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Abstract

We present several applications of the Assouad dimension, and the related quasi-Assouad
dimension and Assouad spectrum, to the box and packing dimensions of orthogonal
projections of sets. For example, we show that if the (quasi-)Assouad dimension of F ⊆ Rn

is no greater than m, then the box and packing dimensions of F are preserved under
orthogonal projections onto almost all m-dimensional subspaces. We also show that the
threshold m for the (quasi-)Assouad dimension is sharp, and bound the dimension of the
exceptional set of projections strictly away from the dimension of the Grassmannian.
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1 Introduction and results

The relationship between the dimension of a Borel set F ⊆ Rn and its projections onto m-
dimensional subspaces goes back to Marstrand [12] and Mattila [13] who showed that

dimH πV F = min{m,dimH F}

for almost all V ∈ G(n,m) with respect to the natural invariant measure on the Grassmannian
G(n,m), where πV : Rn → V is orthogonal projection onto V and dimH is Hausdorff dimension.

Finding the box and packing dimensions of projections of sets is more awkward. For a non-
empty bounded F ⊆ Rn, let Nr(F ) be the minimum number of sets of diameter r that can cover
F . The lower and upper box-counting dimensions or box dimensions of F are defined by

dimBF = lim
r→0

logNr(F )

− log r
and dimBF = lim

r→0

logNr(F )

− log r

(note that this gives the same values for the dimensions as taking Nr(F ) to be the least number
of sets of diameter at most r that can cover F or other equivalent definitions, see [2]). The
packing dimension of a (not-necessarily bounded) set may be defined in terms of upper box
dimension as

dimP F = inf
{

sup
j

dimBFj : F ⊆ ∪∞j=1Fj with Fj compact
}
, (1.1)

see [2]. Although the values of dimBπV F,dimBπV F and dimP πV F are constant for almost all
V ∈ G(n,m), this constant can take any value in the range

dimBF

1 + (1/m− 1/n)dimBF
6 dimBπV F 6 min{m,dimBF}, (1.2)
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with analogous inequalities for lower box and packing dimensions. These inequalities were
established in [5, 6, 10] using dimension profiles, with examples showing them to be best possible
in [5, 11], and recently a simpler approach using capacities was introduced [3]. For background
on the dimensions of projections, see [4, 14], and for general dimension theory, see [2].

In light of the fact that, in general, box and packing dimensions may drop under almost all
projections, it may be of interest to find geometric conditions that ensure that such a drop does
not occur. In this paper we obtain a result of this type: we show that if the Assouad, or even the
quasi-Assouad, dimension of F ⊆ Rn is no greater than m, then the box and packing dimensions
of F are preserved under orthogonal projection onto almost all m-dimensional subspaces, i.e
there is equality on the right-hand side of (1.2). We also obtain estimates when dimA F > m as
well as bounds on the dimension of the exceptional set of subspaces V .

The Assouad dimension of a non-empty set F ⊆ Rn is defined by

dimA F = inf

{
α : there exists a constant C > 0 such that,

for all 0 < r < R and x ∈ F , Nr

(
B(x,R) ∩ F

)
6 C

(
R

r

)α }
.

The related upper Assouad spectrum is defined by

dim
θ
AF = inf

{
α : there exists a constant C > 0 such that,

for all 0 < r 6 R1/θ < R < 1 and x ∈ F , Nr

(
B(x,R) ∩ F

)
6 C

(
R

r

)α }
.

where θ ∈ (0, 1). If one replaces r 6 R1/θ with r = R1/θ, then one obtains the Assouad spectrum
dimθ

A F , see [8], but it was proved in [7] that

dim
θ
AF = sup

θ′∈(0,θ)
dimθ′

A F

and so we are able to rely on the theory of dimθ
A F , which is somewhat more developed. The

upper Assouad spectrum is clearly non-decreasing in θ but the Assouad spectrum need not be.
However, in most commonly studied situations it is non-decreasing and therefore the two spectra
coincide. Finally, the quasi-Assouad dimension is defined by

dimqA F = lim
θ↗1

dim
θ
AF.

