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DISCRETE AND CONTINUUM PHENOTYPE-STRUCTURED MODELS FOR THE EVOLUTION
OF CANCER CELL POPULATIONS UNDER CHEMOTHERAPY ∗

REBECCA E. A. STACE 1, THOMAS STIEHL 2, MARK A. J. CHAPLAIN 3, ANNA
MARCINIAK-CZOCHRA 4 AND TOMMASO LORENZI 5

Abstract. We present a stochastic individual-based model for the phenotypic evolution of cancer cell populations
under chemotherapy. In particular, we consider the case of combination cancer therapy whereby a chemotherapeu-
tic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treatment. The cell
population is structured by the expression level of a gene that controls cell proliferation and chemoresistance. In
order to obtain an analytical description of evolutionary dynamics, we formally derive a deterministic continuum
counterpart of this discrete model, which is given by a nonlocal parabolic equation for the cell population density
function. Integrating computational simulations of the individual-based model with analysis of the corresponding
continuum model, we perform a complete exploration of the model parameter space. We show that harsher environ-
mental conditions and higher probabilities of spontaneous epimutation can lead to more effective chemotherapy,
and we demonstrate the existence of an inverse relationship between the efficacy of the epigenetic drug and the
probability of spontaneous epimutation. Taken together, the outcomes of the model provide theoretical ground for
the development of anticancer protocols that use lower concentrations of chemotherapeutic agents in combination
with epigenetic drugs capable of promoting the re-expression of epigenetically regulated genes.
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.

INTRODUCTION

Mathematical modelling can contribute to cancer research by supporting experimental results with a theoretical ba-
sis. Furthermore, mathematical models can generate new experimentally testable hypotheses which can ultimately reveal
emergent phenomena that would otherwise remain unobserved [3, 5–7, 17, 22, 36]. Amongst others, integro-differential
equations and nonlocal partial differential equations (PDEs) modelling evolutionary dynamics in populations structured
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by physiological traits have provided fresh insight into how the adaptation of cancer cell populations exposed to an-
tiproliferative drugs can be acted upon by selective pressures, which drive the outgrowth of drug-resistant phenotypic
variants [2, 25–27, 29, 50–52, 54–56, 71].

A key advantage of these deterministic continuum models over their stochastic individual-based counterparts (i.e.
discrete models that track the phenotypic evolution of single individual cells) is that they are amenable to mathematical
analysis. This enables a complete exploration of the model parameter space, allowing more robust conclusions to be
drawn. Furthermore, compared to individual-based models, such continuum models offer the possibility to carry out
numerical simulations for large numbers of cells, while keeping computational costs within acceptable bounds. However,
continuum models are defined at the scale of the whole cell population and, as such, they are usually formulated on the
basis of phenomenological considerations. This can hinder a precise mathematical description of crucial evolutionary
aspects. On the contrary, stochastic individual-based models describe the phenotypic evolution of single cells in terms of
algorithmic rules, which can be more easily tailored to capture fine details of cellular dynamics. Therefore, such discrete
models make it possible to achieve a more accurate mathematical representation of evolutionary dynamics in cancer cell
populations. Furthermore, individual-based models are able to reproduce the emergence of population-level phenomena
that are induced by stochastic fluctuations in single-cell phenotypic properties – which are relevant in the regime of low
cell numbers and cannot easily be captured by continuum models. Therefore, it is desirable to derive continuum models
for the response of cancer cell populations to chemotherapy as the appropriate limit of discrete models for the phenotypic
evolution of single cells. This may provide a clearer picture of the modelling assumptions made and ensure they correctly
reflect the essentials of the underlying biological problem.

In light of these considerations, aiming to complement the existing literature on phenotype-structured models of evo-
lutionary dynamics in cancer cell populations, we present here a stochastic individual-based model for the phenotypic
evolution of cancer cells under chemotherapy. In particular, we consider the case of combination cancer therapy whereby
a chemotherapeutic agent is administered as the primary treatment and an epigenetic drug is used as an adjuvant treat-
ment. The cancer cell population is structured by the expression level of a gene that controls both cell proliferation and
chemoresistance, and the level of expression of this gene determines the cell phenotypic state. Each single cell within the
population undergoes spontaneous epimutations and divides or dies according to a set of simple rules, which result in a
discrete-time branching random walk on the space of phenotypic states. We formally derive a deterministic continuum
counterpart of this discrete model, which we show to consist of a nonlocal parabolic PDE for the cell population density
function (i.e. the cell distribution over the space of phenotypic states) [65]. Analysing the long-term behaviour of the
solution to this equation, we obtain a precise qualitative and quantitative depiction of evolutionary dynamics in the cancer
cell population. In this respect, our work follows earlier papers about the derivation of deterministic continuum models for
the evolution of populations structured by physiological traits from stochastic individual-based models [19,20,23]. It also
follows previous articles on the analysis of nonlocal parabolic PDEs with advection terms that arise from the mathematical
modelling of adaptive dynamics in asexual populations [23, 24, 53].

Combining computational simulations of the individual-based model with analysis of the corresponding PDE, we
perform a complete exploration of the model parameter space. In summary, the mathematical results obtained support
cancer research by addressing the following questions:

Q1 How do chemotherapeutic agents shape the phenotypic composition and the size of cancer cell populations by
interfering with the evolution of individual cells?

Q2 What conditions on single cells’ evolutionary parameters underpin successful chemotherapy?
Q3 How does the efficacy of adjuvant epigenetic therapy relate to the probability for cancer cells to undergo sponta-

neous epimutation and to the dose of chemotherapy in use?
Q4 Can anticancer protocols that use lower concentrations of chemotherapeutic agents in combination with epigenetic

drugs be more effective than therapeutic protocols based solely on high-dose chemotherapy?

The rest of the paper is organised as follows. In Section 1, we briefly describe the underlying biological problem
and introduce the phenotype-structured individual-based model. In Section 2, we carry out a formal derivation of the
corresponding deterministic continuum model and we study the long-time asymptotic behaviour of its solution, in order to
achieve a precise mathematical characterisation of evolutionary dynamics within the cancer cell population. In Section 3,
we present the results of computational simulations of the individual-based model, we integrate them with the analytical
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results established in Section 2, and we discuss their biological implications. Section 4 concludes the paper and provides
a brief overview of possible research perspectives.

