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ABSTRACT 

 

We examined the possible adaptation of the dwarf Bleke population of Atlantic salmon 

Salmo salar from Lake Byglandsfjord in southern Norway to limited food resources. The 

growth performance and muscle development in juvenile Bleke and farmed S. salar under 

satiated or restricted (50%) feeding were examined for 10 months, starting 3 weeks after first-

feeding stage. Four-thousand fish were divided into four replicated groups and random 

samples of 16–40 fish per group were measured six times during the experiment. The two 

strains showed no significant difference in mean body mass when fed restricted ration, but 
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the individual variation was considerably higher in the farmed fish. Both Bleke and farmed S. 

salar grew significantly faster when fed to satiation, but the farmed S. salar showed much 

higher gain in mass and were three times heavier (201.5 g v. 66.7 g) and possessed twice as 

many fast muscle fibres (179682 v. 84779) compared with landlocked S. salar after 10 

months. Farmed fish fed full ration displayed both hypertrophic and hyperplasic muscle 

growth, while the increased growth in Bleke S. salar was entirely associated with a larger 

fibre diameter. The landlocked Bleke strain has apparently adapted to low food availability 

by minimising the metabolic costs of maintenance and growth through reduced dominance 

hierarchies and by an increase in average muscle fibre diameter relative to the ancestral 

condition.  
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1 | INTRODUCTION 

 

Wild European populations of Atlantic salmon Salmo salar L. 1758 are commonly 

anadromous and return to their native freshwater streams to spawn after 1, 2 or 3 years’ 

growth at sea. Additional complexity to the lifecycle is provided by male parr that sexually 

mature in freshwater and attempt to fertilise the eggs of sea-run females using sneaky mating 

behaviour (Hutchings & Myers, 1988;; Hutchings & Jones, 1998; Letcher & Gries, 2003). 

Non-anadromous populations of S. salar are common in parts of North America but are also 

found in a few localities in Europe (Berg, 1985). Landlocked S. salar complete their life 
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cycle in freshwater above impassable waterfalls formed after postglacial rebound. The Bleke 

population in the oligotrophic Lake Byglandsfjord of southern Norway was isolated from sea 

migration c. 9000 years ago and shows reduced osmoregulatory capacity when moved to 

seawater (Dahl,
 
1928; Lande, 1973; Berg, 1985; Nilsen et al., 2003). This dwarf S. salar 

strain is resource restricted, feeding mainly on zooplankton such that it only reaches a body 

size of c. 150 g and 30 cm after 5–6 years. Female Bleke S. salar become sexually mature at 

4–5 years and spawn in December with a fecundity of c. 250 eggs (Barlaup et al., 2005). In 

comparison, farmed S. salar of the same age would be expected to reach 12–16 kg with a 

fecundity of c. 15,000 eggs (Kittelsen, 1986). Salmo salar have been farmed on an industrial 

scale since the 1970s. Domestication has included genetic selection programmes for 

increased growth rates realising trait gains of 10–15% per generation, which have been linked 

to increased appetite and food conversion efficiency (Thodesen et al., 1999; Thodesen & 

Gjedrem, 2006; Gjedrem, 2010).  

Myogenesis is a trait that is closely associated with intraspecific and population 

differences in body size (Johnston et al., 2003a, 2012). Muscle growth occurs by the 

continuous production of myotubes that differentiate to form muscle fibres and subsequently 

expand in length and diameter (Johnston et al., 2011). Individual muscle fibres have a 

maximum diameter that is limited by diffusional constraints and varies with environmental 

conditions, chiefly temperature (Johnston et al., 2003b). Using phylogenetic comparative 

methods maximum body size is a highly significant predictor of species variation in the 

maximum number of muscle fibres (NFmax; Johnston et al., 2003a). NFmax of Bleke S. salar 

was found to be only 30% and 21% of that found in wild anadromous and farmed S. salar, 

respectively, indicating that fibre recruitment is under strong divergent selection (Johnston et 

al., 2005). A similar reduction in muscle-fibre number has been observed in post-glacial 

populations of Icelandic arctic charr Salvelinus alpinus (L. 1758) and threespine stickleback 
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Gasterosteus aculeatus L. 1758 (Johnston et al., 2012). Theoretically, the energy cost of 

maintaining a negative membrane potential is proportional the surface-to-volume ratio of the 

individual muscle fibres because active ion pumping is required to counteract passive leak of 

ions across the muscle sarcolemma. According to the optimum-size hypothesis, divergent 

selection acts on fibre recruitment to produce the mix of fibre sizes that minimises the routine 

energy costs of maintaining ionic homeostasis (Johnston et al., 2004). The maximum 

diameter of fast muscle fibres in 4 year-old Bleke S. salar was 118 μm, which is similar to 

that of immature farmed S. salar of the same body size (Johnston et al., 2005). This suggests 

the possibility that resource-limited Bleke S. salar could grow to larger size under optimal 

feeding conditions even with the reduced number of muscle fibres. In the present study, we 

therefore compared somatic and muscle growth in farmed and Bleke S. salar either fed to 

satiation or a restricted (50%) ration. 

