, one-sided neighbourhoods Zk of the x such that: each Zk
contains points from J(f), each Zk 6⊂Wj for any j <∞, and |Zk| → 0 as k →∞.

Note that if the conclusion of the lemma does not hold, there exists a point
x which has the one-sided property. Suppose this is so. We must arrive at a
contradiction.

Points with the one-sided property belong to the finite set

r⋃
k=1

∂
⋃
j≥M

V jk .

If y is in the interior of W∞, then fk(y) does not have the one-sided property for
any k ≥ 0. Suppose x has the one-sided property and let Zx be a corresponding
one-sided neighbourhood of x. Then there is a (we can assume strictly monotone)
sequence (yn)n ⊂ J(f) for which f(yn) ∈ Zx and fn(y) → x as n → ∞. Let y
be its limit. Then f((yn, y)) contains (f(yn), x) ⊂ Zx. Since x has the one-sided
property, (yn, y) 6⊂Wj for any j > 0, so y has the one-sided property. Moreover, if

yn ∈ Ui for all large n, then the continuous extension of f to Ui maps y to x.
It follows that (the finite collection of) points having the one-sided property

are periodic, in the sense that if x, Zx are as before and Zx is sufficiently small
then some iterate fk(Zx) is a small one-sided neighbourhood of x. The point x is
a fixed point of the continuous extension g of fk|Zx to the closure Zx. If g(Zx) ⊂ Zx
for arbitrarily small Zx then J(f) must just be the orbit of x, by transitivity, and
thus be contained in fk(W ). Otherwise, x is a (one-sided, topologically-) repelling
fixed point for g. For points of J(f) to accumulate near x in Zx, they have to come
from somewhere: there must be a point y 6= x and arbitrarily small, one-sided
neighbourhoods Zy of y mapped by fk onto one-sided neighbourhoods of x in Zx,
with Zy containing points from J(f). But y, Zy are not periodic in the above sense,
so y cannot have the one-sided property. In particular, some sufficiently small Jy is
contained in some Wj . Then Wj+k ⊃ fk(Jy) contains some Jx, contradicting the
one-sided property. �
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2.2. Combinatorics in the Hofbauer extension

Let f : ∪dj=1Ij → I be a d-branched piecewise monotone map. Let us describe

the dynamically defined cylinders. Recall that we denote by Å the interior of a

set A. Let fE denote the restriction of f to ∪dj=1I̊j . Let P0 = Pf0 := I̊ and

P1 = Pf1 := {I̊1, . . . , I̊d}. For n ≥ 2, let

Pn = Pfn :=

n−1∨
i=0

f−iE (P1).

Each C ∈ Pn is an n-cylinder : fn : C→ fn(C) is a well-defined homeomorphism,
f j(C) ∩ E = ∅ for j = 0, . . . , n − 1 and C is a maximal interval with these prop-
erties. Cylinder sets are open. If n ≥ 1, the boundary points of C are in the set
∪n−1
j=0 f

−j(E). We let Cn[x] denote the member of Pn containing x.

Lemma 2.3. For x ∈ J(f), Cn[x] is defined for all n ≥ 0 and contains x in its
interior and Cn[x] shrinks to the point x as n→∞.

Proof. This follows immediately from the definition of J(f). �

One can code the cylinder sets as follows. For n ≥ 1, let

Σnd := {1, 2, . . . , d}n.
Any ω ∈ Σnd is of the form ω = (ω1ω2 . . . ωn). Given such an ω, there exists at most
one n-cylinder, denoted Cω, such that f l−1(Cω) ⊂ Iωl for l = 1, . . . n. Of course,
each cylinder is of this form for some ω.

Set
D := {fk(C) : k ≥ 0,C ∈ Pk}.

As D is a set, each element D ∈ D appears once. As in [H3], the Hofbauer
extension1 is defined as

Î :=
⊔
D∈D

D.

with the disjoint union topology on Î. Note that each D ∈ D is an open subinterval
of R. We call each D a domain of Î. There is a natural projection map π : Î → I.
A point x̂ ∈ Î is in some D ∈ D; x̂ can be represented by (x,D) where x = π(x̂).

Given x̂ ∈ Î, we can denote the domain D ∈ D it belongs to by Dx̂.
The map

f̂ : π−1

 d⋃
j=1

Ij

→ Î

is defined by

f̂(x̂) = f̂(x,D) = (f(x), D′)

if there are cylinder sets C′ ⊂ C, with C′ ∈ Pk+1 and C ∈ Pk, such that

x ∈ fk(C′) ⊂ fk(C) = D

and D′ = fk+1(C′). Equivalently, there are k, y such that fk(y) = x, fk(Ck[y]) =
D and fk+1(Ck+1[y]) = D′. In this case, we write D → D′, giving (D,→) the

1This is the Hofbauer extension of f restricted to ∪dj=1I̊j . Restricting to open cylinder sets,

as we do here, has advantages when considering convergence for families of maps, at the cost of a

countable set of points.
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structure of a directed graph. A path from D1 to D2 in (D,→) is a sequence of
arrows in the graph leading from D1 to D2. The map π acts as a semiconjugacy

between f̂ and f :

π ◦ f̂ = f ◦ π.
The Hofbauer extension has the useful property of being Markovian:

Lemma 2.4. Let x̂ ∈ D ∈ D, let n ≥ 1 and suppose D′ ∈ D contains f̂n(x̂).

Then some neighbourhood W ⊂ D of x̂ is mapped homeomorphically by f̂n onto
D′.

Proof. This follows by induction from the definition of f̂ . �

Lemma 2.5. If x̂1, x̂2 ∈ Î have π(x̂1) = π(x̂2) ∈ J(f) then there exists n ∈ N
such that f̂n(x1) = f̂n(x2).

Proof. Suppose that x = π(x̂1) = π(x̂2) and let D1 and D2 denote the do-
mains in the Hofbauer extension containing x̂1 and x̂2 respectively. By Lemma 2.3,
there exists an n ≥ 1 such that Cn[x] ⊂ π(D1 ∩ D2). The construction of the

extension implies that f̂n(x̂1), f̂n(x̂2) ∈ fn(Cn[x]) ∈ D and hence that f̂n(x̂1) =

f̂n(x̂2). �

Lemma 2.6. Suppose f is transitive on J(f). Let D1, D2 ∈ D be domains for
which the first return maps each have at least two branches. Then there is a path
from D1 to D2.

Proof. The first return map to any domain inD is full-branched, by Lemma 2.4,
so D1 and D2 each contain infinitely many repelling periodic points. Meanwhile,
there are only finitely many periodic points in the post-critical orbits, that is, con-
tained in the set ∪n≥0f

n(V). Therefore there are infinitely many repelling periodic
points in each of D1 and D2 which project down to points in J(f). Let p̂1 ∈ D1

and p̂2 ∈ D2 be such points, with projections p1 and p2 respectively.
Let W1 ⊂ πD1 be an open interval containing p1, small enough that W1 ⊂

f l(W1). By Lemma 2.2, there is some N for which ∪nj=0f
j(W1) contains p2. Thus

some ŷ ∈ D1 is mapped by some f̂ j to π−1(p2). By Lemma 2.5, some further iterate

of ŷ by f̂ j is actually equal to p̂2. �

We denote the base of Î, the copy of I̊ in Î, by D0. The natural inclusion map
sending I̊ to D0 we denote by ι : I̊ ↪→ Î. For D ∈ D, we define lev(D) to be the
length of the shortest path D0 → · · · → D starting at the base D0.

Definition 2.7. For each R ∈ N, let ÎR be the bounded part of the Hofbauer
extension defined by

ÎR := {(x,D) ∈ Î : lev(D) 6 R}.

Abusing notation somewhat, we can write ÎR = t{D ∈ D : lev(D) 6 R}.
We define P̂n to be the set of intervals {π|−1

D C : D ∈ D,C ∈ Pn}. For a domain

D ∈ D, let DR
` be the left-most element of P̂R in D and let DR

r be the rightmost.
We refer to these elements boundary components. Set

ÎR− := ÎR ∩
(
tD∈DD \ (DR

` ∪DR
r )
)
.
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As we will see later, excluding the boundary components will give uniform distor-
tion bounds (thanks to the Koebe principle) for certain induced maps. Boundary
components project to subsets of R-cylinders.

For the purposes of the following lemma, let us set P0
n := ι−1Pn, the same

collection of n-cylinders except living on the base of the extension, and for a word
ω, we set Cω

0 := ι−1(Cω).
Recall from (1.3) that ε(R) = 8 logR/R.

Lemma 2.8. Let R ≥ 8d. Let

δ :=
ε(R)

4 log d
=

2 logR

R log d
.

There exists n0 = n0(R) such that for any piecewise-monotone d-branched map f
and any n ≥ n0, the following holds. Let Q denote the collection of elements of
P0
nR which visit ÎR− at most δn times in the first nR iterates. Then

#Q ≤ R7n < exp(nRε(R)).

Moreover, for n ≥ n0, the number of elements of P̂R+n contained in ÎR− with first

return time to ÎR− equal to n is bounded by exp(nε(R)).

Proof. From the definition of ε(R), R7n < exp(nRε(R)).

By construction of the extension, if ω has length n, f̂ j is homeomorphic on Cω
0

for each j ≤ n (in particular, for each j, f̂ j(X) is contained in a single domain of
the extension).

We shall count elements of P0
nR for large n. The following estimates are needed.

(i) if X ∈ P0
l for some l ≥ 1 then, for 1 ≤ k ≤ R, there are at most two

elements X ′ of P0
l+k for which both X ′ ⊂ X and f̂ l+k(X ′) ⊂ Î \ ÎR;

(ii) there are at most (2dR)2 domains D with lev(D) ≤ R; in particular, there

are at most 8d2R2 connected components of ÎR \ ÎR− ;

(iii)
(
n
bδnc

)
≤ 2n.

Estimate (i) is so because if X ′ does not have a common boundary point with

X, then πf̂ l(X ′) ∈ Pk, so f̂ l+k(X ′) ⊂ Îk ⊂ ÎR. For estimate (ii), the projection
of each boundary point of a domain D of level at most R is contained in the set
∪0≤j≤R−1f

j(V) of cardinality bounded by 2dR, since the set V of critical values
has cardinality at most 2d. A domain has two boundary points, giving (2dR)2

possibilities. The trivial estimate (iii) on the binomial coefficient could be improved
(for example using Stirling’s formula), but is sufficient for our needs.

To each element C = Cω
0 corresponds a word ω of length nR. For j ≥ 0, denote

by Cj the image f̂ j(C), so πCj is contained in the 1-cylinder of f corresponding to
the symbol ωj+1. We can divide the word ω into n blocks of length R. If CkR+j ⊂
Î \ ÎR− for j = 0, . . . , R−1 then (counting from zero) we say the kth block is external.

If it is external, there is a maximal l ≤ R for which CkR+j 6⊂ ÎR for j = 0, . . . , l−1
(so if CkR 6⊂ ÎR then l = 0, and if l < R then CkR+l ⊂ ÎR \ ÎR−). Given ω1 . . . ωkR,
by (i) there are at most two possibilities for the sequence ωkR+1 . . . ωkR+l. Given
ω1 . . . ωkR+l, there are by (ii) at most 8d2R2 possibilities for ωkR+l+1 . . . ω(k+1)R

(one possibility for each boundary component). There are R possible values for l.
Multiplying these estimates, given ω1 . . . ωkR, there are at most 16d2R3 possible

words ωkR+1 . . . ω(k+1)R for which the kth block is external. For general blocks of



34 2. TOPOLOGICAL STRUCTURES

length R we use a crude estimate: there are at most dR possible words. There are
fewer than 2n possible configurations of bδnc general and n−bδnc external blocks,
by (iii).

Elements of Q visit ÎR− at most δn times in the first nR iterates. A word
corresponding to an element of Q has at least n−bδnc external blocks of length R.
Combining the estimates from the preceding paragraph, we get an upper bound of

(2.1) #Q ≤ 2n(16d2R3)ndRδn.

Replacing δ by 2 logR
R log d , we obtain

#Q ≤ (32d2R3)nR2n.

Since R ≥ 8d,
#Q ≤ R7n.

The first statement is now proven.
To finish, we claim that the number of elements of P̂R+n contained in ÎR− with

first return time to ÎR− equal to n is bounded by

(2dR)2(16d2R3)bn/Rcd1+2R.

We assembled this bound from the following components. An element of P̂R+n

is defined by a word of length n + R plus the starting domain. There are, as
before, at most (2dR)2 domains of level at most R. There are d possible choices for
the first symbol of the word. Then there follows bn/Rc full external blocks, each
having 16d2R3 possibilities, followed by a final ≤ 2R free symbols with at most d2R

possibilities.
Taking n large, we can ignore the terms not being raised to the n, and recalling

R ≥ 8d we obtain a bound of

(R5)n/R = exp(5n(logR)/R) < exp(nε(R)),

completing the proof. �

Lemma 2.9. If Ŷ , Ŷ ′ ∈ P̂n and f̂(Ŷ ) ∩ Ŷ ′ 6= ∅, then f̂−1(Ŷ ′) ∩ Ŷ is mapped

homeomorphically by f̂ onto Ŷ ′.

Proof. This follows from the cylinder structure and Lemma 2.4. �

Definition 2.10. The (canonical) level-R induced map is the system (X̂(R), F̂ , τ)

and consists of: X̂ = X̂(R), the union of elements of P̂R contained in ÎR− ; the first

return map F̂ to X̂; the first return time function τ on X̂(R).

The large range of F̂ , with multiple connected components, allows one to obtain
powerful counting estimates.

Lemma 2.11. The level-R induced map (X̂(R), F̂ , τ) has the following proper-
ties.

(i) F̂ is defined on a countable union of pairwise-disjoint open subintervals

X̂i of X̂;
(ii) F̂ maps each X̂i homeomorphically onto a connected component of X̂;

(iii) the return time τ is constant on each X̂i, thus we can denote it τi;

(iv) for each i, there is some X̂ ′i ⊃ X̂i mapped homeomorphically by f̂τi onto

the domain of Î containing F̂ (X̂i).
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If n0 = n0(R) is given by Lemma 2.8, then

#{i : τi = n} ≤ exp(nε(R))

for all n ≥ n0.

Proof. Properties (i)-(iv) follow from Lemma 2.9 and Lemma 2.4. The count-

ing statement follows immediately from Lemma 2.8, since each X̂i is an (R + τi)-
cylinder. �

Let (X̂, F̂ , τ) be a level-R induced map.

Lemma 2.12. Let N ≥ 1 and let Ŷj, j ≥ 1, be the connected components of the

domain of F̂N . Let n0 = n0(R) be given by Lemma 2.11. Let ρj denote the value

on Ŷj of the N th return time to X̂ for f̂ , so f̂ρj = F̂N on Ŷj. Then there is an n1

(dependent on N, d,R, ε(R), n0 but not on f) for which, for all n ≥ n1,

#{j : ρj = n} ≤ e3nε(R).

Proof. Let us write ε for ε(R). With the notation of Lemma 2.11, set Kk :=
#{i : τi = k} for each k ≥ n0, so Kk ≤ ekε. There is a uniform bound K∗
(depending just on d,R, n0) on Kk for k ≤ n0. Then

#{j : ρj = n} ≤
∑ N∏

i=1

Kki

where the sum is taken over all N -tuples k1, . . . , kN which sum to n. The product is
then bounded by exp(2nε), for n ≥ logK∗/ε. There are fewer than nN summands,
so if n is big enough that nε ≥ N log n, then

#{j : ρj = n} ≤ nN exp(2nε) ≤ exp(3nε).

�

Lemma 2.13. Let ρ be the inducing time (the Rth return time) corresponding

to F̂R. Let K ≥ 1 and suppose ρ(x̂) ≤ K for some x̂ ∈ X̂. Let ŷ be in the

boundary of the connected component of X̂ containing x̂. Then (x̂, ŷ) contains a

(K +R)-cylinder for f̂ .

Proof. Let k ≥ R be minimal such that f̂k(x̂) ∈ X̂. Then ρ(x̂) ≥ k. If

f̂k ∈ D ∈ D, we can pull back the boundary cylinders DR
l , D

R
r to obtain (k + R)-

cylinders separating x from ∂X̂. �

The map F̂ is typically not onto. Since X̂ has only a finite number of connected
components and F̂ is Markovian, we can find subsets with good mixing properties.
Let us say that connected components Ŷ , Ŷ ′ are linked if some iterate of F̂ maps Ŷ
onto Ŷ ′ and some iterate also maps Ŷ ′ onto Ŷ . Being linked is clearly a symmetric
and transitive relation.

We denote by X̂T the collection of all connected components Ŷ of X̂ for which
the first return map from Ŷ to Ŷ has at least two branches. Given Ŷ ∈ X̂T , we
can write YŶ for the union of all components linked to Ŷ .

Definition 2.14. We call YŶ the primitive component of X̂ containing Ŷ .
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Remark 2.15. The number of connected components of X̂ is bounded by
(2dR)2dR and this is trivially an upper bound on the number of primitive compo-

nents of X̂.

Lemma 2.16. If f is transitive on J(f) then X̂ has only one primitive compo-
nent.

Proof. Let Ŷ1, Ŷ2 ∈ X̂T , so their first return maps each have at least two
branches. The return maps are full-branched, by Lemma 2.11, so Ŷ1 and Ŷ2

each contain infinitely many repelling periodic points. Meanwhile, there are only
finitely many periodic points in the post-critical orbits, that is, contained in the set
∪n≥0f

n(V). Therefore there are infinitely many repelling periodic points in each of

Ŷ1 and Ŷ2 which project down to points in J(f). Let p̂1 ∈ Ŷ1 and p̂2 ∈ Ŷ2 be such
points, with projections p1 and p2 respectively.

Let W1 ⊂ πŶ1 be an open interval containing p1, small enough that W1 ⊂
f l(W1). By Lemma 2.2, there is some N for which ∪Nj=0f

j(W1) contains p2. Thus

some ŷ ∈ Ŷ1 is mapped by some f̂ j to π−1(p2). By Lemma 2.5, some further iterate

of ŷ by f̂ j is actually equal to p̂2. Repeating the argument switching twos and ones,
we find a point in Ŷ2 mapped to Ŷ1. It follows that Ŷ1 and Ŷ2 are linked, so they
are subsets of the same primitive component, as required. �

Lemma 2.17. Let Y be a primitive component of X̂. Then the first return

(under f̂) map F̂Y to Y has the following properties:

(i) F̂Y is defined on a countable union of pairwise-disjoint open subintervals

X̂i of Y;
(ii) F̂Y maps each X̂i homeomorphically onto a connected component of Y;

(iii) there exists NY such that, for each X̂i,

NY⋃
j=1

F̂ jY(X̂i) ⊃ Y;

(iv) the return time is constant on each X̂i and coincides with the return time

under F̂ to X̂: thus we can denote it τi;

(v) for each i, there is some X̂ ′i ⊃ X̂i mapped homeomorphically by f̂τi onto

the domain of Î containing F̂Y(Xi).

If n0 = n0(R) is given by Lemma 2.8, then

#{i : τi = n} ≤ exp(nε)

for all n ≥ n0.

Proof. We must prove (iii) and (iv). The other three properties follow from
Lemma 2.11.

To show (iii), note first that F̂Y(X̂i) is a connected component of Y. Each

pair Ŷ1, Ŷ2 ⊂ Y of connected components of Y is linked, so for some minimal
n = n(Ŷ1, Ŷ2),

F̂nY (Ŷ1) ⊃ Ŷ2.

There are only a finite number of such ordered pairs, so

NY := 1 + max
Ŷ1,Ŷ2∈Y

n(Ŷ1, Ŷ2)
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is finite and has the desired property.
Now we show (iv). Suppose that x̂ is in the domain of F̂Y , so x̂ ∈ Ŷ1 and

F̂Y(x̂) ∈ Ŷ2 for some connected components Ŷ1, Ŷ2 of Y. Let Ŷ ′ denote the con-

nected component of X̂ containing F̂ (x̂). In particular, F̂ (Ŷ1) ⊃ Ŷ ′. Some F̂ j ,

j ≥ 0, maps Ŷ ′ onto Ŷ2. Since Ŷ2, Ŷ1 are linked, some iterate of F̂ maps Ŷ2 onto
Ŷ1. Consequently Ŷ1 and Ŷ ′ are linked. Hence Ŷ ′ = Ŷ2 ∈ Y and

F̂ (x̂) = F̂Y(x̂) = f̂τi(x̂),

if F̂ = f̂τi on the interval X̂i 3 x̂. �

Definition 2.18. A level-R primitive induced map is such a triplet (Y, F̂Y , τ),

where Y is a primitive component of a level-R induced map, F̂Y is the first return

map to Y and τ is the return time (w.r.t. f̂).

2.3. Coding convergence

Recall that the coding of cylinder sets Cω, for ω ∈ Σnd , was defined near the
start of §2.2. Introducing f -dependence, we can write Cω(f) for Cω. Let Σn(f)
denote the set of ω ∈ Σnd for which Cω(f) exists. Sequences of maps (fk)k in what
follows will be sequences of d-branched piecewise-monotone maps.

Lemma 2.19. Let (fk)k be a sequence converging to f0 as k → ∞ and having
decreasing critical relations. Given n ≥ 1, for all sufficiently large k, Σn(f0) =
Σn(fk). For ω ∈ Σn(f0),

Cω(fk)→ Cω(f0)

in the Hausdorff metric as k →∞.

Proof. Since the fk converge to f0 and cylinder sets are open intervals,
Σn(f0) ⊂ Σn(fk) for large k and the corresponding cylinder sets converge. To
complete the proof, we prove by contradiction that Σn(fk) ⊂ Σn(f0) for all large
k.

