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Abstract
In this study, the inharmonicity of bass guitar strings with and without areas of lowered and raised mass near the saddle 
is studied. Using a very high sample rate of over 900 kHz enabled finite difference time domain simulation to be applied 
for strings that simultaneously have nonzero stiffness and linear density which varies along the length of the string. 
Results are compared to experiments on specially constructed strings. Perturbation theory is demonstrated to be suf‑
ficiently accurate (and much more computationally efficient) for practical design purposes in reducing inharmonicity. 
The subject of inharmonicity is well known in pianos but has not been studied extensively in bass guitar strings. Here, 
the inharmonicity is found to be low in the lowest (open string) pitch on the five string bass guitar ( B

0
 ) given typical 

standard construction. Conversely, the inharmonicity is high (around 100 cents at the 10th partial) when that string is 
sounded when stopped at the 12th fret and very high (around 100 cents at the 6th partial) when that string is stopped at 
the 21st fret. Bass guitar strings were constructed with three different constructions (standard, tapered and lumped) in 
order to demonstrate how incorporating a lump of raised mass near the saddle can achieve close to zero inharmonicity 
for the lower frequency partials. This also has potential in terms of improving the use of higher fret numbers for musical 
harmony (reducing beating) and also in controlling pitch glide that has, with some exceptions, often been attributed 
solely to nonlinear behaviour.
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1 Introduction

The physics of guitar strings have been studied recently 
using the linear wave equation for transverse wave motion, 
giving new insight into the sensitivity to player control for 
unwound and wound strings [17, 25]. Lower pitch strings 
such as bass strings on pianos are known to demonstrate 
significant inharmonicity. This arises from the finite stiff‑
ness of the string and results in the resonance frequencies 
being progressively higher in resonant frequency than the 
simple integer multiples implied by the wave equation, 

and this inharmonicity is significantly worse for strings of 
wider core and shorter sounding length [14]. While most 
research in the field of inharmonicity has focussed on the 
piano, it is known that inharmonicity can be perceptually 
significant for string instruments tones in general [24] and 
that inharmonicity of the lowest pitch string on the steel 
strung acoustic guitar is clearly perceptible [23]. This study 
is motivated by the inharmonicity of lower pitch strings on 
the bass guitar as this is expected to be significant, particu‑
larly when playing at high fret numbers.
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The wound bass strings on pianos typically have 
exposed cores near the ends of the sounding length. Such 
two part stepped/tapered, stiff strings have inharmonicity 
which is raised in comparison with uniform strings [7–9]. 
The fundamental frequencies of bass notes on pianos are 
tuned progressively flat so that their (relatively sharp) 
overtones/resonances are harmonious with the notes 
in the mid‑range and high‑pitched notes are similarly 
tuned progressively sharp. This is known as stretch tun‑
ing. Some inharmonicity is desirable when synthesising 
piano tones in order to produce a realistic result [29]. On 
the other hand, too much inharmonicity has a detrimen‑
tal effect on tone quality and pitch perception and this is 
one cause of the generally poorer sound quality of bass 
notes on smaller instruments with shorter bass strings 
such as upright pianos and baby grand pianos (in com‑
parison with full sized concert grand pianos). It has also 
been noted that inharmonicity may be less important than 
the spectrum bandwidth in such cases, with the depth of 
the bass response dependent on the soundboard size [16]. 
It should also be noted that, occasionally, extreme inhar‑
monicity has been utilised for deliberate musical purposes 
[21, 22]. In contrast, an area of raised mass near the end of 
piano strings has been proposed in theory by Miller [26] 
and demonstrated in practical terms in patents by Sander‑
son [30, 31] and marketed as Sanderson Accu‑Strings. 
Sanderson achieved an “ideal inharmonicity” where the 
effect of the raised mass near the string end is calculated 
to compensate for the effect of the exposed winding at 
the very ends of the sounding length. Similarly, Dalmont 
and Maugeais have very recently suggested reducing the 
inharmonicity for piano strings using raised mass near the 
string end [11]. These methods can be understood in terms 
of the perturbation theory formulated by Lord Rayleigh 
to treat variable density along the length of ideal strings 
[28, p. 170].

Inharmonicity in guitar tones has been detected and 
utilised for automatic guitar and bass guitar string detec‑
tion in transcribing tablature from recorded audio since 
inharmonicity is known to vary from string to string and 
vary significantly with fret number [1, 2]. No research 
has been conducted in reducing the inharmonicity of 
strings on bass guitar and other instruments with low 
sounding pitches such as six, seven and eight string gui‑
tars to the best of the knowledge of the current author. 
Inharmonic resonances could lead to poor tone quality, 
secondary beats and, since higher‑frequency resonances 
decay faster, inharmonicity can also lead to a downward 
pitch glide during note sustains as investigated later in 
this work. Sympathetic resonance within the instrument, 
differences between boundary conditions and magnetic 
drag [13] for different polarisations of motion, torsional 
waves, nonlinear behaviour (whether due to harmonic 

distortion in amplifiers, loudspeakers, effects units, pickup 
behaviour [18] or mode mixing [10]) all have the potential 
to generate extra spectral peaks that may clash or beat 
with others. It should be noted that slow beating between 
nearby partials may be beneficial in producing an organic 
tone quality, while larger differences in frequency may 
generate undesirable dissonance.

