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Abstract

This article presents a rigorous existence theory for three-dimensional gravity-capillary
water waves which are uniformly translating and periodic in one spatial directionx and have
the profile of a uni- or multipulse solitary wave in the otherz. The waves are detected using
a combination of Hamiltonian spatial dynamics and homoclinic Lyapunov-Schmidt theory.

The hydrodynamic problem is formulated as an infinite-dimensional Hamiltonian sys-
tem in whichz is the time-like variable, and a family of pointsPk,k+1, k = 1, 2, . . . in
its two-dimensional parameter space is identified at which a Hamiltonian0202 resonance
takes place (the zero eigenspace and generalised eigenspace are respectively two and four
dimensional). The pointPk,k+1 is precisely that at which a pair of two-dimensional periodic
linear travelling waves with frequency ratiok : k+1 simultaneously exist (‘Wilton ripples’).
A reduction principle is applied to demonstrate that the problem is locally equivalent to a
four-dimensional Hamiltonian system nearPk,k+1.

It is shown that a Hamiltonian real semisimple1 : 1 resonance, where two geometrically
double real eigenvalues exist, arises along a critical curveRk,k+1 emanating fromPk,k+1.
Unipulse transverse homoclinic solutions to the reduced Hamiltonian system at points of
Rk,k+1 nearPk,k+1 are found by a scaling and perturbation argument, and the homoclinic
Lyapunov-Schmidt method is applied to construct an infinite family of multipulse homo-
clinic solutions which resemble multiple copies of the unipulse solutions.
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1 Introduction

1.1 Hamiltonian spatial dynamics and travelling water waves

The classicalthree-dimensional gravity-capillary water wave problemconcerns the irrotational
flow of a perfect fluid of unit density subject to the forces of gravity and surface tension. The
fluid motion is described by the Euler equations in a domain bounded below by a rigid horizontal
bottom{Y = 0} and above by a free surface which is described as a graph{Y = h+ρ(x, z, t)},
whereh denotes the depth of the water in its undisturbed state and the functionρ depends
upon the two horizontal spatial directionsx, z and timet. Travelling wavesare water waves
which are uniformly translating in a distinguished horizontal direction without change of shape;
without loss of generality we assume that the waves propagate in thex-direction with speedc
and continue to writex as an abbreviation forx − ct. In terms of an Eulerian velocity potential
φ(x, Y, z, t) the mathematical problem for travelling waves is to solve the equations

φxx + φY Y + φzz = 0 0 < Y < 1 + ρ, (1)

φY = 0 onY = 0, (2)

φY = ρxφx + ρzφz − ρx onY = 1 + ρ (3)

and

−φx +
1

2
(φ2

x + φ2
Y + φ2

z) + αρ

− β

[
ρx√

1 + ρ2
x + ρ2

z

]
x

− β

[
ρz√

1 + ρ2
x + ρ2

z

]
z

= 0 onY = 1 + ρ (4)

(see Stoker [23, Sections 1 and 2.1]), in which we have introduced dimensionless variables. The
equations involve two physical parametersα := gh/c2 andβ := σ/hc2, whereg andσ are
respectively the acceleration due to gravity and the coefficient of surface tension.

The phrase ‘spatial dynamics’ refers to an approach where a physical problem is formu-
lated as a (typically ill-posed) evolutionary equation in which an unbounded spatial coordin-
ate plays the role of the time-like variable. The method was introduced by Kirchgässner [16]
and has become the basis for a wide range of existence theories for travelling water waves and
other problems in the applied sciences. In a series of papers Kirchgässner [17] and Iooss &
Kirchgässner [12, 13] showed how the method may be applied to the two-dimensional travelling
gravity-capillary water-wave problem in which the transverse spatial directionz is absent; the
directionx of wave propagation is the time-like variable. Their method relies upon the pivotal
observation that the evolutionary system in question is amenable to treatment using the reduc-
tion theorem of Mielke [19], which states that the (infinite-dimensional) evolutionary system has
a finite-dimensional invariant manifold called thecentre manifoldwhich contains all its small,
bounded solutions; the original problem is thus locally equivalent to a system of ordinary differ-
ential equations whose solution set can, in theory, be analysed. Iooss & Kirchgässner used this
technique to construct existence theories for several types ofsolitary waves(pulse-like waves
which decay to the undisturbed state of the water far up- and downstream) andgeneralised solit-
ary waves(pulse-like waves which decay to a small-amplitude periodic disturbances far up- and
downstream).
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Many conservative problems admit a formulation as an infinite-dimensionalHamiltonian
evolutionary system in which an unbounded spatial coordinate plays the role of time, and Mielke’s
reduction theorem, when applicable, yields a reducedHamiltoniansystem of ordinary differen-
tial equations (cf. Mielke [20]). This ‘Hamiltonian spatial dynamics’ method was applied to the
two-dimensional travelling gravity-capillary water-wave problem by Buffoni, Groves & Toland
[2] and Buffoni & Groves [1] to construct multipulse solitary waves by means of existence theor-
ies for multipulse homoclinic solutions of the reduced Hamiltonian system. The reduced system
is in both papers four-dimensional and its Hamiltonian structure is a crucial ingredient in the
existence theories presented there.

Hamiltonian spatial dynamics and centre-manifold reduction techniques were extended to
three-dimensional travelling gravity-capillary water waves by Groves & Mielke [9] and Groves
[6]. The former reference considers waves which are periodic in the transverse spatial direction
z and uses the longitudinal variablex as the time-like variable, while the latter considers waves
which are periodic in thex-direction and usesz as the time-like variable. Both of these choices,
which were motivated by similar studies of model equations by respectively Haragus-Courcelle
& Ilichev [10] and Haragus-Courcelle & Pego [11], represent natural steps from two to three
dimensions: the former includes all two-dimensional travelling waves as special cases, while the
latter facilitates a discussion of the ‘dimension-breaking’ phenomenon in which two dimensional
waves spontaneously lose their spatial inhomogeneity in thez-direction (see Groves, Haragus &
Sun [8]).

Of course we have the freedom to takeanyhorizontal spatial coordinate as the time-like vari-
able, and this observation has recently been explored in detail by Groves & Haragus [7]. They
took the horizontal spatial directionX making an angleθ1 with the positivex-axis as the time-
like variable and considered waves which are periodic in the directionZ making an angleθ2

with the positivex-axis. By varying the anglesθ1, θ2, together with the physical parametersβ, α
and the frequencyν of the waves in theZ-direction, Groves & Haragus systematically compiled
a complete catalogue of bifurcation scenarios which are found in the dynamics of the reduced
Hamiltonian system; the catalogue is extensive, containing virtually any bifurcation or resonance
known in Hamiltonian-systems theory. They also applied appropriate nonlinear existence theor-
ies to a representative sample of bifurcation scenarios, obtaining in particular periodic solutions
of the reduced Hamiltonian system together with homoclinic connections both to the zero equi-
librium and to periodic solutions. Periodic solutions to the reduced system correspond to doubly
periodic water waves, and it is possible to obtain existence results for doubly periodic water
waves with arbitrary fundamental domain in this fashion (cf. Craig & Nicholls [4], who obtain
the same result by a different method). Homoclinic solutions to the reduced system correspond
to water waves which have a solitary- or generalised solitary-wave profile in theX-direction and
are periodic in theZ-direction.

