
CHRISTIE, L.A., BROWNLEE, A.E.I. and WOODWARD, J.R. 2018. Investigating benchmark correlations when comparing
algorithms with parameter tuning. In Aguirre, H.E. (ed.) Proceedings of the 2018 Genetic and evolutionary

computation conference companion (GECCO'18 companion), 15-19 July 2018, Kyoto, Japan. New York: Association
for Computing Machinery [online], pages 209-210. Available from: https://doi.org/10.1145/3205651.3205747

Investigating benchmark correlations when
comparing algorithms with parameter tuning.

CHRISTIE, L.A., BROWNLEE, A.E.I. and WOODWARD, J.R.

2018

This document was downloaded from
https://openair.rgu.ac.uk

© Authors 2018. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Digital Library,
https://doi.org/10.1145/3205651.3205747

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access Institutional Repository at Robert Gordon University

https://core.ac.uk/display/288393038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Investigating Benchmark Correlations when Comparing
Algorithms with Parameter Tuning

Lee A. Christie
University of Stirling, UK
lee.christie@stir.ac.uk

Alexander E.I. Brownlee
University of Stirling, UK

alexander.brownlee@stir.ac.uk

John R. Woodward
�eenMary University of London, UK

j.woodward@qmul.ac.uk

ABSTRACT

Benchmarks are important for comparing performance of optimi-

sation algorithms, but we can select instances that present our

algorithm favourably, and dismiss those on which our algorithm

under-performs. Also related are automated design of algorithms,

which use problem instances (benchmarks) to train an algorithm:

careful choice of instances is needed for the algorithm to generalise.

We sweep parameter se�ings of di�erential evolution to applied

to the BBOB benchmarks. Several benchmark functions are highly

correlated. �is may lead to the false conclusion that an algorithm

performs well in general, when it performs poorly on a few key

instances. �ese correlations vary with the number of evaluations.

CCS CONCEPTS

•Computing methodologies → Search methodologies;

KEYWORDS

benchmarks, BBOB, ranking, di�erential evolution, continuous

optimisation, parameter tuning, automated design of algorithms.

1 INTRODUCTION

Continuous optimisation samples a continuous search space, to

minimise (or maximise) an objective. �e Black-Box Optimization

Benchmarking (BBOB-2009) benchmarks comprise 24 noiseless and

30 noisy functions[2] commonly used to compare continuous opti-

misation metaheuristics [6]. It is well known that no one algorithm

performs well over all functions, so we ask how good are the bench-

marks at teasing out the performances of di�erent algorithms? We

also consider the implications for automatic design of algorithms

(ADA), where the set of functions used for training is critical.

Two dangers of benchmarking are: not investing the same num-

ber of evaluations in tuning two algorithms (e.g. tuning your own

more); and making comparisons of the form “Algorithm A outper-

formed B on 20/24 of the benchmarks, while B outperformed A on

the remaining 4” (if the 20 are highly correlated, yet the 4 are not,

then B could be said to be more general than A.)

We investigate the tuning of parameters on a set of benchmarks

and examine correlations in performance between the algorithms

on the functions. We consider algorithms with di�erent parameter

se�ing to be di�erent algorithms, and therefore, the algorithms

de�ned by the set of parameters de�nes the algorithm design space.

In this paper we make three major contributions:

(1) Algorithm performances on several functions are highly

correlated (within the set of algorithms we consider).

(2) �e number of evaluations has a dramatic impact when

concluding either which algorithm performs best.

(3) A 2-stage (coarse- then �ne-grained) systematic sweep

of the parameters shows how performance varies with

number of evaluations for di�erent parameter se�ings.

Further experimental detail and analysis can be found in [1].

2 EXPERIMENTAL DESIGN

Our study considers se�ings for the di�erential evolution parame-

ters di�erential weight, F, and crossover probability, CR, applied to

the BBOB benchmarks. �e experiment covered two stages to keep

total run time practical: a coarse-grained sweep of the full range for

each parameter, and a �ne-grained sweep around the near-optimal

se�ing found at stage 1. �e BBOB benchmarks used were the 24

noiseless functions, on the 10-dimensional search space [−5, 5]10.