Generally, for θ ∈ (0, 1),

dimPF 6 dimBF 6 dimBF 6 dim
θ
AF 6 dimqA F 6 dimA F.

With these definitions we may state our two basic theorems which will be proved in the next
section using dimension profiles.

Theorem 1.1. Let 1 6 m < n and θ ∈ (0, 1). If F ⊆ Rn is bounded then, for almost all
V ∈ G(n,m),

dimBπV F > dimBF −max{0, dim
θ
AF −m, (dimA F −m)(1− θ)}, (1.3)

and the same conclusion holds with dimB replaced by dimB. If F is Borel the conclusion holds
with dimB replaced by dimP.
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The following statement bounds the Hausdorff dimension of the exceptional set of projections
in Theorem 1.1 strictly away from m(n−m), the dimension of G(n,m).

Theorem 1.2. Let 1 6 m < n, s ∈ (0,m) and θ ∈ (0, 1). If F ⊆ Rn is bounded then

dimH

{
V ∈ G(n,m) : dimBπV F < dimBF −max{0, dim

θ
AF − s, (dimA F − s)(1− θ)}

}
6 m(n−m)− (m− s), (1.4)

and the same conclusion holds with dimB replaced by dimB. If F is Borel the conclusion holds
with dimB replaced by dimP.

The following corollaries follow easily from the theorems by choosing appropriate parameters.

Corollary 1.3. Suppose that dimqA F 6 max{m,dimBF}. If F ⊆ Rn is bounded then, for
almost all V ∈ G(n,m),

dimBπV F = min{m,dimBF}, (1.5)

and more generally
dimBπV F > dimBF −max{0, dimqA F −m}. (1.6)

The same conclusion holds with dimB replaced by dimB. If F is Borel the conclusion holds with
dimB replaced by dimP.

Proof. The almost sure estimates (1.5) and (1.6) follow on letting θ ↗ 1 in (1.3).

The estimate (1.5) in Corollary 1.3 can also be obtained using [15, Proposition 4.5].

Corollary 1.4. Suppose that dimqA F < m. If F ⊆ Rn is bounded then

dimH{V ∈ G(n,m) : dimBπV F < dimBF} 6 m(n−m)− (m− dimqA F ),

and the same conclusion holds with dimB replaced by dimB. If F is Borel the conclusion holds
with dimB replaced by dimP.

Proof. Take s = dimqA F and let θ ↗ 1 in (1.4).

In the absence of a precise result, a natural question is when (1.6) improves on the general
lower bounds from (1.2). A careful analysis of the lower bound yields many such situations. We
provide one instance, based on a knowledge of the Assouad dimension. We exclude the range
dimA F < max{m,dimBF} since this is covered by Corollary 1.3.

Corollary 1.5. Let 1 6 m < n be integers. If F ⊆ Rn is bounded with dimBF 6 m and

max{m,dimBF} 6 dimA F <
(mn+ 2dimBF (n−m))m

mn+ dimBF (n−m)
,

then, for almost all V ∈ G(n,m),

dimBπV F > dimBF −
(dimA F −m)dimBF

m
>

dimBF

1 + (1/m− 1/n)dimBF
.

This result remains valid with dimB replaced by dimB throughout. If F is Borel the result remains
valid with dimB replaced by dimP.
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Proof. This follows from Theorem 1.1. If dimBF = m, then the bound follows by letting θ ↘ 0

in (1.3). If dimBF < m, then choose θ as large as possible such that dim
θ
AF 6 m. By [8,

Proposition 3.1] we know that

dim
θ
AF 6

dimBF

1− θ
and therefore we can always choose

θ = 1− dimBF

m
.

Therefore by (1.3), for almost all V ∈ G(n,m),

dimBπV F > dimBF − (dimA F −m)(1− θ) = dimBF −
(dimA F −m)dimBF

m

>
dimBF

1 + (1/m− 1/n)dimBF
,

as required. The final strict inequality uses the assumption on the Assouad dimension.

Figure 1 indicates our bounds for the almost sure box dimensions of projections depending
on the pair (dimBF,dimA F ) in different cases.