1. BIOLOGICAL BACKGROUND AND DESCRIPTION OF THE MODEL

1.1. Biological background

Recent experimental and clinical studies indicate that carcinogenesis can be viewed as an evolutionary process at the
cellular level [39,45,46,58,61,73,83,85,86,88]. In summary, novel phenotypic variants emerge via heritable variations in
gene expression. The existing phenotypic variants undergo natural selection through competition for space and resources,
in some cases under the action of xenobiotic agents such as anticancer drugs, and the cells in fittest phenotypic states
survive to proliferate at the expense of the weaker phenotypic variants.

Under such an evolutionary perspective, the development of chemoresistance in cancer cell populations can be con-
ceptualised as a population bottleneck owing to the selective pressure exerted by the chemotherapeutic agent(s) in use.
This is illustrated by the schematic diagram presented in Figure 1. Prior to chemotherapy, the cell population is mainly
composed of highly-proliferating phenotypic variants, which have a competitive advantage over cells in slow-proliferating
phenotypic states in favourable environmental conditions. Some slow-proliferating cells are still present because of geno-
typic and phenotypic variability. In the presence of chemotherapy, the population is exposed to the selective stress in-
duced by the chemotherapeutic agent(s), which target mostly rapidly proliferating phenotypic variants. Therefore, cells
with a lower proliferative potential will acquire a competitive advantage over more proliferative cells. As a result, most
of the fast-proliferating, chemosensitive cells will die out and the aftermath of chemotherapy will be a population of
slow-proliferating, chemoresistant cells. Hence, one will initially observe a reduction in the size of the cell population.
However, since those cells that have survived chemotherapy will no longer respond to the therapeutic agents in use, and
they will not have to compete anymore for space and resources against cells with a higher proliferative potential, the size
of the cell population will ultimately grow again.

FIGURE 1. Schematic diagram illustrating the evolutionary process leading to the emergence of chemoresistance
in cancer cell populations.

Whilst genetic mutations are a known source of phenotypic variability in cancer cell populations, a growing number of
researchers welcome the contribution of epimutations (i.e. heritable phenotypic variations that are nongenetic in nature)
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in the events leading to the development and progression of cancer [13, 14, 21, 28, 33, 38, 44, 64, 68, 69, 77–79]. The
initiation of genetic mutations is a result of abnormal structural changes in the DNA sequence, which incorporate a
multitude of dissimilar alterations (e.g. replication error, neglected damage, substitution of base pairs and rearrangement).
Epimutations, in contrast, act at the level of transcription by altering gene expression while leaving the order of the DNA
bases unaltered. Gene expression may be upregulated, downregulated or even silenced, and the mechanisms through
which this happens are of interest [30,32]. DNA methylation and histone modification are two widely accepted epigenetic
mechanisms in the development of resistance to chemotherapeutic agents, which both lead to gene silencing [60, 87].

The development of drugs which interfere with these epigenetic mechanisms and potentially revert cancerous cells
back to a more normal phenotypic state appears to be a valuable resource for effective therapeutic protocols [66]. In
this regard, a new perspective for cancer therapy is offered by experimental results showing that the so-called epigenetic
drugs can induce the re-sensitisation of cancer cells to chemotherapeutic agents [1, 18, 49, 57, 74, 81, 89]. The role of
epigenetic drugs is to interfere with the epigenetic machinery such that they promote re-expression of epigenetically
regulated genes. Demethylating agents (which act to inhibit DNA methylation) and histone deacetylase (HDAC) inhibitors
(which target the prevention of histone modification by acetylation) are two types of epigenetic drugs the effects of which
prove promising on human cancer. For instance, in melanoma and breast cancer studies, the methylation inhibitor 2-
deoxy-5-azacytidine (DAC) demonstrated improved chemotherapeutic drug-uptake whilst reducing chemoresistance [41].
A mouse model showed no effect of DAC on tumour growth but revealed its ability to sensitise the tumour to other
chemotherapeutic agents. Additionally, the HDAC inhibitor Vorinostat has the ability to sensitise cancer cells to other
drug therapies; however, side effects prevent translation to the clinic [42]. Such drugs lie at the heart of controlling
fundamental homeostatic mechanisms, rendering contrasting properties to those seen by chemotherapeutic drugs [89].
Researchers have discovered that inhibiting the DNA transcription regulator cyclin-dependent kinase 9 (CDK9) reactivates
genes that have been epigenetically silenced by cancer, which leads to enhanced anti-cancer immunity [90]. Although the
efficacy and side effects of this class of therapeutic agents are still largely to be assessed, within the past two decades seven
epigenetic drugs have received regulatory approval, and numerous other candidates are currently in clinical trials [35].

1.2. A stochastic individual-based model for the phenotypic evolution of cancer cell populations

We study evolutionary dynamics of a well-mixed population of cancer cells structured by the expression level y ∈ R≥0
of an epigenetically regulated gene that controls both cell proliferation and chemoresistance, such as the DLL1 gene [47,
67, 72]. Cells within the population divide, die and undergo spontaneous epimutations, i.e. epimutations that occur
randomly due to nongenetic instability and are not induced by any selective pressure [43]. Moreover, a chemotherapeutic
agent can be administered as the primary treatment and an epigenetic drug promoting the re-expression of the gene may
be used as an adjuvant treatment.

On the basis of previous experimental results, such as those reported in [37, 80], we follow Pisco & Huang [68] by
assuming that there is a sufficiently high level of gene expression yH conferring the highest rate of cellular division and,
given that chemotherapeutic agents target mostly rapidly dividing cells [8], we also assume that there is a sufficiently low
level of gene expression yL < yH which endows cancer cells with the highest level of chemoresistance. Based on the
modelling strategies proposed by Lorenzi et al. [52], we represent the phenotypic state of cancer cells by the rescaled
variable x ∈ R with

x =
y − yL

yH − yL
,

so that the state x = 0 corresponds to the highest level of chemoresistance, whereas the state x = 1 corresponds to the
highest proliferative potential. These ideas are illustrated by the scheme in Figure 2.