The field of finite difference modelling has included 
treatment of string stiffness [5, 6, 19, 20] and the treat‑
ment of variations in mass density [3]. Combining these 
two aspects (simulation of stiff strings with variable mass 
per unit length), the aim of this paper is to:

• Validate finite difference time domain modelling for 
typical bass string designs whose mass per unit length 
varies along the length of the string.

• Validate the perturbation method for strings of variable 
density for modifying the tuning of stiff strings.

• Exploring possible advantages of an alternative design 
with a raised mass profile near the bridge (similar in 
concept to the designs of Sanderson [30, 31] for bass 
piano strings but with the aim of reduced inharmonic‑
ity rather than “ideal inharmonicity”).

2  Uniform stiff strings

The equation of motion for transverse waves of displace‑
ment y for a string of finite stiffness under tension T (whose 
central core is on the x axis at equilibrium) is given by [14]:

where E is the Young’s modulus of the material responsible 
for stiffness (nominally E = Ecore is the cross‑sectional area 
of the core), S is the cross‑sectional area of the material 
responsible for stiffness (nominally S = Score , the cross‑
sectional area of the core), � is the radius of Gyration 
(nominally � = d1∕4 for a circular strings of core diameter 
d1 and nominally � =

√
5∕6(d1∕4) for hex core strings if 

the distance between the points or maximum diameter is 
d1 ) and the mass per unit length for the core of the string 
is �core . Following the notation of previous work [25], the 
ratio of the total mass of the string to the mass of the core 
is � (such that � = 1 for a plain string and ��core is the total 
mass per unit length of a wound string). The contribution 
to tension due to the windings of a wound string will be 
assumed to be negligible, something that has been proved 
to be reasonable [25]. Stiffness, on the other hand, may 
have an appreciable contribution from the windings, with 
the value of ES�2 around 7% higher than EcoreScore(d1∕4)2 
according to measurements on circular core piano strings 

(1)T
�2y

�x2
− ES�2 �

4y

�x4
= ��core

�2y

�t2
,
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by Fletcher  [14]. The value of ES�2 should be checked 
experimentally, as discussed below, for the string construc‑
tion in question, particularly in the context of hexagonal 
core bass guitar strings with multiple layers of windings.

For a string with a core of maximum diameter d1 , the 
cross‑sectional area of the core is Score = �core(d1∕2)

2 
where, for a circular cross section core, �core = � , and for a 
hexagonal cross section core, �core = 3

√
3∕2 . It should be 

noted that specifications for hex cores are generally given 
as the distance between the flat surfaces of the hex cores 
(or minimum diameter), labelled here as dspec , and the 
maximum diameter for a given diameter specification can 
be approximated geometrically as being d1 = (2∕

√
3)dspec.

The mass per unit length of a circular cross section core 
and the total mass per unit length of a string consisting of 
a circular cross section core and a single winding is given 
in Chumnantas [7, p.47]. The ratio � (the ratio between the 
mass of the entire string and the mass of the core) is simi‑
larly given for strings hex or circle cores and single wind‑
ings previously [25]. Extending this to the case of a string 
of M layers (one core and M − 1 windings) gives:

where �core is the volumetric density of the core, �w is the 
volumetric density of the windings, d1 is the maximum 
diameter of the core, d2 is the outside diameter of the 
string after the first layer of circular cross section winding 
is applied, d3 is the outside diameter of the string after the 
second layer of circular cross section winding is applied, 
etc. The specification of the diameter of the first winding 
will be approximately (d2 − d1)∕2 and so on.

The solution for the pth mode frequency, including the 
effect of stiffness, has been given by Fletcher [14] as:

with

where L is the sounding length, f0 is the fundamental fre‑
quency of the linear wave equation (as would result from 
setting the fourth‑order differential stiffness term to be 
equal to zero in Eq. 1) and is given by:

The effect of harmonics becoming progressively sharp 
of the harmonic series has been illustrated in the work of 
Fletcher [14].

(2)� = 1 +

M∑
m=2

�2�w

4�cored
2
1
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,
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,
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��core

.

The resonant frequencies from Eq. 3 are higher in fre‑
quency (or equivalently, sharper in pitch) than those from 
the true harmonic series, and this effect becomes pro‑
nounced for high‑frequency resonances for strings which 
have shorter sounding lengths and are of wider core. This 
occurs because S�2 will be (at least approximately) propor‑
tional to the diameter of the core to the power of four and 
this is divided by L4 in Eq. 4. The inharmonicity, � , in cents 
(per cent of an equally tempered semitone by which the pth 
mode frequency differs from the ideal harmonic which is the 
lowest resonance frequency f1 multiplied by p) may then be 
graphed for each harmonic using the formula:

3  Finite difference time domain modelling 
of strings with multiple steps

Strings consisting of multiple sections of different mass per 
unit length can be assessed by physical modelling synthesis 
using the finite difference time domain (FDTD) technique. 
Such a model will be discussed and then run in MATLAB 
with the resulting resonant frequencies determined using 
discrete Fourier transforms. This has allowed for meaning‑
ful verification of the method against Fletcher’s formula 
for a uniform string and Chumnantas’ method for two part 
stepped strings. In addition to this, the FDTD method can 
predict resonances for stiff, stepped or tapered strings of 
three or more parts for the first time and the results com‑
pared to experiment as presented here.

