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The Subantarctic Front (SAF), one of the three main jets of the Antarctic Circumpolar 

Current (ACC), flows through a narrow gap in the North Scotia Ridge and then north-

westward across the continental slope of Burdwood Bank, ~150 km south of the Falkland 

Islands. There, the SAF flows across a fold-and-thrust belt caused by oblique convergence 

at the active plate boundary between the Scotia Plate and South American Plate. We here 

use regional 2D and 3D seismic reflection data to show the interaction of the associated 

bottom currents with the active margin, particularly to understand the causes and 

consequences of a number of large submarine landslides located in the adjacent foredeep. 

Kinematic indicators from the landslide deposits show that they are derived from a single 

point source located in an embayment on the northern slope of Burdwood Bank, where we 

identify a large contourite drift deposit. This drift forms the depositional sink for an along-

slope sediment routing system driven by currents associated with the SAF, with sediment 
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being eroded from the Burdwood Terrace, transported ~200 km westward, and plastered 

against the middle-upper continental slope. The contourite drift is undercut by the core of 

the current, making the slope inherently unstable in this area. Numerical modelling of the 

landslides and resultant waves indicates the tsunamigenic potential of these events. 

Modelled peak wave elevations of up to 40 m inundate the southern coast of the Falklands 

for a ~100 km
3
 volume landslide, with a recurrence interval of 1 Ma or less. This research 

highlights preconditioning mechanisms for submarine failure on continental slopes 

dominated by strong ocean currents, and specifically, oceanographic controls on the 

frequency, magnitude and location of submarine landslides associated with contourite 

systems.  
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1. Introduction 

The majority of recent catastrophic tsunamis, such as those in the Indian Ocean (2004) 

and Japan (2011), have been triggered by megathrust earthquakes, typically exceeding Mw 8.5 

(Ward, 2001, Blewitt et al., 2006), so research on tsunami hazard has primarily focused on active 

subduction zones (Satake and Atwater, 2007). In the last two decades, however, there has been 

an increasing recognition of the tsunami hazard from submarine landslides, many of which are 

associated with moderate magnitude, Mw 6-8 earthquakes (Hornbach et al., 2010, Tappin et al., 

1999, Harbitz et al., 2006, Tappin et al., 2014). More recent tsunami events, such as the Mw 7.5 

Sulawesi earthquake of September 2018 (Heidarzadeh et al., 2019) and Mw 7.0 Haiti earthquake 

(Hornbach et al., 2010) highlight the potential hazard of smaller magnitude strike-slip 
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earthquakes with associated submarine landslides, although the precise tsunami mechanisms are 

still controversial. The recognition of tsunami generation from submarine landslides is in part 

due to the increasing resolution and spatial coverage of multibeam echosounding bathymetry 

(MBES) and the increasing availability of petroleum industry multichannel seismic (MCS) 

reflection data. The spatial coverage of this data has contributed to the recognition of submarine 

landslides as a common feature of continental margins worldwide (Moscardelli and Wood, 

2016). Although most landslides do not generate ocean-wide (far field) tsunamis because of their 

small volume and tsunami wave frequency dispersion (Masson et al., 2006), they represent a 

significant hazard because of their elevated and focused run-ups near their source locations 

(Harbitz et al., 2006). These can cause significant damage and loss of life (e.g. the 1998 Papua 

New Guinea tsunami with >2200 casualties) (Tappin et al., 1999). In addition, some prehistoric, 

large-volume (>1000 km3) submarine landslides, such as Storegga (8,200 BP), have generated 

ocean-wide tsunamis, with run-up heights of >20-30 m (e.g. Storegga slide) (Bondevik et al., 

2003), which are comparable in elevation to the 2004 Indian Ocean, earthquake-generated 

tsunami (Geist et al., 2007). 

Although earthquakes are the most common trigger of submarine landslides, certain pre-

existing physical and sedimentological conditions can prime continental margin sediments for 

failure. These conditions include sediment-loading or over-steepening of continental slopes 

(Assier-Rzadkieaicz et al., 2000), buildup of overpressures in slope sediments (Prior and 

Coleman, 1982), the presence of weak, slope-parallel sediment layers (O'Leary, 1991) and, more 

controversially, gas-hydrate dissociation resulting from sea-level change (Sultan et al., 2004). 

The most well-documented pre-historic submarine landslide is the Storegga Slide offshore of 

Norway, which was likely to have been pre-conditioned by weak, fine-grained contourite 
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deposits underlying coarse-grained glacigenic deposits (Bryn et al., 2005). The rapid deposition 

of the glacigenic deposits led to overpressure in the contourites, leading to their failure from 

earthquake triggering during the Early Holocene (Bryn et al., 2005, Kvalstad et al., 2005, 

Solheim et al., 2005). Thus, deposition of mechanically weak contourite sediment by along-slope 

currents can be an important control on generating large-volume submarine landslides.  

We here document a number of large volume (~100 km3) to giant (~1000 km3) mass 

transport deposits (MTDs), the depositional products of submarine landslides caused by slope 

failure, in the South Atlantic along the northern margin of Burdwood Bank, on the South 

American-Scotia plate boundary (Figure 1). From landslide morphology and kinematic 

indicators on the MTDs, we identify the source and preconditioning mechanisms of these 

landslides. In the absence of an obvious sediment source for these deposits, we examine the role 

of active bottom currents associated with the Subantarctic Front (SAF), and we test the 

hypothesis that the landslides are both supplied by, and preconditioned by, strong bottom 

currents in the region. Finally, we use our observations from the MTDs as the basis of numerical 

tsunami landslide modelling, from which we determine their potential hazard for coastal 

communities in the region. 

 

2. Tectonic and oceanographic setting 

The North Scotia Ridge (NSR) forms part of a submerged, oblique-compressional plate 

boundary between the South American Plate to the north and the Scotia Plate to the south (Figure 

1). The boundary is seismically active, with both strike-slip and compressional earthquakes up to 

Mw 7.0. The exact plate-boundary configuration remains uncertain, with some models proposing 

oblique convergence along a continuous fault situated in the Falkland Trough (Pelayo and 
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Wiens, 1989, Bird, 2003), and others proposing partitioned strain with parallel compressional 

and strike-slip segments (Lagabrielle et al., 2009). Epicentres of recent earthquakes are clustered 

in discrete locations, which may be aligned along segments of the plate boundary. The largest 

events, situated between the east of Burdwood Bank and Davis Bank, have predominantly left-

lateral focal mechanisms, although there is also a diffuse cluster of Mw 4-6 events along the 

northern margin of Burdwood Bank (Figure 1C). 