Building upon the ideas presented by Chisholm et al. [23], we model the phenotypic evolution of the cell population as
a time-discrete branching random walk whereby the time variable t ∈ R≥0 and the phenotypic state x ∈ R are discretised,
respectively, as

th = hτ for h ∈ N0 and xi = iχ for i ∈ Z, with 0 < τ, χ� 1.

We introduce the dependent variableNh
i ∈ N0 to model the number of cells in the phenotypic state xi at the hth time-step,

and we compute the cell population density nhi , the size of the cell population (i.e. the total number of cells) ρh, the mean
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FIGURE 2. Schematic diagram illustrating the relationships between gene expression levels, phenotypic states
and cellular characteristics in our model.

phenotypic state µh, and the related standard deviation σh as

nhi = Nh
i χ
−1, ρh =

∑
i

Nh
i µh =

1

ρh

∑
i

xiN
h
i and σh =

(
1

ρh

∑
i

x2i N
h
i −

(
µh
)2) 1

2

. (1)

Notice that the standard deviation σh provides a possible measure of the level of phenotypic heterogeneity within the cell
population at the hth time-step. Furthermore, focussing on the case of continuous drug administration, we introduce the
parameters cK ∈ [0, 1] and cE ∈ [0, 1] to model, respectively, the rescaled constant concentration of the chemotherapeutic
agent and of the epigenetic drug within the system.

We model the phenotypic evolution of the single cells by means of the following algorithmic rules, which are schema-
tised in Figure 3.

Mathematical modelling of phenotypic variations [cf. Figure 3(a)]. To model the effect of spontaneous epimuta-
tions, at the beginning of each time-step h, we allow all cancer cells to update their phenotypic states according to a
random walk. In summary, every cell in the population can undergo an epimutation and enter into a new phenotypic state
with probability λ ∈ [0, 1], or remain in its current phenotypic state with probability 1 − λ. A cell in the phenotypic
state xi that undergoes an epimutation can either enter into the phenotypic state xi−1 with probability pL or enter into the
phenotypic state xi+1 with probability pR. Hence, we assume that

pL + pR = λ. (2)

Spontaneous epimutations are modulated by the epigenetic drug, which promotes the re-expression of the gene (i.e. it
favours the transition of cancer cells from lower to higher values of xi). We let the strength of the action of the epigenetic
drug increase with the drug concentration; therefore, we make the assumptions that pR is an increasing function of cE. In
more detail, we assume

pL ≡ pL(cE), pR ≡ pR(cE), pR : [0, 1]→ [0, λ], p′R(·) ≥ 0, pL(cE) = λ− pR(cE), (3)

and we choose
pL(cE) :=

λ

2
− ν

2
cE and pR(cE) :=

λ

2
+
ν

2
cE, (4)

where the parameter ν ∈ R>0, with ν � 1, models the strength of modulation of spontaneous epimutation by the epige-
netic drug.



6 TITLE WILL BE SET BY THE PUBLISHER

Mathematical modelling of cell division and death [cf. Figure 3(b)]. At any time-step h, after the phenotype up-
date, we allow every cell to divide or die or remain quiescent at rates that depend on their phenotypic states, as well as on
the environmental conditions given by the size of the cell population ρh and the concentration of the chemotherapeutic
agent cK. We denote by b(xi) the net division rate of a cell in the phenotypic state xi (i.e. the difference between the rate
of cell division and the rate of natural death). To take into account the fact that the phenotypic state x = 1 corresponds
to the highest rate of cell division, we let the net cell division rate b : R → R satisfy following assumptions (see also
Remark 1.1)

b(1) > 0, arg max
x∈R

b(x) = 1 and b′′(·) < 0. (5)

Moreover, to translate into mathematical terms the idea that higher cell numbers correspond to less available space and
resources, and thus to more intense intrapopulation competition, at every time-step h we allow the cells to die due to
intrapopulation competition at rate d(ρh), where the function d : R≥0 → R≥0 satisfies the following assumptions

d(0) = 0 and d′(·) > 0. (6)

Finally, we denoted by k(xi, cK) the rate at which a cell in the phenotypic state xi can be induced to death by the
chemotherapeutic agent. Since the cells in the phenotypic state x = 0 are fully chemoresistant and, for cells in phenotypic
states other than the most chemoresistant one, the rate of death induced by chemotherapy increases with the dose of the
chemotherapeutic agent, we assume the function k : R × [0, 1] → R≥0 to satisfy the following conditions (see also
Remark 1.1)

k(·, 0) = 0, arg min
x∈R

k(x, cK) = 0 ∀ cK > 0,
∂k(x, ·)
∂cK

> 0 ∀x 6= 0 and
∂2k(·, cK)

∂x2
> 0 ∀ cK > 0. (7)

Remark 1.1. The concavity assumption on the net proliferation rate b(x) and the convexity assumption on the rate
of death induced by the chemotherapeutic agent k(x, cK) for cK > 0 lead naturally to smooth fitness landscapes (cf.
Remark 2.1), which are close to the approximate fitness landscapes inferred from experimental data through regression
techniques [63].

In this framework, between the time-step h and the time-step h+ 1, we let a cell in the phenotypic state xi:
• divide (i.e. be replaced by two identical progeny cells) with probability

τ b(xi)+ where b(xi)+ = max (0, b(xi)) , (8)

• die (i.e. be removed from the population) with probability

τ
(
b(xi)− + d(ρh) + k(xi, cK)

)
where b(xi)− = −min (0, b(xi)) , (9)

• remain quiescent with probability

1− τ
(
|b(xi)|+ d(ρh) + k(xi, cK)

)
where |b(xi)| = b(xi)+ + b(xi)−. (10)

Notice that we assume the parameter τ to be sufficiently small so that the quantities (8)-(10) are all between 0 and 1.
On the basis of the ideas proposed in [23, 52], in this paper we will consider the following definitions

b(x) := γ − η (1− x)2, d(ρ) := ζ ρ, k(x, cK) := cK x
2. (11)