�e coarse-grained sweep runs were limited to 10 generations.

For each algorithm con�guration, each of the 24 benchmarks pro-

vide a ranking of con�gurations from best to worst. To reach a

consensus of the best con�guration over all benchmarks, the rank-

ings were used a ballots in an instant run-o� vote.

�e �ne-grained stage used a neighbourhood region of 10 × 10

samples centred around the best parameter se�ings from the course-

grained sweep, with samples spread out in increments of 0.01. �is

gives us 100 DE con�gurations to compare.

3 RESULTS

Full result data is available from h�p://hdl.handle.net/11667/109.

�e coarse-grained sweep found F = 0.3, CR = 0.9 as overall

consensus optima. �e resulting 10× 10 region for the �ne-grained

sweep was F ∈ {0.25, 0.26, . . . 0.34} CR ∈ {0.85, 0.86, . . . 0.94}.

We consider the meta-�tness of each algorithm on each bench-

mark a�er a certain number of generations to be the average �tness

reached by the 1000 repeat runs of the algorithm a�er that many

generations. �is is known as a �xed-budget measure of algorithm

performance: this was chosen over the more conventional �xed-

target measure so that experiments run for less time, as convergence

is not required. �is method is o�en used in parameter tuning (e.g.

[4]). For each benchmark, at each generation, we have a meta-

�tness value from each of the 100 algorithm con�gurations. �e

Spearman’s Rank correlation between these sets of values for pairs

of algorithms starts near zero at generation 0, as the �rst genera-

tion of all algorithm runs is random. �e correlation then varies

dramatically in the range (−1, 0) with generation limit.

Since we have 24 functions to compare pairwise, we can con-

struct a correlation matrix between the functions. Each cell corre-

sponds to the correlation in meta-�tness for all algorithms between

the two functions in the row and column header. �e correlation

matrix for generation limit 10 is shown in Table 1.

We also calculate the median value of correlation between a

given benchmark with every other benchmark. �ese also vary

http://hdl.handle.net/11667/109
https://doi.org/10.1145/3205651.3205747

considerably with generation. In generation 2, all functions are

strongly positively correlated with one-another, except F23 which

has a median correlation of −0.30. �e lowest median correlation

observed is F7 at generation 5, where median correlation is −0.90.

At generation 8, there is a crossing point: many functions with

high median correlations drop to negative correlations, and many

with previously negative median correlation move to high positive

median correlations. F7, F17, and F18 maintain a strong positive

correlation with one another and as generation limit increases, the

three approach a correlation near 1.0 with one another. �us, these

three functions (within the scope of which we have studied them)

give us the same information about the algorithm’s performance,

and so it is redundant to run all three in this case.

For most generation limits L during these runs, most functions

are on average positively correlated with a few exceptions. �is is

visible in Table 1 as most cells being blue..

4 CONCLUSION AND FUTUREWORK

We applied DE to the well-known BBOB benchmarks. Sweeping

across 2 DE parameters, we found that early in the run there was

very li�le correlation between the performances of di�erent param-

eter se�ings, but a�er only a few generations, most functions are

highly correlated, while some are anti-correlated. �ese correla-

tions vary as the number of generations increases. �e correlations

we observed do not just occur within the �ve groups of functions

based on their structure (de�ned by [2]), corroborating earlier re-

sults [6] that clustered the BBOB functions in to di�erent groups

according to algorithm performance. To draw broader conclusions,

we intend to investigate how benchmark functions compare for

other algorithms, such as CMA-ES and conventional genetic algo-

rithms: preliminary experiments with a GA show the same pa�ern,

but still to be determined is whether correlated functions for DE

are also correlated when using, for example, CMA-ES.