The case n = 1 is trivial, by definition of convergence of the fk. So suppose
n ≥ 2 is minimal such that for some subsequence (ki)i, tending to infinity with i,
there is some ω with

ω ∈ Σn(fki) \ Σn(f0)

for all i. To simplify notation, we can suppose that this subsequence is the original
sequence (fk)k. Denote by ω′ the word ω with its first symbol removed. Then

ω′ is a word of length (n − 1) and fk(Cω(fk)) ⊂ Cω′(fk). Since n is minimal,
ω′ ∈ Σn−1(f0). It follows that f0(Iω1(f0)) shares a common boundary point, x say,

with Cω′(f0), and that

f0(Iω1
(f0)) ∩Cω′(f0) = ∅.

Let c0 be the boundary point of Iω1(f0) whose small one-sided neighbourhoods in
Iω1

(f0) get mapped to a one-sided neighbourhood of x. Let p ≥ 0 be minimal such
that fp0 (x) ∈ E(f0) and note that fp0 is a homeomorphism on some neighbourhood
of x. Therefore on any small neighbourhood W of x, fpk is a homeomorphism for all

k large enough; f jk(W )∩E(fk) = ∅ for j = 0, . . . , p−1; the corresponding boundary

points xk ∈ ∂Cω′ to x lie in W . There is a critical relation of order (p+ 1) between
c0 and fp0 (x) for f0. By the decreasing critical relations hypothesis, this critical
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relation also exists for fk. In particular, {xk} = W ∩∂fk(Iω1
(fk)), for W small and

k sufficiently large. But this implies that

fk(Iω1
(fk)) ∩Cω′(fk) = ∅

so Cω(fk) = ∅, a contradiction. �

Lemma 2.20. Let (fk)k be a sequence converging to f0 as k → ∞ and having
decreasing critical relations. For each j and n with 0 ≤ j ≤ n, for each ω ∈ Σn(f0)
and for all k large enough, the sets

f jk(Cω(fk))

exist and they converge in the Hausdorff metric to (the non-trivial set) f j0 (Cω(f0))
as k →∞.

Proof. This follows from convergence of the maps and Lemma 2.19. �

Lemma 2.21. Let (fk)k be a sequence converging to f0 as k → ∞ and having
decreasing critical relations. For each j and n with 1 ≤ j, n, there is a κ > 0
such that the following holds. For each ω ∈ Σj(f0) and θ ∈ Σn(f0), for all k large
enough, either Cω(fk) ∩ fnk (Cθ(fk)) = ∅ or∣∣Cω(fk) ∩ fnk (Cθ(fk))

∣∣ ≥ κ.
Proof. For the purposes of the proof, we may assume that Cω(fk)∩fnk (Cθ(fk)

is non-empty. Then the set

Wk = Cθ(fk) ∩ f−nk (Cω(fk))

is non-empty and is an (n + j)-cylinder. By Lemma 2.19, Wk converges to an
(n + j) cylinder W0 for f0. From Lemma 2.20, fnk (Wk) converges to fn0 (W0).
Taking κ = |fn0 (W0)|/2 completes the proof. �

Notation. Recall that for a map f , X̂ = X̂(R) is the union of elements of

P̂R contained in ÎR− . The first return map to X̂ we denote F̂ ; its return time we
denote τ . Given maps fk and a number R ≥ 1, we introduce dependence on k to
the notation P, P̂n, ÎR, X̂(R), X̂, F̂ , τ , giving the notation Pk, P̂ kn , ÎR(k), X̂k(R),

X̂k, F̂k, τk.

Lemma 2.22. Let (fk)k be a sequence converging to f0 as k → ∞ and having
decreasing critical relations. For each R,K ≥ 1, there is a κ > 0 such that the
following holds.

inf
k
{|V | : V ∈ P̂kK , V ⊂ ÎR(k)} ≥ κ > 0.

Proof. This follows straightforwardly from Lemma 2.21 with j = K and
n = R. �

2.4. Extension embedding

Given d,R, we can order the set ∪j≤RΣjd. Then for a d-branched map f , we

can embed ÎR naturally into the compact space

I∗ := I ×
⋃
j≤R

Σjd
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as follows. To each x̂ ∈ ÎR, there is a minimal word

θ = θ(x̂) ∈
⋃
j≤R

Σjd

for which projection of the domain of ÎR containing x̂ is fL(θ)(Cθ(f)). Embed x̂ as

(x, θ(x̂)), and let us call the embedding map ιR. Recall we denote by (X̂(R), F̂ , τ)
the level-R induced map.

Definition 2.23. We call (X(R), F, τ) the embedded level-R induced map,

where X = X(R) is the embedding of X̂ = X̂(R), and F is the corresponding map,
so

F = ιR ◦ F̂ ◦ ι−1
R .

The domain of definition of τ is extended by τ|X := τ ◦ ι−1
R .

We can write π1 for projection onto the first coordinate. Then π1 ◦F = fτ ◦π1

on the domain of definition of F . Of course, F and τ are only defined on a subset
of I∗. One should think of F as being Markovian, as it inherits the properties of F̂
given in Lemma 2.11.

To a branch (Z, θ) of F , there is a word ω corresponding to Z, such that
Z = Cω(f), whose length L(ω) equals τ + R on (Z, θ). There is another unique
word θ∗ corresponding to the domain containing F ((Z, θ)). The triplet (ω, θ, θ∗)
entirely specifies the branch (Z, θ), in the sense that it tells us the interval Z and
the starting and image domains in I∗.

Let Ω denote the set of such triplets corresponding to branches of F . Let ΩN

denote the set of (ω, θ, θ∗) ∈ Ω for which L(ω) ≤ N . Let Ω′ be the (finite) set of

pairs (ω′, θ), with L(ω′) = R, for which (Cω′ , θ) is a connected component of X.
As such,

X :=
⋃

ω′∈Ω′

(Cω′(f), θ).

For k ≥ 1 and fk (in place of f), we introduce the notation Fk, τk, X
k,Ωk,Ω

N
k and

Ω′k.
For each N ∈ N, we shall say that the sequences (ΩNk )k and (Ω′k)k are eventually

constant if, for all k, k′ large enough, ΩNk = ΩNk′ and Ω′k = Ω′k′ . Suppose that for
all N ≥ 1, the sequences (ΩNk )k and (Ω′k)k are eventually constant. We denote by
ΩN0 and Ω′0 their respective limits. Set Ω0 := ∪NΩN0 . We define

Y 0 :=
⋃

ω′∈Ω′0

(Cω′(f0), θ).

For (ω, θ, θ∗) ∈ Ω0 and (x, θ) ∈ (Cω(f0), θ), we define F0 of (x, θ) by

F0(x, θ) := (f
L(ω)−R
0 (x), θ∗)

and τ0 by

τ0(x, θ) = L(ω)−R.
The domain and range of F0 are subsets of Y 0. Convergence of fk to f0 gives
F0(x, θ) = limk→∞ Fk(x, θ) (noting that the branches are open sets). It makes
sense to say that the sequence ((Xk, Fk, τk))k is convergent and we can write (still
omitting the R-dependence)

(2.2) (Xk, Fk, τk)→ (Y 0, F0, τ0).
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We call (Y 0, F0, τ0) a (embedded) level-R limit induced map.
In general, for each N (and d,R), there are only a finite number of possibilities

for ΩN . Thus there is always a (strictly increasing) sequence (nk)k for which for
each N ≥ 1, the subsequence (ΩNnk)nk is eventually constant. Similarly, there is a
subsequence for which (Ω′nk)k is eventually constant.

Remark 2.24. If the map f0 has finite post-critical set ∪n≥0f
n(V), then the

corresponding Hofbauer extension has only a finite number of domains. This need
not be true for maps fk converging to f0, so there is no particular reason the level-R
limit induced map should coincide with the level-R induced map for f0. This is
why we need to consider convergence of the embeddings.

2.5. Dynamics of rare returns

In this chapter we construct orbits with large inducing time, which corresponds
to only returning infrequently to the bounded part X̂ in the Hofbauer extension.

Suppose we have a convergent sequence of embedded level-R induced maps

(Xk, Fk, τk)→ (Y 0, F0, τ0)

as per (2.2). For U, V connected components of Xk (or of Y 0 if k = 0), we can
define τk(U, V ) as follows. Let A be a subinterval of U for which there is an nA
with FnAk (A) = V . Let pA = τ + τ ◦ Fk + · · · + τ ◦ F (nA−1)

k . Define τk(U, V ) as
the infimum over all such A of pA. If τk(U, V ) < +∞, we can choose an A which
minimises pA. Then we can define a quick word

bk(UV ) = Z0Z1 . . . ZnA−1,

where Zj is the connected component of Xk containing F jk (A).
Since Y 0 has a finite number of connected components,

M := max{τ0(U, V ) : τ0(U, V ) < +∞}

is finite.

Lemma 2.25. For each K, for all large k the following holds. If j ≥ 1, U, V
are connected components of Xk, if τk

(
F ik(A)

)
≤ K for each i = 0, 1, . . . , j− 1 and

if F jk maps A ⊂ U homeomorphically onto V , then τk(U, V ) ≤M .

Proof. By convergence, for each pair of connected components U, V ,

(2.3) lim
k→∞

inf{τk(U, V ) : τk(U, V ) > M} = +∞.

Consequently, for all k large enough and all connected components U, V,W of Xk,
provided τk(U, V ), τk(V,W ) ≤M , one has τk(U,W ) ≤ 2M and so

(2.4) τk(U,W ) ≤M.

Now let U, V,A be as per the hypotheses. For i = 0, 1, . . . , j, let Vi be the
connected component of Xk containing F ik(A). Let l ≤ j be the maximal integer for
which for each i = 0, . . . , l, τk(U, Vi) ≤ M . If l < j then τk(Vl, Vl+1) > M by (2.4)
and so τk(Vl, Vl+1) > K by (2.3). This contradicts the assumption τk

(
F lk(A)

)
≤ K,

completing the proof of the lemma. �
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Let ξk denote the set of connected components of the domain of Fk; let ξk(K)
denote those components on which τk ≥ K. Let

V kK :=
⋃

Z∈ξk(K)

Z ⊂ Xk.

Let (without indicating the dependence on k) en be the nth return time (with
respect to Fk) to V kK and set

g(y) :=

e1(y)−1∑
i=0

τk(F ik(y)).

Lemma 2.26. Suppose that x ∈ V kK is recurrent.
For arbitrarily large n, there is a periodic point w ∈ V kK of period en(w) such

that F
ej(w)
k (w) and F

ej(x)
k (x) are in the same element of ξk(K) for j = 0, . . . , n

and such that if τk(F
ej(w)+1
k (w)) < K then g(F

ej(w)+1
k (w)) ≤M .

There is y ∈ V kK such that F
en(y)
k (y), and F

en(x)
k (x) are in the same element of

ξk(K) for each n ≥ 0 and such that if τk(F
en(y)+1
k (y)) < K then g(F

en(y)+1
k (y)) ≤

M .

Proof. If F jk (x) ∈ Zj ∈ ξk, we obtain a sequence x = Z0Z1Z2 . . .. Write Vj
for the connected component of Xk containing Zj . If n, n+ 1, . . . , n+ l satisfy

Zj ∈ ξk \ ξk(K)

for j = n, . . . , n+ l, and Zn−1, Zn+l+1 /∈ ξk \ ξk(K), then we call ZnZn+1 . . . Zn+l a
low string. Replacing each low string by the corresponding quick word bk(VnVn+l),
we obtain a new sequence w = W0W1W2 . . .. By construction, Fk(Wj) ⊃ Wj+1,
while W0 ∈ ξk(K). Since x is recurrent, W0 and Wn lie in the same connected
component of Xk for infinitely many n → ∞. Therefore, for a sequence of arbi-
trarily large n, there exists an n-periodic point w = wn such that F jk (w) ∈ Wj for
j = 0, . . . , n.

Taking a convergent sequence of wn gives a limit point y which shadows x
forever.

The estimates for g hold by construction. �





CHAPTER 3

Measures and entropy

3.1. Lifts of measures

Let f : ∪dj=1Ij → I be a d-branched piecewise monotone map. Given µ ∈Mf ,

we say that µ lifts to Î if there exists an ergodic f̂ -invariant probability measure µ̂
on Î such that µ̂ ◦ π−1 = µ. The process, given in [K2], of constructing the lifted

measure is as follows. First set µ̂0 := µ ◦ ι−1. Now define µ̂n on Î by

(3.1) µ̂n :=
1

n

n−1∑
k=0

µ̂0 ◦ f̂−k.

Any vague limit of (µ̂n)n is an f̂ -invariant measure. However, this limit might
be the null measure. Keller showed that positive entropy is enough to guarantee
existence of the lifted measure:

Lemma 3.1 ([K2, Theorem 3], [H1, Theorem 1]). Every positive entropy mea-

sure µ ∈ Mf lifts to a measure µ̂ ∈ Mf̂ with µ̂(Î) = 1 and the same entropy,

h(µ̂) = h(µ). The sequence of measures µ̂n, n ≥ 1, defined in (3.1) converges
weakly to µ̂.

Recall that X̂ = X̂(R) denotes the union of elements of P̂R contained in ÎR− .

Note that ÎR−\X̂ is a finite set which therefore has zero mass for any positive-entropy
ergodic invariant probability measure. From (1.3), (1.4), ε(R) = 8 logR/R, while

η(R, d) =
ε(R)2

2R(log d)2
.

Lemma 3.2. For any piecewise-monotone d-branched map f and any µ ∈ Mf

with entropy h(µ) ≥ 2ε(R), the lift µ̂ of µ satisfies

µ̂(X̂) ≥ η(R, d).

Proof. The following is a more detailed proof of the somewhat sketchy [BT2,
Lemma 4] which, moreover, yields more information: in particular uniform con-
stants for families of maps together with a tail estimate.

As in Lemma 2.8, let Q denote the collection of elements of P0
nR which visit ÎR−

at most δn times in the first nR iterates, where δ = ε(R)/4 log d. By Lemma 2.8, for
all large n, #Q ≤ exp(nRε(R)). Of course, there is a trivial bound #PnR ≤ dnR.

Now we can use these two estimates on the numbers of nR-cylinders to estimate
entropy. For any finite sets of non-negative numbers {ak}k, {bk}k satisfying the
relations

∑
k ak = a,

∑
k bk = b and a+ b = 1, Jensen’s inequality implies that

−
∑
k

ak log ak −
∑
k

bk log bk 6 a log #{ak}k + b log #{bk}k + log 2,

43
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which we apply in the following entropy estimate. Since the partition P1 is gener-
ating for any ergodic positive entropy measure µ and since ιP0

nR = PnR, we deduce
the bound

2ε(R) ≤ h(µ) ≤ − 1

nR

∑
C∈PnR

µ(C) logµ(C)

≤ − 1

nR

 ∑
C∈PnR\ιQ

µ(C) logµ(C) +
∑
C∈ιQ

µ(C) logµ(C)


≤ µ(∪C∈PnR\ιQC) log d+ ε(R) +

log 2

nR
,

for all large n. Therefore

µ̂0(∪C∈P0
nR\QC) = µ(∪C∈PnR\ιQC) log d ≥ ε(R)− (log 2)/nR.

In particular, for each large n, there is a set of µ̂0-measure at least ε(R)/ log d −
1/nR = 8δ − 1/nR which visits ÎR− at least δn times in the first nR iterates. From

the definition of µ̂, we get µ̂(ÎR−) = µ̂(X̂) ≥ 8δ2/R. Substituting the definition of δ
gives the required result. �

Recall primitive components of X̂ were introduced in Definition 2.14.

Corollary 3.3. For any µ ∈ Mf with entropy h(µ) ≥ 2ε(R), there is a
primitive component Y with

µ̂(Y) ≥ η(R, d).

Proof. From ergodicity and Definition 2.14, µ̂ can only give mass to one
primitive component. By the lemma, this component has mass at least η(R, d). �

Given R and a measure µ ∈ Mf with h(µ) ≥ 2ε(R), then µ̂(X̂) ≥ η(R, d) as
in Lemma 3.2. We obtain a measure ν̂ = ν̂R ∈MF̂ defined by

(3.2) ν̂ :=
1

µ̂(X̂)
µ̂|X̂ ,

since F̂ is a first return map. Recall the embedding ιR from §2.4, giving (X,F, τ),
the embedded level-R induced map. The measure ν̂ ∈ MF̂ gives an embedded

induced measure ν ∈MF via ν = ν̂ ◦ ι−1
R . In this setting, we have the following.

Lemma 3.4. Given γ > 0, there exists K ≥ 1 (K depending on d,R, γ) such

that, if κ := min{|V | : V ∈ P̂K , V ⊂ ÎR} then

ν(B(∂X, κ)) < γ.

Proof. It suffices to show that

ν̂(B(∂X̂, κ)) < γ.

By Kac’ Lemma, if ρ is the inducing time corresponding to F̂R, then

(3.3)

∫
B(∂X̂,κ)

ρ dν̂ ≤
∫
X̂

ρ dν̂ =
R

µ̂(X̂)
≤ R

η(R, d)
.

Let K = R+dR/(η(R, d)γ)e, and let κ be given by the statement. By Lemma 2.13,

ρ ≥ R

η(R, d)γ
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on B(∂X̂, κ). Thus by (3.3), ν̂(B(∂X̂, κ)) < γ. �

3.2. Spreading measures and Abramov’s formula

Suppose we have some induced map (X,F, τ), where (X,F, τ) is a level-R
induced map, an embedded level-R induced map or a level-R limit induced map
for an initial piecewise-monotone d-branched map f . Denote by π the projection
from X to I. Let ν be an F -invariant probability measure, possibly non-ergodic.
The pushforward π∗ν is a measure on I. Write νn for the restriction of ν to the set
τ−1(n) and put

T = Tν :=

∫
τ dν.

Definition 3.5. The spread of ν is the measure

1

T

∑
n

n−1∑
j=0

f j∗ (π∗ν
n),

which is well-defined if T <∞.

Writing µ for the spread of ν, Abramov’s formula ([Ab1] or [Z]) states that

(3.4) h(µ) =
1

T
h(ν).

If ν is ergodic and f is piecewise differentiable, then straightforward application of
Birkhoff’s ergodic theorem (or [PSe, Theorem 2.3]) gives

(3.5)

∫
log |Df | dµ =

1

T

∫
log |DF | dν.

If ν is not ergodic, use ergodic decomposition: one can write µ =
∫
Mf

µ′ dm1(µ′)

and

ν =

∫
Mf

T

Tν′
ν′ dm1(µ′)

for some probability measure m1 and with µ′ the spread of ν′. Then∫
log |Df | dµ =

∫
Mf

∫
log |Df | dµ′ dm1(µ′)

=

∫
Mf

1

Tν′

∫
log |DF | dν′ dm1(µ′)

=
1

T

∫
log |DF |dν,

so (3.5) still holds.

Naturally, given (X̂(R), F, τ), if µ ∈ Mf has entropy at least 2ε(R) with lift

µ̂ ∈Mf̂ , and ν̂ ∈MF̂ is the normalised restriction to X̂(R) (which by Lemma 3.2

is well-defined), then ν̂ spreads to µ.





CHAPTER 4

Light limit measures and upper-semicontinuity of
metric entropy

Let (fk)k be a sequence of d-branched piecewise-monotone maps converging to
f0 as k →∞ and having decreasing critical relations. Let R ≥ 8d. For each k ≥ 1,
let µk ∈ Mfk have h(µk) ≥ 2ε(R) and suppose the sequence (µk)k converges to
some limit measure. Let

((Xk, Fk, τk))k → (Y 0, F0, τ0)

be a convergent sequence of level-R induced maps, as in §2.4. In particular, the
sequences (ΩNk )k are eventually constant for each N . We obtain the measures
ν̂k ∈ MF̂k

from (3.2), together with their embeddings νk ∈ MFk . Kac’ Lemma
says that ∫

X̂k
τk dµ̂k = 1

so, writing η = η(R, d), we have the following bound on the inducing time

(4.1)

∫
τk dνk =

1

µ̂k(X̂k)
≤ 1

η
.

Since Y0 is a subset of the compact space I∗, there is a convergent subsequence
of the measures νk whose limit is a probability measure supported on Y 0. Let us
suppose the sequence itself actually converges; the limit measure we shall denote
ν0 = νR0 . Its spread will be a light limit measure, as shown later in the chapter.

Lemma 4.1. The measure ν0 is F0-invariant.

Proof. Let V be a connected component of Y 0 ⊂ I∗, so π1V is an R-cylinder.
Let U be an interval compactly contained in V such that

ν0(∂U) = ν0(∂(F−1
0 (U))) = 0,

that is, the boundaries of U and F−1
0 (U) have zero measure. Since ν0(∂U) = 0,

(4.2) lim
k→∞

νk(U) = ν0(U).

Now each connected component of F−1
0 (U) is compactly contained in a branch of

F0 and so ∂(F−1
0 (U) ∩ {τ0 ≤ K}) ⊂ ∂(F−1

0 (U)) has zero measure for each K. For
any K, since ΩKk = ΩK0 for all large k, the branches with inducing time bounded
by K converge. Therefore,

lim
k→∞

νk
(
F−1
k (U) ∩ {τk ≤ K}

)
= ν0

(
F−1

0 (U) ∩ {τ0 ≤ K}
)
.