1.2 The mathematical framework

In this paper we use the framework developed by Groves [6], where the hydrodynamic problem
(1)–(4) is formulated as an infinite-dimensional Hamiltonian system in which the unbounded
spatial coordinatez plays the role of time and the variablesρ, φ are periodic in thex-direction
with fixed frequencyν. We proceed by fixing ‘reference values’β0, α0 of the physical parameters
β andα and perturbing around them with a bifurcation parameterε ∈ R2; Mielke’s reduction
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Figure 1: The lineCk consists of points in(β, α)-parameter space at which two real modek
eigenvalues become purely imaginary by passing through zero in a non-semisimple resonance,
and real modek andk + 1 eigenvalues pass through each other in a semisimple resonance at
the points on the dashed lines. Mode1, 2 and 3 eigenvalues are represented respectively by
black, grey and white dots. The shaded regions indicate the parameter regimes where multipulse
homoclinic bifurcation is detected.

result yields a centre manifold whose dimension is equal to the number of purely imaginary
eigenvalues at criticality, and the reduced Hamiltonian system valid for values of the bifurcation
parameter in a neighbourhood of zero (see Section 2, where the reduction procedure is explained
in detail).

Eigenvaluesλ of our infinite-dimensional Hamiltonian system with corresponding eigen-
vectors in thekth Fourier mode (‘modek eigenvalues’) are associated with nonzero solutions of
(1)–(4) whosex- andz-dependence is described byeiνkxeλz. An elementary calculation shows
that such eigenvalues satisfy

(α− βσ2)σ sin σ = ν2k2 cos σ, σ2 = λ2 − ν2k2;

they are clearly geometrically double since the combination of periodicity and translation in-
variance of equations (1)–(4) in thex-direction generates anO(2)-symmetry. It follows from
this formula that all eigenvalues are either real or purely imaginary and that for eachk there
are either zero or two non-zero purely imaginary modek eigenvalues. Figure 1 shows how
the number of purely imaginary eigenvalues changes at each of a countably infinite number
of straight linesC1, C2, . . . in (β, α)-parameter space; at each point of the lineCk two real
modek eigenvalues become purely imaginary by passing through zero in a non-semisimple res-
onance. We now make modek eigenvalues geometrically simple by exploiting the symmetry
(x, ρ(x, z), φ(x, y, z)) 7→ (−x, ρ(−x, z),−φ(−x, y, z)) of the hydrodynamic problem (1)–(4):
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we restrict attention to those solutions which are invariant with respect to this symmetry, so that
theirρ- andφ- components are described by respectively cosine and sine series inx.

The lineCk defined above consists of those positive values ofα andβ which satisfy the
equation

(α + βν2k2) sinh νk = νk cosh νk; (5)

it connects the point( 1
νk

coth νk, 0) on theβ-axis with the point(0, νk coth νk) on theα-axis.
Starting from theβ-axis and moving left, we find that the lineCk intersects each of the lines
C1, . . . , Ck−1, Ck+1, Ck+2, . . . in turn before arriving at theα-axis, and we denote the point of
intersection ofCi andCj, i > j by Pi,j (see Figure 1). AHamiltonian02-resonancetherefore
occurs at those points ofC1 to the right ofP1,2 and those points ofCj betweenPj−1,j andPj,j+1

for j ≥ 2: the purely imaginary spectrum consists of a geometrically simple zero eigenvalue
which has a Jordan chain of length2. Taking reference values(β0, α0) as one of these points
we obtain a two-dimensional centre manifold, the reduced Hamiltonian flow on which was dis-
cussed by Groves [6], who found that bifurcation of unipulse homoclinic orbits takes place to the
right. In the present paper our interest lies however in homoclinic bifurcation associated with the
Hamiltonian0202-resonanceat the codimension-two pointsPj,j+1, j = 1, 2, . . . ; here the purely
imaginary spectrum consists of a geometrically simple modek zero eigenvalue and a geometric-
ally simple mode(k + 1) zero eigenvalue, each with a Jordan chain of length2, so that the zero
eigenspace and generalised eigenspace are respectively two- and four-dimensional. Taking refer-
ence values(β0, α0) = Pk,k+1 we obtain a four-dimensional centre manifold which captures the
small-amplitude dynamics of the present water-wave problem in a full neighbourhood ofPk,k+1.

Notice that modei and modej eigenvalues can cross on the imaginary or real axes in a
semisimple resonance. A straightforward calculation shows that a pair of modei and and a pair
of modej purely imaginary eigenvalues with values±s coincide at those points

β =
j2 coth γj

(j2 − i2)γj

− i2 coth γi

γj(j2 − i2)
, (6)

α =
i2γ2

j coth γi

(j2 − i2)γi

− j2γ2
i coth γj

(j2 − i2)γj

, (7)

where
γ2

i = s2 + ν2i2, γ2
j = s2 + ν2j2,

for which the right-hand sides of (6), (7) are positive. These points constitute a single-branched
curveIi,j in the (β, α)-parameter plane which is parameterised bys. Similarly, we find that a
pair of modei and and a pair of modej real eigenvalues with values±iκ coincide at those points

β =
i2 cot σi

(j2 − i2)σi

− j2 cot σj

(j2 − i2)σj

, (8)

α =
i2σ2

j cot σi

(j2 − i2)σi

− j2σ2
i cot σj

(j2 − i2)σj

, (9)

where
σ2

i = κ2 − ν2i2, σ2
j = κ2 − ν2j2,

for which the right-hand sides of (8), (9) are positive. These points constitute a multi-branched
curveRi,j in the(β, α)-parameter plane which is parameterised byκ. Of particular interest here
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Figure 2: Behaviour of modek (black) and modek +1 (grey) eigenvalues in a neighbourhood of
the codimension-two pointPk,k+1. Semisimple and non-semisimple eigenvalue resonances take
place on respectively the dashed and solid lines.

are the local parts ofIk,k+1 andRk,k+1 near the pointsPk,k+1, since we can access these curves
using the centre-manifold reduction technique with reference values(β0, α0) = Pk,k+1. The
reduced Hamiltonian system is four-dimensional and captures the Hamiltonian0202-resonance
at the pointPk,k+1 itself, together with theHamiltonian semisimple1 : 1 resonanceand the
Hamiltonian real semisimple1 : 1 resonancewhich occur on the local parts of respectively
Ik,k+1 andRk,k+1 nearPk,k+1 (see Figure 2). A general theory for the Hamiltonian semisimple
1 : 1 resonance has been developed by Cotter [3], and is in principle applicable to the local
part of Ik,k+1 here; it consists of a bifurcation theory for periodic solutions. However in the
present paper we focus upon homoclinic bifurcation and turn our attention to the Hamiltonian
real semisimple1 : 1 resonance associated with the local part ofRk,k+1. We therefore choose
values of the bifurcation parametersε1, ε2 in a fashion which enables us to access this curve
effectively, namely by writing

ε1 = P β
k,k+1 + β̂k,k+1µ

2, ε2 = Pα
k,k+1 + (α̂k,k+1 + δ)µ2,

whereβ̂k,k+1, α̂k,k+1 are the coefficients ofs2 in the Taylor expansion of the right-hand sides
of (8), (9) andδ andµ are small positive numbers. The former parameterδ plays the role of a
bifurcation parameter (varyingδ through zero from above we cross the critical curveRk,k+1 in
parameter space from above), while the latter parameterµ indicates the distance from the point
Pk,k+1.