�e problem with correlated benchmarks is that, given the per-

formance of DE on one of the functions, the other two add no

information to the benchmarking process. If we can identify highly-

correlated benchmark functions in terms of algorithm performance,

Table 1: Matrix of correlations between all benchmark func-

tions at generation 10. Blue cells denote a strongly-positive

correlation, red cells denote a strongly-negative correlation,

white cells denote zero correlation. �e right-most column

is the median correlation of the related function with every

other function.

F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 Median

F1 -0.52

F2 -0.49

F3 0.39

F4 0.39

F5 0.47

F6 0.35

F7 0.47

F8 0.12

F9 -0.07

F10 0.47

F11 0.48

F12 0.07

F13 -0.33

F14 -0.42

F15 0.39

F16 -0.50

F17 0.47

F18 0.45

F19 0.16

F20 0.30

F21 0.38

F22 0.33

F23 0.35

F24 -0.47

we may be able to select and eliminate redundant functions from a

benchmark set. Furthermore, if we can identify highly-correlated

benchmarks, we may also be able to identify possible combinations

of performance features absent in the benchmarks. �ese gaps

could be �lled by generating new benchmarks, e.g. [3, 5, 7].

In ADA, benchmark instances can be used to train our algorithm;

and demonstrate the utility of our algorithm on unseen instances.

As for machine learning, these two sets of instances (training and

test) need to be somehow similar for the trained model to perform

well on the test set. �at these correlations vary with the number

of function evaluations must be considered when using exploratory

landscape analysis to predict performance and select appropriate

algorithms as advocated by [6]. Choice of the evaluation budget

must match the available budget in the target “unseen” instances,

or the performance model will be �awed, biased by correlations

present only in part of the search space. Furthermore, it is false to

assume that parameter tuning on a smaller evaluation budget will

lead to fair comparisons with a larger budget [8].

5 ACKNOWLEDGEMENT

Funded by UK EPSRC [grants EP/N002849/1, EP/J017515/1]. Experi-

ments used EPSRC fundedARCHIE-WeStHPC [grant EP/K000586/1].

6 DATA ACCESS STATEMENT

�e data sets, including all computed features, the evolved policies,

and their performances, and the visualisations for all feature sets,

are available from h�p://hdl.handle.net/11667/109.

REFERENCES
[1] L. Christie, A. Brownlee, and J. Woodward. Investigating benchmark correlations

when comparing algorithms with parameter tuning (detailed experiments &
results). Technical report, Univ. Stirling, 2018. h�p://hdl.handle.net/1893/26956.

[2] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization
benchmarking 2009: Noiseless functions de�nitions. Technical Report RR-6829.

[3] B. Lacroix, L. Christie, and J. McCall. Interpolated continuous optimisation
problems with tunable landscape features. In GECCO Comp., pages 169–170. 2017.

[4] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Bira�ari, and T. Sttzle. �e
irace package: Iterated racing for automatic algorithm con�guration. Operations
Research Perspectives, sep 2016.

[5] J. McCall, L. Christie, and A. Brownlee. Generating easy and hard problems using
the proximate optimality principle. GECCO Companion, pages 767–768, 2015.

[6] O. Mersmann, M. Preuss, H. Trautmann, B. Bischl, and C. Weihs. Analyzing the
bbob results by means of benchmarking concepts. Evolutionary Computation,
23(1):161–185, 2015. PMID: 24967695.

[7] K. Smith-Miles and S. Bowly. Generating new test instances by evolving in
instance space. Computers & OR, 63:102–113, Nov 2015.

[8] R. Tanabe and A. Fukunaga. Tuning di�erential evolution for cheap, medium, and
expensive computational budgets. In IEEE CEC, pages 2018–2025, 2015.

2

http://hdl.handle.net/11667/109
http://hdl.handle.net/1893/26956

	coversheet_journal_conference_paper
	CHRISTIE 2018 Investigating benchmark
	coversheet_journal_conference_paper
	CHRISTIE 2018 Investigating benchmark
	Abstract
	1 Introduction
	2 Experimental Design
	3 Results
	4 Conclusion and Future Work
	5 Acknowledgement
	6 Data Access Statement
	References