The NSR itself consists of a series of microcontinents which rifted from a contiguous 

Patagonia-Antarctica arc during the Paleogene, and collided with the southern margin of the 

Falkland Plateau during the Eocene (Galeazzi, 1998, Bry et al., 2004). Since the Eocene, the 

margin has undergone a combination of compression and left-lateral strike-slip deformation 

(Eagles et al., 2005) although the amount of lateral translation of the eastern component of the 

NSR (including South Georgia) remains controversial (Eagles and Jokat, 2014). Compression, 

with associated crustal loading at the plate boundary, resulted in the formation of an east-west-

trending foreland basin, the South Falkland Basin (Bry et al., 2004), where up to 7 km of 

sediment was deposited during formation (Baristeas et al., 2013). The basin is still active and 

now forms the bathymetric feature termed the Falkland Trough, where water depths increase 

from approximately 500 m in the west to more than 5000 m in the east, north of Davis Bank 

(Figure 1).   

The Subantarctic Front (SAF) is one of the main jets of the Antarctic Circumpolar 

Current (ACC), the world’s largest moving body of water, which continuously transports 134 

Sverdrups (Sv) of water around Antarctica (Figure 1A) (Smith et al., 2010). The ACC is driven 

by surface shear stress caused by the South Westerly Winds. In the absence of any continental 

barriers to deflect or modify the ACC, the shear stresses are transmitted to the deep ocean.  The 
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majority of water masses associated with the ACC are transported by relatively narrow, 

vertically aligned jets which extend from the sea surface to the seabed (Figure 1B). Of these jets, 

the SAF alone is responsible for transporting around 48 Sverdrups (Sv) of water through the 

narrow 54-54 passage in the NSR. From there, the SAF flows across the northern slope of 

Burdwood Bank until it converges with the subducting Subantarctic Mode Water, which flows 

across the saddle between Tierra del Fuego and Burdwood Bank and then eastward into the 

Falkland Trough (Piola and Gordon, 1989). From this convergence zone, the current flows 

northward across the Falkland Plateau into the South Atlantic. Velocities at the core of the SAF 

exceed 50 cm/s near the sea surface, and 20-30 cm/s near the seabed at ~1500 m water depth, 

based on a limited number of velocity transects across the Falkland Plateau (Smith et al., 2010) 

and Scotia Ridge (Naveira Garabato et al., 2003). In the absence of other datasets in the region, 

however, these transects represent temporal snapshots of what are likely to be ambient 

conditions. Based on multi-year observations of ACC dynamics in the Drake Passage, bottom 

current velocities associated with the SAF show significant seasonal variations, and reach 

velocities of up to 70 cm/s where there are mesoscale eddies  (Chereskin et al., 2012). High-

resolution numerical models for the Falkland Plateau also highlight the presence and importance 

of these eddies, particularly where the SAF interacts with the shallower sea bed of the North 

Scotia Ridge around the 54-54 Passage (Hallberg and Gnanadesikan, 2006).  

The SAF was initiated at, or very close to, the Eocene-Oligocene boundary, as evidenced 

by widespread erosion of the continental slope, and deposition of extensive contourite sands of 

early Oligocene age on the Falkland Plateau (Nicholson and Stow, 2019). These show that at this 

time both the Drake Passage and 54-54 Passage were already sufficiently deep to allow the 

formation of the ACC. Current velocities associated with the SAF were sufficient to erode the 
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Falkland Plateau to a depth of >300 m. The most pronounced erosion has taken place at water 

depths of 1200-1800 m, resulting in the formation of a broad erosional terrace (the Falkland 

Terrace). Deposition of discrete sediment drifts associated with the SAF was much more recent, 

with sediment accumulating in the South Falkland Slope Drift (SFSD) since the Early Pliocene 

(Weber, 2019). The late onset of drift deposition relative to the timing of initiation of the ACC 

suggests a decrease in current intensity, or a narrower, more constrained SAF since the Pliocene 

(Nicholson and Stow, 2019). The impact of these currents on the continental slope of the 

Burdwood Bank, north and east of the 54-54 Passage, and including the fold-and-thrust belt at 

the Scotia-South America plate boundary, has not previously been documented.  

 

3. Data and methods 

3.1.  Seismic and well data 

We use a regional dataset of >35,000 line km 2D multichannel seismic and two large 

(total of ~3,600 km2) 3D seismic reflection volumes, the FIST and BSP surveys. The 2D data 

were acquired and processed by a number of different operators between 1978 and 2007. Record 

lengths for all surveys are between 8-10 seconds, with sampling intervals of 2-4 ms. All surveys 

were processed using standard industry processing techniques, including multiple elimination, 

NMO correction, and full Kirchhoff pre-stack time migration to restore the position of the 

reflectors in the time domain. Despite this processing sequence, seabed and subsurface multiples 

remain in many of the 2D seismic lines. 

The 3D surveys were acquired and processed by PGS. The sound source was two Bolt 

LLXT airguns with an air pressure of 2000 psi and 4130 cubic inch volume. Data were recorded 

using an array of 12*6.6 km long streamers at 120 m spacing, each with 528 Hydroscience 24 bit 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 

hydrophones at a 12.5 m group interval, with a horizontal resolution of 12.5 m. The FIST survey 

was processed using a 3D Kirchhoff pre-stack time migration (PSTM) sequence. The BSP 

survey was processed using a pre-stack depth migration (PSDM) sequence, with final stacked 

volumes in both depth and time.  

Seismic interpretation was carried out using Schlumberger Petrel 2015 software, 

including horizon mapping, dip and amplitude extractions for seismic geomorphological 

analyses. The tops and bases of the three largest MTDs were mapped in detail on 2D and 3D 

seismic data, with tops corresponding to strong ‘hard’ (downward increase in acoustic 

impedance) and bases as strong ‘soft’ reflections. Kinematic indicators were identified from 

attribute maps of these horizons, particularly flow-parallel lineations at the basal shear surfaces 

of the deposits, as well as internal imbrication.  

 Lithological, petrophysical and biostratigraphic data from two exploration boreholes 

(Darwin-1 and Stebbing-1; Fig. 1) are used to calibrate the stratigraphic age and lithology of 

seismic reflections. The Stebbing-1 well was drilled in the fold-and-thrust belt north of 

Burdwood Bank at a water depth of 1593 m below mean sea level. The shallowest stratigraphic 

section was drilled without a riser, with no samples recovered to surface. Samples were 

recovered from a depth of 2140 m (measured depth, MD) to the bottom of the well (TD) at 3060 

m MD. The Darwin-1 well was drilled in the foreland basin, at a water depth of 2011 m. Sample 

recovery in the well is from a depth of 3035 m to the bottom of the well at 4876 m MD. 