3.1  Lossy model

Losses occur for various reasons in strings, including air 
drag, internal friction due to the viscoelasticity of the string 
material, temperature changes (due to thermoelasticity) 
being conducted away, conduction of vibrational energy 
at the supports and dry friction between windings. Such 
loss models are frequency dependent, and the literature on 
this topic is summarised in Desvages [pp. 49–55] [12] and in 
Valette and Cuesta [32, pp. 91–123]. A convenient and effec‑
tive method set out in Bilbao [3, pp. 177–180, pp. 399–400] 
uses the equation of motion Eq. 1 and adds the frequency‑
dependent loss to give:
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with �0 being the loss coefficient for frequency‑inde‑
pendent damping and �1 being the loss coefficient for 
frequency‑dependent damping.

Defining yn,l as the transverse displacement at time 
domain sample number n and spatial sample number l, the 
resulting time domain model is implicit which means that 
the displacement at the next time step yn+1,l depends on 
the displacement of neighbouring spatial sample points at 
that same time step (such as yn+1,l−1 and yn+1,l+1 ). This prob‑
lem can be solved using the matrix method described in 
Bilbao [3, p. 180, pp. 399–400]:

where �n = {yn,2, yn,3,… yn,Nx−2
, yn,Nx−1

}⊺ is the column 
vector of displacements at all spatial samples for time 
sample number n excluding the fixed spatial samples 
yn,1 = yn,Nx

= 0 . The matrices are given by [3, p. 180, pp. 
399–400]:

with k = 1∕Fs being the time domain sample period for 
sample rate Fs , � being the identity matrix, � being a diago‑
nal matrix with the diagonal entries g2, g3,… , gNx−2

, gNx−1
 , 

where gl = T∕(�l�core) is the square of the speed of wave 
propagation at spatial sample l (if the stiffness were zero) 
and � being a diagonal matrix with the diagonal entries 
q2, q3 … qNx−2

, qNx−1
 where ql =

(
EScore�

2
)
l
∕(�l�core) is the 

stiffness coefficient divided by the mass per unit length 
at spatial sample l. The second‑order differential operator 
matrix is given by

(where the entries more than one place away from the 
diagonals are equal to zero) and the fourth‑order differ‑
ential operator matrix is given by

(8)�n+1 = �−1
(
−��n − ��n−1

)

(9)� = (1 + �0k)� − �1k�xx ,

(10)� = −2� − k2��xx + k2��xxxx ,

(11)� = (1 − �0k)� + �1k�xx ,

(12)�xx =
1

h2

⎡⎢⎢⎢⎢⎢⎢⎣

−2 1 0

1 −2 1

⋱ ⋱ ⋱

⋱ ⋱ ⋱

1 −2 1

0 1 −2

⎤⎥⎥⎥⎥⎥⎥⎦

,

(where the entries more than two places away from the 
diagonals are equal to zero) with h being the distance 
between spatial samples (in metres) along the x axis. This 
is assuming that the ends of the string have the ideal 
fixed conditions yn,1 = 0 for all n and yn,Nx

= 0 for all n. The 
corner elements in Eq. 13 are 5 rather than 6 due to the 
second‑order spatial differential at the fixed ends being 
zero (which means that the nonexistent points outside the 
string that are required in calculating Dxxxx are assumed to 
be yn,0 = −yn,2 and yn,Nx+1

= −yn,Nx−1
 ). All matrices are of 

dimension Nx − 2 × Nx − 2.
Note that Eq. 8 assumes that the spatial sample rate is 

constant. Numerical stability, however, requires that the 
minimum size for the distance between spatial samples is 
given by Bilbao [3, p.176]:

where the label j denotes the section of the (tapered) 
string under consideration. If numerical sound synthe‑
sis in real time was required then further work would be 
advisable to achieve efficient use of bandwidth [3, pp. 
206–208]. For the current application (non‑real‑time analy‑
sis of resonant frequencies), all spatial samples will be set 
equidistant and equal to the maximum value of hj along 
the string:

where J is the number of different sections of string ( J = 1 
for a uniform string, J = 2 for a two part stepped string, 
etc.). In practice, the value of h will therefore equal hj for 
the section of string of lowest mass per unit length (as this 
will have the largest minimum value for hj).

We will analyse the case of strings that are uniform along 
most of their length and may have a section or sections of 
contrasting construction close to the start (low numbers for 
l). The number of spatial samples along the string can be 
set to Nx = round(L/h) + 1, with the rounding error reduc‑
ing linearly with the sample rate chosen. Assuming that the 
longest section of string has j = J , the sounding frequency 

(13)�xxxx =
1

h4
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of the fundamental if there was no stiffness will then be 
approximated by:

Initialisation involves creating an initial shape for the string 
at the first two time steps ( n = 1 and n = 2 ) for use in Eq. 8. 
The exact nature of the initialisation is unimportant for the 
goal of assessing mode frequencies as long as all mode 
shapes of interest were given nonzero excitation and very 
high‑frequency components outside the usable band‑
width are suppressed. In practice, a forward going travel‑
ling wave with a raised cosine shape was used:

where Nw = round(2Nx∕3) was chosen as the length of 
the pulse in spatial samples, lw was chosen such that the 
pulse was initially centred in the middle of the string, so 
lw = round(Nx∕2) − round(Nw∕2) , and

(16)f0 =

(
1

2(Nx − 1)h

√
T

�J�core

)
.