In the definitions (11), the parameter γ ∈ R>0 is the division rate of the fastest dividing cells in the phenotypic state
x = 1, while the parameter η ∈ R>0 is a nonlinear selection gradient that provides a measure of the strength of natural
selection in the absence of xenobiotic agents. Finally, the parameter ζ ∈ R>0 is inversely proportional to the carrying
capacity of the cancer cell population. The fact that the net proliferation rate b(x) can become negative for values of
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FIGURE 3. Schematic representation of the algorithmic rules governing the phenotypic evolution of cancer
cells in the stochastic individual-based model. (a) Spontaneous epimutations are modelled as transitions between
adjacent phenotypic states that occur with probabilities pL and pR. Epigenetic therapy is integrated into the model
through the dependence of the transition probabilities on the concentration of the epigenetic drug cE [i.e. pL ≡
pL(cE) and pR ≡ pR(cE)]. (b) For a cell in the phenotypic state xi, we let b(xi) and k(xi, cK) model, respectively,
the net rate of cell division (i.e. the difference between the rate of cell division and the rate of natural death) and
the rate of cell death induced by the concentration cK of the chemotherapeutic agent. Moreover, we denote by
d(ρh) the rate of cell death due to intrapopulation competition caused by nutrient and space limitations, with ρh

being the size of the cell population at the time-step h. During the time interval of length τ � 1 between the hth

time-step and the time-step h + 1, we let a cell in the phenotypic state xi divide with probability τ b(xi)+ or die
with probability τ

(
b(xi)− + d(ρh) + k(xi, cK)

)
, or remain quiescent with probability 1− τ

(
|b(xi)|+ d(ρh) +

k(xi, cK)
)
.

x sufficiently far from 1 captures the idea that phenotypic variants with a low level of fitness cannot survive within the
population. Definitions (11) satisfy assumptions (5)-(7) and ensure analytical tractability of the deterministic continuum
counterpart of the stochastic discrete model, which will be formally derived in the next section.

2. CORRESPONDING CONTINUUM MODEL AND ANALYSIS OF EVOLUTIONARY DYNAMICS

2.1. Formal derivation of the continuum model corresponding to the individual-based model

Considering a cell population that evolves according to the algorithmic rules presented in Section 1.2 (cf. the scheme
in Figure 3), the principle of mass balance gives

nh+1
i =

[
2τb(xi)+ + 1− τ

(
|b(xi)|+ d(ρh) + k(xi, cK)

)][
pL(cE)nhi+1 + pR(cE)nhi−1 +

(
1− pL(cE)− pR(cE)

)
nhi

]
.

Noting that
b(xi) = b(xi)+ − b(xi)− and |b(xi)| = b(xi)+ + b(xi)−,

the above difference equation can be rewritten as

nh+1
i =

(
1 + τ b(xi)− τ d(ρh)− τ k(xi, cK)

)[
pL(cE)nhi+1 + pR(cE)nhi−1 +

(
1− pL(cE)− pR(cE)

)
nhi

]
. (12)

Using the fact that the following relations hold for τ and χ sufficiently small

th ≈ t, th+1 ≈ t+ τ, xi ≈ x, xi−1 ≈ x− χ, xi+1 ≈ x+ χ,

nhi ≈ n(x, t), nh+1
i ≈ n(x, t+ τ), nhi−1 ≈ n(x− χ, t), nhi+1 ≈ n(x+ χ, t), ρh ≈ ρ(t) =

∫
R
n(x, t) dx,
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we rewrite (12) in the following approximate form

n(x, t+ τ) ≈
(

1 + τ R(x, ρ(t), cK)
)[
pL(cE)n(x+ χ, t) + pR(cE)n(x− χ, t) +

(
1− pL(cE)− pR(cE)

)
n(x, t)

]
,

with
R(x, ρ, cK) := b(x)− d(ρ)− k(x, cK). (13)

Assuming that n ∈ C2 (R× R≥0), we can approximate the terms n(x, t + τ), n(x − χ, t) and n(x + χ, t) in the latter
equation by their second order Taylor expansions about the point (x, t), that is, we can use the approximations

n(x, t+ τ) ≈ n+ τ
∂n

∂t
+
τ2

2

∂2n

∂t2
and n(x± χ, t) ≈ n± χ∂n

∂x
+
χ2

2

∂2n

∂x2
, with n ≡ n(x, t).

In so doing, after a little algebra we find

∂n

∂t
+
τ

2

∂2n

∂t2
≈ χ

τ

(
pL(cE)− pR(cE)

)∂n
∂x

+
χ2

2τ

(
pL(cE) + pR(cE)

) ∂2n
∂x2

+R(x, ρ(t), cK)

[
n+ χ

(
pL(cE)− pR(cE)

)∂n
∂x

+
χ2

2

(
pL(cE) + pR(cE)

)∂2n
∂x2

]
. (14)

Substituting (4) into (14) yields

∂n

∂t
+
τ

2

∂2n

∂t2
≈ −χν

τ
cE
∂n

∂x
+
χ2

τ

λ

2

∂2n

∂x2
+ R(x, ρ(t), cK)

(
n− χν cE

∂n

∂x
+ χ2λ

2

∂2n

∂x2

)
. (15)

Letting ν, τ, χ→ 0 in (15) in such a way that

lim
ν,τ,χ→0

χν

τ
= α and lim

τ,χ→0

χ2

τ
= β with α, β ∈ R>0 (16)

we formally obtain the following nonlocal parabolic equation for the population density function n(x, t) ≥ 0:
∂n

∂t
+ α cE

∂n

∂x
= β

λ

2

∂2n

∂x2
+R(x, ρ(t), cK)n, n ≡ n(x, t), (x, t) ∈ R× R≥0,

ρ(t) =

∫
R
n(t, x) dx.

(17)

Without loss of generality, in the remainder of this section we will assume

α = β = 1. (18)

Remark 2.1. The functional R(x, ρ, cK) defined according to (13) represents the fitness of cancer cells in the phenotypic
state x under the environmental conditions determined by the population size ρ and by the concentration of the chemother-
apeutic agent cK, i.e. the fitness landscape of the cancer cell population [43, 58, 70]. Substituting definitions (11) into
definition (13), a little algebra shows that

R
(
x, ρ, cK

)
= γ − η cK

η + cK
− (η + cK)

(
x− η

η + cK

)2

− ζ ρ.