 

2 | MATERIAL AND METHODS  

 

2.1 | Ethical considerations 

 

The experiment protocol was authorised by the University's Ethical Review Committee and 

the feeding study was performed in strict accordance with the Norwegian Welfare Act to 

secure fish welfare. The personnel involved had undergone training approved by the 

Norwegian Food Safety Authority. Tagging, sampling and sacrifice of the fish were 

performed under anaesthetics using metacain according to the supplier’s instructions. As the 

wild Bleke S. salar population is threatened, only fish raised at Syrtveit fishery station were 

used in this study.  
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2.2 | Fish samples 

 

The Bleke S. salar examined were offspring of four females and two males caught in Lake 

Byglandsfjord, southern Norway and kept at the local Syrtveit fishery station. The farmed S. 

salar were generated from seven females and two males of the SalmoBreed strain (www. 

salmobreed.no), which had been selected for high growth rates for seven generations. This 

late-spawning farmed strain was chosen to match the spawning time of Bleke, thus ensuring 

concomitant development of the offspring from the two strains. The Bleke eggs were 

fertilised in early December 2005 and incubated at c. 2C at Syrtveit fishery station, while the 

farmed eggs were fertilised 2 weeks later and incubated at c. 3C at Erfjord brood stock 

station in south-western Norway. The Bleke and farmed S. salar eggs were transport to 

Akvaforsk research station, Sunndalsøra, in April 2006 and incubated at 7.0–7.2C until 

hatching. The majority of the eggs hatched at 422.5 (Bleke) and 424.5 (SalmoBreed) day 

degrees (D
o
; number of days multiplied by temperature degrees in C) and all eggs hatched 

within 3 days in late April.  

 

 2.3 | Feed rations  

 

Four-thousand fish of the landlocked Bleke and farmed SalmoBreed strains were divided 

equally among eight 500 l indoor fibreglass kept at 7.5-7.9C in continuous light. Oxygen 

levels were measured 2–3 times weekly and did not drop below 80% saturation. The fish 

were fed commercial S. salar feed (Nutra 0.5-3.0 mm, Skretting; www.skretting.com) 3–4 

times h
–1

 diurnally using automated feeders developed in-house. Start feeding was initiated 

on 6th June (Bleke) and 8th June (SalmoBreed) at 662 and at 683D
o
, respectively and all 

groups were fed full ration for 3 weeks prior to the experimental study. The trial lasted from 
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29th June 2006 to 9th May 2007 and replicated groups of landlocked and farmed S. salar 

kept at 11.5–12.4C were either fed to satiation or fed a restricted ration of 50% satiation 

level. The satiation ration was 10–20% above commercial S. salar feed ration (Skretting V3 

feeding table). Daily feed ration was recalculated at 2 week intervals throughout the study by 

batch weighing 50–100 fish from each tank and the restricted ration was corrected for 

differences in body mass between the groups. The mortality in the eight tanks during the 

experiment ranged from 0.6 and 3.4 % recorded in Bleke and farmed salmon, respectively, 

under restricted feeding. 

 

2.4 | Body growth and muscle-fibre analysis 

 

Body mass (MT, 0.1 g) and fork length (LF, 0.1 cm) were measured in fish randomly sampled 

from all tanks during the first week of August, September and December in 2006 and of 

February, April and May in 2007 (n = 16–40 per treatment, or n = 8–20 per tank; Supporting 

Information Table S1). The lightly anaesthetised (MS-222) fish were returned to the tanks, 

except for the fish analysed for muscle fibre number and diameter in September 2006 and 

May 2007 (n = 8–11 per group; Table 1), as described by Johnston et al. (2004, 2005). 