The linesCk also play a central role in bifurcation theory for the two-dimensional travelling
water waves. We have characterised points on the lineCk in (β, α)-parameter space as values
of the physical parameters at which a modek zero eigenvalue exists. A modek zero eigenvalue
arises when the linearised version of the travelling water-wave problem (1)–(4) admits a solution
whosex- andz-dependence is described byeiνkx, and a solution of this form is clearly a peri-
odic solution of the two-dimensional (z-independent) linear travelling water-wave problem with
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frequencykν. A necessary condition for the bifurcation of nonlinearStokes waves(nonlinear
two-dimensional periodic waves) with this frequency from the uniform flow is therefore satisfied
at points on this curve. This observation was taken up by Jones [14], who used a formulation of
the two-dimensional travelling water-wave problem as an integral equation to analyse primary
and secondary bifurcation phenomena for Stokes waves. Jones was particularly interested in the
pointsPi,j at whichCi intersectsCj. Here we have characterised these points as points at which
modei and modej zero eigenvalues of our evolutionary system simultaneously exist, but they
can also be understood as points associated with the simultaneous existence of theith andjth
harmonics of a fundamental periodic two-dimensional travelling wave (‘Wilton ripples’). Ob-
serve that Stokes waves are equilibrium solutions of our evolutionary system and Jones’s results
can therefore in principle be recovered by examining steady-state bifurcations in the reduced
equations on the centre manifold. This programme is however outside the scope of the present
paper. Further remarks pertaining to the connection between our evolutionary system and the
two-dimensional water-wave problem are given by Groves [6,§1.3].

1.3 Homoclinic bifurcation

Homoclinic bifurcation associated with the Hamiltonian real semisimple1 : 1 resonance has
recently been examined by Yew [24] and Yew, Sandstede & Jones [25], who observed this
phenomenon in the travelling-wave reduction of a system of coupled nonlinear Schrödinger
equations which arises as a model in nonlinear optics. Their theory is an application of the
homoclinic Lyapunov-Schmidt theory developed by Lin [18] and Sandstede [21,§3], which has
also been successfully applied to other bifurcation scenarios, notably ‘orbit-flip’ bifurcations
(see Sandstede, Jones & Alexander [22]). Although the homoclinic Lyapunov-Schmidt theory
is rather general, several major simplifications are afforded by the special structure of the sys-
tem of equations treated in the present paper, in particular by the fact that we are considering a
reversible Hamiltonian system with symmetries. A brief explanation of the theory in the form
required here is presented in Section 4.1.

The essential ingredients of the homoclinic Lyapunov-Schmidt theory are the existence of
one or moreprimary homoclinic orbitsh1, . . . , hm at criticality and one or more discreteZ2-
symmetriesT1, . . . , Tn of the system under discussion. The primary homoclinic orbits are
unipulse solutions and are required to be transverse in the usual sense in Hamiltonian-systems
theory: they correspond to intersections of the stable and unstable manifolds of the zero equi-
librium which are transverse within the zero energy surface of the Hamiltonian function. As a
consequence of their transversality, the primary homoclinic solutions persist for small, nonzero
values of the bifurcation parameter, where they are denoted byhε

1, . . . ,hε
m. One then seeks mul-

tipulse solutions which resemble concatenations of an arbitrary numberN of unipulse solutions
uε

1, . . . , uε
N , each obtained by applying the reflectorsT1, . . . , Tn to the cataloguehε

1, . . . , hε
m of

basic primary homoclinic orbits. The homoclinic Lyapunov-Schmidt theory consists of a pro-
cedure for reducing this question to a bifurcation equation forN − 1 ‘times of flight’ of orbits
close to the primary homoclinic solutions; the solvability of the bifurcation equation is addressed
using asymptotic information from the ‘tails’ of the homoclinic orbits.

The basic travelling water-wave problem (1)–(4) has twoZ2-symmetries, namelyz 7→ −z,
which manifests itself in the fact that the Hamiltonian formulation of the problem is revers-
ible, and (x, ρ(x, z), φ(x, y, z)) 7→ (−x, ρ(−x, z),−φ(−x, y, z)), which generates a corres-
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pondingZ2-symmetry of the Hamiltonian formulation. It also has the continuous symmetry
x 7→ x + a, a ∈ R, which likewise generates a continuous symmetry of the Hamiltonian formu-
lation. These symmetries are inherited by the reduced Hamiltonian system at the pointsPk,k+1,
which are reversible and have aZ2- and a continuous symmetry; the actions of the correspond-
ing reverserS, reflectorR and translatorTa are described in appropriate canonical coordin-
ates in Section 3.1 (see in particular equations (29)–(31)). Restricting to solutions which are
invariant with respect to the reflectorR (which correspond to solutions of the hydrodynamic
equations (1)–(4) which are invariant with respect to the symmetry(x, ρ(x, z), φ(x, y, z)) 7→
(−x, ρ(−x, z),−φ(−x, y, z)), we obtain a two-degree-of-freedom Hamiltonian system with ca-
nonical coordinates(q1, q2, p1, p2); the continuous symmetryTa is replaced atPk,k+1 by the
Z2-symmetry with reflectorT1 : (q1, q2, p1, p2) 7→ (−q1, q2,−p1, p2) whenk is odd and by the
Z2-symmetry with reflectorT2 : (q1, q2, p1, p2) 7→ (q1,−q2, p1,−p2) whenk is even (see Pro-
position 3.1 for a detailed explanation).

The reduced system of equations fork = 1 is computed in Section 3.2. Examining first the
flow in the invariant subspace FixT1 = {(q1, p1) = (0, 0)}, we find that it has the additionalZ2-
symmetry with reflectorU2 : (q2, p2) 7→ (−q2,−p2). The leading-order terms in the nonlinearity
are cubic and the reduced equations admit a pair of unipulse transverse homoclinic orbitsuµ,δ

2 ,
U2u

µ,δ
2 for small values of the parametersµ andδ. Tracing back the various changes of variable,

we obtain the asymptotic formula

ρ(x, z) =
2
√

2µ

(γ2d)1/2
sinh 2ν sech µz cos 2νx + O(µ2)

for the corresponding water wave atδ = 0; the action of the reflectorU2 corresponds to the
translationx 7→ x + π/2ν. Recall that our waves are2π/ν-periodic inx, so that the leading-
order term in the above expansion describes a wave associated with the second harmonic in the
x-direction. In the complete four-dimensional phase space the leading-order terms in the non-
linearity are quadratic, and the reduced equations admit another unipulse transverse homoclinic
orbit uµ,0

1,2 at δ = 0 corresponding to the travelling water wave

ρ(x, z) =
6µ2

(2γ1)1/2c
sinh ν sech2

(µz

2

)
cos νx +

6µ2

2γ
1/2
2 c

sinh 2ν sech2
(µz

2

)
cos 2νx + O(µ3),

(10)
which at leading order is associated with the first and second harmonics in thex-direction; a
further homoclinic orbit is obtained using the reflectorT1, whose action corresponds to the trans-
lationx 7→ x + π/ν. (The constantsγ1, γ2 andc, d in the above discussion are given in equation
(28) and Appendix A.)