Therefore, the fittest phenotypic state (i.e. the phenotypic state with the highest fitness) is

xfit =
η

η + cK
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and the gene expression level corresponding to the fittest phenotypic state yfit is given by the following equation

yfit = xfit yH + (1− xfit) yL.

Hence, although x ∈ R and y ∈ R≥0, we have that

0 < xfit ≤ 1 and yL < yfit ≤ yH .

2.2. Analysis of evolutionary dynamics

For any initial condition n(x, 0) that satisfies the following biologically realistic assumptions

n(x, 0) ∈ L1 ∩ L∞(R), n(x, 0) > 0 a.e. only on Ω ⊂ R with Ω being a compact set, (19)

the long-time behaviour of the solution n(x, t) ≥ 0 to equation (17) is characterised by Theorem 2.2.

Theorem 2.2. Under definitions (11) and (13) and assumptions (18), the integral ρ(t) of the solution to the nonlocal
parabolic PDE (17) subject to the initial condition (19) satisfies the following:

(i) if

η cK
η + cK

+
c2E
2λ

+

(
λ

2

) 1
2

(η + cK)
1
2 ≥ γ (20)

then
lim
t→∞

ρ(t) = 0; (21)

(ii) if

η cK
η + cK

+
c2E
2λ

+

(
λ

2

) 1
2

(η + cK)
1
2 < γ (22)

then

lim
t→∞

ρ(t) = ρ > 0 with ρ =
1

ζ

(
γ − η cK

η + cK
− c2E

2λ
−
(
λ

2

) 1
2

(η + cK)
1
2

)
. (23)

Moreover, under the additional assumption (22), the nonlocal parabolic PDE (17) admits a unique nonnegative nontrivial
steady-state solution n(x) with

n(x) =
ρ

(2π)
1
2 σ

exp

[
−1

2

(x− µ)
2

σ2

]
, (24)

where

µ =
η

η + cK
+

cE

(2λ)
1
2 (η + cK)

1
2

and σ =

(
λ

2 (η + cK)

) 1
4

. (25)

Proof. Substituting definitions (11) and (13) and assumptions (18) into the nonlocal parabolic PDE (17) gives

∂n

∂t
+ cE

∂n

∂x
=
λ

2

∂2n

∂x2
+
(
γ − η (1− x)2 − cK x2 − ζ ρ(t)

)
n, n ≡ n(x, t), (x, t) ∈ R× R≥0.

We rewrite the latter PDE as

∂n

∂t
+ cE

∂n

∂x
=
λ

2

∂2n

∂x2
+
(
γK − ηK (x− xK)2 − ζ ρ(t)

)
n, (26)
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with
γK := γ − η cK

η + cK
, ηK := η + cK and xK :=

η

η + cK
. (27)

Proof of (21) and (23). Using the method of proof that we presented in [23], one can show that, for any initial condition
satisfying assumptions (19), the integral of the solution to the PDE (26) is such that

ρ(t) =

ρ(0) exp

[∫ t

0

g(s) ds

]
1 + ζ ρ(0)

∫ t

0

exp

[∫ s

0

g(z) dz

]
ds

,

where the function g(t) is such that g(t) −→ γK −
c2E
2λ
−
(
λ ηK

2

) 1
2

=: g as t→∞. Since

exp

[∫ t

0

g(s) ds

]
∼ Ceg t as t→∞ and

∫ t

0

exp

[∫ s

0

g(z) dz

]
ds ∼


const if g < 0

Ct if g = 0
C

g
eg t if g > 0

as t→∞

for some C ∈ R>0, we conclude that ρ(t) is such that

if γK ≤
c2E
2λ

+

(
λ ηK

2

) 1
2

then lim
t→∞

ρ(t) = 0, whereas if γK >
c2E
2λ

+

(
λ ηK

2

) 1
2

then lim
t→∞

ρ(t) =
g

ζ
.

This concludes the proof of (21) and (23).

Proof of (24) and (25). A nonnegative nontrivial steady-state solution n(x) of the PDE (26) satisfies the following
differential equation

λ

2
n′′ − cE n′ +

(
γK − ηK (x− xK)2 − ζ ρ

)
n = 0, n ≡ n(x), x ∈ R,

ρ =

∫
R
n(x) dx.

(28)

We make the change of variables y = x− xK and rewrite (28) as
λ

2
n′′ − cE n′ +

(
γK − ηK y2 − ζ ρ

)
n = 0, n ≡ n(y), y ∈ R,

ρ =

∫
R
n(y) dy.

(29)

Making the additional change of variables

n(y) = exp
(cE y
λ

)
u(z) with z = y

(
8 ηK
λ

) 1
4

(30)



TITLE WILL BE SET BY THE PUBLISHER 11

we find that u(z) satisfies the differential equation

u′′ −
(
z2

4
+ a

)
u = 0, u ≡ u(z), z ∈ R with a :=

ζ

(2λ ηK)
1
2

(
ρ+

c2E
2λ ζ

− γK
ζ

)
. (31)

The differential equation (31) is the Weber’s equation, the solutions of which are bounded for all z ∈ R if and only if

a = −m− 1

2
with m ∈ Z∗.

The bounded solutions are of the form
u(z) ∝ exp(−z2/4)Hm(z), (32)

where Hm(z) denotes the Hermite polynomial of degree m [59, 84]. Since Hm(z) ≥ 0 for all z ∈ R only if m = 0, the

existence of a nontrivial nonnegative solution of the differential equation (31) requires a = −1

2
. Under assumption (22),

solving the algebraic equation

a = −1

2
⇐⇒ ζ

(2λ ηK)
1
2

(
ρ+

c2E
2λ ζ

− γK
ζ

)
= −1

2

for ρ we find the expression (23) of ρ, as expected. Furthermore, using equation (32) with m = 0 along with the change
of variables (30) we find that

n(y) = C exp

−1

2

(
2 ηK
λ

) 1
2

(
y − cE

(2λ ηK)
1
2

)2
,

for some C ∈ R>0. The change of variables y = x− xK then yields

n(x) = C exp

−1

2

(
2 ηK
λ

) 1
2

[
x−

(
xK +

cE

(2λ ηK)
1
2

)]2. (33)

Moreover, we can evaluate the constantC in terms of ρ by integrating both sides of (33) over R and imposing
∫
R
n(x) dx = ρ.