Meanwhile, (4.1) implies νk({τk > K}) < 1/Kη. Consequently (and again using
that the boundary has zero measure with respect to ν0),

(4.3) lim
k→∞

νk
(
F−1
k (U)

)
= ν0

(
F−1

0 (U)
)
.
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Since νk(U) = νk(F−1(U)), (4.2)-(4.3) imply that ν0(U) = ν0(F−1(U)). Approxi-
mating general sets compactly contained in V by open covers with massless bound-
ary, one can then show that ν0 = ν0 ◦ F−1

0 on compact subsets of V and thus on
V . It remains to treat boundaries of sets like V , that is, of R-cylinders.

So let Z0 be an R-cylinder for f0 and let (Z0, θ) ⊂ I∗. Let Zk denote the
corresponding cylinder for fk, with a boundary point pk such that pk converges to
a boundary point p0 of Z0. Set p′k := (pk, θ). Let γ > 0 and let K > R be given

by Lemma 3.4. Let κ > 0 be given by Lemma 2.22. [Note that if p′k /∈ ∂ιRX̂k then
νk(B(p′k, κ)) = 0.] Then Lemma 3.4 says that

ν̂k(B(∂X̂k, κ)) < γ

for all large k. In particular, νk(B(p′k, κ)) < γ. Thus ν0(B(p′0, κ/2)) ≤ γ. Letting
γ → 0, we conclude that the points projecting to boundaries of cylinders have zero
ν0-measure, so ν0 = ν0 ◦ F−1 everywhere. �

Let Tk :=
∫
τkdνk; we will write TRk when we need to indicate dependence

on R. Suppose that Tk converges to a finite quantity TL = TRL , as k → ∞. Let
T0 = TR0 :=

∫
τ0dν0 and set TR∆ := TRL − TR0 . Then

(4.4) T0 = lim
K→∞

lim
k→∞

∫
τk≤K

τk dνk ≤ TL ≤
1

η
.

In particular, TR∆ ≥ 0. Since µ̂k(X̂k(R)) is increasing with R, (4.1) implies that TRk
is decreasing as R increases and

(4.5) 0 ≤ TR
′

∆ ≤ TR
′

L ≤ TRL for all R′ ≥ R.

Lemma 4.2. For some measure µ′ ∈Mf0 ,

lim
k→∞

µk =
TR0
TRL

µR0 +

(
1− TR0

TRL

)
µ′,

where µR0 denotes the spread of ν0 (ν0 = νR0 ).

Proof. Since the limit measure ν0 is F0-invariant, it gives no mass to bound-
aries of cylinder sets. Denote by νnk the restriction of νk to τ−1(n). It follows
that

µk,N :=
1

Tk

N∑
n=1

n−1∑
j=0

(f jk)∗(π∗ν
n
k )→ 1

TL

N∑
n=1

n−1∑
j=0

(f j0 )∗(π∗ν
n
0 )

as k →∞. The difference between µk,N and µk tends to zero uniformly as N →∞.

The right-hand side converges to
TR0
TRL
µR0 as N →∞, and the result follows. �

Let us suppose in addition that h(νRk ) converges to a limit hL = hRL as k →∞.
Then set

(4.6) hR∆ := hRL − h(νR0 ).

Lemma 4.3. For all R with ε(R) ≤ infk h(µk),

hR∆ ≤ 5ε(R)TR∆ .

In particular, limR→∞(hRL − h(νR0 )) ≤ 0.
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Proof. We shall fix R and drop dependence on R from the notation. Let ξk
denote the collection of branches of Fk. It is a generating partition for νk with
entropy h(νk) <∞. Let

ξNk :=

N−1∨
j=0

F−jk ξk.

Suppose h∆ > 0, for otherwise there is nothing to prove, since T∆ ≥ 0. Let
γ := h∆/15. Then there is an N for which

h(ν0) + γ >
1

N
H(ν0, ξ

N
0 ) := − 1

N

∑
Z∈ξN0

ν0(Z) log ν0(Z).

Let ρ = ρk := τ + τ ◦ Fk + · · ·+ τ ◦ FN−1
k , the N th return time for Fk. Let ξNk (K)

denote the elements of ξNk on which ρ ≥ K. Since H(ν0, ξ
N
0 ) is finite, for each K

large enough

− 1

N

∑
Z∈ξN0 (K)

ν0(Z) log ν0(Z) < γ.

Then for large k,

h(ν0) + γ > − 1

N

∑
Z∈ξN0 \ξN0 (K)

ν0(Z) log ν0(Z)

> − 1

N

∑
Z∈ξNk \ξ

N
k (K)

νk(Z) log νk(Z)− γ

≥ − 1

N
H(νk, ξ

N
k )− −1

N

∑
Z∈ξNk (K)

νk(Z) log νk(Z)− γ

≥ h(νk)− −1

N

∑
Z∈ξNk (K)

νk(Z) log νk(Z)− γ.

(4.7)

Passing to the second line required convergence of the measures on {ρ ≤ K}.
Rearranging and replacing h(νk) by (a lower bound) hL − γ produces

(4.8)
−1

N

∑
Z∈ξNk (K)

νk(Z) log νk(Z) > h∆ − 3γ

for all sufficiently large k.
Thus we have a first upper bound for h∆. The exponential tails estimate of

Lemma 2.12 will permit us to rewrite the upper bound in terms of ε and T∆.
Set

βn,k := νk({ρ = n}).
The Fk-invariance of νk implies

∫
ρk dνk = NTk, so

lim
k→∞

∑
n≥1

nβn,k = lim
k→∞

NTk = NTL.

Hence 0 ≤
∑
n≥K βn,k ≤ NTk/K ≤ (NTL + 1)/K (for large k) which goes to 0 as

K →∞. As a consequence,

(4.9) lim
K→∞

lim
k→∞

∑
n≥K

nβn,k = NT∆.



50 4. LIGHT LIMIT MEASURES AND UPPER-SEMICONTINUITY OF METRIC ENTROPY

For ε = ε(R), Lemma 2.12 says that for some n1 independent of k, for all n ≥ n1,

#{Z ∈ ξNk : ρ(Z) = n} ≤ exp(3nε).

Thus Jensen’s inequality gives

(4.10) − 1

N

∑
Z∈ξNk :ρ(Z)=n

νk(Z) log νk(Z) ≤ βn,k3nε

N
− 1

N
βn,k log βn,k.

Splitting the following sum over n ≥ K ≥ n1 in two, depending on whether βn,k is
greater or smaller than e−nε, one deduces that∑

n≥K

− 1

N
βn,k log βn,k ≤

1

N

∑
n≥K

nεβn,k +
1

N

∑
n≥K

e−nεnε

≤ 1

N

∑
n≥K

nεβn,k +
1

K
,

(4.11)

say, for all large K.
From (4.8), (4.10) and (4.11), for all K large enough,

h∆ − 3γ <
∑
n≥K

βn,k3nε

N
− 1

N
βn,k log βn,k

≤ 1

K
+

4ε

N

∑
n≥K

nβn,k.

Applying (4.9) and letting K →∞, h∆−3γ ≤ 4εT∆. Since γ = εh∆/15, we obtain

(4.12) h∆ ≤ 5εT∆,

as required. �

Proof of Theorem 1.1. Now let us prove upper semi-continuity of entropy
for convergent sequences of measures µk ∈ Mfk with limit µ∞, where (fk) is
a convergent sequence of d-branched maps with decreasing critical relations. By
passing to a subsequence, we may assume that h(µk) converges to a limit, and
moreover that this limit is strictly positive, for otherwise the result is trivial. Take
R0 large enough that ε(R0) is less than this limit. Passing to a subsequence if
necessary, construct a convergent sequence of embedded level-R induced maps for
each R ≥ R0. Obtain νRk , T

R
k as before. Assume without loss of generality that

νRk converges to νR0 , h(νRk ) to hRL and TRk to TRL , for all R ≥ R0. Define hR∆, T
R
∆

as before. Let µR0 denote the spread of ν0. By Lemma 4.2, (3.4) and Lemma 4.3
consecutively,

h(µ∞) ≥ TR0
TRL

h(µR0 )

=
1

TRL
h(νR0 )

≥ 1

TRL
(hRL − 5ε(R)TR∆ )

= lim
k→∞

h(µk)− 5ε(R)
TR∆
TRL

.



4. LIGHT LIMIT MEASURES AND UPPER-SEMICONTINUITY OF METRIC ENTROPY 51

This holds for all large R. As R→∞, ε(R)→ 0 while, by definition, TR∆ ≤ TRL , so

h(µ∞) ≥ lim
k→∞

h(µk)

as required. �





CHAPTER 5

Non-positive Schwarzian derivative

In this section we derive and use the distortion results required for our main
theorems.

Definition 5.1. If g : Z → g(Z) is a diffeomorphism on an interval Z, we say
that the Minimum Principle holds if, for any a, b ∈ Z and x ∈ (a, b),

|Dg(x)| ≥ min{|Dg(a)|, |Dg(b)|}.

For diffeomorphisms g with non-positive Schwarzian derivative, |Dg|−1/2 is
convex, so the Minimum Principle holds. To see a nice treatment of the following
in our C2 setting, see [C, Chapter 3].

Lemma 5.2 ([M1, p18, p24]). Let Z ⊂ Y be intervals and let g be a C2 diffeo-
morphism from Y to g(Y ) with non-positive Schwarzian derivative. Extensibility
implies bounded distortion: if κ > 0 and dist(g(Z), ∂g(Y )) ≥ κ|g(Z)|, then for all
x, x′ ∈ Z,

|Dg(x)|
|Dg(x′)|

≤
(

1 + κ

κ

)2

.

Lemma 5.3. Let (fk)k be a sequence converging to f0 as k → ∞, having de-

creasing critical relations and non-positive Schwarzian derivative. Let (Xk, F̂k, τk)
be the corresponding level-R induced maps. For each R, there is a C > 1 such that∣∣∣∣∣ DF̂nk (x̂)

DF̂nk (x̂′)

∣∣∣∣∣ ≤ C
for each n, k and each x̂, x̂′ in the same branch of F̂nk . In particular, there is a

uniform lower bound on |DF̂k| independent of k.

Proof. Between any point of X̂k(R) and the boundary of the element of D
containing the point, there lies an element of P̂ kR of length at least κ > 0, by
Lemma 2.22. Lemma 2.4 and the standard Koebe distortion bound Lemma 5.2
will then imply the first statement. The second follows from the first since the
components of X̂k have length at least κ. �

To state the next lemma, we define

λmin := max

(
0, inf

{
1

n
log |Dfn(x)| : fn(x) = x, n ∈ N

})
,

and

λmax := sup

{
1

n
log |Dfn(x)| : fn(x) = x, n ∈ N

}
.
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Lemma 5.4. Let (Y, F̂Y , τ) be a primitive level-R induced map. There is a
C > 0 such that

λminτ − C ≤ log |DF̂Y | ≤ λmaxτ + C.

Proof. Let Y1, Y2 be connected components of Y. Since Y is primitive, Y1, Y2

are linked. There is a minimal C1,2 ≥ 1 for which there exists a subinterval V of Y1

mapped by some iterate f̂nY onto Y2 with derivative bounded inside [C−1
1,2 , C1,2] and

with n ≤ C1,2. Let C ′ be the maximum of C1,2 over all pairs Y1, Y2 of connected
components of Y.

Now let X̂i be a branch of F̂Y , with τ = τi on X̂i. For some n with 0 ≤ n ≤ C ′,
f̂n+τi maps a subinterval W ⊂ X̂i onto X̂i with

log |Df̂n+τi ||W − logC ′ − C ′′ ≤ log |DF̂Y ||X̂i ≤ log |Df̂n+τi ||W + logC ′ + C ′′,

where C ′′ comes from bounded distortion, and τ ≤ n ≤ C + τ . There is a re-
pelling periodic point in W , necessarily with exponent in [λmin, λmax]. Taking
C = C ′λmax + logC ′ + C ′′, the result follows. �

Lemma 5.5. Let κ > 0. Let Z ⊂ Y ⊂ g(Z) be intervals, where g is a C2

diffeomorphism from Y to g(Y ) with non-positive Schwarzian derivative. Suppose
dist(g(Z), ∂g(Y )) ≥ κ|g(Z)|. Then at the fixed point p, |Dg(p)| ≥

√
1 + κ.

Proof. Suppose first that g is orientation-preserving. There is, by the Mean
Value Theorem, a point in each component of Y \ {p} with derivative ≥ 1 + κ. By
the Minimum Principle, the derivative at p is ≥ 1 + κ. If g is orientation-reversing,
apply this argument to g2. �

Lemma 5.6. Given κ > 0, there are γ, α > 0 such that the following holds. Let
Z ⊂ Y ⊂ g(Z) be intervals, where g is a C2 diffeomorphism from Y to g(Y ) with
non-positive Schwarzian derivative. Suppose

dist(g(Z), ∂g(Y )) ≥ κ|g(Z)|.
If |Z| ≤ γ|g(Z)| then |Dg|Z | > 2. If |Z| ≥ γ|g(Z)| then g−2(Z) and the components

of Z \ g−2(Z) all have length bounded by |Z|(1− α).

Proof. The first statement is obvious, by bounded distortion. For the second
statement, since Z ≥ γ|g(Z)|, by bounded distortion there is a uniform lower
bound on |g−2(Z)|/|Z|, giving the upper bound on the components of Z \ g−2(Z).
By Lemma 5.5, at the fixed point p of g, Dg2 ≥ 1 + κ, so there is a uniform
neighbourhood of p with Dg >

√
1 + κ. Using the Minimum Principle, a uniform

upper bound on |g−2(Z)| follows easily. �

Lemma 5.7. Given κ > 0 and integers d,R ≥ 1, there is a K ≥ 1 such
that the following holds. Let (X̂, F̂ , τ) be a level-R induced map for a d-branched
piecewise-monotone map f with non-positive Schwarzian derivative. Suppose that
κ ≤ min{|Y |/|I| : Y ∈ P̂R, Y ⊂ ÎR}. Then |DF̂K | > 2.

Proof. For each domain D of ÎR containing a point of X̂, dist(X̂, ∂D) > κ|I|,
while |D| ≤ |I|. Let n ≥ 1 and let Z ⊂ X̂ be a branch of F̂n, so F̂n maps Z

homeomorphically onto a connected component of X̂ contained in a domain D of

ÎR, with F̂n|Z = f̂ j say. There is, by Lemma 2.4, an interval Y ⊃ Z mapped

homeomorphically by f̂ j onto D. Since j ≥ n, Y ⊂ X̂. Lemma 5.2 then gives a
positive lower bound, depending only on κ, for |DF̂n|.
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Let Ĝ denote the first return map to a connected component X̂G of X̂. Since
there are at most a finite number (depending on d,R) of connected components, it

suffices to show that there is an N for which |DĜN | > 2. The general result follows
because high iterates can be decomposed into a sequence of repeated first return
maps bookended by two maps with derivative bounded below.

So let Z be a branch of Ĝn, for some n ≥ 1, with Ĝn|Z = f̂ j say. As before,

there is an interval Y ⊃ Z mapped homeomorphically by f̂ j onto D the domain of
ÎR, now containing Z.

Let γ, α > 0 be given by Lemma 5.6. If |Z| ≤ γ|X̂G| then |DĜn| > 2. Other-

wise, by the second part of Lemma 5.6, the branches of Ĝ3n contained in Z have
length bounded by |Z|(1− α). An inductive argument gives some N for which all

branches of ĜN have length at most γ|X̂G|, and thus |DĜN | > 2, the required
derivative estimate. �

From the uniformity of the preceding lemma ensues:

Corollary 5.8. Let (Y 0, F0, τ0) be a level-R limit induced map. For some
K ≥ 1, |DFK0 | > 2.

Denote by K̂ the set of periodic points p̂ ∈ Î with multiplier ±1, that is, for

which, for some n ≥ 1, f̂n(p̂) = p̂ and Df̂n(p̂) = 1. It follows from the Minimum

Principle that if p̂ ∈ D ∈ D, then on at least one component of D \ {p̂}, f̂n is

the identity and the component lies in K̂. It similarly follows from the Minimum
Principle that no periodic point in Î can be attracting.

Lemma 5.9. If x̂ = (x,Dx̂) ∈ Î is non-periodic and recurrent, then all bar at

most two points of {f̂n(x̂) : n ≥ 0}∩Dx̂ lie in the domain of a level-R induced map
for all sufficiently large R.

Proof. Consider q > j ≥ 0 such that ŷ = f̂ j(x̂) ∈ Dx̂ and such that ẑ =

fq(x̂) ∈ Dx̂. It suffices to show that ŷ and ẑ are in different elements of P̂R for all

large R, for then any point in the set {f̂n(x) : n ≥ 0} ∩ Dx̂. which is neither its
infimum nor its supremum will be in a non-boundary R-cylinder for large R. We
prove by contradiction, assuming that, for each R, ŷ and ẑ are in the same element

of P̂R. Let k = q − j, so ẑ = f̂k(ŷ). Then, for each R, all points f̂sk(ŷ) with

s ≥ 0 lie in the same element of P̂R. Hence the sequence (f̂2sk(ŷ))s≥0 is strictly
monotone. From this, one deduces that, for each large S and for n ≥ S,

f̂n(ŷ) ∈
2k−1⋃
i=0

f̂ i
(

[f̂2Sk(ŷ), lim
s→∞

f̂2sk(ŷ)]
)
,

an obstacle to recurrence. �

We remark that we do not have exponential growth rates (necessarily), but at

least lim supn→∞ |Df̂n(x̂)| = ∞ for recurrent points x̂ /∈ K̂. By Lemmas 5.7-5.9
and Birkhoff’s theorem, one obtains:

Corollary 5.10. Every measure µ̂ ∈ Mf̂ , not supported on K̂, has positive
Lyapunov exponent.

Given (X̂, F̂ , τ) or its embedding (X,F, τ), we say that log |DF̂ | (or equivalently
log |DF |) is locally Hölder if there are C0, α > 0 such that, for each n and on every
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branch Z of Fn,

|log |DF (x)| − log |DF (y)|| ≤ C0 exp(−αn).

Lemma 5.11. Let f ∈ F ∈ FM and let (X̂, F̂ , τ) be the level-R induced map.
Then log |DF | is locally Hölder.

Proof. For ease of notation, we drop the hats and work with the embedded
induced map F . We have

κ := min{|Y | : Y ∈ P̂R, Y ⊂ ÎR} > 0.

By Lemma 5.7, there is some N0 for which |DFN0 | > 2. If Z is a branch of Fn

with n ≥ kN0 + 1 say, then |F (Z)| < |I| exp(−2k), since 2 < |DFN0 |. The map
F on Z extends with non-positive Schwarzian derivative to map a larger interval
homeomorphically onto an interval X ′ with

dist(F (Z), ∂X ′) ≥ κ ≥ κ

|I|
|F (Z)| exp(2k).

Applying the Koebe Lemma 5.2 gives
∣∣ log |DF (x)| − log |DF (y)|

∣∣ ≤ C0 exp(−2k)
for all x, y ∈ Z, for some constant C0 depending just on κ and |I|. Now replacing
k by (n− 1)/N0, we obtain

|log |DF (x)| − log |DF (y)|| ≤ C1 exp(−n/N0),

for some constant C1, as required. �



CHAPTER 6

Almost upper-semicontinuity of the free energy

The proof of the following proposition occupies this chapter. It implies most
of Theorem 1.20, the remaining ingredient being Theorem 1.29.

Proposition 6.1. Let (fk)k>0 ∈ FNSD be a sequence converging to f0 as k →
∞ with decreasing critical relations. Suppose that, as k →∞,
(a) tk → t0;
(b) (µk)k≥1 is a convergent sequence of measures µk ∈Mfk ;
(c) E(fk, µk,−tk log |Dfk|) converges to a limit EL as k →∞;
(d) EL ≥ lim infk→∞E+(fk,−tk log |Dfk|);
(e) h(µk) converges to a strictly positive limit.
Then, writing E(µ∗) for E(f0, µ∗,−t0 log |Df0|), some light limit measure µ∗ is
hyperbolic and satisfies one of the following statements:

• E(µ∗) > EL;

• µ∗ = limk→∞ µk and, for some strictly increasing subsequence (kn)n,∫
log |Df0| dµ∗ = limn→∞

∫
log |Dfkn | dµkn ,

h(µ∗) ≥ limn→∞ h(µkn) and E(µ∗) ≥ EL;

• E(µ∗) ≥ EL and h(µ∗) > limk→∞ h(µk).

If EL = P (−t0 log |Df0|), one of the last two alternatives holds and some light
limit measure is a convex combination of positive entropy equilibrium states for this
potential.

Proof. Let ε′ = limk→∞ h(µk)/2. Without loss of generality, we assume that

h(µk) ≥ ε′ for all k ≥ 1. We note that, by Ruelle’s Inequality, each µk ∈ M̃fk . Let
R0 ≥ 8d be big enough that 2ε(R0) < ε′, where ε(R0) is defined in (1.3). For each
R ≥ R0, we could construct in §2.4 sets Ωk,Ω

N
k ,Ω

′
k. Let µ∞ = limk→∞ µk. Taking

subsequences, we can assume that, as k → ∞, for each R ≥ R0 and N ≥ 1, the
sequences (ΩNk )k and (Ω′k)k are eventually constant. This allows us, for each R, to
obtain convergent sequences of embedded level-R induced maps

(Xk(R) = Xk, Fk, τk)→ (Y 0, F0, τ0).

For k ≥ 1, we obtain the embedded induced measures νRk ∈ MFk via (3.2). Note
we do not indicate through notation the dependence of Fk on R, but this should
be understood. Again taking subsequences, we assume that for each R, as k →∞,

• νRk converges to a limit measure νR0 ;
• TRk , the integral of the inducing time, converges to some TRL ;
• h(νRk ) converges to a limit hRL ;
• λ(νRk ) :=

∫
log |DFk| dνRk converges to some limit λRL .
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By Lemma 4.1, νR0 ∈ MF0
. Set TR∆ := TRL − TR0 ≥ 0 (by (4.4)). Note that

1 ≤ TRk ≤ 1/η(R0, d) for each k ≥ 0, R ≥ R0, where η is given by Lemma 3.2. As
TR0 ≥ 1,

(6.1) TR∆ ≤ 1/η(R0, d).