The reduced equations fork ≥ 2 are treated in Section 3.3. It follows from the combin-
atorics of thek : k + 1 mode interaction that the leading-order terms in the nonlinearity are
cubic and that both{(q1, p1) = (0, 0)} and{(q2, p2) = (0, 0)} are invariant subspaces under
the flow generated by the Taylor expansion of the Hamiltonian vector field to every order; these
subspaces are equipped with theZ2-symmetries with reflectorsU2 : (q2, p2) 7→ (−q2,−p2) and
U1 : (q1, p1) 7→ (−q1,−p1) respectively. (The invariance of{(q1, p1) = (0, 0)} for odd values
of k and{(q2, p2) = (0, 0)} for even values ofk is already assured by the fact that these sub-
spaces correspond to FixT1 and FixT2.) We find that{(q2, p2) = (0, 0)} and{(q1, p1) = (0, 0)}
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Figure 3: This periodic travelling wave is associated with two higher harmonics in thex-
direction; it has a pulse-like profile in thez-direction. The arrow shows the direction of propaga-
tion.

each contain a pair of unipulse homoclinic orbits denoted by respectivelyuµ,δ
k , U1u

µ,δ
k anduµ,δ

k+1,
U2u

µ,δ
k+1. These orbits yield the travelling water waves given atδ = 0 by the asymptotic formulae

ρ(x, z) =
2
√

2µ

(γkc1)1/2
sinh kν sech µz cos kνx + O(µ2), (11)

which at leading order is associated with thekth harmonic in thex-direction, and

ρ(x, z) =
2
√

2µ

(γk+1c2)1/2
sinh(k + 1)ν sech µz cos(k + 1)νx + O(µ2), (12)

which at leading order is associated with the(k + 1)the harmonic in thex-direction; the actions
of the reflectorsU1, U2 correspond to respectivelyx 7→ x+π/kν andx 7→ x+π/(k+1)ν. In the
complete four-dimensional phase space the reduced equations admit another unipulse transverse
homoclinic orbituµ,0

k,k+1 at δ = 0 corresponding to the travelling water wave

ρ(x, z) = 2µ

(
2(c2 − c3)

γk(c1c2 − c2
3)

)1/2

sinh kν sech µz cos kνx

+ 2µ

(
2(c2 − c3)

γk+1(c1c2 − c2
3)

)1/2

sinh(k + 1)ν sech µz cos(k + 1)νx + O(µ3), (13)

which at leading order is associated with thekth and(k + 1)th harmonics inx. A further homo-
clinic orbit is obtained using the reflectorT1 for odd values ofk or T2 for even values ofk; the
action of the relevant reflector corresponds to the translationx 7→ x + π/ν. (The constantsγk,
γk+1 andc1, c2, c3 are again given in equation (28) and Appendix A.)

The homoclinic Lyapunov-Schmidt method is applied to the reduced equations atPk,k+1 in
Section 4.2. A key requirement of the method as it relates to our problem is that the primary
homoclinic orbits should have non-vanishing components in all four coordinates; for this reason
we use the single primary homoclinic orbituµ,δ

k,k+1 and of course the single reflectorT1 for odd
values ofk or T2 for even values ofk. Figure 3 shows a sketch of a water wave corresponding to
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Figure 4: Sketches of uni- and multipulse travelling water waves nearPk,k+1; for clarity only
the first harmonic is shown. Successive pulses in thez-direction are out of phase by one half of
the period in thex-direction.

a typical unipulse homoclinic orbit of this kind, that is a water wave associated with two higher
harmonics in thex-direction. The bifurcation result is the same fork = 1 andk ≥ 2: multipulse
homoclinic solutions with an arbitrary number of excursions away from the zero equilibrium are
found to exist forδ > 0 (Theorem 4.5); the corresponding regions of(β, α)-parameter space are
marked in Figure 1. Our multipulse homoclinic orbits resemble a concatenation ofuµ,δ

k,k+1 and

T1u
µ,δ
k,k+1 or T2u

µδ
k,k+1 in a strictly alternating sequence, so that the corresponding travelling water

waves are2π/ν−periodic inx and have a large-scale structure consisting of a multipulse profile
in z whose successive pulses are out of phase byπ/ν (see Figure 4). Schematic bifurcation
diagrams fork = 1 andk ≥ 2 are shown in Figure 5.

Our results complement those obtained by Buffoni, Groves & Toland [2], who studied homo-
clinic bifurcation near a codimension-two point in parameter space for the two-dimensional trav-
elling water-wave problem by means of a four-dimensional Hamiltonian centre-manifold reduc-
tion. In that paper the codimension-two point is associated with aHamiltonian04-resonance(a
geometrically simple zero eigenvalue with a Jordan chain of length4), and local curves associ-
ated with aHamiltonian non-semisimple1 : 1 resonanceand aHamiltonian real non-semisimple
1 : 1 resonance(two geometrically simple respectively purely imaginary and real eigenvalues,
each with a Jordan chain of length2) emerge from the codimension-two point. A unipulse trans-
verse homoclinic orbit is detected near the latter curve, and a family of multipulse homoclinic or-
bits are constructed in the neighbouring region where the eigenvalues are complex using a result
of Devaney [5]. Eigenvalue resonances in Hamiltonian systems are generically non-semisimple,
and the tails of the homoclinic orbits obtained by Devaney’s construction decay exponentially
to zero in an oscillatory fashion. By contrast the eigenvalue resonances in the present paper are
semisimple and therefore non-generic; our homoclinic orbits decay exponentially to zero in a
monotonic fashion since the eigenvalues of our reduced Hamiltonian system are real in the rel-
evant parameter regime.
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|(q, p)| |(q, p)|

δ δ

uµ,δ
1,2

uµ,δ
2

uµ,δ
k,k+1

uµ,δ
k+1

uµ,δ
k

(T1)

(U2)

(T1 or T2)

(U2)

(U1)

Figure 5: Schematic homoclinic bifurcation diagrams for the reduced Hamiltonian system for
µ > 0 and (a)k = 1 and (b)k ≥ 2. Uni- and multipulse homoclinic solutions are depicted
by respectively dashed and dotted lines; symbols in parentheses indicate reflectors which can be
applied to obtain further unipulse homoclinic orbits.
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2 Hamiltonian centre-manifold reduction

The cornerstone of our analysis is a formulation of the steady water-wave problem (1)–(4) as
a Hamiltonian system in terms of the time-like variablez, where the waves are supposed to be
periodic inx with fixed frequencyν. This matter has been addressed in detail by Groves [6],
who used the canonical variablesρ(x, z) and

Φ(x, y, z) := φ(x, Y, z), y = Y/(1 + ρ)

and their conjugate momenta

ω(x, z) := −
∫ 1

0

(
Φz −

Φyyρz

1 + ρ

)
yΦy

1 + ρ
dy +

βρz√
1 + ρ2

x + ρ2
z

,

Ψ(x, y, z) :=

(
Φz −

Φyyρz

1 + ρ

)
(1 + ρ).

Here we confine ourselves to a brief description of this Hamiltonian spatial dynamics formulation
and defer to the above reference for full details. We incorporate the frequencyν of the waves
in thex-direction into our problem by introducing a new variablex′ = νx and studying waves
which are2π-periodic inx′; for notational simplicity we drop the prime in the following analysis.