Although there are no well samples at the shallow depths of the submarine landslides and 

contourite drifts, biostratigraphic data from deeper well sections, combined with regional 

correlation to the Malvinas Basin and South  Falkland Slope Drift, allow us to constrain the age 

of seismic reflections underlying the submarine landslides, so allowing us to estimate the 
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frequency of these events. For the MTDs, sonic logs from Darwin-1 were used to convert TWT 

of top and base reflectors into depth, so thickness and sediment volumes could be reconstructed. 

The seismic and well data are available on request from the Falkland Island Government 

(http://www.fig.gov.fk/minerals/). 

 

3.2.  Tsunami generation and propagation  

Submarine landslide and initial tsunami wave formation were modelled using the 3D 

non-hydrostatic model NHWave (Ma et al., 2012). This model has been validated for highly 

dispersive landslides and resultant tsunamis by comparing wave elevations to laboratory 

experiments (Enet and Grilli, 2007). Landslides for our base case model were simulated by 

reconstructing 100 km3 of sediment volume, distributed in a quasi-Gaussian elliptical geometry 

onto the continental slope (between 280 to 1340 m) of the embayment identified as the point of 

origin for all of the submarine landslides in the South Falkland Basin. The reconstructed 

sediment body has an along-slope width of 50 km, down-slope length of 20 km and a maximum 

thickness of 300 m (Figure 8B). The initial acceleration for this model is 0.37 m/s2 based on 

calibrated values from offshore Japan (Tappin et al., 2014), where both slope angle and 

morphology are similar and modelled parameters were validated with maximum wave heights 

and runup onshore. Nevertheless, the initial acceleration, which is almost impossible to measure 

empirically, remains a source of significant uncertainty in such models. Based on Japan (Tappin 

et al., 2014), a maximum landslide velocity of 30 m/s was used, comparable with the maximum 

velocities from the Grand Banks landslide, which resulted in the 1929 Newfoundland tsunami 

(Fine et al., 2005). Multiple iterations of the model were run with different sediment volumes, 

water depth at slide initiation, initial acceleration, maximum velocity and angle of slope. Of 
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these conditions, water depth and initial acceleration were the most sensitive in terms of model 

outputs.  

Following the initial wave generation (Figure 8D-F) in NHWave, the fully nonlinear 

Boussinesq model FUNWAVE-TVD (Shi et al., 2012, Kirby et al., 2013) was used to simulate 

wave propagation and run-up. FUNWAVE-TVD uses a ‘Total Variation Diminishing (TVD) 

algorithm that accurately simulates wave-breaking dissipation and inundation, and has been 

extensively validated and calibrated using laboratory studies and field benchmarks (Tehranirad et 

al., 2011).  

 

4. Results  

4.1.  Slope morphology of the South America – Scotia plate boundary  

Along the northern margin of Burdwood Bank, the structure of the South America-Scotia 

plate boundary and the continental slope varies significantly, with elements of both strike-slip 

and compressional deformation (Figure 2). We subdivide the northern margin of the bank into 

three segments, each with a distinct morphology and structural characteristics. The slope of the 

northwestern Bank (segment 1), between 61°W and 59.5°W, strikes WNW-ESE with a relatively 

shallow dip (2-4°) (Figure 2 B). On the upper slope, extending towards the northwest, there are 

prominent sediment waves, with amplitudes of up to 100 m. Because of seabed and subsurface 

multiples, seismic data on the upper slope is low resolution, so deeper structures are obscured. 

The central margin (segment 2) of the Bank between 59.5°W and 58.5°W, strikes WSW-ENE 

and is characterized by a steep (~12°) upper slope, a locally convex-up middle slope (~4-8°), and 

a gently dipping lower slope (<2°) (Figure 2 C). Here the Bank is underlain by a faulted and 

folded sequence, which we interpret as a ‘positive flower structure’. This flower structure has 
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little or no bathymetric expression, and is likely caused by a deep-seated, sub-vertical strike-slip 

fault, which we consider to be a major control on the overall geometry of the Burdwood Bank 

margin. There is a pronounced bottom-simulating reflector (BSR) in this region (Figure 2C). 

Because of its reverse polarity (relative to the seabed), shallow depth below the seabed (several 

hundred metres at water depths greater than 500-600 m), and the presence of underlying, high 

amplitude reflections we interpret the BSR as the base of the gas hydrate stability zone. 

The northeastern margin of Burdwood Bank (segment 3 on Figure 2A) extends from 

58.5°W to 56°W, beyond the eastward limit of our seismic data, and strikes WNW-ESE. The 

slope morphology is distinctly different to the western and central margin. The upper slope is 

relatively gently dipping (~2-3°) (Figure 2D). There is a highly deformed mid-slope terrace, 

which is separated from the lower slope fold-and-thrust belt by a deeply incised, slope-parallel 

valley, which we interpret as an erosional moat. The planform morphology of the structures 

within the fold-and-thrust belt at this location show that the structures strike WNW-ESE. We 

refer to the prominent and extensive mid-slope terrace as the Burdwood Terrace.  

The structural configuration of the northern margin of Burdwood Bank evidently has a 

significant control on slope orientation and steepness. The WSW-ENE slope segment 2 parallels 

the left-lateral focal mechanisms of many of the large earthquakes (Figure 1C), and may be 

parallel to a strike-slip component of the plate boundary. The WNW-ESE slope segments (1 and 

3) and the strike of the structures within the fold-and-thrust belt are oriented at around 30° to 

this, so may be in a transpressional configuration. The structural domains also have a major 

influence on sedimentation and remobilization at the plate boundary. In particular, the slope 

gradient, together with large slope embayments at the boundary between structural domains 

creates accommodation space for potential sediment accumulation along the slope. 
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4.2.  Stratigraphy of the South Falkland Basin 

The stratigraphy of the South Falkland Basin is constrained by two recent (2012) 

exploration wells, Stebbing-1 and Darwin-1 (Figures 2 and 3), as well as by correlation with the 

South Falkland Slope Drift to the north and the Malvinas Basin, ~300 km north-west of 

Burdwood Bank (Figure 4). We focus here on the latest Eocene-Recent stratigraphic sequence, 

deposited in the foreland basin after the collision of Burdwood Bank (Bry et al., 2004). 