We can spread the measure ν0 = νR0 to get an f0-invariant probability measure
µR0 , defined by

µR0 =
1

T0

∑
n

n−1∑
j=0

f j0∗(π1∗ν0|{τ0=n}).

By Corollary 5.8, ν0 is hyperbolic. Hence so is µR0 . By Lemma 4.2, µR0 is a light
limit measure (see Definition 1.5) for the sequence (µk)k. Upon taking further

subsequences, we similarly obtain measures µR
′

0 for each R′ > R, and we can
assume furthermore that E(µk) converges to a limit EL.

Set λR∆ := λRL − λR0 . Due to non-positive Schwarzian derivative, Lemma 5.3
gives us a uniform lower bound on |DFk|. There is a uniform upper bound on
|Dfk|, so log |DFk| ≤ τkC for some uniform constant C > 1 (independent of R).
Hence

(6.2) 0 ≤ λR∆ = lim
K→∞

lim
k→∞

∫
{τk≥K}

log |DFk| dνRk ≤ TR∆ logC.

We shall use (3.4) and (3.5) repeatedly in the following lemmas.

Lemma 6.2. If limR→∞ TR∆ = 0, then µR0 converges strongly to µ∞ as R→∞.
Moreover, λ(µ∞) = limk→∞ λ(µk) and

E(µ∞) ≥ EL.

Proof. The first statement follows immediately from Lemma 4.2. From (6.2),
if limR→∞ TR∆ = 0 then limR→∞ λR∆ = 0 and∫

log |Df0| dµ∞ = lim
R→∞

∫
log |Df0| dµR0

= lim
R→∞

λR0
TR0

= lim
R→∞

lim
k→∞

λRk
TRL

= lim
k→∞

∫
log |Dfk| dµk.

Thus E(µ∞) − EL = h(µ∞) − limk→∞ h(µk). By Theorem 1.1, entropy is upper-
semicontinuous, we deduce that E(µ∞) ≥ EL. �

Recall from (4.6) that hR∆ = hRL −h(νR0 ). If T∆ = TR∆ 6= 0 then any jump in free
energy can be written in a suggestive form. We suppress R from notation, where
appropriate.

Lemma 6.3. Suppose T∆ 6= 0. Then

T0

T∆
(EL − E(µ0)) =

h∆ − tλ∆

T∆
− EL.
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Proof. From

EL = lim
k→∞

h(νk)− tλ(νk)

Tk
=
hL − tλL

TL
,

one deduces (to verify, substitute TL − T0 for T∆) that

EL =
hL − tλL − T∆EL

T0
.

Consequently, knowing E(µ0) = h(ν0)−tλ(ν0)
T0

,

(6.3) EL − E(µ0) =
1

T0
((h∆ − tλ∆)− T∆EL) .

Multiply both sides by T0/T∆ to conclude. �

Let T∞∆ := lim infR→∞ TR∆ ≥ 0. Note this is finite by (6.1).

Lemma 6.4. If T∞∆ > 0 then there exists R0, θ > 0 such that for all R ≥ R0,
the light limit measure µR0 has entropy h(µR0 ) ≥ limk→∞ h(µk) + θ.

Proof. For all R large enough, TR∆ > T∞∆ /2 and

h(µk)
T∞∆
2TR0

− 6ε(R)
TRk
TR0

> θ

for all large k and some θ > 0.
Then for all large k,

h(µR0 ) =
h(νR0 )

TR0

≥ h(νk)− 5ε(R)TR∆
TR0

= h(µk)
TRk
TR0
− 5ε(R)

TR∆
TR0

≥ h(µk) + h(µk)
TRk − TR0
TR0

− 5ε(R)
TR∆
TR0

> h(µk) + h(µk)
T∞∆
2TR0

− 6ε(R)
T∞∆
TR0

≥ h(µk) + θ,

completing the proof. �

Lemma 6.5. Suppose T∞∆ > 0 and let R0 be given by Lemma 6.4. If E(µR0
0 ) <

EL, either there is a hyperbolic light limit measure with free energy strictly greater
than EL or there is a γ > 0 such that E(µR0 ) ≤ EL − γ for all R ≥ R0.

Proof. Suppose E(µR0
0 ) = EL− γ′ for some γ′ > 0. Let R ≥ R0 and consider

the measures νRk . Note that ν̂R0

k , ν̂Rk are constructed in the Hofbauer extension as
normalised restrictions of µ̂k. Thus for subsets of X(R0),

νRk =
TRk
TR0

k

νR0

k ,
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so on subsets of Y0,

νR0 =
TRL
TR0

L

νR0
0 .

Thus we can write µR0 = (1/TR0

L )µR0
0 + (1− 1/TR0

L )µ′, say, where µ′ is a hyperbolic

(positive) f0-invariant probability measure (not necessarily different from µR0
0 ). In

particular, µR and µ′ are light limit measures. Either E(µ′) > EL or, since E is
linear,

E(µR0 ) ≤ EL − γ′

TR0

L

+

(
1− 1

TR0

L

)
EL

≤ EL − γ′/TR0

L .

Setting γ := γ′/TR0

L completes the proof. �

Lemma 6.6. Suppose E(µR0 ) ≤ EL − γ for all R ≥ R0, for some R0, γ > 0.
Then for sufficiently large R and k, there exists µ ∈ Mfk supported on a periodic
orbit, with E(µ) > EL + η(R0, d)γ/3.

Proof. From Lemma 6.2 it follows that T∞∆ > 0. Let us fix R ≥ R0 large
enough that ε := ε(R) < γη(R0, d)/10. For this R, we have Xk, Y 0, Fk, τk, νk, Tk
for each k. We write TL, T∆, hL, λL for TRL , T

R
∆ , h

R
L , λ

R
L . Set h∆ := hL − h(ν0) and

λ∆ := λL − λ(ν0). Let µ0 denote the projection of ν0.
By Lemma 6.3,

EL − E(µ0) =
1

T0
((h∆ − tλ∆)− T∆EL) ≥ γ.

Noting T0 ≥ 1,
−tλ∆/T∆ ≥ EL + γ/T∆ − h∆/T∆.

By (4.1), 1/T∆ ≥ η(R0, d). By Lemma 4.3, h∆ ≤ 5εT∆. These estimates, combined
with choice of R, imply

(6.4) − tλ∆/T∆ ≥ EL + η(R0, d)γ/2.

As previously, let ξk denote the collection of branches of Fk. Let

ξNk :=

N−1∨
j=0

F−jk ξk.

Let ξk(K) denote the elements of ξk on which τk ≥ K and set

V kK :=
⋃

Z∈ξk(K)

Z.

Let x ∈ V kK be a typical point for the measure νk (we know TR∆ is positive, so V kK has
positive measure), so x is recurrent. Now we can speed up the map Fk a little, and
define G, the first return map (for Fk) to V kK . Let n,w be given by Lemma 2.26, so
for some arbitrarily large n, w is an n-periodic point (for G) and Gj(w), Gj(x) lie
in the same element of ξk(K) for j = 0, . . . , n. We wish to estimate the Lyapunov
exponent of w. Let e(n) denote the nth return time of x to V kK under F , so F e(j)(x)

and Gj(w) are in the same element of ξk(K), so τk(Gj(w)) = τk(F e(j)(x)). By
Birkhoff’s theorem, for large n,

n

e(n)
≤ 2νk(V kK) ≤ 2(TL + 1)/K
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and the last term tends to 0 as K →∞. Let

g(y) :=

e1(y)−1∑
i=0

τk(F ik(y)).

If τk(Fk(Gj(w))) ≥ K, then τk and g coincide at Gj(w). If τk(Fk(Gj(w))) < K,
then g(Gj(w)) = τk(Gj(w)) + g(Fk(Gj(w))). Consequently, by Lemma 2.26,

K ≤ τk(Gj(w)) ≤ g(Gj(w)) ≤ τk(Gj(w)) +M.

We then obtain the following estimates, using χ to denote the indicator function
of a set. Recall that limK→∞ limk→∞

∫
V kK

τk dνk = T∆. In what follows, κ(K, k, n)

may vary from line to line, but it will satisfy

lim
K→∞

lim
k→∞

lim
n→∞

κ(K, k, n) = 0.

n−1∑
j=0

g(Gj(w)) = (1 + κ(K, k, n))

n−1∑
j=0

τk(Gj(w))

= (1 + κ(K, k, n))

e(n)−1∑
j=0

χV kK (F jk (x))τk(F jk (x))

= e(n)

(
κ(K, k, n) +

∫
V kK

τk dνk

)
= e(n) (κ(K, k, n) + T∆) .

To estimate the derivative, note that distortion is uniformly bounded and that
the derivative corresponding to quick words is uniformly bounded below away from
zero (by Lemma 5.3), while it is bounded above by supk sup |Dfk|M . Thus

log |DGn(w)| = (1 + κ(K, k, n))

e(n)−1∑
j=0

χV kK (F jk (x)) log |DFk(F jk (x))|

= e(n)

(
κ(K, k, n) +

∫
V kK

log |DFk| dνk

)
= e(n) (κ(K, k, n) + λ∆) .

Dividing, the Lyapunov exponent for the fk-invariant equidistribution, denoted
µw say, along the periodic orbit of π1w ∈ I is λ∆/T∆ + κ(K, k, n). The free energy
of the equidistribution satisfies, using (6.4) and (4.12),

E(µw) = −tλ∆/T∆ + κ(K, k, n)

≥ EL + η(R0, d)γ/2 + κ(K, k, n)

> EL + η(R0, d)γ/3.

Thus for each k large enough, there is a fk-invariant measure µk (= µw, for some
K, k, n), supported on a periodic orbit, with E(fk, µ

k) > EL + η(R0, d)γ/3. This
completes the proof of Lemma 6.6. �

Let us now complete the proof of Proposition 6.1. In the case T∞∆ = 0,
just apply Lemma 6.2: the second alternative of Theorem 1.20 holds. If T∞∆ >

0, by Lemma 6.4, the light limit measure µR0
0 has entropy strictly greater than
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limk→∞ h(µk). If this measure has free energy at least EL, the third alternative of
the proposition holds, or if some other hyperbolic light limit measure has free energy
> EL the first alternative of the proposition holds. If these alternatives do not hold,
Lemma 6.5 gives a γ > 0 for which E(µR0 ) ≤ EL−γ for all R ≥ R0. We then derive
a contradiction via Lemma 6.6 and the hypothesis lim infk→∞E+(fk) ≤ EL. �



CHAPTER 7

Katok theory, pressure and exponential tails

7.1. Katok theory

An idea due, we believe, to Katok is that one can approximate measures with
non-zero Lyapunov exponents by measures on hyperbolic sets with similar entropy
and exponents, see [PU, §11.6] for this in the complex dynamics setting.

Lemma 7.1. Given f ∈ F ∈ FNSD, suppose µ ∈ Mf has positive entropy and
(therefore) positive Lyapunov exponent. Then there exists a sequence (Λn)n≥1 with
the following properties. Each Λn is a forward-invariant, compact, hyperbolic subset
of I containing periodic points. If (µn)n≥1 is any sequence of measures µn ∈ Mf

with support Λn, then as n→∞,

µn → µ and λ(µn)→ λ(µ).

Moreover, if one takes as µn the measure of maximal entropy for f|Λn , then h(µn)→
h(µ).

Proof. To show convergence of measures, let ψ1, ψ2, . . . be a sequence of Lip-
schitz continuous real-valued functions on I. It suffices to show that, given N ≥ 1
and α > 0, Birkhoff averages of ψi along orbits in Λn approximate

∫
ψi dµ to within

α for all i ≤ N and all large n.
For some R ≥ 1, there exists, in the Hofbauer extension, a non-boundary

element Ẑ of P̂R with θ := µ̂(Ẑ) > 0.

Let Ĝ denote the first return map to Ẑ with nth return time en. By Lemma 5.7,
|DĜn| > 2 for all large n. The map Ĝ has inducing time τ with

∫
Ẑ
τ dµ̂ = 1, while

the probability measure ν̂ := θ−1µ̂ is Ĝ-invariant with entropy h(ν̂) = h(µ)/θ
(recall (3.5)).

LetQ = Q1 denote the branch partition of Ĝ, that is, the collection of connected
components of the domain of Ĝ. It is generating and has entropy equal to h(ν̂).

Denote by Qn the join
∨n
j=1 Ĝ

−j+1Q1 and by Qn[x̂] the element of Qn containing
x̂.

For almost every x̂ in Ẑ, as n → ∞, by Shannon-MacMillan-Breiman and
Birkhoff’s theorems, for 1 ≤ i ≤ N ,

−1

n
log ν̂(Qn[x̂])→ h(ν̂),

en(x̂)/n→ θ−1,

1

n
log |DĜn(x̂)| → λ(µ)/θ,

lim
k→∞

1

k

k−1∑
j=0

ψi ◦ π ◦ f̂ j(x̂) =

∫
ψi dµ.
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Since a set of measure α, say, cannot be covered by fewer than αε−1 sets of measure
≤ ε, we obtain the following, using little-o notation.

There is a finite collection Q′n of exp(nh(ν̂)(1 + o(1))) elements of Qn on which

en =
n

θ
(1 + o(1)),(7.1)

|DĜn| = exp
(n
θ
λ(µ)(1 + o(1))

)
,(7.2)

1

en

en−1∑
j=0

ψi ◦ π ◦ f̂ j = (1 + o(1))

∫
ψi dµ.(7.3)

Note that to obtain uniformity, (7.3) relies on some iterate of G being expanding
and on Lipschitz continuity of the functions ψi.

Let Ŷn := ∪V̂ ∈Q′n V̂ . Set

Λ̂′n :=
⋂
k≥0

Ĝ−kn(Ŷn) =
⋂
k≥0

Ĝ−kn(Ŷn),

the latter equality holding because Ŷn ⊂ Ẑ and Ĝn maps components of Ŷn onto Ẑ.
Then all iterates of Ĝn are defined on Λ̂′n and Λ̂′n is a forward-invariant set under

Ĝn, while en is bounded. Since we only selected a finite number of branches, Λ̂′n is
compact. Thus

Λn :=
⋃
k≥0

fk(π(Λ′n))

is a forward-invariant, compact hyperbolic subset of I (also known as a conformal

expanding repeller). The fixed points of Ĝn in Λ̂′n correspond to periodic points for
f in Λn.

Every point in Λn enters π(Λ′n) infinitely often. Thus for all x ∈ Λn, by (7.2)-
(7.3), for k ≥ n2, say,

1

k
log |Dfk(x)| = (1 + o(1))λ(µ),

1

k

k−1∑
j=0

ψi ◦ f j(x) = (1 + o(1))
∫
ψi dµ.

In particular, any measure µn supported on Λn has Lyapunov exponent

λ(µ)(1 + o(1)),

and for any sequence (Λn, µn)n, µn converges to µ.

The topological entropy of Ĝn : Ŷn → Ẑ is

log #Q′n = nh(ν̂)(1 + o(1)).

The average inducing time for any measure νn on Λ̂′n is

Tn :=

∫
Ŷn

en dνn =
n

θ
(1 + o(1)).

Consequently (use (3.4) in both directions), the measure of maximal entropy for f
restricted to Λn has entropy

nh(ν̂)(1 + o(1))/Tn = θh(ν̂)(1 + o(1)) = h(µ)(1 + o(1))

as required. �
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Corollary 7.2. Suppose f ∈ F ∈ FNSD, ε > 0, and µ ∈ Mf has positive
entropy. For each g sufficiently close to f in F , there is a measure µg ∈Mg with

|h(µg)− h(µ)| < ε

and
|λ(µg)− λ(µ)| < ε.

In particular, lim infg→f P (g,−t log |Dg|) ≥ E(f, µ,−t log |Df |).

Proof. By Lemma 7.1, there is a measure ν ∈ Mf supported on a compact
hyperbolic set Λ with |h(ν)−h(µ)| < ε/2 and |λ(ν)−λ(µ)| < ε/2. For g sufficiently
C1-close to f0 (on a neighbourhood of Λ), there is a continuous conjugacy hg (close
to the identity) on a neighbourhood of Λ with g = hg ◦ f ◦h−1

g , so hg∗ν ∈Mg, and
the entropy and Lyapunov exponent of hg∗ν approximate those of ν to within ε/2.
To give more details for the Lyapunov exponent,

λ(hg∗ν) =

∫
log |Dg|d(hg∗ν) ∼

∫
log |Dg ◦ h|d(hg∗ν)

=

∫
log |Dg|dν ∼

∫
log |Df |dν = λ(ν).

where the first ∼ is because hg can be taken to be arbitrary C0 close to identity
by taking g C1 close to f . A similar argument follows for entropy so the result
follows. �

7.2. Ancillary proofs

Proof of Corollary 1.22. For t ∈ (t−, t+), consider a sequence of measures

µk ∈ M̃f with E(µk)→ P (−t log |Df |). By hypothesis, for large k,

h(µk)− tλ(µk) ≥ P (−t log |Df |)− P 0(−t log |Df |)
2

+ P 0(−t log |Df |).

In Lemma 7.1, is shown that positive entropy measures can be approximated by
equidistributions on periodic orbits with similar Lyapunov exponents. Hence

P 0(−t log |Df |)− (−tλ(µ)) ≥ 0

for every µ ∈ M̃f (not just those with zero entropy, as in the definition). Therefore,

h(µk) ≥ P (−t log |Df |)− P 0(−t log |Df |)
2

> 0,

so the measures have uniformly positive entropy. Applying Proposition 6.1, we
obtain existence of an equilibrium measure with positive entropy. �

Proof of Proposition 1.23. Let

λ := inf
µ∈M̃f

λ(µ) = inf
µ∈M̃f ,h(µ)=0

λ(µ),

the equality holding by Lemma 7.1. For t ≥ 0, P 0(−t log |Df |) = −tλ. Suppose
µ is an equilibrium state for −t+ log |Df | with h(µ) > 0. Then the lines t 7→ −tλ
and t 7→ h(µ) − tλ(µ) intersect at (t+, P (−t+ log |Df |)) and subtend the graph of
t 7→ P (−t log |Df |), showing lack of differentiability. In the other direction, take a
strictly increasing sequence of tk converging to t+ and let µk be the corresponding
equilibrium states. Non-differentiability together with convexity implies that for
some δ > 0, λ(µk) ≥ λ+δ for all k. Simple geometry then implies that infk h(µk) >
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0 and that E(f, µk,−t+ log |Df |) → P (−t+ log |DF |). Applying Proposition 6.1
gives existence of the equilibrium state with positive entropy. The proof for t− is
the same (with tk ↘ t− and λ, appropriately defined, in place of λ). �

Lemma 7.3. Let ε > 0 and t ∈ R. Let (fk)k ∈ FNSD be a sequence converging
to f0 as k →∞ with decreasing critical relations. Suppose that
(a) for each k ≥ 0 there is an equilibrium state µk for the map fk and the potential
−t log |Dfk|;

(b) each µk has entropy at least ε.
Then

(7.4) lim
k→∞

P (fk,−t log |Dfk|) = P (f0,−t log |Df0|).

Proof. From Corollary 7.2,

lim inf
k→∞

P (fk,−t log |Dfk|) ≥ P (f0,−t log |Df0|).

By Proposition 6.1, there is a hyperbolic positive entropy light limit measure
µ′0 ∈Mf0 with

E(µ′0) ≥ lim sup
k→∞

Pfk(−t log |Dfk|).

By definition of pressure,

P (f0,−t log |Df0|) ≥ E(µ′0),

so the limit of P (fk,−t log |Dfk|) exists and coincides with P (f0,−t log |Df0|). �

Lemma 7.4. Let (fk)k>0 ∈ FNSD be a sequence converging to f0 as k → ∞
with decreasing critical relations. Let t0 ∈ R. Suppose that

(a) µk → µ∞ as k →∞, where µk ∈ M̃fk for k ≥ 1;
(b) EL := limk→∞E(fk, µk,−t0 log |Dfk|) = P (−t0 log |Df0|);
(c) EL ≥ lim infk→∞E+(fk,−t0 log |Dfk|);
(d) lim supk→∞ h(µk) > 0;
(e) the pressure functions t 7→ P (fk,−t log |Dfk|) converge on a neighbourhood of

t0 to a limit function t 7→ p(t).
If µ∞ is not a convex combination of equilibrium states for the potential −t0 log |Df0|,
then some light limit measure µ∗ is an equilibrium state with

h(µ∗) > lim sup
k→∞

h(µk),

and p is not differentiable at t0.

Proof. Considering the free energies of µk, the graph of p is subtended by the
line passing through the points (0, lim infk→∞ h(µk)), (t0, p(t0)).

One of the last two alternatives of Proposition 6.1 hold. If µ∞ is not a convex
combination of equilibrium states, the second alternative does not hold and the
third (final) alternative must hold. Thus there is a light limit measure µ∗ with
E(µ∗) = P (f,−t0, log |Df0|) and with entropy h(µ∗) > lim supk→∞ h(µk). Via
Corollary 7.2, considering free energies of the given measures for maps close to f0,
one obtains that the graph of p is subtended by the line passing through the points
(0, h(µ∗)), (t0, p(t0)).