(17)y1,l+lw = 0.5(1 − cos(2�l∕Nw)), l = 1, 2, 3…Nw ,

(18)y2,l+lw = 0.5(1 − cos(2�(l − lh)∕Nw)), l = 1, 2, 3…Nw ,

(19)lh =
1

fsh

√
T

�J�core

,

is the (less than or equal to unity) distance in samples for 
wave propagation in the low‑frequency limit assuming 
the pulse is created entirely in the main section of string 
where j = J.

4  Bass strings in measurement 
and simulation

As demonstrated in the work of Chumnantas for two part 
piano strings [7–9] and confirmed here for multi‑part bass 
guitar strings, introducing an area of lowered mass per 
unit length near an end of the sounding length increases 
the inharmonicity. Strings with lowered mass near the 
bridge are common in commercially available bass gui‑
tar strings in order to allow the string to bend around the 
saddle more effectively. It follows that introducing an area 
of larger mass per unit length near an end of a string will 
lower the inharmonicity. With this in mind, a string has 
been designed for this study to provide low inharmonic‑
ity when playing at high fret numbers on the bass guitar. 
Raised mass near the ends of the sounding length have 
been used for inharmonicity control in bass piano string 
construction [11, 30, 31] but not been used for bass gui‑
tar until this study to the best of the author’s knowledge. 
A diagram of the construction of such as string is shown 
in Fig. 1 where the sounding length begins at the saddle 

Fig. 1  Cross section of a tapered bass guitar string with an area 
of raised mass near the saddle comprising a core and three layers 
of winding (not to scale). The diameters of the different layers of 
windings dw1 , dw2 and dw3 are numbered in the order they would be 
applied during manufacture, and the four sections are numbered 

j = 1, 2 , 3 and 4 sequentially along the length of the string. Shades 
of grey are used to differentiate the successive layers of windings 
though they were constructed from the same material (nickel‑
plated steel)
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on the left hand side (of the j = 1 section). The right hand 
most section ( j = 4 in this example) constitutes by far the 
longest section of string (and finishes far to the right of 
the figure).

As is standard in the guitar string industry, wire speci‑
fications will be quoted in inches. These diameters must 
be converted to metres before use in the equations within 
this paper. The hexagonal cross section core has a speci‑
fied minimum diameter of dspec ≈ 0.028 ”, and hence, the 
diameter at the points of the hexagon is a factor of 2∕

√
3 

larger at d1 ≈ 0.032 ”. The first (innermost) winding in the 
“lumped” design was a short section of circular cross sec‑
tion nickel‑plated steel of gauge dw1 ≈ 0.013 ” (wound over 
approximately 21 mm of the core, starting 15 mm from the 
saddle and finishing 36 mm from the saddle). Next, a wind‑
ing of circular cross section nickel‑plated steel of gauge 
dw2 ≈ 0.022 ” was wound over the core. This 0.022” winding 
begins beyond the nut finishes 9 mm short of the saddle 
(after running over the entirety of the short 0.013” wind‑
ing). The final (outermost) layer of circular cross section 
winding of gauge dw3 ≈ 0.028 ” starts at the knot which ties 
the core onto the ball end and runs on top of both the first 
layers of winding. This arrangement means no exposed 
ends for winding layers, with every layer of winding start‑
ing on the hex core (with the pointed corners of the hex 
core thus preventing the windings slipping out of place).

For the “tapered” and “standard” designs, the short sec‑
tion of dw1 ≈ 0.013 ” winding was omitted. The thinner sec‑
tion of the “tapered” design results from the dw2 ≈ 0.022 ” 
winding running from behind the nut and finishing 23 
mm from the saddle (while still overwinding all the way 
from the ball end to beyond the nut with the dw3 ≈ 0.028 ” 
winding). In the case of the “standard” string design, the 
dw2 ≈ 0.022 ” winding finished at the ball end knot such 
that both the dw2 ≈ 0.022 ” and dw3 ≈ 0.028 ” windings ran 
over the entirety of the sounding length. The dimensions 
for the lumped, tapered and standard strings designs are 
described in Tables 1, 2 and 3.

A Sadowsky Bass Guitar Metroline MV5‑NAT was used 
for experiments. The nominal scale length of this instru‑
ment (which is slightly less than the sounding length for 
unfretted notes due to strings going sharp when fretted) 
is L0 = 34�� or around 864 mm. Once the positions of the 
saddles were adjusted to set the intonation (so the sound‑
ing pitch of the 12th fret is an octave higher than the open 
string at pitch), the open B string has a sounding length of 
874 mm and pressing the string behind the highest (21st) 
fret gives a sounding length of around L21 = 267 mm.

4.1  FDTD simulations

Simulations of lossy string motion were performed within 
MATLAB at a very high sample rate of fs = 902.4 kHz in 
order to give high spatial resolution ( h ≈ 1 mm) in the 
resulting simulations when using the measured dimen‑
sions of the string given in Table 1. The loss coefficients, �0 
and �1 , were chosen to achieve a 60 dB drop in amplitude 
( T60 time) of 0.4 s at 8000 Hz for all fret numbers and to 
give a T60 time of 10 s at 600 Hz for the 21st fret simulations 
and a T60 time of 13 s at 600 Hz for simulations of both the 
open string and 12th fret (in order to approximately match 
the experimental results described in the subsequent sec‑
tion). This was achieved using the formulation set out in 
Bilbao [3, p. 178, pp. 399–400]. The inharmonicity in cents 
was observed to be insensitive to the exact choice of loss 