The Stebbing-1 well was drilled on a toe-thrust anticline within the fold-and-thrust belt 

north of Burdwood Bank (Figure 2E). From 2140-2310 m, the well encountered deepwater latest 

Oligocene – earliest Miocene clastic sediments, with a substantial amount of reworked, 

predominantly Eocene, material. At 2011-2237 m, the well encountered two thick debrites, or 

MTDs, of latest Oligocene to earliest Miocene age, which thicken substantially to the west 

(Figure 3). We refer to these deposits collectively as the Burdwood Slide (Figure 3). The well 

then encountered deepwater Oligocene sediments, predominantly reworked from the Eocene, 

until a depth of 3055 m. Below an unconformity at 3055 m, the well encountered ~5 m of middle 

Eocene (Bartonian-Lutetian, giving a possible age range of 37-49 Ma) sediments with no 

significant evidence for reworking. This unconformity, which represents at least 4 Ma of missing 

section, coincides with a clear change in seismic facies, from continuous low-amplitude 

reflections above to moderate-amplitude, semi-continuous reflections below (Figure 2C, foreland 

unconformity). Based on seismic stratigraphic evidence and correlation with the Malvinas Basin, 

we interpret this middle Eocene-Oligocene unconformity as the base of the foreland basin 

sequence.  
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The Darwin-1 well was drilled in the active foreland basin, targeting a Cretaceous tilted 

fault block in the underthrust Falkland Plateau (Figure 3). From 3035-3365 m, the sediments 

consist of deepwater clastics of Middle to Early Miocene age, although there is some uncertainty 

over the exact age due to the high proportion of reworked Eocene fossils. Notwithstanding, the 

dating does constrain the age of the seismic reflections, with the pink horizon (Figure 3) no 

younger than Middle Miocene in age. Below 3365 m, the well encountered a thick sequence of 

neritic Cretaceous (Campanian-Barremian) sediments, deposited on a passive margin before the 

collision with Burdwood Bank. The foreland unconformity (orange horizon) thus represents a 

sedimentary hiatus of at least 50 Ma at this location.  

In addition to the wells described above from the South Falkland Basin, numerous 

exploration wells have been drilled in the Malvinas Basin. These provide a robust stratigraphic 

framework for the Malvinas Basin (Galeazzi, 1998, Baristeas et al., 2013) and an additional 

means of stratigraphic calibration for our seismic in the South Falkland Basin (Figure 4). The 

foreland basin unconformity in the Malvinas Basin is dated at 42.5 Ma, which is consistent with 

our interpretation of Stebbing-1. As a prominent erosional unconformity, this event is easy to 

correlate between the two basins despite the presence of an intervening basin high. The 

shallowest seismic horizon to be calibrated by Malvinas wells is the ‘5.5 Ma’ horizon (Baristeas 

et al., 2013). We note that some uncertainty remains (±200 ms in the central South Falkland 

Basin) for the correlation of this horizon because of poor seismic data quality.  

We also correlate an additional seismic reflector, ‘Horizon P’, between the two basins. 

Horizon P is a prominent continuous negative reflection (a downward decrease in acoustic 

impedance) that can be confidently interpreted from a near seabed position in the Malvinas Basin 

to approximately 1s TWT (around 1 km depth) below the seabed in the South Falkland Basin. 
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Horizon P is stratigraphically shallower and thus clearly younger than the 5.5 Ma horizon. 

Horizon P represents a significant transition in seismic facies in the foreland basin succession of 

the South Falkland Basin. It separates a sequence below of relatively continuous high-amplitude 

reflections and minor thin, chaotic units from a sequence above dominated by thick (up to 200 

ms) chaotic units (Figures 3 and 5). The chaotic units are interpreted as laterally extensive 

MTDs, the depositional products of large-volume submarine landslides.  

Horizon P also onlaps the SFSD in the western Falkland Trough (Figure 2C, 4B), 

including both the 1A and lower part of the 1B seismic sequences (Koenitz et al., 2008) (Figure 

4B). Based on ages obtained from the recent IODP U-1534 well in the SFSD (Weber, 2019), the 

1B seismic stratigraphic sequence is Late Pliocene (2.6-3 Ma) in age. This provides a maximum 

age (3 Ma) for Horizon P. Koenitz et al. (2008) interpret the whole sequence above Horizon P in 

the Falkland Trough at this location to be equivalent in age to their 2A sequence, which is 

tentatively dated as being ~0.1-0.78 Ma (Weber, 2019). However, they assumed a much older 

(Early Miocene) age for the SFSD, which likely influenced their correlation. We note that the 

unconformity separating the 1B and 2A sequence is not seismically correlatable based on the 

existing data, and may not be the same age as the unconformity which forms the onlap surface 

between the Falkland Trough fill and the SFSD (Figure 4B). We therefore consider an age of ~ 

0.78 Ma to be unlikely, but a possible minimum age for Horizon P.  

 

4.3.  Submarine landslides in the South Falkland Basin 

The three largest MTDs, (1, 2 and 3) in the South Falkland Basin were mapped across the 

3D and 2D seismic data (Figure 2 and 5). From their internal character and seismic resolution, 

the MTDs are clearly individual events, with well-defined top and base reflections. They have 
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deeply incised bases, cutting down as much as 100 ms (~100 m) into the underlying substrate 

(Figure 5A), and rugose tops, which represent individual clasts or blocks, some of which exceed 

1 km in diameter (Figure 5D). Basal erosion is highly variable, but greatest at the western margin 

of the basin. In the case of MTD 2, a deeply scoured, circular feature ~200 km2 is located 

immediately north of a north-south trending incised valley of the same age, which extends to the 

south of the 3D survey area (Figure 5B). The kinematic indicators on the basal shear surface 

show that the initial flow was to the NNE in the incised valley, and then the landslide turned 

eastward along the axis of the foredeep of the Falkland Trough at the base of the slope (Figure 

5C). Velocities were likely at their maximum where the deeply incised scour is located, at the 

change in slope immediately in front of the landslide. The geometry of the scour, together with 

the kinematic indicators, suggest that the landslide had a significant (>15 km from the axis of the 

foredeep) run-up onto the northern basin margin, before reversing and flowing back into the 

foredeep to the east. These observations show that the landslide originated from a discrete 

location on the northern margin of Burdwood Bank, at around 59.5°W, where there is a broad 

embayment on the steep, strike-slip segment of the margin (Figure 2). Kinematic indicators and 

thickness maps (Figure 5B) of the other MTDs show that these all originated from the same 

central margin segment on the northern slope of Burdwood Bank as MTD 2.  

Sediment volumes of the MTDs, derived from depth-converted sediment thickness maps, 

all exceed >89 km3. Because the MTDs all extend eastward of the seismic data, these volumes 

are regarded as minimum values for the original landslides. Based on a maximum age of 3 Ma 

for Horizon P, the maximum recurrence interval of the submarine landslides that form the large 

volume (~100 km3) MTDs is 1 Ma. There is also seismic evidence for multiple smaller, more 

frequent, events (Figure 5D). 
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There are also a number of other MTDs in the older sequence, which are significantly 

larger than MTDs 1-3. Two of these, which we refer to collectively as the ‘Burdwood Slide’ 

(BS), have a cumulative mapped volume of ~950 km3. This volume represents two separate 

events, but a significant component of each of the constituent MTDs it has been entrained in the 

highly deformed fold-and-thrust belt to the south of our seismic coverage, so the original volume 

of each MTD is likely significantly larger. These are constrained by the Stebbing-1 well as being 

latest Oligocene to Early Miocene in age. Assuming that the Late Oligocene - Early Miocene 

foreland basin had a similar width to that of today, and from limited seismic observations of the 

southern extent of the BS within the fold-and-thrust belt, we estimate that the original slide 

volume was probably originally twice that we have mapped. We estimate, therefore, that the 

largest single landslide volume for the margin would be ~1000 km3. The Burdwood Slide 

complex appears to represent a unique series of events in the evolution of the South America – 

Scotia plate boundary. It may have formed as a result of large-scale flank collapse of Burdwood 

Bank during the early stage of collision, rather than remobilized sediment from the continental 

slope. 