As a result, p is not differentiable at t0. �
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Proof of Theorem 1.24. By hypothesis,

P (fk,−t0 log |Dfk|) ≥ P 0(fk,−t0 log |Dfk|) + ε

for each k. Since the pressure functions are uniformly Lipschitz, we immediately
deduce the existence of a neighbourhood U of t0 for which, for all large k,

(7.5) P (fk,−t log |Dfk|) ≥ P 0(fk,−t log |Dfk|) + ε/2

for all t ∈ U . By Corollary 1.22, there is an equilibrium state µk,t for fk and the
potential −t log |Dfk| (for large k and for k = 0). By (7.5), h(µk,t) ≥ ε/2. Applying
Lemma 7.3, the pressures converge for t ∈ U :

lim
k→∞

P (fk,−t log |Dfk|) = P (f0,−t log |Df0|).

Since t 7→ P (f0,−t log |Df0|) is assumed differentiable at t0, Lemma 7.4 implies
that any limit measure of the sequence (µk)k is a convex combination of equilibrium
measures. �

7.3. Thermodynamics for induced maps

A strategy used to study interval maps which lack Markov structure and expan-
siveness is to consider induced maps, a generalisation of the first return map. We
shall use level-R primitive induced maps (Y, F̂Y , τ) as introduced in Definition 2.18.
These maps will be expanding and Markovian, although over a countable alphabet
and not full-branched. The idea is to study (thermodynamic) properties of the
induced maps and then to translate the results into the original system. We shall
make use of thermodynamic formalism for topological Markov shifts (in Sarig’s ter-
minology) as developed by Sarig and by Mauldin and Urbański. We then prove
Theorems 1.29–1.31.

7.3.1. Primitive induced maps and topological Markov shifts. Let
(Y, F̂Y , τ) be a level-R primitive induced map of a piecewise-monotone map f with
non-positive Schwarzian derivative. The connected components of the domain of
F̂Y are countable and can be listed {X̂i}i∈A, for some countable alphabet A. This
gives a natural coding H defined on the invariant set

Λ :=
⋂
n≥0

F̂−nY (Y)

by H(x̂) = i0i1i2 . . ., where F̂ kY(x̂) ∈ X̂ik for all k ≥ 0. From Lemma 5.7 (and
Lemma 2.17(v)), it follows that Λ is totally disconnected and the map H is injective.

Then Lemma 2.17(iii) implies that F̂Y is transitive on Λ. Set X := H(Λ) and denote
by σ the left-shift on X . On X ,

(7.6) H ◦ F̂Y ◦H−1 = σ.

There is an incidence matrix associated to the shift; in Mauldin and Urbański’s
terminology, this matrix is irreducible, because (F̂Y and therefore) σ is transitive,
while verification that the matrix is finitely irreducible is straightforward thanks
to Lemma 2.17(i)-(ii), noting that Y comprises of finitely many intervals and each
pair of these intervals is linked. Summarising:

Lemma 7.5. On the invariant set Λ, the coding map conjugates F̂Y to a Markov
shift over a countable alphabet with a finitely irreducible incidence matrix (a finitely
irreducible Markov shift).
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7.3.2. Induced Markov maps. The preceding construction can be made
more general. Since we will need to deal with a second induced map, it is worthwhile
to do so. Let (I, f) be some dynamical system defined in some metric space I
equipped with a Borel σ-algebra, where f is a map with domain and range contained
in I. We will call (Y, F, τ, π) an expanding induced Markov map for (I, f) if

• Y is a metric space with a finite number of connected components Y1, . . . , Yp;
• on each connected component of Y , π is a metric isomorphism onto a

subset of I;
• the domain of definition of F can be written as

⋃
i∈AXi for some countable

alphabet A, where Xi are pairwise-disjoint subsets of Y , each compactly
contained in Y and mapped homeomorphically by F onto some Yj ;

• τ is constant on each Xi and F (x) = fτ(x)(π(x));
• the maximal diameter of a connected component of F−n(Y ) tends to 0 as
n→∞.

We say (Y, F, τ, π) is full-branched if Y only has one connected component; in this
case one can identify Y with π(Y ). Set Λ(F ) :=

⋃
n≥0 F

−n(Y ); this set is compact

and totally disconnected. We say that (Y, F, τ) is irreducible if F is transitive on
Λ(F ). If (Y, F, τ) is irreducible, then the natural coding map H is a conjugacy
between F on Λ(F ) and a finitely irreducible Markov shift (X , σ) over the alphabet
A.

7.3.3. Finitely irreducible Markov shifts. Let (X , σ) be a finitely irre-
ducible Markov shift over a countable alphabet A. Denote by Pσ the set of 1-
cylinders (a 1-cylinder is a set of points of X with the same first symbol) and by
Pσn the set of n-cylinders. Equip X with the standard distance d, so the diameter
of an n-cylinder is e−n. Given (X , σ) and potential Φ : X → R, we define the n-th
variation by

(7.7) Vn(Φ) = V σn (Φ) := sup
Z∈Pσn

sup
x,y∈Z

|Φ(x)− Φ(y)|,

We say that Φ is (C,α)-locally Hölder continuous (or just Hölder continuous) of
order α if Vn(Φ) ≤ Ce−αn for some C,α > 0, for all n ≥ 1. ‘Locally’ indicates
that one only compares values of the potential within 1-cylinders, which allows for
unbounded potentials. We assume throughout this section that Φ is locally Hölder
continuous.

For A ⊂ A, let

XA := {x ∈ X : xk ∈ A for all k ≥ 0},
which is just the subset of X consisting of symbolic sequences all of whose symbols
belong to A. The notion of pressure has been extended to Markov shifts over
countable alphabets. In the current setting of finitely irreducible Markov shifts
with a locally Hölder continuous potential,

(7.8) Pσ(Φ) = sup

{
h(µ) +

∫
Φ dµ

}
.

Here the supremum can be taken over all measures µ ∈Mσ or, alternatively, over fi-
nite alphabets A and measures µ ∈Mσ supported on XA, see [MU, Theorem 2.1.5]
and the top of page 10 in the same (recall Mσ denotes the collection of ergodic σ-
invariant probability measures). An equilibrium measure is an ergodic σ-invariant
measure ν with

∫
Φ dν > −∞ for which Pσ(Φ) = h(ν) +

∫
Φ dν.
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If ∑
Z∈Pσ

sup
x∈Z

exp(Φ(x)) <∞,

then we say that Φ is summable. Note that a summable potential is necessarily
bounded above (and unbounded below, if the alphabet is infinite).1

Remark 7.6. By [MU, Proposition 2.1.9], the potential is summable if and
only if the pressure is finite (summability is the same as Z1 <∞, by definition).

The Birkhoff sum of Φ is

SσnΦ(x) :=

n−1∑
j=0

Φ ◦ σj(x).

A measure ν is said to be a Gibbs measure for Φ if there exist K <∞ and an
associated constant p ∈ R such that for all Z ∈ PFn ,

1

K
6

ν(Z)

eS
σ
nΦ(x)−np 6 K

for any x ∈ Z. Given an expanding induced Markov map F and the natural coding
map, if the push-forward of an F -invariant measure ν̂ under the coding map is a
Gibbs measure, we also call ν̂ a Gibbs measure.

Lemma 7.7. If Φ is locally Hölder continuous and is summable, then there exists
a unique σ-invariant Gibbs measure νΦ for Φ. It has constant p = Pσ(Φ) := P (σ,Φ)
equal to the pressure. If

∫
Φ dνϕ > −∞ then νΦ is the unique equilibrium state for

the potential Φ.

Proof. The first statements follow from [MU, Corollary 2.7.5, Proposition
2.2.2], while for the final one we invoke [MU, Theorem 2.2.9]. �

Denote by Kβ the set of functions Ψ : X → C which are locally Hölder contin-
uous (defined in the same way as for real-valued functions) of order β > 0. Denote
by Ksβ the set of functions in Kβ whose real parts are summable, and by L(Kβ) the
space of bounded continuous operators on Kβ .

We define the transfer operator for Φ as

(LΦg)(x) :=
∑

σ(y)=x

eΦ(y)g(y),

for g in Kβ , so LΦ ∈ L(Kβ).

Lemma 7.8. Let U be an open ball in C2 and let Ψj ∈ Kβ, j = 0, 1, 2. Suppose
that for each (u, v) ∈ U , the potential Φu,v := Ψ0 + uΨ1 + vΨ2 ∈ Ksβ, that is, each

potential is summable. Then (u, v) 7→ LΦu,v is analytic.

Proof. From [MU, Corollary 2.6.10], (u, v) 7→ LΦu,v is separately analytic.
Then a vector-valued version of Hartogs’ theorem [Col, 3.3.4] implies analyticity
on U . �

The following proposition is a two-variable version of [MU, Theorem 2.6.12],
whose proof we follow.

1In [MU, Chapter 2] the recurring assumption that the potential Φ (there denoted f) is
bounded ought to read that exp(Φ) is bounded.
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Proposition 7.9. Let U be an open ball in C2 and let Ψj ∈ Kβ, j = 0, 1, 2.
Suppose that for each (u, v) ∈ U , the potential Ψu,v := Ψ0 + uΨ1 + vΨ2 ∈ Ksβ. If A

is (in the terminology of [MU]) finitely primitive (in particular, if σ is a full shift,
or finitely irreducible and topologically mixing), then

(u, v) 7→ Pσ(Ψu,v)

is analytic.

Proof. By [MU, Theorem 2.4.6] (which has ‘finitely primitive’ as a hypoth-
esis), LΨu,v has a simple isolated eigenvalue equal to exp(P (Ψu,v)), and analytic
perturbation theory (see [Ka]) then implies that this eigenvalue moves analytically
with (u, v), from which the result follows. �

7.3.4. Pressure above and below, I. As in §7.3.2, let (Y, F, τ) be an in-
duced Markov map for some dynamical system (I, f). Let the coding map H denote
the conjugacy with (X , σ), the corresponding finitely irreducible Markov shift. Sup-
pose ν̂ ∈ MF spreads to µ ∈ Mf and let ν denote H∗ν̂ ∈ Mσ. Given ϕ : I → R
an integrable potential function, its corresponding induced potential Φ : X → R is

Φ := Sτϕ ◦ π ◦H−1 :=

n−1∑
j=0

ϕ ◦ f j ◦ π ◦H−1.

Write T :=
∫
Y
τ dν̂. The entropies satisfy Abramov’s formula (3.4), so h(µ) =

T−1h(ν). By ergodicity, Φ satisfies (similarly to (3.5))

(7.9)

∫
I

ϕdµ =
1

T

∫
X

Φ dν.

Lemma 7.10. The free energies satisfy

E(f, ϕ, µ) =
1

T
E(σ,Φ, ν).

In particular, E(f, ϕ, µ) has the same sign (positive, negative or zero) as E(σ,Φ, ν).

Proof. This follows immediately from Abramov’s formula and (7.9). �

Lemma 7.11 ([IT1, Lemma 4.1]). Suppose P (f, ϕ) = 0 and Φ is locally Hölder
continuous. Then Pσ(Φ) ≤ 0.

Proof. By (7.8), if Pσ(Φ) > 0, then there is a measure ν ∈ Mσ with
E(σ,Φ, ν) > 0 and supported on XA for some finite alphabet A. On H−1(XA),
τ is bounded, so ν spreads to a measure µ ∈ Mf . By Lemma 7.10, E(µ, ϕ) is
strictly positive, contradicting the definition of pressure as the supremum of free
energies. �

7.3.5. Pressure above and below, II. Let us return to our specific maps
and potentials. Let (Y, F̂Y , τ) be a level-R primitive induced map of a d-branched
piecewise-monotone map f with non-positive Schwarzian derivative. Let (X , σ) be
the corresponding finitely irreducible Markov shift and H the conjugacy between
the two maps from (7.6). We consider the potential

ϕt,v := −t log |Df | − v.
The corresponding induced potential on X
(7.10) Φt,v := Sτϕt,v ◦ π ◦H−1
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satisfies
Φt,v ◦H = −t log |DF̂Y | − vτ.

From Lemma 5.11, Φt,v is locally Hölder continuous (note τ is constant on cylinders,
so Vn(τ) = 0).

Suppose that ν̂ ∈ MF̂Y
spreads to µ ∈ Mf and let ν denote H∗ν̂ ∈ Mσ.

From Lemma 7.10, E(f, ϕt,v, µ) has the same sign (positive, negative or zero) as
E(σ,Φt,v, ν).

Let us set p(t) := P (−t log |Df |), which forces P (ϕt,p(t)) = 0. Combining this
with Lemma 7.11, we obtain:

Lemma 7.12. Pσ(Φt,p(t)) ≤ 0.

Lemma 7.13. Suppose that µ ∈ Mf is an equilibrium measure for a potential
−t log |Df | with µ̂(Y) > 0. Then Pσ(Φt,p(t)) = 0. The potential Φt,p(t) is summable.
The corresponding induced measure in Mσ

(7.11) ν = H∗
1

µ̂(Y)
µ̂|Y

is the unique equilibrium measure for Φt,p(t) and is a Gibbs measure.

Proof. We have E(f, ϕt,p(t), µ) = 0, hence (by Lemma 7.10) the corresponding
measure inMσ has zero free energy for the potential Φt,p(t). Therefore Pσ(Φt,p(t)) ≥
0 which, combined with Lemma 7.12, gives the first statement. Since the pressure
is finite (equal to 0), the potential is summable by Remark 7.6. The remaining
statement now follows from Lemma 7.7 and (7.8). �

7.3.6. Bounds on the number of equilibrium states. In this section, we
first show that the number of equilirbium states with a given entropy is bounded.

Proof of Theorem 1.29. Let d ≥ 2, ε > 0. Take R sufficiently large that
2ε(R, d) < ε. By Remark 2.15, there are at most (2dR)2dR distinct level-R primitive
induced maps. If f is transitive on J(f), Lemma 2.16 says there is only one level-R
primitive induced map. There is at most one equilibrium state which lifts to a
given primitive map, by Lemma 7.13, and each equilibrium state with entropy at
least 2ε(R) does lift to such a map, by Corollary 3.3. Thus the number of level-R
primitive induced maps bounds the number of equilibrium states with entropy at
least ε, completing the proof. �

This allows us to complete the proof of our main technical result.

Proof of Theorem 1.20. Most of Theorem 1.20 follows from Proposition 6.1,
on taking appropriate subsequences. Only the final statement of Theorem 1.20
then needs verifying. From the final statement of Proposition 6.1, if we assume
that EL = P (−t0 log |Df0|), then there is a hyperbolic light limit measure µ∗ with
strictly positive entropy which is a convex combination of equilibrium states. Sup-
pose the convex combination is described by a measure σ on the space Mf0 . If

A = {µ ∈Mf0 : h(µ) ≥ h(µ∗)/2},
then σ(A) > 0 and

1

σ(A)
µ′∗ =

∫
A

µdσ(µ)

is a light limit measure which is a convex combination of equilibrium states with
entropy at least h(µ∗)/2, of which there are only a finite number by Theorem 1.29.
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Hence one of these equilibrium states is a light limit measure (absolutely continuous
with respect to µ∗ and necessarily hyperbolic). �

7.3.7. Exponential tails. We show existence of a full-branched map with
exponential tails. Let f be a d-branched piecewise-monotone map with non-positive
Schwarzian derivative and set p(t) := P (−t log |Df |).

Theorem 7.14. Given θ > 0, there is a finite collection K of full-branched
expanding induced Markov maps for f satisfying the following. Suppose

p(t)− P 0(−t log |Df |) > 2θ,

so f has a positive-entropy equilibrium state µ for the potential −t log |Df |. For
some (Y0, G, τ0, π) ∈ K, the measure µ lifts to a measure ν̂0 ∈MG, and

• ν̂ is a Gibbs measure for the potential Sτ0ϕt,p(t) ◦ π with pν̂ = 0;
• log of the Jacobian of ν̂0 is locally Hölder;
• the map is κ-extensible for some κ > 0: if τ0 = n on a 1-cylinder V of
G, then fn maps a neighbourhood of π(V ) onto the κ-neighbourhood of
π(Y0);

• |DG| > 2;
• there exists constants C2, θ0 > 0 for which

ν̂0

(
τ−1
0 (n)

)
≤ C2 exp(−nθ0)

for all n ≥ 1.

Moreover, if f is transitive on J(f), one can take #K = 1.

Proof. Given θ > 0, take R large enough that ε(R) < θ. There are only
finitely many level-R primitive induced maps, and only one when f is transitive.
For each such induced map (Y, F̂Y , τ), for K large enough |DF̂nY | > 2 for all n ≥ K.

Select some K-cylinder Y0 of F̂Y . The first return map G to Y0 is full-branched,

expanding and extensible. Note that G is the first return map for f̂ and for F̂Y ;

we choose the return time τ0 to be with respect to f̂). We thus obtain a finite
collection K of maps (Y0, G, τ0, π), each one corresponding to a primitive induced

map. We shall obtain tail estimates for (Y, F̂Y , τ) and subsequently transfer them
to the corresponding (Y0, G, τ0, π).

Suppose t ∈ R satisfies

(7.12) p(t)− P 0(−t log |Df |) > 2θ.

By Corollary 1.22, there exists an equilibrium measure µ for the potential−t log |Df |.
The entropy of µ is necessarily at least 2θ, by (7.12). Since h(µ) > 2ε(R), µ(Y) > 0

for some level-R primitive induced map (Y, F̂Y , τ). Obtain the conjugacy H to
(X , σ) as before. Let ϕt,v,Φt,v be defined as per (7.10). Let

ν̂ :=
1

µ̂(Y)
µ̂|Y

and set ν := H∗ν̂, so ν is the corresponding equilibrium measure ν for σ given
by (7.11). By Lemma 7.13, ν is a Gibbs measure for Φt,p(t). By Lemma 5.4,

−t log |DF̂Y | − τp(t) ≤ −2θτ + C,
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for some constant C > 0. By the Gibbs property of ν, for each 1-cylinder Z ⊂ Y of
F̂Y with τ(Z) = n,

ν̂(Z) ≤ K sup
Z

exp
(
−t log |DF̂Y | − p(t)τ

)
≤ K exp(−2θτ + C).

In Lemma 2.17, we gave a counting estimate on the number of cylinders with a
given inducing time,

#{Z : τ(Z) = n} ≤ C0 exp(ε(R)n),

for some C0 > 0 and all n ≥ 1. Combining the two estimates, we obtain

ν̂(τ−1(n)) ≤ KC0e
C exp(−nθ)

a basic exponential tails estimate from which much follows. We use this to obtain
exponential tails for a full-branched induced map.

Let V = Xi1i2...ip denote the set of points for which

F̂ jY(V ) ⊂ τ−1(ij)

for j = 1, 2, . . . , p. If n :=
∑p
j=1 ij , then

ν̂ (V ) ≤ K exp (−2θn+ C)Cp0 exp (ε(R)n)

so

(7.13) ν (V ) ≤ Cp1 exp(−nθ),
for some C1 > 1 and all n.

Let (Y0, G, τ0, π) be the full-branched induced map corresponding to Y. By
the Gibbs property, Y0 has positive measure. Let ν̂0 ∈ MG denote the normalised
restriction of ν̂ to Y0. The Gibbs property of ν̂0 is inherited from ν̂; alternatively,
one could reproduce §7.3.5. That log of the Jacobian is locally Hölder follows from
the Gibbs property and bounded distortion.

We first consider points which make many returns to Y before returning to Y0.
By Lemma 2.17(iii), there exists N such that for every 1-cylinder Z of F̂Y ,

Y ⊂
N⋃
j=1

F̂ jY(Z).

Together with the Gibbs property and bounded distortion, this implies the existence
of some β > 0 such that, given an n-cylinder Z,

ν̂
(
{x̂ ∈ Z : F̂ jY(x̂) /∈ Y0, j = n, . . . , n+N − 1}

)
≤ exp(−β).

Since the complement of {x̂ ∈ Z : F̂ jY(x̂) /∈ Y0, j = n + 1, . . . , n + N} is a union
of (n+N +K)-cylinders, we can inductively obtain

(7.14) ν̂
(
{x̂ ∈ Y0 : F̂ jY(x̂) /∈ Y0, j = 1, . . . , n(N +K)}

)
≤ exp(−nβ).

For T ≤ n, we can split the set τ−1
0 (n) in two depending on whether τ0 ≥ SσT τ

or not (that is, whether a point making its first return to Y0 has passed more or
fewer than T times through Y). From (7.14) and (7.13) we deduce that

ν̂
(
τ−1
0 (n)

)
≤
∑n
p=T exp(−bp/Ncβ) +

∑T
p=1

∑
i1+···+ip=n C

p
1 exp(−nθ)

≤ C3 exp(−Tβ/N) + CT1 2T exp(−nθ),
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for some C3 > 1. If one takes T := bγnc with γ := θ/2 logC12, each term is
exponentially small in n. Therefore ν̂0(τ−1

0 (n)) is also exponentially small in n, as
required. �

7.3.8. Analyticity of pressure.

Proof of Theorem 1.30. We assume t ∈ (t−, t+), so

p(u)− P 0(−u log |Df |) > 2θ

for some θ > 0, for all u in a small neighbourhood of t. Moreover f is assumed
transitive, so we have a unique system (Y0, G, τ0, π) given by Theorem 7.14. To each
equilibrium state µu for −u log |Df |, we obtain ν̂u0 ∈MG also from the theorem.

The system has an invariant set

Λ0 :=
⋂
n≥0

G−n(Y0).

We obtain a new coding map H0 : Λ0 → X0 and conjugacy H0 ◦ G ◦ H−1
0 = σ0,

where (X0, σ0) is the full shift. Let νu0 := (H0)∗ν̂
u
0 . Analogously to (7.10), we set

ϕu,v := −u log |Df | − v and define the potential

(7.15) Ψu,v := Sτ0ϕu,v ◦ π ◦H−1
0 ,

Now νu0 is a σ0-invariant Gibbs measure for the potential Ψu,p(u) with pνu0 = 0.