Briefly, the fish were over-anaesthetised in MS-222 and killed by a blow to the head. A 0.5 

cm thick steak through the trunk muscle on the right-hand side was prepared at 0.7 LF and 

photographed at high resolution. A series of up to 6 muscle blocks were prepared and frozen 

in isopentane cooled to freezing in liquid nitrogen to sample the major part of one half of the 

myotomal cross-section. Frozen sections were cut at 8 µm on a cryostat (Leica Microsystems 

CM1850; www.leicabiosystems.com), mounted on poly-L-lysine-coated slides and air dried 

for storage at –80C. Sections were stained in modified Harris haematoxylin solution (Sigma-

Aldrich; www.sigma-aldrich.com) and examined with an Axioskop 2 microscope and a X10 
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objective (Zeiss; www.zeiss.com). The steak and fast-muscle outlines were photographed and 

digitised using an AxioCamHRC and Axiovision software (Zeis). A total of 8–10 randomly 

selected fields were photographed per block. Fast-muscle fibres were digitised using a 

standardised square reference grid. Fibres more than 50% within the grid were included and 

those more than 50% outside the grid excluded. In total, 800–1000 muscle fibres were 

measured per fish and 800 were randomly selected for further analysis using a computer 

program. Full details of the software used and the method of estimating muscle fibre number 

are provided in Johnston et al. (1999).   

 

2.5 | Calculations and statistical analysis  

 

The effect of strain and feed ration and their interaction on MT and LF, within each of the six 

sampling dates, was analysed using a single trait linear mixed model (SAS 9.4 computer 

software, SAS Institute Inc.; www.sas.com) with strain, feed ration and their interaction as 

fixed effects and tank nested within the interaction effect as a random effect. As variance of 

MT increases with the mean, variance in MT within the different strain and feed ration 

combinations were different. These heterogeneous variances were accounted for by 

weighting each MT observation with the inverse of the variance of MT within these strain by 

feed ration combinations using the group = strain x feed ration in the random statement in the 

mixed model. For MT, the tank effect accounted for on average 5.5% (varying from 0 to 

11.8% for the six sampling dates) of the total variance (tank variance plus residual variance). 

For LF the corresponding figures was on average 6.3 % (varying from 0 to 11.9% for the six 

sampling dates). A similar statistical model was used for muscle fibre number (NF) as for MT 

and LF, but without the random effect of tank nested within the interaction effect.  
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The coefficient of variation (CV) for each set of sampling data by strain by feed ration 

combination was calculated as: [SD (mean value)
–1

]100. The effect of strain and feed ration 

and their interaction on the mean CV of MT (CVM) for each strain by feed ration by tank 

combination, within each of the six sampling dates, was analysed using a single-trait linear 

mixed model with strain, feed ration and their interaction as fixed effects and tank nested 

within the interaction effect as a random effect. For each of the six sampling dates the strain 

by feed ration effect was not significantly different from zero (P > 0.05) and was therefore 

omitted from the model. Consequently, CVM was analysed across the six sampling dates with 

sampling data as a fixed effect in addition to strain and feed ration effects.  

 

3 | RESULTS 

 

3.1 | Body growth and feed ration 

 

Hatchery-reared offspring of the landlocked Bleke and the farmed SalmoBreed strains of S. 

salar were either fed to satiation or a restricted (50%) ration for 10 months starting 3 weeks 

after first-feeding stage. The interaction effect of strain by feed ration on MT and LF was 

significant (P < 0.05) at each of the six sampling dates. Consequently, both traits are 

presented as least-squares means for each strain by feed ration combination (Figure 1). No 

significant difference in MT and LF was shown between the two strains under restricted 

feeding. Both strains had a significantly (P < 0.01) higher MT when fed to satiation until the 

final measurement (May 07) at which stage Bleke S. salar showed no significant difference 

with the restricted groups.  Under satiation feeding the farmed S. salar were significantly 

heavier than Bleke S. salar at each sampling point (P < 0.01) and three-fold higher MT was 

found at the final measurement (201.5 g v. 66.7 g; Figure 1a and Supporting Information 
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Table S1a). The body growth in the four treatment groups were consistent with the results 

from the batch weighings, which were performed to recalculate feed rations (data not shown). 

Farmed S. salar fed to satiation were significantly longer than the other groups from 

September 2006 and possessed a final LF = 25.6 cm compared with LF = 18.7 cm in Bleke S. 

salar on full ration (Figure 1b and Supporting Information Table S1b).  

The effect of strain and feed ration on CVM was highly significant across the six 

sampling dates, but in most cases not significant within sampling date (P > 0.05; Figure 2). 

The CVM was overall higher for farmed v. Bleke S. salar and for restricted v. satiation fed 

groups across the six sampling dates. Only the larger individuals of the farmed S. salar fed to 

satiation were lacking the parr marks by the end of the experiment indicating onset of 

smoltification (Figure 3).  