 

4.4.  Erosion and deposition at the Subantarctic Front  

The eastern segment of the northern slope of Burdwood Bank is a fold-and-thrust belt 

bisected by an erosional moat, with several hundred metres of associated incision (Figure 2C). In 

the east of the survey area, this moat is clearly evident on the 3D seismic data at around 2100 m 

water depth (2800 ms TWT) (Figure 6), shallowing to less than 1500 m (2000 ms) in the central 

survey area, where it becomes choked with sediment. The moat bisects the slope, with a very 

steep southern scarp slope (up to 30°), of up to 600 m vertical relief, and a shallower northern 
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slope with varying amount of incision. Because of the elevated vertical relief and steep angle of 

the southern scarp slope, there are a number of small-volume submarine landslides within the 

moat, indicating mass wasting of the southern moat margin. Also associated with the moat are a 

series of convex-up depositional bodies, typically 10-20 km long (along-slope) and 2-5 km wide 

(down-slope), and surface areas of 5-50 km2. These bodies have higher seabed amplitudes and 

greater internal reflectivity than the underlying substrate, and are preferentially deposited in the 

synclines between active toe thrusts, particularly on the back limb (southern side) of the 

structures (Figure 6D). They are most common immediately adjacent to the moat, but are also 

present in synclines further to the north. Because of their characteristic morphology and their 

association with an active bottom-water current, we interpret these as ‘perched’ contourite drift 

deposits. Although they are morphologically similar to the generic ‘patch drifts’ and ‘confined 

drifts’ (Rebesco et al., 2014), their specific depositional context - on stepped and tectonically 

active intra-slope basins, similar to perched turbidite deposits (Sinclair and Tomasso, 2002) - 

leads us to distinguish them as a separate category of contourite deposit.  

We interpret both the erosional (moat) and depositional (perched drifts) features to have 

formed as a result of active or recent currents associated with the SAF. The moat likely formed 

due to erosion beneath the high-velocity vertical core of the SAF, which is confined by the 

continental slope and intersects the seabed at water depths of 1500-2000 m. This is consistent 

with observations from the Falkland Plateau to the north, where a similar, well-developed, moat 

separates the South Falkland Slope Drift and Lower Falkland Slope Drift at around a depth of 

~1600-1700 m (Nicholson and Stow, 2019) (Figure 2). The perched drifts are deposited where 

current velocities likely decrease away from the core of the current, particularly downslope of 

the core of the current in this location.  
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Further to the west, extending westward from the central part of the 3D survey (Figure 7), 

a much larger convex-up depositional body entirely fills the older moat feature (Figure 6E). This 

sediment body covers the continental slope between 1300 m and 400 m water depth at the 

shallowest point. This depositional feature is referred to as a ‘transported basin’ by Lagabrielle et 

al, (2009), implying that it is a perched basin, entrained and deformed by active tectonics. We 

now propose this body to be a large plastered contourite drift, deposited where current velocities 

are lower, up-slope of the main high-velocity core of the SAF (~1500 m). We refer to this feature 

as the Burdwood Drift (Figure 7). The western end of the drift transitions into an extensive 

sediment wave field (Figure 2A). This may have formed because of a convergence of current 

masses, resulting in a decrease in current velocities, or as a result of cascading SAMW water 

masses near the convergence zone. We estimate the total volume of sediment in this plastered 

drift deposit to be around 200 km3, based on an average thickness of 200 m and an area of 

around 1000 km2 (Figure 2).  

The base of slope to the north of the Burdwood Drift is defined by another slope-parallel 

moat, with a clear bathymetric expression at water depths of between 1500-1700 m (Figure 7). 

This erosional feature is at a similar depth to the moat that bisects the slope further to the east, 

but here forms at the base of the slope due to the westward-shallowing seabed of the Falkland 

Trough. The combination of base-of-slope erosion and middle-upper slope deposition results in 

an inherently unstable slope configuration, which is particularly susceptible to failure. The 

location of this unstable drift deposit coincides with the point source location of submarine 

landslides identified above (Figure 5). We interpret this association of drift deposition, erosion 

and landslide generation as strong evidence that the Burdwood Drift is the source of the majority 
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of the submarine landslides in the adjacent foredeep, including the three large-volume MTDs 

above Horizon P. 

 

4.5.  Numerical modelling of submarine landslides and tsunamis 

In this section, we consider the consequences of the submarine landslides identified on 

the northern slope of Burdwood Bank, using numerical models to determine whether the 

landslides may have generated significant tsunamis. NHWave and FUNWAVE-TVD model 

parameters for the base case, and a time-series of model outcomes, are shown in Figure 8. 

Videos of these models, as well as alternative scenarios for giant- (1000 km3) and small-volume 

(10 km3) events are available in the Supplementary Materials.  

Our base case model for a 100 km3 landslide (~1 million year event) shows that such an 

event would likely generate an elevated (up to 40 m wave height) tsunami (Figure 9) on the 

Falkland Islands 200 km to the north. If this happened today, there would be major consequences 

for communities in the region. Our model predicts that, in such a scenario, a >10 m wave would 

hit the town of Stanley in the east of the Falkland Islands around 70 minutes after the landslide 

failure. The maximum wave height is directly north of the landslide location, due to a 

combination of the interference effects of the wave front and the interaction of the wave with the 

shallow bathymetry of the continental shelf of the Falkland Plateau. This would result in 

significant run-up along the south-facing coast of the Falkland Islands. Assuming an inverse-

logarithmic relationship between landslide size and frequency, smaller volume (~10 km3) 

landslides are likely to be much more frequent. Our numerical model shows that these events 

would likely generate maximum waves of 2-6 m on the Falkland coast; again representing a 

significant hazard to local communities. Our worst-case model, representing a 1-in-30 million 
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year, flank collapse event, predicts a tsunami with a maximum wave height of 160 m, with the 

affected area extending across the South Atlantic region. 