Table 1  Lumped string dimensions

Approximate section lengths, diameters and mass ratio, � , for a 
tapered bass guitar string (approximately 132 gauge) with raised 
mass per unit length near the saddle and fretted to have a sound‑
ing length of Lfret millimetres. This design was constructed by New‑
tone Strings to the author’s specification

j = 1 j = 2 j = 3 j = 4

aj (mm) 9 6 21 Lfret − 36

d1(j) (inch) 0.032 0.032 0.032 0.032
d2(j) (inch) 0.088 0.076 0.058 0.076
d3(j) (inch) 0 0.132 0.102 0.132
d4(j) (inch) 0 0 0.158 0
� 7.14 16.0 22.8 16.0

Table 2  Tapered string dimensions

Approximate section lengths, diameters and mass ratio, � , for a 
tapered bass guitar string (approximately 132 gauge) fretted to 
have a sounding length of Lfret millimetres. This design was con‑
structed by Newtone Strings to the author’s specification

j = 1 j = 2

aj (mm) 23 Lfret − 23

d1(j) (inch) 0.032 0.032
d2(j) (inch) d1 + 2dw3 = 0.088 0.076
d3(j) (inch) 0 0.132
� 7.14 16.0

Table 3  Standard string dimensions

Approximate section lengths, diameters and mass ratio, � , for a 
standard construction bass guitar string (approximately 132 gauge) 
fretted to have a sounding length of Lfret millimetres. This design 
was constructed by Newtone Strings to the author’s specification

j = 1

aj (mm) Lfret

d1(j) (inch) 0.032
d2(j) (inch) d1 + 2dw2 = 0.076

d3(j) (inch) d1 + 2dw2 + 2dw3 = 0.132

� 16.0
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coefficient as realistic values require the effects of losses to 
be evident only over a very large number of cycles.

While unsuitable for real‑time synthesis at present, the 
high sample rate allows different designs to be assessed. 
The approximate sounding length, L, is given by:

but due to variations in tension, etc., when the string is 
displaced on fretting, the string length was instead meas‑
ured on the real instrument for better accuracy, giving 
L0 = 0.873 m and L12 = 0.442 m and L21 = 0.267 m. The 
value of T chosen to result in FDTD output having the 
same fundamental frequency (to within 0.1 Hz) as the cor‑
responding experiments (and these tension values were 
obtained iteratively by assuming tension is proportional 
to sounding frequency squared).

It was assumed that the Young’s modulus for the steel 
core was Ecore = 207 GPa and that the volumetric density 
of the steel was �core = 7860 kg/m3 as in [25]. The wind‑
ings were nickel‑plated steel (approximately 8% nickel 
by weight), but the increase in volumetric density due to 
nickel content was only around 0.5% so, for simplicity, it 
was assumed that �w = �core.

The precise value of the stiffness coefficient ES�2 is 
critical to achieving good agreement between theory and 
experiment for the inharmonicity of higher‑frequency res‑
onances (and has a negligible impact on the fundamental 
frequency). While most of the stiffness is due to the core, 
assuming a value of EcoreScore�2

core
 for the stiffness coef‑

ficient can be expected to underestimate the stiffness 
for strings due to the behaviour of the multiple layers of 
windings. Simulations were therefore run with a variety of 
values of the ratio � = (ES�2)∕(EcoreScore�

2
core

) in order to 
obtain a good fit between experiment and theory for the 
string under consideration. It was assumed that ES�2 was 
constant along the length of the string because the effect 
of small variations in stiffness within the short stepped or 
tapered section is dwarfed by the effect of stiffness on the 
longest section of string.

These simulations were performed using the three string 
designs described in Tables 1, 2 and 3. The resulting wave‑
form for each simulation was extracted at the nonzero spa‑
tial sample nearest the bridge ( yn,2 , where n = 1, 2, 3… ,Nt 
are the time sample numbers with Nt = 1000fs∕f0 rounded 
up to give the integer number of samples for 1000 cycles 
where f0 is taken from Eq. 16). Extracting the signal as close 
as possible to the bridge has the advantage that it is not at a 
nodal position for any of the standing wave shapes of inter‑
est. This was then analysed using a discrete Fourier transform 
(DFT) using the fft command in MATLAB. Since losses were 
included, the signals were self‑windowing (i.e. no multipli‑
cation by a time domain window was required). Resonant 

(20)Lfret ≈ L02
−fret∕12,

peaks were then detected using a custom MATLAB script 
which searches recursively for maxima in the absolute value 
of the discrete Fourier transform in approximately harmonic 
frequency ranges starting with the region around Eq. 16. The 
inharmonicity within the resulting series of peak frequencies 
was then calculated for graphing using Eq. 6.

4.2  Experiments

Experiments were performed by plucking the string 20 
mm from the bridge on the Sadowsky bass and recording 
the output from the magnetic pickups using a guitar cable 
plugged into an instrument input on a RME UFX soundcard 
connected to an Apple MacBook using USB. The bass was 
left in passive mode to bypass the tone controls, and the 
pickup fader was set to provide a signal consisting of the 
neck pickup output plus approximately a third of the out‑
put from the bridge pickup (by setting the pickup fader 
approximately five sixths of the way from the bridge to 
the neck pickup side of the range of travel on the dual MN 
taper potentiometer) as this arrangement was found to 
give a reasonably strong signal for nearly all harmonics of 
interest when playing at all frets of interest. Experiments 
were carried out for the open string, the octave (press‑
ing the string behind the 12th fret) and the highest note 
on the string (pressing the string behind the 21st fret) for 
the “lumped”, “standard” and “tapered” strings (dimensions 
given in Tables 1, 2 and 3). Resonant frequencies peaks were 
then measured in each case using the same peak detection 
method as for the simulated string vibrations.