From Theorem 7.14, νt0 has exponential tails: There exist constants C2, θ0 > 0 for
which

(7.16) νt0
(
τ−1
0 (n)

)
≤ C2 exp(−nθ0)

for all n ≥ 1. From the Gibbs property of the measure and (7.16), we recover
estimates on the potential: For some θ0 > 0,∑

Z∈Pσ0 ,τ0(Z)=n

sup
x∈Z

exp(Ψt,p(t)(x)) = O(e−θ0n).

From this, it immediately follows that Ψt,p(t) is summable and moreover that,

for all (u, v) ∈ C2 in a complex ball U containing (t, p(t)), Ψu,v is in Ksβ . Since σ0

is a full shift, applying Proposition 7.9 produces: (u, v) 7→ Pσ0
(Ψu,v) is analytic on

U .
Let UR := <(U) be a real ball containing (t, p(t)) on which (u, v) 7→ Pσ0(Ψu,v)

is real-analytic. For (u, v) ∈ UR, Ψu,v is real-valued and summable, so Lemma 7.7
implies the existence of a Gibbs measure νu,v for Ψu,v. By the variational definition
of pressure (7.8), consideration of the free energy of νu,v gives, in UR,

∂Pσ0(Ψu,v)

∂v

∣∣∣
u,v

= −
∫
τ dν.

In particular for each u, there is at most one v with Pσ0
(Ψu,v) = 0.

Consideration of νu0 and Lemma 7.7 gives Pσ0
(Ψu,p(u)) = 0 on a neighbourhood

of t. By the Implicit Function Theorem, we deduce that u 7→ p(u) is analytic at
u = t. This holds for each t ∈ (t−, t+), completing the proof of Theorem 1.30. �
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7.3.9. ASIP and decay of correlations.

Proof of Theorem 1.31. Here we will apply the results of [Y, MN] to prove
Theorem 1.31. Let t ∈ (t−, t+); there is a corresponding equilibrium state µ for
the potential −t log |Df |. Obtain (Y0, G, τ0, π) from Theorem 7.14. It is a full-
branched expanding induced Markov map with a G-invariant Gibbs measure ν̂0

with exponential tails which spreads to µ. In particular, ν̂0(τ > n) = O(e−ηn).
From the κ-extensibility of G and non-positive Schwarzian derivative, there exists
C > 0 so that for x, y in the same connected component V of the domain of G, and
identifying x, y with π(x), π(y),

(7.17) |fk(x)− fk(x)| 6 C|GR(x)−GR(y)| for 1 6 k 6 R− 1

where R = τ(x) = τ(y).
We apply [MN, Theorem 2.9], noting that conditions (1)–(5) in [MN, §2(e)]

hold for our system: (1) (G is full-branched); (2) (G is uniformly expanding);
(3) (inequality (7.17)); (4) (the log of the Jacobian of ν̂0 is locally Hölder); (5)
(integrable inducing time). We obtain that mean-zero Hölder observations satisfy
the ASIP, as required.

The induced Markov map can be viewed as a Young tower [Y]. One applies
[Y, Theorem 3] to establish decay of correlations ([Y, §6.4] shows how to go back
from the tower to the original system). �





CHAPTER 8

Instability for Collet-Eckmann maps

The class of unimodal maps with exponential growth along critical orbits is usu-
ally considered to have almost as good statistical properties as uniformly hyperbolic
maps. However, in this chapter we will prove Theorem 1.32, showing that these
properties do not extend to statistical stability. We no longer deal with potentials,
freeing up the use of the notation ϕ,ψ for some induced maps.

Let F denote the set of C2 unimodal maps f : I → I with non-positive
Schwarzian derivative, f(∂I) ⊂ ∂I and |Df|∂I | > 1, where I denotes the com-

pact interval [0, 1]. Let us endow F with the C0 topology. Each map f has a
unique turning (critical) point c in the interior of I.

In §8.2 we will show that, for a map in F with a parabolic orbit and a certain
sequence of Misiurewicz maps converging to the parabolic map, the acips for the
Misiurewicz maps converge to the equidistribution along the parabolic orbit. We
require stronger control over the acips than mere existence, so we provide another
proof of the existence of such measures, while keeping some control on the densities;
nevertheless, our proof is a little simpler than the comparable proof in [BM].

In §8.3, we examine conjugacies from unimodal maps to tent maps and show
existence of tent maps with certain combinatorial properties.

In the final section of this chapter, we conclude the proof of Theorem 1.32.
In particular, we show that once the topological entropy varies in a continuous
family in F , starting from a non-renormalisable map, there are parabolic maps
converging to that map for which the equidistributions along the parabolic period
orbits converge to a given periodic orbit of the initial map. Moreover, we show
that sequences of Misiurewicz maps as considered in Section 8.2 exist. Taking a
diagonal subsequence gives a sequence of Misiurewicz maps whose acips converge
to the given periodic orbit.

Given an interval J and a differentiable map h : J → R, we say that h has
distortion bounded by C if

(8.1) sup
x,y∈J

|Dh(x)|/|Dh(y)| ≤ C.

If h has bounded distortion clearly it is a diffeomorphism. If h is a diffeomorphism
with non-positive Schwarzian derivative on a larger interval J ′ ⊃ J , then the Koebe
Principle gives an a priori distortion bound for h on J which depends solely on
the relative lengths of h(J) and the connected components of h(J ′) \ h(J). If the
domain of h is instead a collection of pairwise-disjoint intervals, we will say that
h has distortion bounded by C if (8.1) holds on each connected component of its
domain.

We denote by (a, b) the open interval with boundary points a, b, regardless of
whether a < b or vice versa, and by [a, b] the corresponding closed interval. We
denote the Lebesgue measure by m.

77



78 8. INSTABILITY FOR COLLET-ECKMANN MAPS

8.1. Preliminary lemmas

The following lemmas will be useful to quantify properties of the acips we
construct in the proof of Proposition 8.6.

Lemma 8.1. Let ak satisfy 0 < ak < 1 and
∑∞
k=1 akk ≤ C < ∞. Then∑∞

k=1−ak log ak < C + 12.

Proof. Split the sum into two parts, one where − log ak ≤ k, where the sum
is bounded by C, and a second part where ak < exp(−k). Now − log r ≤ 2

√
1/r

for r > 0, so −ak log ak ≤ 2
√
ak < 2 exp(−k/2) provided ak < exp(−k). The

expression

2
∑
k≥1

exp(−k/2) < 2(1 + exp(1/2))
∑
k≥1

exp(−k)

is bounded by 12. �

Lemma 8.2. Let N,∆, λ > 1, δ > 0 be given. Let I be an interval of length 1.
Then there exists β > 0 such that the following holds. Let U be an open subinterval
of I of length ≥ δ. Let f : I → I be a C2 map such that

•

dist

U,⋃
i≥1

f i(∂U)

 ≥ δ;
• |Dfn(x)| ≥ λ for all n ≥ N and x satisfying f j(x) /∈ U for j = 0, 1, . . . , n−

1;
• inf{|Df(x)| : x /∈ U} ≥ δ and f(∂I) ⊂ ∂I;
• given any interval V and n such that V, f(V ), . . . , fn−1(V ) are each dis-

joint from U : then the distortion of f j on V for j = 1, . . . , n is bounded
by ∆.

Let e(x) denote the first entry time of x into U , that is, e(x) = inf{k ≥ 0 :
fk(x) ∈ U} (if fk(x) /∈ U for all k ≥ 0, then e(x) =∞). For all n ≥ 0,

m({x : e(x) ≥ n}) ≤ exp(−nβ).

Proof. Mimic the proof of [MeS, Lemma V.3.3]. �

Lemma 8.3. For each β > 0 there is a constant C such that the following holds.
Let I be an interval and r a measurable function from I to N such that, for each
k ≥ 0, m({x ∈ I : r(x) = k}) ≤ exp(−kβ).

Let J ⊂ I be a measurable set of measure bounded by γ > 0. Then
∫
J
r(x)dx ≤

Cγ(C − log γ)

Proof. For integers n, let Sn :=
∑∞
k=n exp(−kβ) = exp(−nβ)/(1−exp(−β)).

By examining the worst case scenario, it is easy to see that the integral of r over
any set of measure bounded by Sn is bounded by Tn :=

∑∞
k=n k exp(−kβ).

Let N be maximal such that γ ≤ SN . Then rearranging SN+1 ≤ γ ≤ SN gives

log(γ(1− exp(−β))

−β
− 1 ≤ N ≤ log(γ(1− exp(−β))

−β
+ 1.
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Now,
∫
J
r(x)dx ≤ TN . We have

TN =

(
N +

e−β

1− e−β

)
e−Nβ

1− e−β

≤
(

log(γ(1− e−β))

−β
+ 1 +

e−β

1− e−β

)
eβγ(1− e−β)

1− e−β
,

which can be written in the desired form for some constant C. �

For motivation, one can think of h in the following lemma as a unimodal map
f restricted to a one-sided neighbourhood of the critical point, and of r as the first
entry time (on a neighbourhood of the critical value) to a neighbourhood of the
critical point. Then this lemma will control integral of the return time on a critical
neighbourhood.

Lemma 8.4. For each pair of constants β > 0, C1 > 1 there is a constant L
such that the following holds. Let h be a C1 diffeomorphism from an open interval
U onto an interval W := h(U), where both intervals have length bounded by 1.
Suppose |Dh| < C1 and −

∫
U

log |Dh(x)|dx < C1. Let r be a measurable function
from W to N such that, for each k ≥ 0, m({x ∈ I : r(x) = k}) ≤ exp(−kβ).

Then
∫
U
r(h(x))dx < L.

Proof. Let C be given by Lemma 8.3, so if J is a set with measure bounded
by γ > 0, then

(8.2)

∫
J

r(x)dx ≤ Cγ(C − log γ).

For each k ≥ 0, let Uk denote the set of x ∈ U for which e−k ≥ |Dh(x)|/C1 >
e−(k+1). Then U =

⊔∞
k=0 Uk, and

C1 > −
∫
U

log |Dh|dx ≥ − logC1 +

∞∑
k=0

km(Uk).

Now,
∫
Uk
r(h(x))dx ≤ ek+1

∫
h(Uk)

r(y)dy. We have m(h(Uk)) ≤ e−km(Uk), so (8.2)

gives∫
h(Uk)

r(y)dy ≤ Ce−km(Uk)(C−log(e−km(Uk))) ≤ Ce−km(Uk)(C+k−logm(Uk)).

Then ∫
Uk

r(h(x))dx ≤ Cem(Uk)(C + k − logm(Uk)).

Summing over k and using Lemma 8.1 with ak = m(Uk), we get,∫
U

r(h(x))dx ≤ Ce (m(U)C + (C1 + logC1) + C1 + 12) .

We can choose L := Ce(C + 2C1 + logC1 + 12). �
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8.2. Acips for some almost-parabolic Misiurewicz maps

Let g ∈ F have a parabolic periodic orbit of (minimal) period k, and suppose
that gk is orientation-preserving in a neighbourhood of the orbit. Let α be the
point of the orbit such that the critical point c (of g) is in the immediate basin of
attraction of α for the iterate gk ([MeS, Theorem III.6.1]). Let c′ be the nearest
critical point of gk on the other side of α from c, so for some j < k, gj(c′) = c.
Then gk is orientation-preserving on (c′, c).

Lemma 8.5. The graph of gk does not traverse the diagonal on (c′, c) and α is
the unique fixed point of gk in this interval.

Proof. If there were a second fixed point α′ of gk in (c′, c), one could use the
Minimum Principle to show that it must be hyperbolic attracting. Thus it would
not be in the orbit (under g) of α and c would be in the basin of two different
attracting orbits, which would be impossible. It remains to rule out the case that
c and c′ are on opposite sides of the diagonal. Assume that they are on opposite
sides, so α is attracting on both sides. Then for n large, gnk((c′, c)) is a small
neighbourhood of α. But for some 0 < j < k, gj(c′) = c. Thus gnk+j(α) = gj(α) is
close to α and so equals α, contradicting minimality of k. �

Let q be a preimage of some repelling periodic point so that gk is monotone
on (q, α) and gi(q), gi(α) /∈ (q, α) for all i ≥ 1. It follows that α ∈ (q, c), since all
points in (α, c) are in the basin of attraction of α.

Given a point x ∈ I and f ∈ F , we denote by x∗ the other (‘symmetric’) point
satisfying f(x) = f(x∗). For maps close enough to g, there are corresponding pre-
periodic points to q and q∗ and we denote these also by q, q∗, without indicating
the dependence on the map. The critical point is denoted by c, again without
indicating dependence on the map.

Proposition 8.6. Suppose there are gn ∈ F converging to g in the C0 topology
such that gikn (c) ∈ (q, c) for 1 ≤ i < n and gnkn (c) = q, and such that there exists
C > 0 with

∫
log |Dgn(x)|dx > −C for all large n.

Then, for large n, each gn has an acip µn and the sequence of measures µn
converges weakly to the equidistribution on the orbit of α.

Proof. Assume n is large, so gn is close to g.
Define qi, for 1 ≤ i < n, by qi ∈ (q, c), gkn(q1) = q and gkn(qi+1) = qi. Then

gkn(c) = qn−1. Set U := (qn−1, q
∗
n−1). Note that lim supn→∞ |c− qn−1| > 0.

The first entry time eV (x) of a point x to V := (q2, q
∗
2) is defined as

eV (x) := inf{j ≥ 0 : gjn(x) ∈ V }.

Define the first entry map ϕV to V by ϕV (x) = g
eV (x)
n (x). Now V is a nice interval

containing the unique critical point, and q never returns to (q, q∗1), by choice of
q. Then on each connected component of the domain of definition of ϕV , the
restriction of ϕV is a diffeomorphism onto V which extends to a larger domain and
this larger domain gets mapped by the corresponding iterate of gn diffeomorphically
onto (q, q∗1). Of course, ϕV is just the identity on V = (q2, q

∗
2).

Set W := (q1, q2) and define the corresponding first entry time eW and first
entry map ϕW to W . Note that eW (x) = (i − 1)k on (qi, q

∗
i ) \ [qi+1, q

∗
i+1] for

2 ≤ i < n− 1. By non-positive Schwarzian derivative, there is a uniform bound ∆,
independent of large n, on the distortion of each of ϕV , ϕW |(V \U) and ψ := ϕV ◦ϕW .
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By the Mañé Hyperbolicity Theorem ([MeS, Theorem III.5.1]), g is uniformly
hyperbolic away from V . Therefore the same holds for gn for all large n: there exist
λ, j > 1 such that |D(gn|(I\V ))

j | > λ.

Define r(x) by r := eW + eV ◦ ϕW . On V , ψ(x) = g
r(x)
n (x). By the Folklore

Theorem, there is an acip νn for ψ : V → V (ψ defined almost everywhere) and,
because of the distortion bound,

(8.3) ∆−1 ≤ dνn
dx
· |V | ≤ ∆

on V . One can then define an absolutely continuous, gn-invariant measure µn by,
writing χS for the indicator function of a set S,

µn(S) =

∫
V

r(x)−1∑
j=0

χS(gjn(x)) dνn(x)

for all measurable sets S. Of course, µn is finite if and only if the integral is finite,
with I in place of S — this is just

∫
V
r(x) dνn(x). We shall show finiteness and

more now.
Our goal is to show that, for large n, most of µn is concentrated in a small

neighbourhood of the orbit of α. So let B be an ε-neighbourhood of the orbit of
α. It suffices to prove that µn(B) and µn(I \ B) are finite (showing finiteness of
µn(I)) and that limn→∞ µn(B)/µn(I \B) =∞.

For some M , for all large n, #{i ≤ eW (x) : gin(x) /∈ B} < M for all x ∈ V .
Set Uj := (qj , qj+1) ∪ (q∗j , q

∗
j+1) for j = 2, . . . , n − 2; on each Uj , eW (x) = kj, and

V = U ∪
⋃n−2
j=2 Uj . Then,∫

V

eW (x) dνn(x) ≥ µn(B) =

∫
V

r(x)−1∑
j=0

χB(gjn(x)) dνn(x) ≥
∫
V

(eW (x)−M) dνn(x).

Using (8.3) we deduce that

|V |∆k

n|U |+ n−2∑
j=2

|Uj |j

 ≥ µn(B) ≥ |V |∆−1

−M |V |+ k

n−2∑
j=2

|Uj |j

 .

Clearly µn(B) is finite. Denoting by Unj the set Uj for the map gn, we have the
following. For each j, the sets Unn−j converge as n tends to infinity to a set U∞−j , say,

of definite size. Therefore, the term
∑n−2
j=2 |Unj |j ≥ |Unn−2|(n − 2) tends to infinity

with n, forcing µn(B) along with it.
It remains to show that µn(I \B) is bounded independently of n. Now µn(I \

B) ≤
∫
V

(M + eV (geW (x))) dνn(x). Again using (8.3),

µn(I \B) ≤ |V |∆

|V |M + ∆

n−2∑
j=2

|Uj |
∫
W

eV (x)dx/|W |+
∫
U

eV (gknn (x))dx

 .

By Lemma 8.2 there is a θ > 0 such that m({x ∈ I : eV (x) = j}) ≤ exp(−θj),
again independently of n, provided n is large. Therefore

∫
W
eV (x)dx is bounded.

Now consider the term
∫
U
eV (gknn (x))dx. On U , gn is a unimodal map; gnk−1

n maps
gn(U) diffeomorphically with distortion bound ∆ and derivative bounded away from
0 and infinity independently of n, into W . On W , the return time eV to V decays
exponentially by Lemma 8.2, and the constants do not depend on n, so we can
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apply Lemma 8.4. Note we do not apply it to gnkn directly, but rather to h := gnkn
restricted to the two connected components of U \ {c} one at a time. Applying the
lemma gives a bound independent of n on

∫
U
eV (gknn (x))dx. Therefore µn(I \B) is

uniformly bounded and µn(B)/µn(I \B) tends to infinity. Normalise the measure
µn to finish. �

8.3. Conjugacies to tent maps

Definition 8.7. For s ∈ (1, 2] denote by Ts : I → I the tent map with slope
±s, defined by

• for 0 ≤ x ≤ 1/2, Ts(x) = sx;
• for 1/2 ≤ x ≤ 1, Ts(x) = s− sx.

The tent map Ts has topological entropy equal to log s ([MeS, Theorem II.8.1]).

Definition 8.8. We say a tent map is periodic if the orbit of the turning
point is periodic. We call the tent map non-recurrent if the turning point (1/2) is
non-recurrent.

The following is [MeS, Theorem II.8.1], due to Parry and to Milnor and
Thurston. Note that for unimodal maps, showing uniqueness of the semi-conjugacy
is relatively straightforward.

Fact 8.9. Let f : I → I be a continuous unimodal map with positive entropy
which fixes the boundary. Then there exists a unique continuous semi-conjugacy hf
to Ts, where log s is the (topological) entropy of f .

Lemma 8.10. Let f ∈ F have entropy log s > 0 and let hf be the conjugacy
to Ts. If f has a periodic attractor then Ts is periodic. If Ts is non-recurrent,
the semi-conjugacy hf is a conjugacy and all periodic points of f are hyperbolic

repelling and, if also s >
√

2, f is non-renormalisable.

Proof. Since f has non-positive Schwarzian derivative, the turning point of
f is contained in the immediate basin of a periodic attractor. The connected
component of the immediate basin containing the critical point gets mapped by hf
to the turning point of Ts, which is therefore periodic, showing the first statement.

If Ts is non-recurrent then c is non-recurrent, so f has no periodic attractors and
all periodic points are hyperbolic repelling, again by non-positive Schwarzian deriv-
ative. If s >

√
2 then Ts is non-renormalisable. Thus either f is non-renormalisable

or f contains a restrictive interval containing c which is collapsed by hf . In the
latter case the (periodic) restrictive interval is mapped to the turning point, con-
tradicting non-recurrence of Ts. Therefore f is non-renormalisable. Let us show
(still in the case s >

√
2) that hf is a conjugacy. By [MeS, Proposition III.4.3], we

only need to show that f has no wandering intervals. Let W be a neighbourhood of
c compactly contained in a larger neighbourhood W ′ disjoint from the post-critical
orbit. If fk(x) ∈ W then |Dfk(x)| > C for some constant C which depends only
on the relative lengths of W and the connected components of W ′ \W , using non-
positive Schwarzian derivative. Thus no wandering interval can accumulate in W ,
as it cannot shrink indefinitely in size. On the other hand, any wandering interval
must accumulate on c, for example by [MeS, Theorem IV.7.1]. In particular, f

cannot have a wandering interval. This completes the case s >
√

2.
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If s ≤
√

2, there is a least k ≥ 1 such that s′ := 2k log s > 1/2. The tent
map Ts is then k times renormalisable of type 2. The kth renormalisation of Ts
is the map Ts′ . Pulling back, f is also k times renormalisable of type 2, with kth
renormalisation f ′ say. But hf now conjugates f ′ to Ts′ , since s′ >

√
2. It follows

again that f and Ts are conjugate. �

Corollary 8.11. If f ∈ F has entropy log s > log 2/2 and the turning point
of Ts is non-recurrent, then f is a non-renormalisable Misiurewicz map.

Corollary 8.12. If f ∈ F has entropy log s and Ts is non-recurrent, and if
g ∈ F , then f and g are conjugate if and only if the entropy of g also equals log s.