The Hamiltonian system in question is defined upon the symplectic manifold(M, Ω), where
M is the function space

Xs = Hs+1
per (S)×Hs

per(S)×Hs+1
per (Σ)×Hs

per(Σ), s ∈ (0, 1/2)
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with

Hs
per(S) = {u ∈ H t

loc(R) : u(x + 2π) = u(x), x ∈ R},
Hs

per(Σ) = {u ∈ H t
loc((0, 1)× R) : u(x + 2π, y) = u(x, y), x ∈ R, y ∈ (0, 1)},

S = (0, 2π), Σ = (0, 1)× (0, 2π) and the position-independent2-form Ω is given by

Ω((ρ1, ω1, Φ1, Ψ1), (ρ2, ω2, Φ2, Ψ2)) =∫
S

(ω2ρ1 − ρ2ω1) dz +

∫
Σ

(Ψ2Φ1 − Φ2Ψ1) dy dz

(the canonical2-form with respect to theL2(S)× L2(S)× L2(Σ)× L2(Σ)-inner product). We
proceed by fixing ‘reference values’β0, α0 of the physical parametersβ andα and perturbing
around them with real bifurcation parametersε1, ε2 which lie in neighbourhoodsΛ1, Λ2 of the
origin in R and choosing a neighbourhoodU of the origin inXs+1 which is small enough so that

ρ(x) > −1

2
> −1, |ε2| <

1

4
β0, |W (x)| < β0

2
< β0 + ε2

for all x ∈ [0, 2π]. The Hamiltonian functionHε ∈ C∞(U, R) is defined by the formula

Hε(ρ, ω, Φ, Ψ)

=

∫
Σ

{
(1 + ρ)Φx − νyρxΦy +

Ψ2 − Φ2
y

2(1 + ρ)
− ν2(1 + ρ)

2

(
Φx −

yρxΦy

1 + ρ

)2
}

dy dx

+

∫
S

{
−1

2
(α0 + ε1)ρ

2 + β0 + ε2 − ((β0 + ε2)
2 −W 2)

1
2 (1 + ν2ρ2

x)
1
2

}
dx, (14)

where

W = ω +
1

1 + ρ

∫ 1

0

yΦyΨ dy,

and we note thatU is a manifold domain ofM .
In order to compute the Hamiltonian vector fieldvε

H corresponding to the Hamiltonian system
(M, Ω, Hε), recall that the pointm ∈ U belongs toD(vH) with vH |m = v|m if and only if

Ω|m(v|m, v1|m) = dH|m(v1|m)

for all tangent vectorsv1|m ∈ TM |m, wheredH|m is understood as an element ofT ∗M |m ∼= X∗
s

(an inspection of the formula fordH|m, m ∈ U , which is a priori defined as an element of
T ∗U |m ∼= X∗

s+1 shows that it admits a natural extension which lies inT ∗M |m ∼= X∗
s ). Using this

criterion, one finds thatD(vH) is the set of functions(ρ, ω, Φ, Ψ) ∈ U that satisfy the natural
boundary conditions

Φy = 0 ony = 0, (15)

νρx +
Φy

ρ + 1
= ν2ρx

(
Φx −

ρxΦy

ρ + 1

)
+

WΨ

ρ + 1

(
1 + ν2ρ2

x

(β0 + ε2)2 −W 2

) 1
2

ony = 1 (16)
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and that Hamilton’s equations
uz = vH(u)

are given explicitly by

ρz = W

(
1 + ν2ρ2

x

(β0 + ε2)2 −W 2

) 1
2

, (17)

ωz =
W

(ρ + 1)2

(
1 + ν2ρ2

x

(β0 + ε2)2 −W 2

) 1
2
∫ 1

0

yΦyΨ dy − ν2

[
ρx

(
(β0 + ε2)

2 −W 2

1 + ν2ρ2
x

) 1
2

]
x

+

∫ 1

0

{
Ψ2 − Φ2

y

2(ρ + 1)2
+

1

2
ν2

(
Φx −

yρxΦy

ρ + 1

)2

+ ν2

[(
Φx −

yρxΦy

ρ + 1

)
yΦy

]
x

+ν2

(
Φx −

yρxΦy

ρ + 1

)
yρxΦy

ρ + 1

}
dy + (α + ε1)ρ− νΦx|y=1, (18)

Φz =
Ψ

(ρ + 1)
+

WyΦy

ρ + 1

(
1 + ν2ρ2

x

(β0 + ε2)2 −W 2

) 1
2

, (19)

Ψz = − Φyy

ρ + 1
− ν2

[
(ρ + 1)

(
Φx −

yρxΦy

ρ + 1

)]
x

+ ν2

[(
Φx −

yρxΦy

ρ + 1

)
yρx

]
y

+
W (yΨ)y

ρ + 1

(
1 + ν2ρ2

x

(β0 + ε2)2 −W 2

) 1
2

. (20)

The results presented in Lemma 1 of Ref. [6] show that the vector field defined by the right-
hand sides of (17)–(20) defines a smooth functionU → Xs and that the boundary conditions
(15), (16) are also well-defined. Equations (17)–(20) therefore constitute an infinite-dimensional,
quasilinear evolutionary system which is accompanied by the nonlinear boundary conditions
(15), (16).

The Hamiltonian system(M, Ω, Hε) has the conserved quantities

Hε(ρ, ω, Φ, Ψ),

∫
S

ωρx dx +

∫
Σ

ΨΦx dy dx,

∫
Σ

Ψ dy dx,

which are associated with continuous symmetries, namely the invariance of Hamilton’s equations
under translations inz, x andΦ. Hamilton’s equations also inherit the discrete symmetries of the
hydrodynamic problem (1)–(4). They are invariant under the reflectionR : Xs → Xs given by

R(ρ(x), ω(x), Φ(x), Ψ(x)) = (ρ(−x), ω(−x),−Φ(−x),−Ψ(−x)) (21)

and are reversible; the reverserS : Xs → Xs is defined by

S(ρ, ω, Φ, Ψ) = (ρ,−ω, Φ,−Ψ). (22)

The next step is a centre-manifold reduction theorem for the Hamiltonian system(M, Ω, Hε)
which states that it is locally equivalent to a finite-dimensional Hamiltonian system. In order to
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formulate the requisite result it is necessary to introduce the operatorLs : D(Ls) ⊂ Xs → Xs

given by

Ls


ρ
ω
Φ
Ψ

 =


1
β0

ω

−νΦx|y=1 + α0ρ− β0ν
2ρxx

Ψ
−ν2Φxx − Φyy

 ; (23)

its domainD(Ls) is the subspace of elements ofXs+1 that satisfy the boundary conditions

Φy = 0 ony = 0, (24)

Φy + νρx = 0 ony = 1. (25)

(The operatorLs is the formal linearisation ofvε
H at 0.) The following result concerning the

spectrum ofLs is obtained by a series of straightforward explicit calculations.