4.3  Results

The inharmonicity in cents (calculated using Eq. 6 based on 
the frequency of the peaks in the DFT) was compared for 
the experimental recordings and for the FDTD simulations 
for each geometry. Since the exact stiffness coefficient of the 
string may exceed the theoretical stiffness coefficient of the 
core (due to a contribution to stiffness from the multiple lay‑
ers of windings for instance), it is necessary to run the simu‑
lation for a variety of stiffness coefficient values to determine 
a range for this parameter that produces good agreement 
(low root mean square error in cents) between the inhar‑
monicity of the experimentally measured waveform and 
the inharmonicity of the simulated waveforms. Simulations 
were performed for values in the range 1.1 ≤ � ≤ 1.7 where 
� is the ratio between the stiffness coefficient used in the 
FDTD simulation and the theoretical stiffness coefficient of 
the core such that

(21)ES�2 = �EcoreScore�
2
core

,
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where,  for  hex str ings,  Score = �core(d1∕2)
2 with 

�core = 3
√
3∕2 and �core = (d1∕4)

√
5∕6 and the theoreti‑

cal maximum distance between points can be worked 
out from the minimum (or specification) diameter as 
d1 = (2∕

√
3)dspec . Open string inharmonicity values were 

observed to be too low for sensitive determination of the 
stiffness coefficient so measurements and simulations of 
notes played at the 12th fret and 21st fret were used for 
this purpose.

Taking the inharmonicity for the experimental data for 
the pth resonance as �EXP

p
 and the inharmonicity for the 

finite difference time domain data for the pth resonance 
for different values of � as �FDTD

p
(�) , the root mean squared 

error in cents was calculated using:

where P was the total number of resonances being 
analysed in this case and the root mean square error is 
a function of the offset value � used to account for the 
uncertainty in cents in the tuning of the string in the 
experimental data. Seven resonances ( P = 7 ) were used 
in the determination of the best fit because the eight reso‑
nance was difficult to measure accurately at the 21st fret 
due to the plucking position being at a node for this mode 
number.

The minimum value of RMSE(�, �) was found for integer 
values of � in the range −50 cents ≤ � ≤ 50 cents for mul‑
tiple values of � . Resulting values of RMSE(�) for different 
string constructions sounding at 12th fret and the 21st fret 
are shown in Fig. 2 with the range 1.3 ≤ � ≤ 1.6 giving min‑
ima for the root mean squared error. This range of values 
for � equates to the effective diameter used in the calcula‑
tion of stiffness being around 7% and 12% larger than the 
measured core diameter given that ES�2 ∝ d4

1
 . This result 

is not expected to be generalisable to all hexagonal core 
strings due to the variety of constructions available and 
uncertainty in the exact value of variables such as the ratio 
of total string mass to core mass ( � ). Values of � = 1.3 to 
� = 1.6 thus give realistic maximum and minimum stiffness 
coefficients for use in simulations.

The results shown in Fig. 3 give the inharmonicity 
in cents for the “lumped” string, “standard” string and 
“tapered” bass guitar string measured experimentally 
and simulated using the FDTD method when fretted 
at the 21st fret (and thus vibrating between the 21st 
fret and the saddle). Simulations using � = 1.3 gave the 
minimum values, and simulations using � = 1.6 gave the 
maximum values of inharmonicity as represented in the 
error bars. For comparison, the inharmonicity according 
to the Fletcher formula of Eq. 3 is also given for the case 

(22)RMSE(�, �) =

√√√√1

P

P∑
p=1

(
� + �FDTD

p
(�) − �EXP

p

)2

,

of a uniform string of the same total sounding length 
(and the same construction as the longest section of the 
string). The theoretical (blue) lines showing the Fletcher 
formula for the different constructions are essentially 
coincident and show good agreement with the experi‑
mental results for the standard string construction as 
expected.

1.1 1.2 1.3 1.4 1.5 1.6 1.7
 = ratio of E S 2 used in simulations to E core Score core
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“lumped”, “standard” and “tapered”  bass guitar strings between 
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domain simulation. Results are graphed for different ratios of 
� = (ES�2)∕(EcoreScore�

2
core

) . The 12th fret and the 21st fret were 
used, and the strings had dimensions given in Tables 1, 2 and 3
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Figures 4 and 5 show the same process repeated for the 
12th fret and open string, respectively.

The experimental data show that, as expected, the 
inharmonicity is greater for a given resonant mode num‑
ber for shorter sounding lengths (i.e. at higher frets). For 

open strings, the inharmonicity is not very significant for 
the first ten modes. It is clear that the “tapered” string (that 
has lowered mass near the bridge) has raised inharmonic‑
ity in comparison with the standard construction string 
in all cases (except for a very slight anomaly in the 2nd 
partial on the open string). The “lumped” design (with 
a lower mass very close to the saddle and raised mass 
nearby) generates significantly lower inharmonicity when 
playing at higher fret numbers (with spurious data for the 
eighth mode when playing the 21st fret due to negligible 
amplitude measured).