Figure 1: Taking m = 1 and n = 2, if the pair (dimBF,dimA F ) lies in region: (i) we get no
information, (ii) Corollary 1.5 gives improvements on the general bounds (1.2), (iii) Corollary
1.3 gives min{m,dimBF}, (iv) is not possible, since dimA F > dimBF . The curve bounding
regions (i) and (ii) is given by y = (2x+ 2)/(x+ 2).

The proof of Corollary 1.5 involved choosing a particular θ in the ‘worst case scenario’. If
dimθ

A F is known, then there may be a much better choice leading to better estimates in the
particular setting. For example, better choices of θ always exist if F is a Bedford-McMullen
carpet, see [9].

We remark that the examples in [6, Lemma 19] of sets F ⊆ Rn for which there is almost sure
equality on the left-hand inequality of (1.2), all have Assouad dimension dimA F = n, consistent
with our estimates.
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2 Dimension profiles and proofs of theorems

We first review the relationship between the dimension profiles of a set and the box dimensions of
its projections. Then estimating the dimension profiles in terms of (quasi-)Assouad dimensions
will lead to the theorems in Section 1.

Dimension profiles may be defined in terms of capacities with respect to certain kernels [3].
For s ∈ [0, n] and r > 0 we define the kernel

φsr(x) = min

{
1,

(
r

|x|

)s}
(x ∈ Rn). (2.1)

For a non-empty compact F ⊆ Rn, the capacity, Csr (F ), of F with respect to this kernel is given
by

1

Csr (F )
= inf

µ∈M(F )

∫ ∫
φsr(x− y)dµ(x)dµ(y)

where M(F ) denotes the collection of Borel probability measures supported by F . The double
integral inside the infimum is called the energy of µ with respect to the kernel. The capacity
of a general bounded set is taken to be that of its closure. For bounded F ⊆ Rn and s > 0 we
define the lower and upper box dimension profiles of F by

dims
BF = lim

r→0

logCsr (F )

− log r
, dim

s
BF = lim

r→0

logCsr (F )

− log r
,

and, analogously to the packing dimension (1.1), the packing dimension profile (for F not nec-
essarily bounded) by

dims
P F = inf

{
sup
j

dim
s
BFj : F ⊆ ∪∞j=1Fj with Fj compact

}
. (2.2)

In particular, by [3, Corollary 2.5] if s > n then

dims
BF = dimBF, dim

s
BF = dimBF, dims

PF = dimPF

but for s < n the dimension profiles give the almost sure dimensions of projections of sets as
well as information on the size of the set of exceptional projections, as follows.

Theorem 2.1. [3, Theorems 1.1, 1.2]
(i) Let 1 6 m < n be an integer. For almost all V ∈ G(n,m), if F ⊆ Rn is bounded

dimBπV F = dimm
BF, and dimBπV F = dim

m
BF,

and if F ⊆ Rn is Borel
dimPπV F = dimm

P F.

(ii) For 0 < s < m, if F ⊆ Rn is bounded

dimH{V ∈ G(n,m) : dimBπV F < dims
BF} 6 m(n−m)− (m− s),

dimH{V ∈ G(n,m) : dimBπV F < dim
s
BF} 6 m(n−m)− (m− s),

and if F ⊆ Rn is Borel

dimH{V ∈ G(n,m) : dimPπV F < dims
PF} 6 m(n−m)− (m− s).
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The following theorem relates the dimension profiles to (quasi-)Assouad dimension. Com-
bined with Theorem 2.1 this will give the bounds stated in Section 1 for the box and packing
dimensions of projections.

Theorem 2.2. Let s ∈ (0, n] and θ ∈ (0, 1). If F ⊆ Rn is bounded then

dims
BF > dimBF −max{0, dim

θ
AF − s, (dimA F − s)(1− θ)}

and
dim

s
BF > dimBF −max{0, dim

θ
AF − s, (dimA F − s)(1− θ)}. (2.3)

If F ⊆ Rn is Borel then

dims
PF > dimPF −max{0, dim

θ
AF − s, (dimA F − s)(1− θ)}. (2.4)

Proof. We first consider upper box dimensions. We may assume for convenience that |F | < 1/2,

where |F | denotes the diameter of F . Fix α > dim
θ
AF , β > dimA F and let C > 0 be a constant

such that for all 0 < r < R < 1 and x ∈ F

Nr(B(x,R) ∩ F ) 6 C

(
R

r

)β
,

and for all 0 < r 6 R1/θ < R < 1 and x ∈ F

Nr(B(x,R) ∩ F ) 6 C

(
R

r

)α
.