In so doing we find C = ρ (2π)−
1
2

(
λ

2 ηK

)− 1
4

. Substituting the expression of C together with the definitions (27) of ηK

and xK into (33) we obtain (24) with µ and σ given by (25). This concludes the proof of (24) and (25). �

Additional pieces of biological information are conveyed by the result established by the following corollary of Theo-
rem 2.2.

Corollary 2.3. Under the assumptions of Theorem 2.2 and the additional assumption (22), if the following condition is
verified

cE > λ
3
4

(
η + cK

2

) 1
4

(34)

then the asymptotic value of the cell population size (23) is such that

∂ρ

∂λ
> 0. (35)
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Proof. Differentiating the expression (23) of ρ with respect to λ and solving the inequality
∂ρ

∂λ
> 0 for cE one can easily

verify the claim of Corollary 2.3. �

The asymptotic results established by Theorem 2.2 together with the additional result given by Corollary 2.3 demon-
strate that, if the cancer cell population does not go extinct, i.e. if assumption (22) is satisfied, then:

• The equilibrium population size ρ is a decreasing function of the concentration of the chemotherapeutic agent cK
and of the concentration of the epigenetic drug cE.

• The reduction in the equilibrium population size induced by the chemotherapeutic agent is an increasing function
of the selection gradient η and of the probability of spontaneous epimutation λ.

• The reduction in the equilibrium population size due to the epigenetic drug is a decreasing function of the proba-
bility of spontaneous epimutation λ.

• If the concentration of the epigenetic drug is sufficiently high – i.e. when cE satisfies condition (34) – the
population size at equilibrium is an increasing function of λ.

• The equilibrium phenotype distribution n(x) is unimodal, with the mean phenotypic state µ being at the distribu-
tion’s peak.

• If cE = 0 and cK = 0 then µ = 1, that is, in the absence of xenobiotic agents the peak of the equilibrium
phenotype distribution is at the fastest proliferating state x = 1.

• The mean phenotypic state µ is a decreasing function of the concentration of the chemotherapeutic agent cK.
Higher values of cK lead the peak of the equilibrium phenotype distribution to move from the fastest proliferating
state x = 1 towards more chemoresistant phenotypic states closer to the most chemoresistant state x = 0.

• The level of phenotypic heterogeneity at equilibrium (i.e. the standard deviation σ of the phenotypic distribution)
is an increasing function of the probability of spontaneous epimutation λ, and a decreasing function of both the
nonlinear selection gradient η and the concentration of the chemotherapeutic agent cK.

• The mean phenotypic state µ is an increasing function of the concentration of the epigenetic drug cE. For cK > 0
given, higher values of cE move the peak of the equilibrium phenotype distribution from more chemoresistant
phenotypic states closer to x = 0 towards more chemosensitive phenotypic states closer to x = 1.

• For cE > 0 given, the change in the mean phenotypic state µ induced by the epigenetic drug is a decreasing
function of the probability of spontaneous epimutation λ and of the concentration of the chemotherapeutic agent
cK.

In the next section, these mathematical findings are integrated with the results of computational simulations of the sto-
chastic individual-based model, and their biological relevance is discussed in detail.

3. COMPUTATIONAL SIMULATIONS OF THE STOCHASTIC INDIVIDUAL-BASED MODEL

3.1. Setup of computational simulations

To carry out computational simulations of the stochastic individual-based model, we consider x ∈ [−4, 4] ⊂ R and
we define τ = 0.001, χ =

√
τ and ν = χ, so that conditions (16) and (18) are met. In agreement with previous

papers [11, 12, 52, 69, 82], we define

γ := 0.6 day−1, η := 0.3 day−1, ζ := 0.6× 10−4 cells−1 day−1 (36)
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and, unless otherwise stated, we choose

λ := 0.01. (37)

Computational simulations are carried out in MATLAB. At each time-step, we follow the procedures summarised
hereafter to simulate phenotypic variations, cell division and cell death. All random numbers mentioned below are real
numbers drawn from the standard uniform distribution on the interval (0, 1) using the MATLAB function RAND.

• Phenotypic variations. For each cell, a random number is generated and we determine whether or not the cell
undergoes a phenotypic variation by comparing this number with the value of the probability of epimutation λ. If
a cell undergoes a phenotypic variation, a new random number is generated and we let the cell move either into
the phenotypic state to the left or into the phenotypic state to the right of its current state based on a comparison
between the random number and the values of the quantities pL(cE) and pR(cE) defined according to (4). The
attempted phenotypic variation of the cell is aborted if it requires moving out of the computational domain [−4, 4].

• Cell division and death. The size of the cell population is computed and the probabilities of cell division, death
and quiescence are evaluated for every phenotypic state according to (8)-(11). For each cell, a random number is
generated and the cells’ fate is determined by comparing this number with the probabilities of division, death and
quiescence corresponding to the cell phenotypic state.

We study the evolution of the cell population over the time window [0, T ] with T corresponding to 60 days. The average
CPU time for one computational simulation is 62 seconds.

To reproduce a biological scenario where the cell population has never been exposed to therapy, we consider an initial
cell number approximatively equal to the equilibrium population size (23) for cE = 0 and cK = 0 (i.e. the initial total
number of cells is 8841). Moreover, we assume the phenotypic states of the cells to be initially distributed according to a
normal distribution with mean zero (i.e. most of the cells are initially in the fastest dividing state x = 0).

For all the computational simulations of the individual-based model that we report on in this section, we show that the
size of the cell population ρh, the mean phenotypic state µh and the population density nhi at day 60 match, respectively,
with the equilibrium population size ρ, the equilibrium average phenotypic state µ, and the equilibrium population density
n(x) given by (23)-(25). This testifies to the robustness of the computational results presented here.