5  Perturbation theory

The effect of a perturbation in linear mass density on a 
string was established by Lord Rayleigh [28, p.170] and 
used to propose mass loading for inharmonicity reduction 
in piano strings by Miller [26]. If we make the perturbations 
add ��(x) to the mass per unit length in certain regions 
of the string then the frequency of the pth mode, f (pert)p  in 
terms of the unperturbed mode frequencies, fp , is given 
by [28, p.170]:

where s is given by the integral [28, p.170]:

This is usually applied to ideal strings rather than stiff 
strings. However, the mode shapes of uniform stiff strings 
with ideal fixed ends are the same as those of uniform 
strings of zero stiffness with fixed ends. It follows that the 
perturbation method can be applied as a first‑order cor‑
rection to the analytic mode frequencies for the uniform 
stiff string if the frequency ratio change is small (as is the 
case here because the length of the perturbed section is 
small in comparison with the total length of the string). 
This has a huge advantage in computation time for mode 
frequency prediction in comparison with high sample rate 
FDTD approach used elsewhere in the paper.

The integral in Eq. 24 can be computed resulting in a 
summation over the different sections of string (assuming 
j = J is the longest section):

(23)f (pert)
p

= fp(1 + s)−
1

2 ,

(24)s =
2

L ∫
L

0

��(x)

�
sin2

(p�x
l

)
dx .
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where J is the number of different sections. The vector xj 
contains the x coordinates of the discrete changes in den‑
sity with x0 = 0 and the other entries calculated from the 
lengths of the sections, aj , using

In order to compute the results, first the stiff string mode 
frequencies, fp , from the Fletcher formula, Eq. 3, where cal‑
culated assuming the ratio of total mass of string to core 
mass was � = �(J) and Eq. 21 was used with � = 1.45 (as 
the mid point in the range 1.3 < 𝜉 < 1.6 used previously). 
These were substituted into Eq. 23 (and taking the solu‑
tion of the integral, s, from Eq. 25) to obtain the mode fre‑
quencies according to the perturbation method, f (pert)p  , for 
the “lumped”, “standard” and “tapered” string designs. The 
inharmonicity in cents for the mode frequencies according 
to the perturbation method was then calculated by sub‑
stitution into Eq. 6. The results are shown in Fig.  6 for the 
21st fret measurement along with the FDTD and experi‑
mental results shown previously. Agreement between 

(25)

s =

J−1�
j=1

�
�(j) − �(J)

�(J)

��
xj − xj−1

L

−
sin

�
2�pxj

L

�
− sin

�
2�pxj−1

L

�

2�p

⎞
⎟⎟⎟⎠
.

(26)xj =

j∑
i=1

ai .

the perturbation method and the FDTD method is good, 
being well within the error bars produced by consideration 
of uncertainties in the exact diameters, mass ratios and 
contribution to stiffness due to the windings. This dem‑
onstrates that, for significant changes to the density local‑
ised near the end of the string, the perturbation method 
delivers results which are sufficient for analysing and 
optimising string designs. No losses were involved in the 
derivation of the mode frequencies according to the per‑
turbation method, hence reinforcing the fact that losses 
have negligible impact on the frequencies of the modes.

6  Controlling pitch glide 
through inharmonicity reduction

Pitch glide is known to occur partly due to nonlinear 
oscillation as high amplitudes at the start of notes lead to 
raised tensions for part of the oscillation cycle. This can be 
expected to increase the resonance frequencies of all reso‑
nances (including the fundamental) near the start of the 
note [15]. Pitch tracking in humans and in electrical tun‑
ers depends on the amplitude and frequency of multiple 
partials. It is therefore important to also consider how the 
higher‑frequency resonances decay much more quickly 
than the lower frequency resonances of strings. The higher 
pitched resonances (which are sharp of true harmonics of 
the fundamental resonant frequency) have a larger effect 
on the observed pitch at the start of a pluck, while the 
lower partials (which are closer to harmonic and thus flat‑
ter in pitch) have a larger effect on the observed pitch 
later in the sustain of the note. Pitch glide can therefore be 
expected to occur for inharmonic strings even if there was 
no pitch glide due to nonlinearity (with all the resonance 
frequencies essentially static in frequency). Pitch glides 
related to inharmonicity have been observed previously 
in bass piano notes [27, 29]. This kind of pitch glide can be 
expected to be reduced for strings of lower inharmonicity.

In order to investigate the effect, pitch tracking was 
performed on the recordings of the constructed strings 
by extracting the pitch contour obtained using the default 
settings (autocorrelation method) in Praat 6.0.29 soft‑
ware [4]. Following this, the audio was low pass filtered 
using “Filter (pass Hann band)” (with a corner frequency 
of approximately 1.5 times the fundamental frequency 
and smoothing of around a sixth of the fundamental 
frequency) in Praat software to remove the second and 
higher resonances. Pitch tracking was then performed on 
the resulting data to obtain pitch tracking data on the fun‑
damental. Both sets of pitch tracking data were then over‑
laid on the spectrograms of the same recordings obtained 
using the spectrogram function in MATLAB (with a sample 
rate of 44.1 kHz and Hamming windows of length 65536 
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samples used, giving a window length of 1.4 s and an over‑
lap between windows of 0.7 s and the colour map set with 
a dynamic range of 30 dB) for comparison. Zooming in to 
the area around the fundamental enables the any glide 
in pitch and fundamental frequency to be observed. For 
clarity in terms of pitch, dotted horizontal lines have been 
overlaid to indicate the frequencies corresponding to 20 

cent intervals of pitch relative to the pitch observed in the 
later stages of the pitch tracking data. The results are plot‑
ted in Fig. 7.