Lemma 2.1 The operatorLs : D(Ls) ⊂ Xs → Xs is closed and densely defined. Its spectrum
consists entirely of isolated eigenvalues of finite algebraic multiplicity andσc(Ls) := σ(Ls)∩ iR
is a finite set. A complex numberλ is a modek eigenvalue ofLs if and only if

(α0 − β0σ
2)σ sin σ = ν2k2 cos σ, σ2 = λ2 − ν2k2. (26)

Lemma 2.1 enables us to apply the spectral theory of Kato [15] to define the finite-dimensional
centre subspaceXc

s := P [Xs] of Ls using the spectral projectionP : Xs → Xs given by

Px =
1

2πi

∫
C

(Ls − λI)−1x dλ,

in which C is a closed curve in the resolvent set ofLs which containsσc(Ls) and no other
point of σ(Ls). We are now in a position to state our principal reduction result which asserts
that (M, Ω, Hε) is locally equivalent to a Hamiltonian system with a finite number of degrees
of freedom. The theorem is proved by constructing a change of variable which transforms the
evolutionary system (15)–(20) into an equivalent system with linear boundary conditions and
applying Mielke’s centre-manifold reduction result for quasilinear systems [19, 20] to the trans-
formed system. Full details are given by Groves [6,§3].

Theorem 2.2 For eachn ≥ 2 there exist neighbourhoods̃Λ ⊂ Λ, Ũ1 ⊂ Xc
s and Ũ ⊂ Xs+1 of

0 and a reduction functionh(·, ε) ∈ Cn
b,u(Ũ1, Ũ) which depends smoothly uponε ∈ Λ̃1, satisfies

h(0, 0) = 0, d1h[0, 0] = 0 and has the following properties. The graph

M ε
c = {u1 + h(u1, ε) : u1 ∈ Ũ1}

is contained inD(vε
H) and defines a centre manifold for the Hamiltonian system(M, Ω, Hε), so

that

(1) M ε
C is a locally invariant manifold of Hamilton’s equations for(M, Ω, Hε): through

every point inM ε
C there passes a unique solution of Hamilton’s equations for(M, Ω, Hε)

that remains onM ε
C as long as it remains iñU ;
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(2) Every small bounded solutionu(z), z ∈ R of Hamilton’s equations for(M, Ω, Hε) that
satisfiesu(z) ∈ Ũ lies completely inM ε

c ;

(3) M ε
C is a symplectic submanifold ofM and the flow determined by the Hamiltonian

system(M ε
c , Ω̃, H̃ε), where the tilde denotes restriction toM ε

c , coincides with the flow on
M ε

c determined by(M, Ω, Hε);

(4) Every solutioñu : (a, b) → Ũ1 of Hamilton’s equations for(M ε
c , Ω̃, H̃ε) generates a

solution of Hamilton’s equations for(M, Ω, Hε).

3 The reduced system near the codimension-two points

3.1 Coordinates for the centre manifold

The reduction theory presented in Section 2 above shows that, for each fixed parameter value
(β0, α0), the travelling water-wave problem is locally equivalent in parameter- and solution-space
to the finite-dimensional Hamiltonian system(M ε

c , Ω̃
ε, H̃ε). We now introduce a convenient

coordinate system in which to study this reduced Hamiltonian system. The centre manifold

M ε
c = {u1 + h(u1, ε) : u1 ∈ Ũ1}

is modelled upon the single coordinate chartŨ1, which is an open subset of the finite-dimensional
vector spaceXc

s , and in this coordinate system the reduced Hamiltonian functionH̃ε and reduced
2-form Ω̃ε are given by

H̃ε(u1) = Hε(u1 + h(u1, ε)),

Ω̃ε|u1(v
1, v2) = Ω|u1+h(u1,ε)(v

1 + d1h[u1, ε](v
1), v2 + d1h[u1, ε](v

2))

= Ω(v1, v2) + O(|(ε, u1)|). (27)

Using these formulae as a starting point, we construct a coordinate system forXc
s with respect

to whichΩ̃ is the canonical symplectic2-form Υ, focusing upon the situation in which(β0, α0)
is one of the codimension-two pointsPk,k+1. We therefore write

β = P β
k,k+1 + ε1, α = Pα

k,k+1 + ε2

and observe that the reduced system(M ε
c , Ω̃

ε, H̃ε) captures the small-amplitude dynamics of the
travelling water-wave problem for values of(ε1, ε2) in a neighbourhood̃Λ of the origin inR2.

The first step is to choose a basis forXc
s consisting of generalised eigenvectors ofLs which

is symplectic with respect toΩ. Observe thatλ = 0, k = 0 is always a solution of (26), so
that there is always a mode0 zero eigenvector; this eigenvector has a Jordan chain of length2.
Choosing

e =
1√
2π


0
0
1
0

 , f =
1√
2π


0
0
0
1

 ,
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one finds thatLse = 0, Lsf = e andΩ(e, f) = 1. There are also geometrically double mode
k and modek + 1 zero eigenvalues, and each eigenvector has a Jordan chain of length2. The
vectors

e+
k =

1
√

γk


2 sinh(νk) cos(kx)

0
2 cosh(νk) sin(kx)

0

 , e−k =
1
√

γk


−2 sinh(νk) sin(kx)

0
2 cosh(νk) cos(kx)

0

 ,

f+
k =

1
√

γk


0

2β0 sinh(νk) cos(kx)
0

2 cosh(νk) sin(kx)

 , f−k =
1
√

γk


0

−2β0 sinh(νk) sin(kx)
0

2 cosh(νk) cos(kx)

 ,

where
γk = 2π + 4πβ0 sinh2(νk) +

π

νk
sinh(2νk), (28)

satisfyLe±k = 0, Lf±k = e0,k
± ; moreovere+

k , f+
k are symmetric with respect to the reflectionR,

e−k , f−k is antisymmetric with respect to this reflection,Ω(e+
k , f+

k ) = 1, Ω(e−k , f−k ) = 1 and the
symplectic product of any other combination is zero. The eigenvectorse+

k+1, e
−
k+1 and generalised

eigenvectorsf+
k+1, f

−
k+1 corresponding to the modek +1 zero eigenvalue are defined in the same

fashion. We conclude that the generalised eigenspace corresponding to the zero eigenvalue is
ten-dimensional and has the symplectic basis{e, e+

k , e−k , e+
k+1, e

−
k+1, f, f+

k , f−k , f+
k+1, f

−
k+1}; since

there are no further purely imaginary eigenvalues, the same is true of the centre spaceXc
s . The

coordinatesq, q+
k , q−k , q+

k+1, q−k+1, p, p+
k , p−k , p+

k+1, p−k+1 in thee, e+
k , e−k , e+

k+1, e−k+1, f , f+
k , f−k ,

f+
k+1, f−k+1 directions are canonical coordinates forXc

s with respect toΩ and the actions of the
reflectorR defined by (21), the reverserS defined by (22) and the translatorTa : x 7→ x + a,
a ∈ R on this generalised eigenspace are given by

R(q, q+
k , q−k , q+

k+1, q
−
k+1, p, p

+
k , p−k , p+

k+1, p
−
k+1)

= (q, q+
k ,−q−k , q+

k+1,−q−k+1, p, p
+
k ,−p−k , p+

k+1,−p−k+1), (29)

S(q, q+
k , q−k , q+

k+1, q
−
k+1, p, p

+
k , p−k , p+

k+1, p
−
k+1)

= (q, q+
k , q−k , q+

k+1, q
−
k+1,−p,−p+

k ,−p−k ,−p+
k+1,−p−k+1), (30)