Let 0 < r < 1 and {xi}Nr(F )
i=1 be a maximal r-separated set of points in F . Place a point mass

of weight 1/Nr(F ) at each xi and let the measure µ be the aggregate of these point masses so
that µ(F ) = 1.

Write D = dlog2(2|F |r−1)e and B = d(1 − θ) log2(r
−1)e noting that for sufficiently small r,

1 6 B < D. For each i the potential of µ at xi is∫
φsr(xi − y)dµ(y) 6

D∑
k=0

2−(k−1)sµ(B(xi, 2
kr))

6
D∑
k=0

2−(k−1)s
1

Nr(F )
Nr

(
B(xi, 2

kr) ∩ F
)

6
2s

Nr(F )

( D∑
k=B

2−ksC
(2kr

r

)α
+

B−1∑
k=0

2−ksC
(2kr

r

)β)

6 c
max{1, r−(α−s), r−(β−s)(1−θ)}

Nr(F )

for a constant c which is independent of r. Summing over the xi, the energy of µ is∫ ∫
φsr(x− y)dµ(x)dµ(y) 6 c

max{1, r−(α−s), r−(β−s)(1−θ)}
Nr(F )

and so the capacity Csr (F ) satisfies

Csr (F ) > c−1Nr(F ) min{1, r(α−s), r(β−s)(1−θ)}.
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Thus

dim
s
BF = lim

r→0

logCsr (F )

− log r

> lim
r→0

log
(
c−1Nr(F ) min{1, r(α−s), r(β−s)(1−θ)}

)
− log r

= dimBF −max{0, α− s, (β − s)(1− θ)}.

The conclusion for upper dimensions follows on taking α and β arbitrarily close to dim
θ
AF

and dimA F respectively. For the lower box dimension case we take lower limits in the final
inequalities.

Finally, we extend the conclusions for upper dimensions to packing dimensions. Given a
Borel set F with dimP F > γ there exists a compact E ⊆ F such that dimP(E ∩ U) > γ for
every open set U that intersects E, see for example [1, Lemma 2.8.1]. Let {Ui} be a countable
basis of open sets that intersect E. From (2.3),

dim
s
B(E ∩ Ui) > dimB(E ∩ Ui)−max

{
0, dim

θ
A(E ∩ Ui)− s, (dimA(E ∩ Ui)− s)(1− θ)

}
> γ −max

{
0, dim

θ
AF − s, (dimA F − s)(1− θ)

}
for all i, using the monotonicity of dim

θ
A and dimA.

Let {Ej} be any countable cover of E by compact sets. By Baire’s category theorem, for
some j, E ∩ Ej contains a set that is open relative to E, so E ∩ Ui ⊆ E ∩ Ej for some i. It
follows from the definition of the packing dimension profile dims

P (2.2) that

dims
PF > dims

PE > γ −max
{

0, dim
θ
AF − s, (dimA F − s)(1− θ)

}
.

Taking γ arbitrarily close to dimP F gives (2.4).

Proof of Theorems 1.1 and 1.2. Theorem 1.1 is immediate on substituting the inequalities of
Theorem 2.2 with s = m in Theorem 2.1(i). Similarly Theorem 1.2 follows using the estimates
of Theorem 2.2 in Theorem 2.1(ii). �

3 Sharpness of the threshold for the (quasi-)Assouad dimension

To conclude the paper, we show that Corollary 1.3 is sharp in the following sense:

Lemma 3.1. For all s ∈ (m,n] and t ∈ (0, s) there exists a compact set F ⊂ Rn such that
dimP F = dimBF = t, dimA F = s (in particular, dimqA F 6 s), and

dimP πV F 6 dimBπV F 6
mst

m(s− t) + st
< min(t,m)

for every V ∈ G(n,m).