 

5. Discussion 

5.1.  SAF sedimentary conveyor belt  

Our results show that the mapped submarine landslides in the Falkland Trough are 

derived from the large Burdwood Drift, a plastered contourite drift on the northern slope of 

Burdwood Bank. Cumulative sediment volumes for the submarine landslides in the Falkland 

Trough exceed those in the Burdwood Drift, which suggests that the drift has been repeatedly re-

supplied with sediments by strong currents associated with the SAF. In this section, we consider 

the source-to-sink processes that explain this, and the influence of the SAF in preconditioning 

the slope sediments for failure. The large volume (~200 km3) of sediment in the Burdwood Drift, 

clearly, has not been derived from subaerial erosion of Burdwood Bank, which, at >100 m below 

sea level, would have remained almost entirely submerged during the Last Glacial Maximum and 

preceding glacial lowstands. Neither could the sediment have been derived from erosion of the 

moat alone, given a total eroded volume of <50 km3 for this feature. We propose, therefore, that 

the sediment is most likely to have been produced by submarine erosion and peneplanation of the 

~4000 km2 Burdwood Terrace, located to the south-east of our 3D seismic data (Figure 2 and 

10). Current velocities exceeding 30 cm/s at the seabed at the core of the SAF (Smith et al., 

2010), may be sufficient to erode and entrain fine-grained sediment (Heezen and Hollister, 

1964), but these velocities may substantially increase during benthic storms, when mesoscale 

eddies extend to the seafloor (Smith et al., 2010, Sheen et al., 2012). Current velocities may also 

vary significantly seasonally, as observed for other deep bottom currents (Miramontes et al., 
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2019). Thus, erosion might be semi-continuous, with the majority of erosion, and sediment 

transport, occurring during episodic benthic storms. In addition, the Burdwood Terrace also sits 

directly north-west of the 54-54 Passage, where the SAF is constricted by a relatively shallow 

and narrow seafloor, resulting in enhanced edification in the lee of the passage (Hallberg and 

Gnanadesikan, 2006).  

The Burdwood Terrace is situated at water depths of 1200-2000 m, except where it has 

been uplifted to a depth of around 1000 m at its eastern margin (Figure 2C). These water depths 

are consistent with the core of the SAF (Smith et al., 2010). They are also consistent with the 

depth of the erosional terrace formed by the SAF on the Falkland Plateau, where erosion exceeds 

300 m (Nicholson and Stow, 2019). The SAF is also likely to have caused substantial seabed 

erosion on the Burdwood Terrace, where erosion rates may be significantly higher than the 

Falkland Plateau because of high rates of rock uplift and exhumation at the active, 

transpressional plate boundary. Although the sparse dataset in this area doesn’t allow us to 

constrain the eroded volume from this area, a conservative estimate of 100 m averaged over the 

Burdwood Terrace would be sufficient to supply the sediment for all the large-volume MTDs 

above Horizon P, as well as the sediment now stored in the Burdwood Drift. This area therefore 

provides a viable source of sediment for the along-slope sediment routing system of the SAF.  

Bottom currents associated with the SAF are also likely responsible for entraining and 

transporting sediment westward along the northern slope of Burdwood Bank, a distance of ~100-

200 km. Although there is a lack of bottom-current velocity data in this area, the pronounced 

moat that bisects the fold-and-thrust belt coincides with the surface location of the SAF, and 

occurs at the same water depth as that of a similar moat on the Falkland Plateau, which has 

formed at the high-velocity core of the SAF (Naveira Garabato et al., 2003, Nicholson and Stow, 
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2019). The moat is associated with small ‘perched drifts’, deposited mainly down-slope of the 

moat, where current velocities presumably decrease away from the core of the current.  

Sediment in the Burdwood Drift appears to be accumulating locally because of the 

presence of a large embayment at a restraining bend of the plate boundary (Figure 2), as well as 

the presence of the easterly-flowing, subducting, Subantarctic Mode Water (SAMW) (Figure 1), 

forming a local convergence zone in this area. Converging water masses and a shallowing slope 

likely promote sediment deposition, particularly upslope of the core of the SAF in the plastered 

Burdwood Drift deposit. Thus, the interaction of slope morphology and active currents plays a 

fundamental role in the location and size of the drifts in this location, and therefore the location 

and size (magnitude) of submarine landslides. In addition, sedimentation rates in this drift are 

likely to be rapid, which likely plays a critical role in the frequency of landslide events. 

Assuming a similar accumulation rate for the Burdwood Drift as for the SFSD (around 400 

m/Ma) (Weber, 2019), sediment accumulation is likely to be sufficiently rapid to regenerate the 

drift after each successive failure event (every 1Ma or less).   

The timing of onset of sedimentation in the Burdwood Drift is uncertain, but a number of 

lines of evidence indicate an Early Pliocene date. This is the age of the oldest drift deposits in the 

SFSD (Weber, 2019), which also formed in association with the SAF. This also coincides with, 

or slightly precedes, the age of ‘Horizon P’, which represents the main facies transition in the 

South Falkland Basin. Above this, sedimentation is dominated by the large-volume MTDs, 

which are derived from failure of the Burdwood Drift. This Early Pliocene age may represent a 

significant change in the dynamics of the SAF, possible a reduction in current velocities, or a 

narrower, more constrained SAF (Nicholson and Stow, 2019), promoting the deposition of fine-

grained plastered drifts on the upper continental slopes. 
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Although our observations show a clear relationship between ocean currents and unstable 

drift deposition north of Burdwood Bank, more data is required to understand the underlying 

processes and test the hypotheses developed here. In particular, direct current velocity 

measurements are required to understand the importance of seasonal and annual variability in 

SAF dynamics, and the role of eddies in erosion of the continental slope in this region. In 

addition, more high-resolution seismic data is required, across the Burdwood Terrace in 

particular, to test the hypothesis that this feature is formed by bottom current erosion, and is the 

primary source of the sediment accumulating in the Burdwood Drift. 

 

5.2.  Preconditioning mechanisms for slope failure 

The SAF acts as a sedimentary conveyor belt that supplies the material for multiple successive 

submarine landslides, but it also plays a significant role in preconditioning the slope for failure. 