Let us continue with some further facts, deducible from or contained in [MeS,
Chapter II], to which we also refer the reader for definitions and conventions. Since
tent maps have no periodic attractors or wandering intervals, two tent maps with
the same kneading invariants are conjugate and thus have the same entropy. Since
the entropy is just logarithm of the slope, the maps themselves coincide. In particu-
lar, Ts and Ts′ have the same kneading invariants if and only if s = s′. With a little
more work, one can then show the following: parameters s for which Ts is periodic
are dense in (1, 2]; parameters s for which Ts is non-recurrent are dense in (1, 2].
Writing ν(s) for the kneading invariant of Ts, ν is a strictly monotone function.
Moreover, at non-periodic parameters s, the kneading invariant ν(·) is continuous
(in general it is not continuous at periodic parameters). Fixing Ts, the itinerary of a
point x is denoted is(x), so ν(s) = is(1/2). The itinerary map is is also monotone.
It is continuous at points whose orbits do not contain 1/2. The itinerary of x is a
sequence, for n ≥ 0, whose nth element specifies whether Tns (x) − 1/2 is positive,
negative or zero (that is, on which side of the turning point Tns (x) lies). Denote by
iNs (x) the itinerary sequence truncated to its first N + 1 elements.

Lemma 8.13. Let
√

2 < s ≤ 2 and p 6= 0 be a periodic point for Ts with orbit
Orb(p) not containing the turning point. Then for all ε > 0 and δ 6= 0 (δ < 0 if
s = 2), there is a parameter r ∈ [s, s+ δ] for which Tr has a periodic turning point
with period N say, and

#{k ∈ {1, . . . N} : T kr (1/2) /∈ B(Orb(p), ε)} < εN.

Proof. We can suppose Ts is non-recurrent because non-recurrent parameters
are dense in (1, 2]. By a simple perturbation argument, we can also assume that
p is not in the orbit of the turning point. Ts is expanding on a neighbourhood of
Orb(p), so if ε > 0 is sufficiently small,

B(Orb(p), ε) ⊂ Ts(B(Orb(p), ε)).

There exist q = qn0 with |q − p| < ε/2 and some n0 ≥ 1 such that Tn0
s (q) = 1/2.

Therefore, there exists a sequence of points qn ∈ B(Orb(p), ε/2), n ≥ n0, for which
Ts(qn+1) = qn and Tns (qn) = 1/2.

We can assume δ is small enough that there is a continuation r 7→ qrn for each
n and all r ∈ [s, s+ δ] satisfying qrn ∈ B(Orb(p, ε)), Tr(q

r
n+1) = qrn for n ≥ n0, and

Tn0
r (qrn0

) = 1/2.
Let W denote the connected component of I \Orb(1/2). By transitivity, there

are symmetric points a, a∗ ∈ W , one on each side of 1/2, and l ≥ 1 such that
T ls(a) = T ls(a∗) = p and such that the orbits of a, a∗ avoid the neighbourhood
V := (a, a∗) of 1/2. We claim that there is a sequence of points yj converging
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to Ts(1/2) in (Ts(1/2), Ts+δ(1/2)) and numbers kj such that T
kj
s (yj) = p and

Orb(yj) ∩ V = ∅. Indeed, let ηj be small, positive or negative, and consider the
images of the interval (Ts(1/2), Ts(1/2) + ηj). Since Ts is expanding away from the
turning point, and the orbit of Ts(1/2) avoids W , the images grow until there is a
first one which contains either a or a∗ or both. Pull back the point to get a point
yj inside (Ts(1/2), Ts(1/2) + ηj). The claim follows.

Combining these statements, we deduce that there are some (slightly smaller)
neighbourhood V of 1/2 and, given any increasing sequence of numbers nj > n0,

a sequence of points xj (close to the yj) such that T
kj
s (xj) = qnj and T ls(xj) /∈ V

for all l < kj + nj , while T
kj+nj
s (xj) = 1/2. Since the kj were already defined,

the sequence of numbers nj can be chosen with nj > k2
j , say, so nj/kj → ∞.

Provided the nj are chosen large enough, the is(xj) converge to is(Ts(1/2)) in(
is(Ts(1/2)), is+δ(Ts+δ(1/2))

)
.

Therefore, since the dynamics outside of V persists under small perturbation,
there exist γ ∈ (0, δ), N ≥ 1 and xr for r ∈ [s, s+ γ] such that

• r 7→ xr is continuous;
• Tr(xr) 6= 1/2 for all l < N and r ∈ [s, s+ γ].
• TNr (xr) = 1/2;
• iNs (xs) = iNr (xr) ∈

[
iNs (Ts(1/2)), iNs+γ(Ts+γ(1/2))

]
;

• #{k ≤ N : T kr (xr) /∈ B(Orb(p), ε)} < εN .

In particular, for some r ∈ [s, s + γ], iNr (Tr(1/2)) = iNr (xr), so Tr(1/2) = xr and
TN+1
r (1/2) = 1/2. �

Lemma 8.14. Let
√

2 < s < 2 and let Ts be periodic with periodic turning point
of period k. Let b = s/(1 + s) be the orientation-reversing fixed point of Ts. There
are N > 0, a such that TNs (a) = b and T ks is monotone and orientation-preserving
on [a, 1/2]. For all r in some neighbourhood of s, the point a has a continuation ar
such that TNr (ar) = r/(1 + r).

There exist sn → s such that, for all large n, the sequence

1/2, T kn (1/2), T 2k
n (1/2), . . . , Tnkn (1/2) = an

is monotone, where (abusing notation) Tn denotes the tent map with slope sn and
an the corresponding continuation of the point a.

Proof. Fix a symmetric neighbourhood U of 1/2 on which the slope of T ks
only changes at 1/2. Since Ts is non-renormalisable, there are pre-images of b in
U . Let a be one such pre-image, and a∗ its symmetric point, so for some N > 0,
Tns (a) = Tns (a∗) = b. We can choose a such that T js (a) /∈ (a, a∗) for 1 ≤ j < N .
Then TNs is monotone on (a, 1/2) and on (1/2, a∗). Thus on one of those intervals,
TNs is orientation-preserving.

The second statement is obvious.
The final statement follows from strict monotonicity of the kneading invariant

for tent maps (and corresponds to the critical periodic orbit no longer existing, so
the graph of T kn no longer quite touches the diagonal near 1/2). �

8.4. Proof of Theorem 1.32

Proof. Consider a continuous one-parameter family of maps ft ∈ F (recall
F is endowed with the C1 topology) where t ∈ [0, θ), for some θ > 0. Let log s(t)
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denote the entropy of ft. Suppose that f0 is non-renormalisable and has all pe-
riodic points repelling, and that t 7→ s(t) is not locally-constant at t = 0. Non-

renormalisability implies s(0) >
√

2. Taking θ smaller if necessary, we can assume

that
√

2 < s(t) ≤ 2 for all t ∈ [0, θ).
Let p /∈ ∂I be a periodic point of f0 with orbit Orb(p) under iteration by

f0. Fix ε > 0. We shall show that there exists t ∈ (0, θ) for which ft is a non-
renormalisable Misiurewicz map and for which the corresponding acip µt satisfies
µt(B(Orb(p)), 2ε) > 1− 2ε, which suffices [note that approximate equidistribution
along the orbit follows when ε is small].

Denote by ht the semi-conjugacy map from ft to Ts(t). The following lemma
says that if you are close enough to the corresponding tent map periodic orbit
h0(Orb(p)), then the pullback by ht for small enough t is contained in an ε-
neighbourhood of Orb(p).

Lemma 8.15. There exists γ > 0 such that, for all t ∈ [0, γ],

ht(B(Orb(p), ε)) ⊃ B(h0(Orb(p)), γ).

Proof. The point p is accumulated on both sides by repelling periodic points
(note that h0 is a conjugacy), and these move continuously as t varies, as do their
images by ht. Choose repelling periodic points q on each side of each point of
Orb(p) and choose γ′ sufficiently small that the continuations qt of these points
for t ∈ [0, 2γ′) lie within B(Orb(p), ε) but ht(qt) /∈ h0(Orb(p)). For each point
x ∈ h0(Orb(p)), there is a γx > 0 such that ht(qt) /∈ B(x, γx) for any qt and any
t ∈ [0, γ′]. Take γ to be the minimum over x ∈ h0(Orb(p)) of γx and of γ′. �

Lemma 8.16. Let γ be given by Lemma 8.15.
There exists s ∈ (s(0), s(γ)) for which Ts is periodic with turning point of period

k say, and
#{i ∈ {1, . . . k} : T is(1/2) /∈ B(h0(Orb(p)), γ)} < εk.

Proof. By Lemma 8.13. �

Let γ, s be given by Lemmas 8.15 and 8.16. Let the sequence sn → s be given
by Lemma 8.14. For large n, sn ∈ (s(0), s(γ)). Thus there are maps gn ∈ {ft : t ∈
[0, γ)} with entropy log sn and there is a subsequence of the gn converging to some
map g ∈ F with entropy log s.

It is straightforward to check that g has an orientation-preserving parabolic
periodic point α, of period k say, which gets mapped by hg to the turning point of
Ts. We have from Lemma 8.16 that

#{i ∈ {1, . . . k} : T is(1/2) /∈ B(h0(Orb(p)), γ)} < εk,

so by Lemma 8.15

#{i ∈ {1, . . . k} : g(α) /∈ B((Orb(p)), ε)} < εk.

Applying Proposition 8.6, for sufficiently large n, the acip µn for gn approxi-
mates the equidistribution on Orb(α) and so satisfies µn(B(Orb(p), 2ε)) > 1− 2ε.
Since θ can be chosen arbitrarily small and ft := gn is a non-renormalisable Misi-
urewicz map (by choice of sn), this concludes the proof of Theorem 1.32. �





CHAPTER 9

Positive entropy does not imply statistical stability

In this chapter we show how lack of statistical stability may occur. The example
will be explicit and shows (absolutely continuous) equilibrium states, with entropy
bounded below, converging to a combination of an equilibrium state and a delta
mass on a repelling fixed point.

We start with some general estimates for normalised quadratic maps. These
estimates will transfer to any map affinely conjugate to the normalised maps. In the
second section of this chapter we define the sequence of maps and show instability,
making use of the estimates in the first section.

Throughout this chapter, there will be topologically defined points (preimages
of critical points and fixed points). Their dependence on parameters (of the maps
considered) is frequently dropped from notation.

9.1. Quadratic maps which nearly have a fixed point

We are interested in the local behaviour of a family of quadratic maps where
a parabolic fixed point appears in the limit. The most convenient representation is
the family

Pκ : x 7→ x2 + κ,

where κ is a real parameter. Each quadratic map x 7→ ax2 + bx + c is affinely
conjugate (as a dynamical system) to some Pκ. For κ = 1/4, Pκ has a parabolic
fixed point at x1 = 1/2. For κ > 1/4, there is no fixed point and Pκ(x) > x for all
x > 0, that is, all points get mapped to the right. We are interested, for now, in
how long it takes for points to pass some threshold.

Let M > 10 and consider the first entry time to [M,∞)

eM,κ(x) := inf{k ≥ 0 : P kκ (x) ≥M}.

For M ′ ≤M2j ,

(9.1) eM ′,κ ≤ eM,κ + j.

Each function eM,κ is monotone-decreasing and piecewise-constant on [0,M ]. For
all x > 0, j ≥ 1 and κ > 1/4,

(9.2)
dP jκ(x)

dκ
> 0

(visually, as one increases κ, the graph distances itself from the diagonal and images
move to the right). Hence the bigger κ is, the less time it takes to enter [M,∞):
for 1/4 < κ0 < κ, eM,κ ≤ eM,κ0

.
Thanks to (9.2), given V > 1 and n ≥ 1, there is a unique κ(V, n) > 1/4

such that Pnκ(V,n)(0) = V . As a function of V , κ(V, n) is strictly increasing. As

87
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n increases, κ(V, n) decreases monotonically with limit 1/4. Rather obviously, for
M ≥ V ,

(9.3)

∫
[0,1/4]

eM,κ(V,n) ≥ (n− 1)/4,

since Pκ(0) > 1/4.
We wish to show that the first entry time to [M,∞) does not increase too fast

as n increases, nor as V varies.

Lemma 9.1. Given V0 > 100, for all M,M ′, V, V ′ ∈ (V0, 100V0) and x ∈ [0,M ],

eM ′,κ(V ′,n+1)(x) ≤ eM,κ(V,n)(x) + 3.

Proof. For now, set M = V and let us compare eV,κ(V,n) and eV,κ(V,n+1). The
discontinuities of the entry time functions lie along the orbits of 0, since Pnκ(V,n)(0) =

V . Let

pj := P jκ(V,n)(0),

qj := P jκ(V,n+1)(0).

For j > 0, qj < pj . Since pn = qn+1 = M and κ(V, n+ 1) < κ(V, n), pj < qj+1 for
j < n. Since eV,V,n = n− j on [pj , pj+1) and

[pj , pj+1) ⊂ [qj , qj + 2)

we deduce

(9.4) eV,κ(V,n)(x) ≤ eV,κ(V,n)+1(x) ≤ eV,κ(V,n)(x) + 1.

Letting V0 > 100 and V, V ′ ∈ [V0, 100V0], (9.1) and (9.2) imply that

κ(V, n+ 1) ≤ κ(
√
V , n)

≤ κ(V0, n) ≤ κ(V ′, n).

Thus, eV,κ(V ′,n) ≤ eV,κ(V,n+1) for the same range of V, V ′, and so

eV,κ(V ′,n)(x) ≤ eV,κ(V,n)(x) + 1.

Replacing n by n+ 1 and using (9.4) yields

(9.5) eV,κ(V ′,n+1)(x) ≤ eV,κ(V,n)(x) + 2.

From (9.1) and (9.5) we obtain

eM ′,κ(V ′,n+1)(x) ≤ eV,κ(V ′,n+1)(x) + 1

≤ eV,κ(V,n)(x) + 2 ≤ eM,κ(V,n)(x) + 3

for all M,M ′, V, V ′ ∈ (V0, 100V0), as claimed. �

We also need to estimate the distortion.

Lemma 9.2. Let κ > 1/4. Let y0 ∈ [0, 1/4) and set yk := P kκ (y0). Let k0 be the
minimal k ≥ 1 for which yk ≥ 1. In particular, DP (yk) < 2 if and only if k < k0.
First, if k0 6= 1 then

(9.6)
DP k0−jκ (z)

DP k0−jκ (z′)
< 21

for all z, z′ ∈ (yj−1, yj), for each j = 2, 3, . . . , k0. Second,

(9.7) yk0 − yk0−1 ≥ 1/8.
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Proof. We have (y1, yk0−1) ⊂ (1/4, 1), and on these intervals 1/2 < DPκ < 2
andD2Pκ = 2.HenceD logDPκ < 4, and [noting log(Df(a)/Df(b)) =

∫ a
b
D logDf ]

we deduce the distortion bound

DP k0−jκ (z)

DP k0−jκ (z′)
≤ exp

(∫
(1/4,1)

D logDPκ

)
< e3 < 21,

for j = 2, 3, . . . , k0 and all z, z′ ∈ (yj−1, yj).

To show the length estimate, since yk0 ≥ 1, we can assume yk0−1 >
√

3/2, for
otherwise the estimate holds trivially. Since DPκ(x) > 1 for x > 1/4,

yk0 − yk0−1 > Pκ(
√

3/2)−
√

3/2 > 1−
√

3/2 > 1/8.

�

9.2. Proof of Theorem 1.3

Theorem 1.3 avers the existence of a sequence (fk)k≥1 ∈ FNSD having decreas-
ing critical relations with fk → f0 as k → ∞ and for which each fk, k ≥ 0 has an
acip µk with entropy uniformly bounded away from 0, but with µk converging to a
convex combination of µ0 and a Dirac mass on a repelling fixed point.

As in Theorem 1.3, consider the family of maps

fa : [0, 1]→ [0, 1],

with a > 0, defined by

fa(x) =

{
1− 2x if x ∈ [0, 1/2]

a(x− 1/2)(x− 1) + 1 if x ∈ (1/2, 1].

This map has two branches: one orientation-reversing, expanding branch on [0, 1/2]
and one unimodal branch on (1/2, 1) with a critical point c = 3/4, see Figure 1.
The map has fixed points at 1, 1/3 and at α = α(a), for some α ∈ (1/2, 1). Only
parameters in (0, 16) satisfy fa(c) ∈ (0, 1). For a0 = 32/3, fa0(c) = 1/3, so the map
is post-critically finite. Standard arguments (essentially a subset of those appearing
at the end of this chapter) imply the existence of an acip for fa0 ; the acip is the
unique equilibrium state for the potential − log |Dfa0 | and has positive entropy.

The idea of the construction in Theorem 1.3 is the following. For a slightly
bigger than a0, the critical orbit typically starts off spending a good amount of time
close to 1/3 and, after an even number of steps, escapes back to the interval (1/2, 1].
For certain parameters, the map fa will have an acip which has a proportion of its
mass very close to the repelling fixed point at 1/3. We shall show this.

Remark 9.3. If the orbit of c is disjoint from {0, 1/2, 1}, then fa has the same
critical relations as fa0 .

The following proposition implies Theorem 1.3.

Proposition 9.4. Given β > 0, there exists a sequence (ak)k≥1 of parameters
with ak → a0 as k → ∞ for which each fak has an acip µk, the entropy of the µk
is uniformly bounded below, and

lim
k→∞

µk =
1

1 + β
µ0 +

β

1 + β
δ1/3,

where δ1/3 denotes the Dirac mass at the repelling fixed point 1/3. Moreover the
sequence (fak)k≥0 has decreasing critical relations.
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1
3

1
2

α v 3
4

v∗ α∗
0 1

x 7→ a(x− 1/2)(x− 1) + 1
x 7→ 1− 2x

Figure 1. The map fa for a > a0

The proof of Proposition 9.4 occupies the remainder of this chapter. First we
construct a first return map with one unimodal branch (and lots of full branches).
In particular, the unimodal branch is the connected component of the domain of
the first return map which contains the critical (turning) point. For a subset of
parameters, taking higher iterates on the unimodal branch will give a full-branched
induced map. This will have an acip. These acips will converge to the acip for
the induced map corresponding to a0. A careful selection of parameters will give
control of the integral of the inducing time. If the integral of the inducing time on
the (shrinking as a→ a0) unimodal branch converges to a non-zero constant, there
is a good chance of proving the proposition.

Proof of Proposition 9.4. For a > a0, there is a point α∗ > c (depending
on a) with fa(α∗) = fa(α) = α. There are points v, v∗ ∈ (α, α∗) (depending on a),
with v < v∗, such that

fa(v) = fa(v∗) = 1/2.

For each even number k ≥ 2, there exists a maximal interval Ak of parameters a
for which f ja(c) ∈ (0, 1/2) for j = 1, . . . , k − 1, while fka (c) ∈ (1/2, 1). Moreover
the map ξ : a → fka (c) maps Ak continuously onto (1/2, 1). By continuity, there
is a subinterval A′k of parameters in Ak mapped by ξ onto (α, α∗). For a in A′k,
denote by q < q∗ the points closest to c with fka (q) = fka (q∗) = α. As k is even, fka
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q q∗α α∗

Figure 2. The first return map ϕ to (α, α∗) has one (almost par-
abolic) unimodal branch (q, q∗) and infinitely many diffeomorphic
branches.

has a local maximum at c and fka ((q, q∗)) = (α, c). The point v gets mapped by fa
to 1/2, so v, v∗ /∈ [q, q∗]. In particular, (q, q∗) is compactly contained in (v, v,∗ ) is
compactly contained in (α, α∗).

Inside the subinterval A′k, there is a parameter a(k, n) for which, writing fk,n
for fa(k,n),

v = fknk,n(c) < q < f
k(n−1)
k,n (c) < · · · < fkk,n(c) < c.

The graph of fkk,n restricted to (q, q∗) lies below the diagonal. For n ≥ 2 and k
large, the graph very nearly touches the diagonal. Let us fix fk,n for now.

The first return map ϕ to (α, α∗) has a unimodal branch defined on (q, q∗) and
ϕ coincides with fkk,n on (q, q∗), see Figure 2. For j = 1, . . . , n,

ϕj(c) = fkjk,n(c).

Let us set

X := (α, α∗) \ [q, q∗].

Branches of ϕ in X are full, mapping diffeomorphically onto (α, α∗) [the proof of
this is straightforward, noting that Orb(∂X) ∩X = ∅]. Points in [q, q∗] eventually
leave [q, q∗], and the first time they do, they enter [α, q]. Denote by ψ the first entry
map to X. Restricted to X it is just the identity map, while on (q, q∗) it consists
of iterates of ϕ. Let us define the map
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Ψ = Ψk,n := ϕ ◦ ψ.

Lemma 9.5. This map Ψ is full-branched and the following distortion bound
holds for some constant C (independent of k, n):

(9.8)

∣∣∣∣DΨn(x)

DΨn(y)

∣∣∣∣ ≤ C|Ψn(x)−Ψn(y)|

for all x, y in the same branch of Ψn.

Proof. Since ψ(c) = v and fk,n(v) = 1/2, a fixed point at a positive (and
bounded away from 0 for the parameters under consideration) distance from [α, α∗],
Ψ has no critical points (in the sense zero-derivative). Branches of ψ in (q, q∗) are
mapped (by ψ) diffeomorphically onto (α, q) or onto (α, v). Neither α nor v nor q
is in any branch of ϕ. It follows that branches of Ψ in (q, q∗) are full.