In general, the (magenta) pitch tracking data shows sig‑
nificant downward pitch drift that is accentuated at higher 
fret numbers. This is not accompanied by any downward 
pitch glide for the (black) fundamental pitch tracking data 
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Fig. 7  Spectrogram (background image) and pitch tracking 
(magenta line) of the unfiltered audio recordings. Also shown is 
the pitch tracking of the fundamental frequency (black line) calcu‑
lated by low pass filtering to remove second and higher resonances 

before running pitch tracking analysis. Results are shown for the 
“lumped”, “standard” and “tapered” bass guitar strings (approxi‑
mately 132 gauge) constructed as described in Tables  1,  2 and  3 
when playing the open string, 12th fret and 21st fret
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or spectrogram data. For this experiment, the significant 
downward glide in the (magenta) pitch tracking data is 
therefore due to inharmonicity, not due to nonlinear 
oscillation.

The value for “glide” in cents per second is shown above 
each subplot, and this was calculated by taking the median 
of the pitch in cents between 0 and 1 s in the (magenta) 
pitch tracking data and subtracting the median of the 
pitch in cents between 1 second and 2 s in the (magenta) 
pitch tracking data. High values of pitch glide are associ‑
ated with the “tapered” and “standard” string designs for 
high fret numbers. In general, the “lumped” string design 
(of lowest inharmonicity) shows the lowest values of 
pitch glide (less than 4 cents per second at all positions). 
It should be noted that the “tapered” string (that has the 
highest inharmonicity levels) has the lowest observed 
glide for the open string (at 1.75 cents per second) with 
the pitch tracking data consistently 20 cents above the 
fundamental frequency. Due to the higher resonances 
being strongly excited by the plucking position (2cm for 
the bridge), the inharmonic resonances were significant 
throughout the sustain at larger levels than would be typi‑
cal in normal playing. The values of glide clearly depend 
on how strongly upper resonances are excited and how 
long they sustain and these are not central topics of the 
current paper. Analysing the effect inharmonicity on pitch 
glide during typical playing techniques is clearly worthy 
of future work, and lumped string designs clearly show 
promise in enabling lower pitch glides to be obtained 
throughout different neck positions (or fret numbers).

It is interesting to note that the (black) fundamental 
pitch tracking data at higher fret numbers show evidence 
of a mild upward pitch glide in the fundamental (the oppo‑
site of the glide in the fundamental expected from non‑
linear theory) and may be related to magnetic drag [13]. 
This subtle effect is completely obscured by the downward 
pitch glide in the (magenta) pitch tracking data. The fluc‑
tuations in the pitch tracking data of the fundamental after 
around 4 s are due to the signal to noise ratio reducing as 
energy is lost from the vibration.

7  Conclusions

Assessing the resonant modes of lossy stiff bass guitar 
strings of varying cross section using the finite difference 
time domain method has been demonstrated to give 
good agreement with the experimental results for sig‑
nificant changes of mass density located near the bridge. 
This is encouraging in itself for applications such as musi‑
cal sound synthesis of a wide range of string instruments 
although more advanced treatment of varying density 
would be necessary for real‑time applications given current 

computational power. Starting from a lossless stiff string of 
constant mass per unit length and modifying the resonant 
frequencies using Rayleigh’s method for variation in mass 
per unit length (referred to as perturbation theory in this 
work) results in good agreement within reasonable error 
bounds. This demonstrates that this perturbation theory 
is acceptable for string design purposes while taking a tiny 
fraction of the programming and computation time. Due to 
the good agreement between lossy finite difference time 
domain simulation and lossless perturbation theory, the 
inclusion of losses is demonstrated to have negligible impact 
on inharmonicity for realistic bass guitar string simulations.

All the strings designs tested here demonstrated lower 
sustain when playing at high fret numbers. This is always 
expected for string instruments due to losses generally 
being larger for higher resonant frequencies and shorter 
wavelengths. The low sustain and high fundamental fre‑
quency high up the neck increases the relevance of main‑
taining low inharmonicity for the first few modes in order to 
maintain optimal timbre and harmony in musical contexts 
such as supporting chordal work.

The inharmonicity of strings is increased by conventional 
tapered or stepped string designs. On the other hand, the 
inharmonicity may be decreased by using a lumped string 
design (through introducing a section of raised mass per 
unit length near to the end of the sounding length). This may 
be expected to improve pitch perception, increase the sense 
of consonance with other instruments in musical context 
and improve the timbre of notes played through nonlinear 
systems such as distortion effects. Pitch glide can be prob‑
lematic when tuning instruments in addition to potentially 
interfering with musical harmony and note quality. This 
problem is also reduced by increasing the mass near the 
saddle. Lower pitch bass guitar strings that typically have 
large inharmonicity at higher fret numbers are expected to 
benefit from this lumped design. Further work is required 
to validate the extent to which such constructions result in 
perceptually significant changes in musical context, includ‑
ing on the higher pitched strings on bass guitar. In addition 
to this, it is worth investigating to what extent pitch glide 
is caused by inharmonicity in musical contexts involving 
plucked strings.
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