The fine-grained nature of the sediment and rapid rate of deposition of the drift may result in the 

retention of pore fluids and cause a buildup of overpressure from depths as shallow as a few 

hundred meters below the surface (Flemings et al., 2008), reducing the vertical effective stress 

and promoting failure. Laterally continuous sand or silt deposits, which are up to 10 m thick in 

the SFSD (Nicholson and Stow, 2019), have very low shear strength and, if present in the 

Burdwood Drift, would further decrease the stability of the slope. Failure is also promoted by the 

steep, basinward-dipping nature of bedding planes within the drift, and weak sand or silt layers 

in such a configuration would be particularly prone to failure (Figure 7). We note that the base of 

the drift (and possible slide scar from an earlier event) also corresponds with a bottom-simulating 

reflection (Figure 2B), which represents the base of the gas hydrate stability zone. Although still 

somewhat contentious as a mechanism for triggering submarine landslides (Maslin et al., 2004, 
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Lee, 2009), dissociation of hydrates caused by sea-level change or increasing sea-bottom 

temperatures would also result in a reduction of shear strength, and high concentrations of free 

gas below the hydrate layer, further increasing the probability of failure. Seismic shaking is 

likely to be the final triggering mechanism for submarine landslides. Mw 6-7 earthquakes occur 

at the plate boundary to the south of the Burdwood Drift, with historic earthquakes of such 

magnitude within 200 km, and smaller (Mw 4-6) historic events clustering around the northern 

slope of Burdwood Bank, in close proximity to the Burdwood Drift (Figure 1C).  However, the 

frequency of large earthquakes is much higher than that of the submarine landslides, and it is 

clear that the preconditioning factors play a more important role than seismic shaking in 

promoting failure (Miramontes et al., 2018a).  

 

5.3.  Tsunami hazards in the Falkland Islands 

Our numerical tsunami models highlight a significant, and previously overlooked, 

geological hazard that could affect the Falkland Islands, 150 km to the north of the Burdwood 

Bank. Although the frequency of large (100 km3) events is likely to be relatively low (<1 Ma), 

smaller (1-10 km3) events are likely to be much more frequent and may conceivably have 

affected the islands during the Holocene. Possible tsunami deposits have been described in the 

Falkland Islands (pebble pavements situated 8-15 m above sea level) (Regnauld et al., 2008), but 

these are located on the north-facing coastline of West Falkland, an area not at risk from the 

landslide tsunamis we have identified. No palaeo-tsunami research has been carried out in the 

south-facing coastline susceptible to inundation from a landslide tsunami generated on 

Burdwood Bank. Low-lying, nearshore lake systems and thick Late Pleistocene – Holocene peat 

deposits (Aldiss and Edwards, 1999) near the town of Stanley on East Falkland (Figure 8) 
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represent the most suitable sites for such future research. Although only likely to reveal events 

extending back to the last glacial maximum at most, such an approach has successfully identified 

palaeo-landslide tsunamis in other settings (Bondevik et al., 2003) and should be an important 

part of any future effort to constrain the landslide tsunami risk in the Falklands. 

Further afield, 400 km to the west in Tierra del Fuego (Figure 1C) interpreted tsunami 

deposits (Bujalesky, 2012) remain unexplained in terms of a tsunami-generating mechanism. 

Although beyond the geographic limits of our FUNWAVE-TVD model, the maximum wave 

amplitude at the western boundary of our base-case model still exceeds 10 m, thus landslide 

tsunamis generated from Burdwood Bank may represent a viable mechanism for these deposits. 

Future models should therefore be extended to include far-field tsunami inundation of other 

South Atlantic coastlines, as well as the Falkland Islands. 

 

5.4.  Bottom currents in active margin settings 

The oceanographic and tectonic setting of Burdwood Bank are different to other well-

researched regions where there is an association between contourites and submarine landslides. 

In the case of the Storegga Slide, offshore Norway, the presence of mechanically weak 

contourite deposits are a major contributory factor to slope failure. However, the Storegga 

landslide is composed primarily of glacigenic deposits, and it was the rapid loading of these 

sediments which caused the overpressure in the underlying contourites, resulting in their failure 

as decollement layer (Bryn et al., 2005). In our case, all the sediment in the submarine landslides 

are derived from the contourite drift, with the depositional configuration promoting failure. A 

number of submarine landslides offshore Uruguay and Argentina, near the Brazil-Malvinas 

convergence zone, are also derived from contourites (Ai et al., 2014). However, in this area only 
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the small-volume landslides are associated with contourites, possibly as a result of high rates of 

sediment supply from onshore, and the dominance of down-slope depositional systems. 

Contourite drifts in the Corsica Trough have been shown to be more prone to failure than 

hemipelagic slope sediments, particularly because of undercutting at the base of the slope 

(Miramontes et al., 2018a), and these have morphological similarities to the Burdwood Drift. 

However, there are some significant differences, including the presence of ash as a weak layer 

promoting failure (Miramontes et al., 2018b), and downslope sediment supply from the adjacent 

landmasses.  

In the case of the Burdwood Drift, we have an example of an oceanographic sediment 

routing system that is entirely starved of down-slope sediment supply, where the currents supply, 

transport and deposit sediments at an active margin, and leave the slope inherently prone to 

failure. Such oceanographic preconditioning mechanisms for submarine landslides have not 

previously been identified in active margin settings, even in areas where strong bottom currents 

are present. This includes areas such as the Japan trench slope system (Strasser et al., 2013, 

Tappin et al., 2014) and the eastern slope offshore New Zealand (Collot et al., 2001), where 

large, potentially tsunamigenic submarine landslides have been recognized but the link to 

oceanographic processes has not been established. This may be due to the fact that landslides are 

triggered more regularly in such settings, preventing large drifts accumulating, or because drifts 

are incorporated into accretionary prisms, making them difficult to identify. In such areas, 

bottom currents are likely to play an important, but as yet unquantified, role in slope failure. 

 

6. Conclusions 
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The North Scotia Ridge is a convergent plate boundary, with an active submarine fold-

and-thrust that is affected by strong bottom currents associated with the Subantarctic Front. 

These currents have resulted in significant submarine erosion of the continental slope of 

Burdwood Bank, and along-slope sediment transport from the Burdwood Terrace to the large 

Burdwood Drift in a tectonically controlled slope embayment and convergence zone between 

currents. This plastered drift deposit on the middle to upper slope is preconditioned for failure by 

rapid sediment accumulation rates, basinward dipping weak layers and erosion at the core of the 

current, at the base of the slope. These conditions have resulted in multiple large (100 km3) 

submarine landslides since the Pliocene, which are likely triggered by large earthquakes at the 

nearby plate boundary. Numerical modelling of landslide events show that they can generate 

hazardous tsunamis that pose a risk, previously unrecognized, to the Falkland Islands to the 

north. This research further highlights the importance of contourite deposition and erosion in 

submarine landsliding and tsunami generation, and the interaction of tectonic and oceanographic 

processes in controlling the location, frequency and magnitude of such events.  
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FIGURE CAPTIONS 

Figure 1. (A) Topographic features, plate tectonic and oceanographic setting of the North Scotia 

Ridge, showing the locations of the main fronts (jets) of the Antarctic Circumpolar Current, 

including the Subantarctic Front (SAF), Polar Front (PF) and Southern Antarctic Circumpolar 

Current Front (SACCF), modified from (Orsi et al., 1995). SAM – South American Plate, SP – 

Scotia Plate, AP – Antarctic Plate, WSR – West Scotia Ridge, SG – South Georgia Island. Image 

created using GeoMapApp. (B) Current velocity transect across the North Scotia Ridge (location 

shown in Fig 1A; modified from Smith et al., 2010), from Burdwood Bank in the west to South 

Georgia Island in the east, showing the location of the 54-54 Passage through which the SAF is 

focused. SAMW – Subantarctic Mode Water, AAIW – Antarctic Intermediate Water, UCDW – 

Upper Circumpolar Deep Water, LCDW – Lower Circumpolar Deep Water. (C) Seismic and 

well data available for this study, and focal mechanism solutions for moderate-large (Mw 5-7) 

earthquakes in the region from the CMT database (Ekström et al., 2012), as well as other smaller 

(>4.0) earthquake locations from the USGS database (accessed 2019). SFB - South Falkland 

Basin, FT – Falkland Trough. 