Ta(q, q
+
k , q−k , q+

k+1, q
−
k+1, p, p

+
k , p−k , p+

k+1, p
−
k+1)

= (q,Rka(q
+
k , q−k ),R(k+1)a(q

+
k+1, q

−
k+1), p,Rka(p

+
k , p−k ),R(k+1)a(p

+
k+1, p

−
k+1)), (31)

whereRθ is the2× 2 matrix representing a rotation through the angleθ.
Writing

u1 = qe + q+
k e+

k + q−k e−k + q+
k+1e

+
k+1 + q−k+1e

−
k+1 + pf + p+

k f+
k + p−k f−k + p+

k+1f
+
k+1 + p−k+1f

−
k+1

and using the formula (27) for the reduced2-form Ω̃ε, we find that

Ω̃ε|u1v1, v2) = Υ(v1, v2) + O(|(u1, ε)||v1||v2|),

whereΥ is the canonical symplectic2-form onR10, so that

Υ((·)1, (·)2) = 〈K(·)1, (·)2〉, K =

(
0 −I
I 0

)
,
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in which I is the5 × 5 identity matrix and〈·, ·〉 is theR10-inner product. Finally, we apply
a parameter-dependent version of Darboux’s theorem which asserts that the2-form Ω̃ε can be
transformed intoΥ by a near-identity Darboux change of coordinates (cf. Buffoni & Groves [1,
Theorem 4]). Using the formula

H̃ε(u1) = Hε(u1 + h(u1, ε)), (32)

the estimate
h(u1, ε) = O(|u1||(u1, ε)|)

and the choice of symplectic basis forXc
s , we find that the leading-order terms in the quadratic

partH̃ε
L of the Hamiltonian are given in this coordinate system by

H̃0
L(u1) =

1

2
(p+

k )2 +
1

2
(p−k )2 +

1

2
(p+

k+1)
2 +

1

2
(p−k+1)

2;

for later use we denote the ‘nonlinear’ part of the Hamiltonian byH̃ε
NL.

The centre-manifold reduction procedure preserves reversibility and symmetries, and it is
also possible to select the Darboux transformation to preserve such characteristics of the original
equations (Mielke [20]). Note in particular that Hamilton’s equations are reversible and invariant
under theZ2-symmetryR and the continuous symmetryTa (the actions of the reverser, reflector
and translator are correctly described by (29)–(31)). They therefore haveO(2) symmetry and
Fix R is an invariant subspace. The variableq is in fact cyclic, so that its conjugatep is a
conserved quantity (which will be set to zero in the following analysis), and the dimension of
the reduced system of equations can always be reduced by two. A further reduction of order can
be achieved by restricting to the invariant subspace FixR = {q−k = q−k+1 = p−k = p−k+1 = 0}.
This procedure breaks theO(2) symmetry of the reduced equations, for whichTa is no longer a
symmetry for arbitrary values ofa.

Proposition 3.1 In the invariant subspace FixR, the reduced system of equations has the fol-
lowing discrete symmetries.

(1) For odd values ofk: theZ2-symmetry

T1 : (q+
k , q+

k+1, p
+
k , p+

k+1) 7→ (−q+
k , q+

k+1,−p+
k , p+

k+1)

and theZ2-symmetry
U2 : (q+

k+1, p
+
k+1) 7→ (−q+

k+1,−p+
k+1)

in the invariant subspace FixT1.

(2) For even values ofk: theZ2-symmetry

T2 : (q+
k , q+

k+1, p
+
k , p+

k+1) 7→ (q+
k ,−q+

k+1, p
+
k ,−p+

k+1)

and theZ2-symmetry
U1 : (q+

k , p+
k ) 7→ (−q+

k ,−p+
k )

in the invariant subspace FixT2.
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Proof Observe thatTa remains a symmetry of the reduced system provided thatTa[Fix R] =
Fix R. The calculation

Ta(q, q
+
k , 0, q+

k+1, 0, p, p
+
k , 0, p+

k+1, 0)

= (q,Rka(q
+
k , 0),R(k+1)a(q

+
k+1, 0), p,Rka(p

+
k , 0),R(k+1)a(p

+
k+1, 0))

= (q, cos(ka)q+
k , sin(ka)q+

k , cos((k + 1)a)q+
k+1, sin((k + 1)a)q+

k+1,

p, cos(ka)p+
k , sin(ka)p+

k , cos((k + 1)a)p+
k+1, sin((k + 1)a)p+

k+1),

shows thatTa[Fix R] = Fix R if and only if ka = n1π and(k + 1)a = n2π for some positive
integersn1, n2. It follows from the relationka = n1π that(k+1)a = (k+1)n1π/k and therefore
thatn2 = (k +1)n1/k. The quantity(k +1)/k is an integer if and only ifk = 1, in which case it
has the value2, so thatn2 = 2n1, and one finds thatTa = T whenn1 is odd andTa is the identity
whenn1 is even. Fork ≥ 2 the requirement thatn2 should be an integer implies thatn1 = mk
for some positive integerm, whencen2 = m(k + 1), and one finds thatTa is the identity when
m is even, thatTa = T1 whenm andk are odd and thatTa = T2 whenm is odd andk is even.

Similarly, for odd values ofk the mappingTa remains a symmetry of the reduced system in
its invariant subspace FixR∩ Fix T1 provided thatTa[Fix R∩ Fix T ] = Fix R∩ Fix T . We find
from the calculation

Ta(q, 0, 0, q
+
k+1, 0, p, 0, 0, p

+
k+1, 0)

= (q,Ra(0, 0),R2a(q
+
k+1, 0), p,Ra(0, 0),R2a(p

+
k+1, 0))

= (q, 0, 0, cos((k + 1)a)q+
k+1, sin((k + 1)a)q+

k+1,

p, 0, 0, cos((k + 1)a)p+
k+1, sin((k + 1)a)p+

k+1)

that this criterion is met if and only ifa = nπ/(k + 1) and thatTa = U2 whenn is odd andTa is
the identity whenn is even. A similar calculation yields the result forU1 whenk is even. 2

We now focus upon the four-dimensional reduced system of equations in the invariant sub-
space FixR; for notational simplicity we write(q1, q2, p1, p2) for (q+

k , q+
k+1, p

+
k , p+

k+1) and retain
the notationΥ for the canonical2-form on R4. The reduced Hamiltonian system is reversible
with reverserS : (q1, q2, p1, p2) 7→ (q1, q2,−p1,−p2) and has the additionalZ2-symmetries spe-
cified in Proposition 3.1. We exploit these symmetries repeatedly in calculating the reduced
system of equations (and of course in discussing their solutions). The next result, which gives a
criterion for the appearance of a monomial in the Hamiltonian, is also important in this respect.

Proposition 3.2 The coefficient of the monomialqn1
1 pn2

1 qn3
2 pn4

2 in the Taylor expansion of the
Hamiltonian function vanishes unless (i)n2 + n4, n1 + n2 and n3 + n4 are all even; or (ii)
n2 + n4 is even and(n1 + n2)/(n3 + n4) = (k + 1)/k.