Noting that the orbit of c never enters (1/2, α] nor [α∗, 1), each branch of Ψ
extends (coinciding with the corresponding iterate of f) to map diffeomorphically
onto (1/2, 1). Moreover, the extensions have non-positive Schwarzian derivative.
Therefore there is a uniform distortion bound for all iterates of Ψ, independently
of k. �

On each branch of Ψ, Ψ coincides with some iterate of fk,n. Thus there is a
function τ = τk,n defined on the domain of Ψ, constant on each branch of Ψ, for
which

Ψ = fτk,n.

Estimating the size of τ−1(j), for j ∈ N, will give us information about the acip
for fk,n, namely its distribution, its Lyapunov exponent and (therefore) its entropy.
Outside (q, q∗), the estimates for τ which follow are independent of k, n.

Let Ej denote the set of points whose first entry time to [α, α∗] is j. We shall
now obtain uniform exponential bounds on the size of Ej .

Lemma 9.6. m(Ej) ≤ e−j/4.

Proof. Calculation gives fa0(5/8) = 1/2, so for a > a0, v < 5/8. Therefore
α < 5/8 and α∗ > 7/8, so

m(E0) = m((α, α∗)) ∈ (1/4, 1/2)

and

m(E1) = 2m((α∗, 1)) < 2−2.

By convexity of fk,n on (1/2, 1] and since fk,n(3/4) ≤ 1/3 and fk,n(1) = 1, the
graph of fk,n restricted to (3/4, 1) lies under the line of slope 8/3 > 2 passing
through the repelling fixed point (1, 1). Moreover, f((α∗, 1)) = (α, 1). Therefore,
for j ≥ 1,

m(Ej ∩ (α∗, 1)) < 2−j−2.

By symmetry,

m(Ej ∩ (1/2, 1)) < 2−j−1.

On (0, 1/2), the set of points with first entry time to (1/2, 1) equal to i has
measure 2−i−1, for i ≥ 1, and this set is an interval mapped by f ik,n onto (1/2, 1).
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We deduce, for j ≥ 1,

m(Ej ∩ (0, 1/2)) =

j∑
i=1

2−im(Ej−i ∩ (1/2, 1))

<

j∑
i=1

2−i2−j+i−1

= j2−j−1.

say. Hence m(Ej) < (j + 1)2−j−1, so

m(Ej) < e−j/4,

say. �

The distortion of fk,n on (1/2, 1) is unbounded, due to the critical point. How-
ever, it is quadratic, which gives a certain amount of control. Denote by Rj the set
of points in [α, α∗] whose first return time to [α, α∗] is equal to j.

Lemma 9.7. m(Rj) ≤ e−j/8.

Proof. Given a measurable set X ⊂ (0, 1), since fa is quadratic on (1/2, 1),

m((1/2, 1) ∩ f−1
a (X)) ≤

√
m(X)

a
≤
√
m(X)/3,

provided a ≥ 32/3. From the preceding lemma, we obtain

m(Rj) ≤
√
m(Ej−1)/3 < e−

j−1
8 /3 < e−j/8,

as required. �

Remark 9.8. In the limit, Ψ converges (in some canonical sense) to the first
return map for fa0 to [α, α∗]. As the estimates of Lemma 9.7 are uniform, they also
hold for the return map for fa0 and the integral of the first return time,

∑
j jm(Rj),

is bounded.

Returning to fk,n, we can denote by ek,n the first entry time to X = [α, α∗] \
[q, q∗]. It is a multiple of k on (q, q∗). We can decompose τ on (q, q∗) as

τ = ek,n + τ ◦ ψ.

We shall estimate these terms separately.

Lemma 9.9. limk→∞ supn≥2

∫
(q,q∗)

τ ◦ ψ dx = 0.

Proof. The unimodal branch is just

(9.9) x 7→ −2ka(x− 3/4)2 + 3/4− δ

for some small δ = δ(k, n) > 0. There is a sequence of points q = q0 < q1 < q2 <
· · · < qn−1 < c for which ϕl(ql) = q. Define the intervals Jl := (ql, ql+1) for l ≤ n−2
and Jn−1 := (qn−1, c). Each interval Jl, l ≥ 1, gets mapped by ϕ onto Jl−1. The
interval J0 gets mapped onto (α, q). On J0 we have

m(ϕ−1(Rj) ∩ J0) ≤
√
m(Rj)

2ka
.
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Let l0 ≥ 0 be the maximal l for which Dϕ(ql) > 2. For 1 ≤ l < l0, on the
interval Jl the derivative is at least 2. Hence

(9.10) m(ψ−1(Rj) ∩ Jl) ≤ 2−l
√
m(Rj)

2ka
.

Going one step back, we obtain on Jl0 (taking a poor bound for better legibil-
ity),

m(ψ−1(Rj) ∩ Jl0) ≤
(
m(Rj)

2ka

)1/4

.

Consider now the affine conjugacy A such that

ϕ = A−1 ◦ P ◦A,
where P is the quadratic map P : y 7→ y2 + κ, and κ > 1/4 depends on δ and thus
on k, n. One can calculate

(9.11) A : x 7→ −2ka(x− 3/4)

(recalling a = a(k, n)). Since A is affine,

(9.12) Dϕ(x) = DP (Ax).

Writing y0 := Aqn−1, we can apply Lemma 9.2. With the notation of that lemma,
k0 = n−1− l0, while yk0−r = Aql0+r. Thus (yk0−r−1, yk0−r) = AJl0+r. For k0−r =
2, 3, . . . , k0 or, equivalently, for r = 0, 1, . . . , n − 3 − l0, by (9.6) and (9.12), for
x, x′ ∈ Jl0+r,

Dϕr(x)

Dϕr(x′)
< 21.

Hence

m(ψ−1(Rj) ∩ Jl0+r) ≤ 21
|Jl0+r|
|Jl0 |

(
m(Rj)

2ka

)1/4

.

Summing over intervals Jl0+r, we obtain

m(ψ−1(Rj) ∩ (ql0 , qn−2) ≤ 21
|qn−2 − ql0 |
|Jl0 |

(
m(Rj)

2ka

)1/4

.

By (9.7), since A is affine, we have |qn−2 − ql0 | < 8|Jl0 |, so

(9.13) m(ψ−1(Rj) ∩ (ql0 , qn−2) ≤ 168

(
m(Rj)

2ka

)1/4

.

We have now dealt with (q0, qn−2); the intervals Jn−2, Jn−1 remain to be
treated. Pulling back (9.13) (once for Jn−2 and once more for Jn−1), we obtain,
for large k,

(9.14) m(ψ−1(Rj) ∩ (Jn−2 ∪ Jn−1)) ≤
(
m(Rj)

2ka

)1/16

.

Combining the estimates a > 1, (9.10) (summed), (9.13) and (9.14) gives

m(ψ−1(Rj) ∩ (q, c)) ≤ 2

√
m(Rj)

2ka
+ 168

(
m(Rj)

2ka

)1/4

+

(
m(Rj)

2ka

)1/16

≤ 210−k/16m(Rj)
1/16.

Note that there is no n-dependence in the bound.
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From Lemma 9.7, m(Rj) ≤ exp(−j/8). Hence

m(ψ−1(Rj) ∩ (q, c)) ≤ 210−k/16 exp(−j/128).

Therefore∫
(q,q∗)

τ ◦ ψ dx = 2
∑
j

jm(ψ−1(Rj) ∩ (q, c)) ≤ 211−k/16
∑
j

j exp(−j/128).

This upper bound has no n-dependence and tends to zero as k → ∞, as required.
�

Lemma 9.10. There is a constant C0 > 1 such that, for all k, n,

(9.15)
1

C0

√
1

2ka
≤ |q∗ − q| ≤ C0

√
1

2ka
.

Proof. The image of ϕ on [q, q∗] contains α and v, and infk,n |v−α| > 0. The
range of ϕ has length bounded by 1/2. From (9.9), the result then follows. �

Lemma 9.11. The first entry time ek,n to X = [α, α∗] \ [q, q∗] has the following
properties.

•

(9.16) lim
k→∞

∫
(q,q∗)

ek,2 dx = 0;

•

(9.17) lim
n→∞

∫
(q,q∗)

ek,n dx =∞;

•

(9.18)

∫
(q,q∗)

ek,n+1 dx ≤
∫

(q,q∗)

ek,n dx+ 4k|q∗ − q|;

• For x ∈ (q, q∗) and j = 1, 2, . . . , k − s,

(9.19) lim
k→∞

inf
n≥1

#{j ≤ ek,n(x) : f jk,n(x) ∈ B(1/3, 1/k)}
ek,n(x)

= 1.

Proof. The entry time satisfies ek,n ≤ nk, while (9.15) bounds the length of
the interval (q, q∗). This implies (9.16).

Recall the affine map A of (9.11) which conjugates the unimodal branch of
ϕ = ϕk,n with a normalised quadratic P : y 7→ y2 + κ, with κ depending on k, n.
[The map A also depends slightly on k, n.] By (9.15),

1

2C0

√
2ka ≤ Aq ≤ C0

√
2ka.

Set Mk,n := P (Aq) = Aα and Vk,n := Av. Then Pn(0) = Vk,n (in particular,

κ = κ(Vk,n, n)) and the first entry time at Ax to [Mk,n,∞) is 1+
ek,n(x)

k . From (9.3),
we deduce (9.17).

Recall that v ≤ 5/8, so |α− v| < |v − 3/4|, so

Mk,n/2 ≤ Vk,n ≤Mk,n.

Moreover, for fixed k,

Vk,2/2 ≤ Vk,n ≤ 2Vk,2.
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Setting V0 := 10Vk,2, we can apply Lemma 9.1 with M = Mk,n, V = Vk,n, M ′ =
Mk,n+1, V ′ = Vk,n+1. Via the conjugacy, this gives

ek,n+1 ≤ ek,n(x) + 3k.

This almost gives (9.18), we just replace 3 by 4 as the interval (q, q∗) depends on
k, n and will vary a little for n ≥ 2 (the entry time equals k on the non-common
part).

For x ∈ (q, q∗) and j = 1, 2, . . . , k − s, f jk,n(x) ∈ B(1/3, 2−s). This im-

plies (9.19). �

To proceed, we need to recall some results concerning full-branched expanding
maps applied to our situation.

Definition 9.12. Let us call a collection of maps (Fk)k≥0 a convergent Markov
system if the following holds, denoting by Dk the domain of Fk:

• There is an open interval I with Dk ⊂ I for all k, and m(I \ Dk) = 0;
• each Dk is a countable union of open intervals;
• for each branch J of Fk, Fk : J → I is a (surjective) C1 diffeomorphism;
• for some K, for all n, k ≥ 0, the distortion estimate∣∣∣∣DFnk (x)

DFnk (y)

∣∣∣∣ ≤ K|Fnk (x)− Fnk (y)|

holds for all x, y in the same branch of Fnk ;
• the maps Fk converge uniformly to F0 on compact subsets ofD0 as k →∞.

Then the following results are well-known, we provide only a sketch of their
proof.

Fact 9.13. Each Fk has an acip νk with Lipschitz density ρk = dνk
dm on I.

The ρk are uniformly Lipschitz, bounded and bounded away from 0. The densities
converge: ρk → ρ0 (uniformly) as k → ∞. If τk is a continuous integer-valued
function on Dk, τk converges to τ0 uniformly on compact subsets of D0, and if
there exists C > 0 such that, for all k,

m({τ−1
k ([n,∞)) < Cn−3,

then for each γ > 0, there exists a compact set Λ ⊂ D0 satisfying

(9.20)

∫
Dk\Λ

τk dνk < γ

for k = 0 and for all large k, while τk = τ0 on Λ for all large k.

Proof. The first two statements are proven in [MeS, Theorem V.2.2] (at
least for one map, but the estimates are uniform, depending only on the distortion
estimate). We now sketch the proof of the final statement, using ideas similar
to those earlier in the article. One can find, thanks to the distortion bounds, a
uniform N,λ for which |DFNk | > λ > 1. It follows that return maps to small
intervals have exponential tails: if P is a subinterval of I then the set of points
with first return time ≥ j has measure ≤ C(|P |)e−jδ, where C(·) > 0 can be taken
monotone increasing and only depending on the length of P , and both C(·) and
δ > 0 are independent of k. If n is large enough and P is a branch of Fn0 , then P is
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tiny and by the uniform bounds on the densities, the densities ρk are approximately
constant on P . By Kac’ Lemma,

(9.21)

∫
P

rk dρk = 1,

where rk denotes the return time to P for Fk. Given small ε > 0, let Λ be a
finite union of intervals compactly contained in some Λ1 compactly contained in
the domain of the return map to P under F0, and choose Λ (and Λ1) such that

(9.22)

∫
P\Λ

rk dρk < ε.

This we can do by the uniform exponential tails estimate. Note that r0 is bounded
on Λ, and that Λ does not depend on k. For k large enough, rk coincides with r0

on Λ (by uniform convergence of Fk on Λ1). But then, by (9.21) and (9.22),∣∣∣∣1− ∫
Λ

r0 dρk

∣∣∣∣ =

∣∣∣∣1− ∫
Λ

rk dρk

∣∣∣∣ ≤ ε
and similarly ∣∣∣∣1− ∫

Λ

r0 dρ0

∣∣∣∣ ≤ ε.
Since the ρk are each approximately constant (a priori varying a lot with k) on P
and bounded away from zero and infinity, we deduce that ρ0 ≈ ρk for large k, or
ρk → ρ0 as k →∞.

It remains to prove the statements concerning τk. As a continuous integer-
valued function, τk is constant on each connected component of Dk. Given any
compact subset of Λ ⊂ D0, for k large enough τk ≡ τ0 on Λ. The tail estimate
implies that, given γ > 0, there exists ε > 0 such that on any set Y of Lebesgue
measure ε > 0, ∫

Y

τk dνk < γ.

In particular, for Λ large enough that Dk \ Λ has measure at most ε for all large k
(and for k = 0), ∫

Dk\Λ
τk dνk < γ

for k large and for k = 0. showing (9.20). �

Returning to our collection of maps fk,n with their induced maps Ψk,n and
inducing times τk, note that (q, q∗) tends to the point {3/4} as k → ∞ (indepen-
dently of n). Moreover the maps Ψk,n have a uniform distortion bound (9.8). Let
us denote by Ψ0 the first return map to [α, α∗] under fa0 , and by τ0 its return
time. Then for any sequence (nk)k, setting Ψk := Ψk,nk , the sequence (Ψk)k≥0 is a
convergent Markov system.

In particular, the acips νk for Ψk converge the acip ν0 for Ψ0. By Remark 9.8,

S0 :=

∫
τ0 dν0 <∞.

On the other hand, if we choose nk carefully, the integral of the inducing times
will converge, but not to the corresponding integral S0 for Ψ0. Presently we shall
choose nk.
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Denote by Sk,n the integral of the inducing time for Ψk,n, for k ≥ 0:

Sk,n :=

∫
[α,α∗]

τk dνk.

Recall X = Xk,n = [α, α∗] \ [q, q∗]. It will be useful to define

SXk,n :=

∫
X

τk dνk

and

Sδk,n :=

∫
(q,q∗)

τk dνk

so SXk,n + Sδk,n = Sk,n.

Given β > 0, for k ≥ 1, let n(k) ≥ 2 be the minimal n such that Sδk,n > βS0.
For large k,

Sδk,n ≈
∫

(q,q∗)

ek,n dνk

by Lemma 9.9. Now (9.15) and the first three statements of Lemma 9.11 together
imply that n(k) exists and Sδk,n(k) ≈ βS0. In particular,

lim
k→∞

Sδk,n(k) = βS0.

Henceforth, we fix the sequence nk := n(k). We can drop the n-dependence from
the notation in the terms considered, and write Sk for Sk,n, etc. We denote the
parameter a(k, nk) by ak. As k → ∞, SXk converges to S0. This follows from
convergence of the Lipschitz densities ρk (Fact 9.13), convergence of the maps Ψk

and the exponential tail estimate for the inducing times τk (Lemma 9.7, as τk(x) = j
on Rj ∩X).

Now let us look at the spread measures. For k ≥ 0, let νjk denote the restriction

of ν to τ−1
k (j) and set

µk :=
1

Sk

∑
j≥1

j−1∑
i=0

(f iak)∗ν
j
k.

Then µk is an ergodic acip for each k ≥ 0. We wish to show that µk does not
converge to µ0 as k → ∞. With this aim, for k ≥ 1, let us restrict νk to X and
then spread:

ηXk :=
1

Sk

∑
j≥1

j−1∑
i=0

(f iak)∗(ν
j
k)|X .

We do the same for νk restricted to (q, q∗):

ηδk :=
1

Sk

∑
j≥1

j−1∑
i=0

(f iak)∗(ν
j
k)|(q,q∗).

Then µk = ηXk + ηδk and

ηXk ([0, 1]) =
SXk
Sk

.
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Because tails on X are exponential and Ψk restricted to X converges to Ψ0,
one can use Fact 9.13 and in particular (9.20) to show that ηXk converges to

lim
k→∞

SXk
Sk

µ0 =
1

1 + β
µ0.

So it remains to check what happens to the limit of ηδk. Well, let Jj denote the set
of x ∈ (q, q∗) with ek,nk(x) = j. The difference between ηδk and the measure

η̂δk :=
1

Sk

∑
j≥1

j∑
i=0

(f iak)∗(ν
j
k)|Jj

is tiny, by Lemma 9.9. In particular, the limits of ηδk and η̂δk coincide (assuming
they exist).

By (9.19),
lim
k→∞

η̂δk([0, 1] \B(1/3, 1/k)) = 0.

Therefore η̂δk and ηδk converge to an atomic measure supported on the point 1/3
with mass given by

lim
k→∞

Sδk
Sk

=
β

1 + β
.

It remains to bound from below the entropies of µk. The Lyapunov exponents∫
[α,α∗]

log |DΨk| dνk are uniformly bounded below away from 0. By Pesin’s formula,

the entropies h(νk) are also uniformly bounded below away from 0. The integrals
of the inducing time converge to S0(1 + β). By Abramov’s formula, the entropies
h(µk) are also bounded away from 0.

That the critical relations are decreasing follows from Remark 9.3 and Defini-
tion 1.16.

This concludes the proof of Proposition 9.4 which, we recall, implies Theo-
rem 1.3. �
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ASIP, 20

attracting (hyperbolic) periodic points, 14
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Critical relation, 16
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d-branched piecewise-monotone map, 15

Decay of correlations, 20

Equilibrium state, 11

free energy, 10
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Gibbs measure, 69
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Hyperbolic measure, 13

Induced map, 34

Induced map (embedded), 39

Induced Markov map, 68

Induced measure (embedded), 44

Irreducible, 68

Lift of a measure, 43

Light limit measure (for a fixed map), 12

Light limit measure (for a sequence of
maps), 13

Locally Hölder continuous, 68

Minimum Principle, 53

Misiurewicz maps, 21

Physical measure, 22

Pressure, 10

Primitive component, 35

Quadratic/logistic family, 13

Quick words, 40

Repelling (hyperbolic) periodic point, 11

Schwarzian derivative, 17

Spread of a measure, 45
Statistically quasistable, 14

Statistically stable, 14

Summable (for a potential), 69
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Notation

Å the interior of A, 31

Cn[x], the element of Pfn containing x, 31

D0, the base of Î, 32

D, domains of the Hofbauer extension, 31

E(f) Set of critical points, 19

E(f, µ, ϕ), free energy, 10

eM,κ, first entry time to [M,∞), 87

E+(f, ϕ), 11

ε(R, d) = 8 logR
R

, 26

eV , first entry time, 80

η(R, d)) =
ε(R)2

2R(log d)2
, 26

f̂ , the dynamics on Î, 31

FNSD, piecewise monotone families with

non-positive Schwarzian derivative, 17

FQ, the quadratic family, 13

H, the coding map on Λ, 67

h(νRL ) = limk→∞ h(νRk ), 48

hR∆ = hRL − h(νR0 ), 48

Î, the Hofbauer extension, 31

ÎR− , trimmed version of ÎR, 32

ÎR, bounded part of Î, 32

ι the inclusion map of I̊ into D0, 32

J(f), analogue of Julia set, 19

lev(D), 32

LΦ, transfer operator, 69

m =Lebesgue measure, 77

Mf , ergodic f -invariant probability
measures, 10

Mε
f (ϕ), ‘good’ measures, 13

M̃f , f -invariant probability measures of
non-negative Lyapunov exponent, 10

n0 = n0(R), used to estimate #Q, 33

Orb(p), orbit of p, 83

ϕV , first entry map, 80

π the projection map from Î to I, 31

Pκ(x) = x2 + κ, 87

P̂n, induced partition on Î, 32

Pfn , n-cylinders, 31

Pf (ϕ), 10

P 0(f, ϕ), 11

Q, elements of P0
nR with rare visits to ÎR− ,

33

r := eW + eV ◦ ϕW , 81

ρj an Nth return time, 35

Σnd , coding space for n-cylinders, 31

Σn(f), the set of codes for Cω(f), 37

Ts, tent map, 82

T∞∆ = lim infR→∞ TR∆ , 59

TRk =
∫
τkdνk, 48

TRL = limk→∞ TRk , 48

Tν =
∫
τ dν., 45

t−, t+, 11

TR∆ := TRL − T
R
0 , 48

V(f) Set of critical values, 19

Vn(Φ), the n-th variation of Φ, 68
VPf (ϕ), variational pressure, 10

(X̂, F̂ , τ), level-R induced map, 35

(X(R), F, τ), the embedded level-R induced
map , 39

x̂ = (x,D), a point in the Hofbauer

extension, 31

(Y 0, F0, τ0), (embedded) level-R limit

induced map, 40

(Y, F̂Y , τ), a level-R primitive induced
map, 37

Ŷj , j ≥ 1, domains of F̂N , 35

YŶ the primitive component of X̂

containing Ŷ , 35
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