3.2. Main results

The chemotherapeutic agent reduces the population size at the cost of promoting the outgrowth of more chemoresistant
phenotypic variants

The computational simulation results presented in Figure 4 show that, in the absence of epigenetic therapy (i.e. when
cE = 0), higher doses of the chemotherapeutic agent (i.e. higher values of cK) trigger a more pronounced population
bottleneck by causing a sharper reduction in the total number of cells before re-growth towards a stable value. The
black dashed lines in Figure 4 highlight the equilibrium population size ρ (right panel) and the equilibrium population
density n(x) (left panel) given, respectively, by (23) and (24). In agreement with the asymptotic results established
by Theorem 2.2, the population density at day 60 is unimodal with the distribution’s peak being closer to the highly-
chemoresistant phenotypic state x = 0 for higher values of cK, while the corresponding population size is a decreasing
function of the dose of the chemotherapeutic agent. These results formalise the idea that chemotherapy reduces the size
of cancer cell populations at the cost of promoting the selection of more chemoresistant phenotypic variants.

The level of phenotypic heterogeneity in the population decreases with the concentration of the chemotherapeutic agent

The computational simulation results presented in the right panel of Figure 4 reveal also that the standard deviation of
the population density nhi at day 60 decreases with the concentration of the chemotherapeutic agent. This is in agreement
with the asymptotic results established by Theorem 2.2, and reflects the fact that chemotherapy acts as a selective pressure
on cancer cells, thus reducing the level of phenotypic heterogeneity within the population.
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FIGURE 4. Population density nh
i at day 60 and corresponding dynamics of the population size ρh for increasing

concentrations of the chemotherapeutic agent – i.e. cK = 0.1 (blue lines), cK = 0.4 (green lines) and cK = 1

(red lines) – in the absence of the epigenetic drug – i.e. cE = 0. The black dashed lines highlight the equilibrium
population density n(x) and the equilibrium population size ρ given by (24) and (23), respectively. Values are in
units of 104.

Higher probabilities of spontaneous epimutation and larger selection gradients increase the cytotoxic effect of the chemother-
apeutic agent

The heat map in the left panel of Figure 5 depicts how the population size ρh at day 60 varies as a function of the
probability of spontaneous epimutation λ and of the nonlinear selection gradient η, under chemotherapy as a stand alone
treatment (i.e. for cK > 0 and cE = 0). The plot matches with the same plot of the equilibrium population size ρ given
by (23), which is displayed in the right panel of Figure 5. These results indicate that, in the absence of epigenetic therapy,
the cell population size at day 60 is a decreasing function of the parameters λ and η, which supports the idea that the
cytotoxic effect of the chemotherapeutic agent becomes stronger in the presence of higher probabilities of spontaneous
epimutation and larger selection gradients.

The epigenetic drug reduces the size of the population and counters the selection of chemoresistant phenotypic variants

The results presented in Figure 6 summarise the effects on the cell population of adjuvant epigenetic therapy. The
black dashed lines highlight the equilibrium population density n(x) (left panel) and the equilibrium population size ρ
(right panel) given by (24) and (23), respectively. In agreement with the asymptotic results established by Theorem 2.2,
the computational simulation results displayed in the insets in the right panel of Figure 6 show that, for all the doses of
the chemotherapeutic agent considered here (i.e. all values of cK > 0 used to carry out computational simulations), the
population size ρh at day 60 is lower under adjuvant epigenetic therapy (i.e. when cE > 0) compared to the case without
epigenetic drug (i.e. for cE = 0). Furthermore, the cell population density nhi at day 60 is unimodal, and the phenotype
distribution’s peak for cE > 0 is further away from the highly-chemoresistant phenotypic state x = 0 than in the case
where cE = 0 (vid. insets in the left panel of Figure 6). The distance between the values of the mean phenotypic state µh

at day 60 obtained for cE > 0 and cE = 0 is a decreasing function of cK. Taken together, these results support the idea that
combining primary chemotherapy with adjuvant epigenetic therapy makes it possible to induce to death a larger number
of cancer cells, and meanwhile hamper the selection of chemoresistant phenotypic variants. Moreover, the results predict
that epigenetic drugs promoting the re-expression of epigenetically regulated genes will be more effective in preventing
the emergence of chemoresistance under low-dose chemotherapy than under high-dose chemotherapy.
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FIGURE 5. The plot in the left panel shows the population size ρh (in units of 104) at day 60 as a function of
the probability of spontaneous epimutation λ and of the selection gradient η. The concentration of the chemother-
apeutic agent is cK = 0.5 and there is no epigenetic drug (i.e. cE = 0). This plot matches with the plot of the
equilibrium population size ρ given by (23) as a function of the parameters λ and η, which is displayed in the right
panel.

FIGURE 6. Population density nh
i at day 60 and corresponding dynamics of the population size ρh for increasing

concentrations of the chemotherapeutic agent – i.e. cK = 0.1 (blue lines), cK = 0.4 (green lines) and cK = 1 (red
lines) – in the presence of the epigenetic drug – i.e. cE = 0.025. The black dashed lines highlight the equilibrium
population density n(x) and the equilibrium population size ρ given by (24) and (23), respectively. The insets show
the comparison between the results obtained with (ticker lines) and without (thiner lines) the epigenetic drug (i.e.
for cE > 0 and cE = 0, respectively). Values are in units of 104.

The action of the epigenetic drug is hampered by higher probabilities of spontaneous epimutation

The results presented in Figure 7 illustrate how the size ρh and the mean phenotypic state µh of the cell population at
day 60 vary as functions of the probability of spontaneous epimutation λ under chemotherapy (i.e. for cK > 0). Different
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colours correspond to different doses of the epigenetic drug (i.e. different values of cE). The dashed lines highlight
the equilibrium population size ρ and the equilibrium mean phenotypic state µ given by (23) and (25), respectively, as
functions of the parameter λ. In agreement with the asymptotic results established by Theorem 2.2, the mean phenotypic
state µh at day 60 does not depend on the probability of spontaneous epimutation under chemotherapy as a stand-alone
treatment (i.e. for cK > 0 and cE = 0), while it becomes a decreasing function of the parameter λ in the presence of
adjuvant epigenetic therapy (i.e. when cK > 0 and cE > 0). This suggests that epigenetic drugs can become less effective
in countering the emergence of chemoresistance in those cases where cancer cells are more likely to undergo spontaneous
epimutations.