 

3.2 | Muscle cellularity  

 

Bleke S. salar and farmed S. salar on restricted feed ration showed no difference in fibre 

number or diameter (Table 1). When fed to satiation for 10 months, farmed S. salar showed a 

two-fold increase in number of fibres, while the fibre number in Bleke S. salar did not differ 

between the satiation and restricted feeding groups. However, the mean fibre diameter was 

almost 30% higher in both Bleke S. salar and farmed S. salar with satiation feeding. The 

combined hypertrophic and hyperplasic muscle growth in the satiation fed farmed S. salar 

resulted in a total muscle cross section area of 411 mm
2
 compared with only 178 mm

2
 in the 

landlocked S. salar (Table 1).  

 

4 | DISCUSSION 
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The gain in mass displayed by Bleke S. salar fed restricted ration for 10 months was similar 

to that found in the wild population, which reach the body size of about 30 g and 15 cm after 

one year in its natural habitat of Lake Byglandsfjord (Barlaup et al., 2005). The growth 

potential of this dwarf S. salar strain was indicated by a two-fold higher MT when fed to 

satiation compared with fish under restricted feeding. Accordingly, landlocked S. salar from 

the Swedish Klarȁlv River grew faster at 100 % than at 50 % ration and the difference was 

stronger at high lipid (2.4 fold) than low lipid levels (1.4 fold) after 19 months (Norrgård et 

al., 2014). The considerably heavier farmed S. salar compared with Bleke S. salar is 

consistent with the up to three-fold higher MT in farmed S. salar than wild S. salar examined 

in a hatchery environment (Glover et al., 2009; Solberg et al., 2013). In contrast, farmed and 

Bleke S. salar fed half ration showed no difference in MT, which agrees with the modest or 

marginal growth difference between farmed and wild S. salar in wild stream environments 

(Fleming et al., 2000; Skaala et al., 2012) or in a semi-natural environment with restricted 

food (Solberg et al., 2013). Competition for limited resources is expected to favour the most 

aggressive and territorial individuals (Ruzzante, 1994). Consistently, the farmed S. salar 

under restricted feeding showed large individual variation in MT and fin damages were only 

observed in this group (E. Stubø, pers. comm.). Wild S. salar parr were reported to be 

outcompeted and displaced by the more aggressive farmed S. salar in captivity (Einum & 

Fleming, 1997). Farmed S. salar parr were also more aggressive than wild parr when released 

into the river, but the wild fish fed more effectively by choosing habitats with preferred sizes 

of food items, while the diet of cultured fish comprised food items and inedible particles 

avoided by the wild fish (Orlov et al., 2006). Hence, farmed S. salar selected for fast growth 

with surplus food in captivity may be maladapted to survive in the wild (Skaala et al., 2012; 

Solberg et al., 2013). In contrast, the landlocked Bleke S. salar seem to have adapted to the 

low food availability in the Lake Byglandsfjord by foraging together with brown trout Salmo 
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trutta L. 1758 on pelagic and benthic prey items, respectively (Barlaup et al., 2005). The 

effective foraging of the dwarf Bleke S. salar was supported by the present study showing 

that farmed S. salar, which had been selected for high growth rates during seven generations, 

did not outgrow the Bleke S. salar when fed a restricted ration.  

The polygenic nature of body growth was demonstrated by genome mapping 

multiple quantitative trait loci (QTL) for MT and LF in S. salar using F2 families from 

founding generations consisting of Bleke males and farmed females (Baranski et al., 2010). 

Studying the endocrine mechanisms underlying the faster growth in domesticated fish, 

Fleming et al. (2002) measured significantly higher pituitary and plasma growth hormone 

(GH) levels in the seventh-generation of farmed S. salar compared with the wild principal 

founder population. GH also plays a role in the development of seawater tolerance in 

salmonids the reduced osmoregulatory capacity of Bleke S. salar was found to be 

associated with the lack of increased plasma GH and gill GH receptor mRNA levels as 

found in smoltifying anadromous S. salar (Nilsen et al., 2008). Parallel evolution of 

dwarfism in Icelandic S. alpinus has been accompanied by modification in the expression of 

growth-related genes, including igfbp4 coding for the insulin-like growth-factor binding 

protein 4 (Macqueen et al. 2011). IGF-1 and myostatin are conserved stimulatory and 

inhibitory factors regulating myoblast proliferation and muscle growth (Garikipati & 

Rodgers, 2012; Gabillard et al., 2013; Li et al., 2014; Retamales et al., 2015). Low genetic 

variation of the myostatin gene paralogue ssa-mstn1b in Bleke S. salar compared with 

farmed S. salar was found by analysing an internal polymorphic microsatellite (Østbye et al. 