 

Figure 2. GEBCO 30-arc second grid bathymetry data across Burdwood Bank, showing the 

main geomorphological features at the South America-Scotia plate boundary. Contour interval is 

100m. White-dashed line highlights the 1500 m water depth contour, approximating the 

intersection of the Subantarctic Front with the continental slope. Dashed black lines numbered 1-

3 show the structural domains of the northern slope of Burdwood Bank referred to in the text. 

SFSD – South Falkland Slope Drift, LFSD – Lower Falkland Slope Drift (Nicholson and Stow, 
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2019). (A-C) Regional 2-D seismic sections across the northern slope of the Burdwood Bank 

(locations shown on map), including (A) a shallow dipping north-western margin, with large 

amplitude sediment waves on the upper slope, (B) a steeply dipping central margin with a locally 

convex-up sedimentary sequence on the mid-slope and (C) a north-eastern margin with an active 

fold-and-thrust belt on the lower slope, separated from the deformed Burdwood Terrace by a 

deeply-incised, slope parallel moat at 1500-1700 m water depth. Stratigraphic ages are 

constrained by the Stebbing-1 well, as well as Darwin-1 (Figure 3) and by correlation with the 

Malvinas Basin (Figure 4). Intersections with seismic lines in other figures are shown by white 

arrows. All seismic sections are in two-way travel time (TWT) and have a vertical exaggeration 

(VE) of ~5 times, except for the inset on Figure 2C (VE ~3). 

 

Figure 3. Seismic section from the BSP 3D survey across the Darwin-1 well, showing 

stratigraphic penetration in the central foreland basin, and the ~1 km thick Burdwood Slide, 

entrained within the fold-and-thrust belt to the south of the well location. Inset map shows the 

location of the seismic line and the likely extent of the Burdwood Slide. Sinistral strike-slip 

component of deformation is highlighted by A (section moving away from viewer) and T 

(section moving towards viewer). 

 

Figure 4. Regional stratigraphic correlation for the South Falkland Basin. (A) Composite seismic 

section from the Malvinas Basin in the north-west to the South Falkland Basin in the east. Line 

location is shown on Figure 1. The depth and age of interpreted horizons in the Malvinas Basin 

are from Baristeas et al., 2013. The key to interpreted horizons are shown in Figure 3.Vertical 

exaggeration is ~20 times. (B) Seismic correlation from the South Falkland Slope Drift (SFSD) 
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to the South Falkland Basin. Seismic horizons and sequences for the SFSD are from Koenitz et 

al. (2008); stratigraphic ages are from the U-1534 well (Weber et al., 2019). Line location is 

shown on Figure 2. 

 

Figure 5. Mass Transport Deposits (MTDs) in the foredeep of the South Falkland Basin. (A) 

Seismic cross section showing the erosive bases and chaotic internal character of the MTDs. (B) 

Time thickness (isochron) maps of the three largest recent MTDs in the South Falkland Basin 

showing the erosive nature of the submarine landslide. Sharp boundaries are caused by erosional 

scouring at the base of the deposits, both parallel and perpendicular to the flow direction. 

Kinematic indicators are used to calculate paleoflow directions (white arrows) and to reconstruct 

the point source (black arrows) for each of the landslides. Black polygon shows the outline of the 

3D seismic data. (C) Dip angle map showing kinematic indicators – flow-parallel erosional 

lineations - at the basal shear surface of MTD 2, which indicate a change in flow direction on 

either side of a 200 km2 erosional scour, highlighted by the red dashed line. (D) Frozen blocks 

within MTD2, evident from a surface map of the top of the deposit. 

 

Figure 6. Seafloor depth map (contour interval of 50 m) interpreted from 3D seismic, and 

seismic sections (TWT) showing evidence of along-slope erosion and sediment transport from 

east to west along the northern margin of Burdwood Bank. The eastern part of the slope is 

characterized by a deeply incised mid-slope moat and small perched drifts, whereas the western 

slope is characterized by the presence of a choked mid-slope moat filled by a large plastered drift 

deposit. 
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Figure 7. Composite 2D and 3D seismic section (TWT) across the steep central segment of the 

Burdwood Bank slope, showing the presence of a plastered slope drift, the Burdwood Drift, on 

the middle slope between a depth of 600 m and 1400 m at this location. The line location is 

shown on Figure 6. Seismic reflections within the drift are dipping steeply towards the basin in 

the north. The base of the slope is being actively eroded and undercut by an erosional moat at 

~1500 m water depth (2000 ms TWT) leading to an inherently unstable slope configuration. 

 

Figure 8. Numerical modelling of submarine landslides and consequent waves on the northern 

slope of Burdwood Bank. (A) Outlines of NHWave and FUNWAVE-TVD models used for the 

landslide/initial wave and the wave/runup respectively. White star shows the central point of the 

submarine landslides. (B) Oblique view of Burdwood Bank slope showing the restored sediment 

volume used to model the base-case landslide in NHWave. (C) Landslide parameters for the base 

case model. (D-F) initial wave generated by the landslide in NHWave and (E-I) wave 

propagation and runup modelled in FUNWAVE-TVD. Animations of simulations can be found 

in the supplementary materials. 

 

Figure 9. Maximum wave heights for the small (10 km3), medium (base case, 100 km3) and 

maximum (1000 km3) landslide volumes. Note that the scale bar changes for the different model 

outcomes. 

 

Figure 10 (and visual abstract). Summary of processes for the Subantarctic Front submarine 

landslide conveyor belt. Wave heights at the Falkland Island coast are derived from the base case 

(100 km3) model, which is estimated to recur once every ~1 Ma or less. 
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Highlights 
 Multiple large submarine landslides identified on northern slope of Burdwood Bank 
 Landslides supplied by current erosion and deposition at the Subantarctic Front 
 Currents directly control the location, magnitude and frequency of all landslides 
 Numerical models indicate major tsunamis, with up to 40 m wave heights, occur every 1 

million years or less 
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