FIGURE 7. Plots of the population size ρh and the mean phenotypic state µh at day 60 as functions of the
probability of spontaneous epimutation λ. The concentration of the chemotherapeutic agent is cK = 0.4, while
the concentration of the epigenetic drug is alternatively defined as cE = 0 (blue dots), cE = 0.025 (green dots),
cE = 0.034 (yellow dots) or cE = 0.048 (red dots). The values of cE corresponding to the yellow and red lines are
such that the condition (34) is satisfied for all values of λ considered. The dashed lines highlight the equilibrium
population size ρ and the equilibrium mean phenotypic state µ given by (23) and (25), respectively.

The epigenetic drug can alter dependence of the cell population size on the probability of spontaneous epimutation

The computational simulation results presented in Figure 7 also show that, in the absence of the epigenetic drug, the cell
population size ρh at day 60 is a decreasing function of the probability of spontaneous epimutation λ. On the other hand,
as established by Corollary 2.3, if the dose of the epigenetic drug is sufficiently high [i.e. if condition (34) is verified] then
the cell population size ρh at day 60 is an increasing function of λ. This communicates the notion that epigenetic drugs
which induce gene re-expression may alter the existing relationships between the probability of spontaneous epimutation
and the size of cancer cell populations.

Considerations about therapeutic optimisation

The plots in Figure 8 illustrate how the size ρh and the mean phenotypic state µh of the cell population at day 60
vary as functions of the total concentration of the therapeutic agents (i.e. different values of the sum cK + cE). Different
colours correspond to different combinations of the chemotherapeutic agent and the epigenetic drug (i.e. different values
of cK > 0 and cE ≥ 0 that give the same value of cK + cE). The dashed lines highlight the corresponding values of the
equilibrium population size ρ and the equilibrium mean phenotypic state µ given by (23) and (25), respectively. These
results show that, for each given value of the total concentration of therapeutic agents, values of the mean phenotypic state
more distant from the highly-chemoresistant phenotypic state x = 0 and lower values of the size of the cell population can
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be obtained by increasing the value of cE and decreasing the value of cK. This supports the conclusion that therapeutic
protocols based on lower doses of chemotherapeutic agents in combination with epigenetic drugs that promote the re-
expression of epigenetically regulated genes can lead to a better therapeutic outcome – a therapeutic outcome characterised
by smaller cancer cell numbers and lower levels of chemoresistance – than therapeutic protocols based solely on high-dose
chemotherapy.

FIGURE 8. Plots of the population size ρh and the average phenotypic state µh at day 60 as functions of the total
concentration of therapeutic agents cE+cK, i.e. cK ∈ [0.5−cE, 1−cE] with cE = 0 (blue dots), cE = 0.04 (green
dots), cE = 0.06 (yellow dots) and cE = 0.07 (red dots). The dashed lines highlight the equilibrium population
size ρ and the equilibrium mean phenotypic state µ given by (23) and (25), respectively.

4. CONCLUSIONS AND RESEARCH PERSPECTIVES

We have developed a simple, yet effective, phenotype-structured individual-based model for the evolution of a cancer
cell population under the action of a chemotherapeutic agent in combination with an epigenetic drug. Moreover, we
have formally derived the deterministic continuum counterpart of such a stochastic discrete model, which is given by a
nonlocal PDE for the population density function. Integrating the results of computational simulations of the stochastic
individual-based model with analytical results on the long-term behaviour of the solution to the corresponding PDE, we
have obtained findings with broad structural stability under parameter changes. The results achieved give answers to
questions Q1-Q4 posed in Section 1. In summary:

A1 Our results support the idea that chemotherapeutic agents reduce the size of cancer cell populations at the cost of
promoting the outgrowth of more resistant phenotypic variants. Moreover, the level of chemoresistance acquired
by cancer cell populations can vary with the administered dose of the chemotherapeutic agent. This suggests
that different doses of the same agent can trigger the selection for phenotypic variants characterised by different
levels of chemoresistance. Finally, the results presented here indicate that the level of phenotypic heterogeneity in
cancer cell populations decreases with the concentration of chemotherapeutic agents, which reflects the fact that
higher doses of chemotherapy correspond to harsher environmental conditions and stronger selective pressures.

A2 The results of this in silico study suggest that, under the continuous administration of chemotherapeutic agents,
harsher environmental conditions (i.e. stronger selection gradients independent of xenobiotic agents) and higher
probabilities of spontaneous epimutation can make cancer cell populations more sensitive to the cytotoxic action
of chemotherapy.
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A3 Our results demonstrate the existence of an inverse relationship between the efficacy of epigenetic drugs and the
probability for cancer cells to undergo spontaneous epimutations. Furthermore, the model supports the idea that
epigenetic drugs can be more effective in countering the emergence of chemoresistance when used in combination
with low-dose chemotherapy.

A4 The outcomes of the model provide theoretical ground for the development of anticancer protocols that use
lower concentrations of chemotherapeutic agents in combination with epigenetic drugs capable of promoting
the re-expression of epigenetically regulated genes; with the caveat that such drugs may alter the way in which
spontaneous epimutations impact on the evolution of cancer cell populations.

The focus of this work has been on the case of continuous drug administration. However, the stochastic individual-
based model presented here, as well as the related formal method to derive the corresponding deterministic continuum
model, can be easily adapted to drug doses that vary over time. In this regard, it would be interesting to investigate whether
the delivery schedules for the chemotherapeutic agent obtained through numerical optimal control of the nonlocal PDE for
the population density function [2,62] would remain optimal also for the individual-based model. Another track to follow
might be to investigate the effect of stress-induced epimutations triggered by the selective pressure that chemotherapeutic
agents exert on cancer cells [25]. An additional development of this study would be to include a spatial structure, for
instance by embedding the cancer cells in the geometry of a solid tumour, and to take explicitly into account the effect of
spatial interactions between cancer cells, therapeutic agents and other abiotic factors, such as oxygen and glucose [54,55].
In this case, the resulting individual-based model would be integrated with a system of PDEs modelling the dynamics of
the abiotic factors, thus leading to a hybrid model [4,9,10,15,16,31,34,40,48,75,76]. These are all lines of research that
we will be pursuing in the near future.
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