2007), while several private alleles of lysyl oxidase required to initiate muscle cross-link 

formation was reported in Bleke S. salar (Consuegra & Johnston, 2008). Relative low 

genetic variation was shown in the landlocked Namsblank S. salar population (Sandlund et 

al., 2014), but genome sequences from a single dwarf fish revealed no loss of coding 
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regions suggesting that fine-scale (epi)genetic alterations and population genetic processes 

underlie adaption to the landlocked habit (Hauge et al., 2016). In support of this idea, we 

recently reported that effects of genetic background and embryonic temperature on muscle 

development in S. salar were associated with altered DNA methylation and gene expression 

of the myogenic regulatory factor myogenin (Burgerhout et al., 2017).  

Muscle enlargement in teleosts with indeterminate growth, such as salmonids, 

occurs by both hypertrophy and hyperplasia during a large part of post-hatching life 

(Rowlerson & Veggetti 2001; Johnston et al., 2011). Large muscle-fibre size is 

metabolically advantageous and dwarfism in landlocked populations of salmonid and G. 

aculeatus has been associated with a reduction in fibre numbers compared with anadromous 

populations (Johnston et al., 2004, 2012; Jimenez et al., 2013). Our study showed similar 

muscle-fibre number in Bleke and farmed S. salar fed a restricted ration, whereas the fibre 

number in farmed S. salar was more than twice that of Bleke S. salar after 10 months on 

full ration. The increased growth of the Bleke S. salar fed to satiation was entirely due to 

fibre hypertrophy. It should be noted that had the trial gone on longer, fibre number would 

have been expected to increase further based on results for mature adults (Johnston et al., 

2005), However, NFmax in Bleke S. salar is nevertheless only 21% of that of adult farmed S. 

salar (Johnston et al., 2005). Resource limitation in the landlocked Lake Byglandsfjord S. 

salar is probably the primary cause of dwarfism, which resulted in divergent selection to 

reduce fibre number and increase fibre diameter relative to the ancestral condition. In 

addition, dominance hierarchies also seemed to be reduced contributing to a further 

reduction in the metabolic costs of maintenance and growth. These adaptive traits are 

apparently maintained during conditions of surplus food suggesting the involvement of 

genetic or epigenetic mechanisms. 
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Figure legends 

 

FIGURE 1 (a) Least-square mean (+ SE) of body mass (MT) and (b) fork length (LF) of 

juvenile landlocked Bleke and farmed Salmo salar fed full (100%) or restricted (50%) ration 

within each sampling date. Different letters at each sampling date indicate significant 

differences (P < 0.05).  

 

FIGURE 2 Differences in mean (+ SE) coefficient of variation of body mass (CVM) between 

farmed and landlocked Salmo salar strains and between restricted (50%) and full (100%) 

ration at each sampling date and across the six sampling dates (overall).  

 

FIGURE 3 Typical specimens of (a) landlocked Bleke and (b) farmed Salmo salar on 50% 

rations, (c) landlocked Bleke and (d) farmed S salar on 100% rations.  
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TABLE 1 Muscle growth in landlocked Bleke and farmed Salmo salar on restricted (50 %) 

or full (100 %) feed ration. 

 Different letters indicate significant difference: P < 0.05 (September 2006) and P < 0.001 

(May 2007) 

 

 

TCA, Total cross section area. 

 

  

Strain Ratio

n 

(%) 

Number of 

fish 

TCA 

(mean ± SE, 

mm
2
) 

Diameter 

( mean ± SE, 

µm) 

Fibre number 

September 

2006 

     

Landlocke

d 

50 8 17 ± 1 35.0 ± 0.5 14315 ± 470
a
 

Farmed 50 8 16 ± 1 33.4 ± 0.3 14595 ± 1120
a
 

Landlocke

d 

10

0 

8 22 ± 1 35.0 ± 0.6 17627 ± 1138
a
 

Farmed 10

0 

8 31 ± 2 36.4 ± 0.4 23190 ± 1623
b
 

May 2007      

 

Landlocke

d 

50 10 113 ± 12 37.0 ± 1.0 82007 ± 5590
a
 

 Farmed 50 9 131 ± 11 37.5 ± 1.0 90749 ± 7963
a
 

 

Landlocke

d  

10

0 

11 178 ± 11 47.8 ±2.0 84779 ± 9187
a
 

 Farmed 10

0 

10 411 ± 15 48.0 ± 1.0 179682  ± 

11926
b
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Figure 2 
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Figure 3 
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