This lemma says that, in order to guarantee that packing or upper box dimensions are pre-
served under almost all orthogonal projections (or indeed under even one orthogonal projection),
it is not enough to assume that dimqA F 6 s, or even that dimA F 6 s, if s > m (while s = m
is enough by Corollary 1.3). However, how much the packing or box dimension of a typical
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projection πV F , V ∈ G(n,m), can drop from dimBF in terms of dimBF and dimA F remains
an open problem, since the upper and lower bounds provided by Corollary 1.3 and Lemma 3.1
respectively, are in general quite far apart from each other. We note that when s = n, the upper
bound given by Lemma 3.1 agrees with the lower bound in (1.2), and is therefore sharp in this
case.

The construction of the set F in the above lemma is based on sets defined by restricting the
digits in dyadic expansions. Given a set S ⊆ N, let

XS =

{ ∞∑
k=1

ak2
−k : ak ∈ {0, 1} and ak = 0 for all k ∈ N \ S

}
⊂ [0, 1].

We write #F to denote the cardinality of a set F . Recall the definition of (upper) density and
Banach density of a subset of N:

d(S) = lim sup
k→∞

#S ∩ {1, . . . , k}
k

,

dB(S) = lim sup
k→∞

sup
`∈N

#S ∩ {`, `+ 1, . . . , `+ k − 1}
k

.

Lemma 3.2. Given S ⊂ N and n ∈ N,

dimPX
n
S = dimBX

n
S = d(S)n, dimAX

n
S = dB(S)n.

where Xn
S ⊆ [0, 1]n is the n-fold product of XS.

Proof. The claim for upper box dimension is almost immediate from the definition, see [1,
Example 1.4.2] for details in the case n = 1. The claim for packing dimension follows from the
one on upper box dimension and [1, Lemma 2.8.1]. Finally, for the Assouad dimension formula,
we note that if

2−`−k 6 r < 21−`−k 6 2−`−1 < R 6 2−`

then, for any x ∈ XS , the set XS ∩ B(x,R) can be covered by Cn · 2−n(#S∩{`,...,`+k−1}) balls
of radius r and cannot be covered by fewer than a constant (depending on n) multiple of this
number, so that dimA(XS) = dB(S)n.

Proof of Lemma 3.1. Let A ⊆ N be a set with d(A) = dB(A) = s/n; this is easily arranged. Let
(kj)j∈N be a sequence of natural numbers satisfying

(k1 · · · kj−1)/kj → 0 as j →∞. (3.1)

Finally, set

S =

∞⋃
j=1

(A+ kj) ∩
{
kj , . . . ,

⌊
s

s− t
kj

⌋}
,

and F = Xn
S . Here A + kj = {a + kj : a ∈ A}. Using (3.1), we see that d(S) is realized along

the sequence b skjs−tc, and a calculation shows that d(S) = t/n. Also, dB(S) = dB(A) = s/n and
hence, thanks to Lemma 3.2,

dimP F = dimBF = t, dimA F = s.
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Now fix V ∈ G(n,m), ε > 0 and k ∈ N. Pick j such that kj 6 k < kj+1. Provided k (and
therefore j) is large enough in terms of ε, n, s and t, the set F can be covered by

2(n
∏j−1

i=1
tki
s−t

) 6 2εkj

cubes of side-length 2−kj , where we used (3.1). Hence, πV F can be covered by Cn,m2m(k−kj)2εkj

cubes of side-length 2−k. On the other hand, if k > skj/(s− t), then (again assuming k is large
enough), F can be covered by 2(t+ε)skj/(s−t) cubes of side-length 2−k, and hence πV F can be
covered by at most a constant Cn,m multiple of that number. Up to the terms involving ε, the
first bound is more efficient when

k <
(
1 + st

m(s−t)
)
kj ,

otherwise the second bound is more efficient. Note that 1 + st
m(s−t) >

s
s−t , since s > m. A short

calculation shows that, in any case, πV F can be covered by

Cn,m2(d+εCm,s,t)k, d =
mst

m(s− t) + st
,

cubes of side-length 2−k. Since ε > 0 was arbitrary, this concludes the proof.
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