Proof It follows from the reversibility that the Hamiltonian function is invariant under the trans-
formation(p1, p2) 7→ (−p1,−p2), and this condition yields the criterion thatn2 + n4 should be
even. Recalling that(q1, p2) and(q2, p2) are coordinates associated at linear level with the com-
ponents in respectively thekth and(k + 1)th Fourier modes, we obtain the remaining criteria by
the combinatorics of thek : k + 1 mode interaction. 2
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Corollary 3.3 Suppose thatk ≥ 2. The subspaces{(q1, p1) = (0, 0)} and{(q2, p2) = (0, 0)}
are invariant under the flow generated by the Taylor expansion of the Hamiltonian vector field to
every order; these subspaces are equipped with theZ2-symmetriesU2 : (q2, p2) 7→ (−q2,−p2)
andU1 : (q1, p1) 7→ (−q1,−p1) respectively.

Proof The invariance of the(q1, p1) and(q2, p2) coordinate planes follows from the fact that the
Taylor expansion of the Hamiltonian contains no terms which are linear in(q1, p1) or (q2, p2).
Moreover, it also contains no odd monomials in(q1, p1) or (q2, p2), so thatU1 andU2 are sym-
metries in respectively the(q1, p1) and(q2, p2) coordinate planes. 2

Notice that we cannot conclude that the subspaces{(q1, p1) = (0, 0)} and{(q2, p2) = (0, 0)}
are invariant under the flow generated by the Hamiltonian vector field itself in this manner since
the Hamiltonian is not analytic; the invariance of{(q1, p1) = (0, 0)} for odd values ofk and
{(q2, p2) = (0, 0)} for even values ofk is however an immediate consequence of Proposition
3.1.

We now have a convenient coordinate system with which to discuss the complete unfolding
of the codimension-two pointPk,k+1 in (β, α)-parameter space by means of a four-dimensional
centre manifold. The centre-manifold reduction captures in particular theHamiltonian0202-
resonanceat the pointPk,k+1 itself, where the zero eigenspace and generalised eigenspace are
respectively two and four dimensional, theHamiltonian semisimple1 : 1 resonancealong the
local part of curveIk,k+1, where two geometrically double imaginary eigenvalues exist, and the
Hamiltonian real semisimple1 : 1 resonancealong the local part of the curveRk,k+1, where
two geometrically double real eigenvalues exist (see Figure 2). Our primary interest lies in
homoclinic bifurcation associated with the Hamiltonian real semisimple1 : 1 resonance on the
local part ofRk,k+1, and we proceed by choosing values of(ε1, ε2) ∈ Λ̃ in a fashion which
enables us to access these curves effectively.

The local part ofRk,k+1 is calculated by expanding the parameterisation (8), (9) of the curve
Ri,j nears = 0. We find that the reduced system of equations atPk,k+1 has a pair of semisimple
real eigenvalues±µ when

β = P β
k,k+1 + β̂k,k+1µ

2 + O(µ4),

α = Pα
k,k+1 + α̂k,k+1µ

2 + O(µ4),

where

β̂k,k+1 =
coth kν

2k(k2 − (k + 1)2)ν3
− coth(k + 1)ν

2(k + 1)(k2 − (k + 1)2)ν3

+
coth2 kν

2(k2 − (k + 1)2)ν2
− coth2(k + 1)ν

2(k2 − (k + 1)2)ν2
,

α̂k,k+1 = −1

2
+

(2k2 − (k + 1)2) coth kν

2k(k2 − (k + 1)2)ν
+

(k2 − 2(k + 1)2) coth(k + 1)ν

2(k + 1)(k2 − (k + 1)2)ν

− (k + 1)2 coth2 kν

2(k2 − (k + 1)2)
+

k2 coth2(k + 1)ν

2(k2 − (k + 1)2)
.

To study codimension-one bifurcation phenomena associated with this curve we therefore write

ε1 = β̂k,k+1µ
2, ε2 = (α̂k,k+1 + δ)µ2, (33)
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whereδ andµ are small positive numbers. The former parameterδ plays the role of a bifurcation
parameter (varyingδ through zero from above we cross the critical curveRk,k+1 in parameter
space nearPk,k+1 from above), while the latter parameterµ indicates the distance from the point
Pk,k+1. Using the parameterisation (33) and Proposition 3.2, we find that the quadratic part of
the reduced Hamiltonian function is given by

H̃µ,δ
L (q, p) =

1

2
(1 + ωµ,δ)p2

1 +
1

2
(1 + ωµ,δ)p2

2 −
µ2

2
(c1 + ωµ,δ)q2

1 −
µ2

2
(c2 + ωµ,δ)q2

2,

where the symbolωµ,δ denotes various, possibly different smooth functions ofµ andδ which are
O(µ2). The method explained by Groves & Mielke [9, Appendix B] yields the formulae

c1 = − 2

µ2
Hµ,δ

2 (e1, e1)

∣∣∣∣
µ=0

= 1 + C1δ, c2 = − 2

µ2
Hµ,δ

2 (e2, e2)

∣∣∣∣
µ=0

= 1 + C2δ,

in which the notationHε
n = 1

n!
dnHε[0] has been used. The coefficientsC1, C2 are readily

computed and are stated in Appendix A; they satisfy

C2 < C1 < 0. (34)

The next step is to compute the ‘nonlinear’ part of the reduced Hamiltonian and hence write
down the reduced equations near the codimension-two pointsPk,k+1; we treat the casesk = 1
andk ≥ 2 separately.

3.2 The reduced equations nearP1,2

To compute the leading-order terms in the ‘nonlinear’ part of the reduced Hamiltonian, we
note that the reduced system is reversible and has theZ2-symmetryT1 : (q1, q2, p1, p2) 7→
(−q1, q2,−p1, p2) and theZ2-symmetryU2 : (q2, p2) 7→ (−q2,−p2) in the invariant subspace
Fix T1 = {(q1, p1) = (0, 0)}. It follows that the only monomial inq in the cubic part of its
Hamiltonian isq2

1q2, so that

H̃µ,δ
NL(q1, q2, p1, p2) =

1

2
(c + ωµ,δ)q2

1q2 + O(|p||(q, p)|2) + O(|(q, p)|4),

and that the cubic part of its Hamiltonian vanishes in the invariant subspace{(q1, p1) = (0, 0)},
so that

H̃µ,δ
NL(0, q2, 0, p2) =

1

4
(d + ωµ,δ)q4

2 + O(|p2|2|(q2, p2)|2) + O(|(q2, p2)|6).

According to the method explained by Groves & Mielke [9, Appendix B], the coefficientsc and
d are given by the formulae

c = 6H0
3 (e1, e1, e2),

d = 4H0
4 (e2, e2, e2, e2) + 6H0

3 (e2, e2, h0,0020),

whereh0,0020 is the coefficient ofq2
2 in the Taylor-series expansion ofh(q, p, 0). Expressions for

c andd are presented in Appendix A; we find thatc < 0, d > 0.
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The reduced equations are

q̇1 = ∂p1H̃
µ,δ = (1 + ωµ,δ)p1 +R1, (35)

q̇2 = ∂p2H̃
µ,δ = (1 + ωµ,δ)p2 +R2, (36)

ṗ1 = −∂q1H̃
µ,δ = µ2(1 + C1δ + ωµ,δ)q1 − (c + ωµ,δ)q1q2 +R3, (37)

ṗ2 = −∂q2H̃
µ,δ = µ2(1 + C2δ + ωµ,δ)q2 −

1

2
(c + ωµ,δ)q2

1 +R4, (38)

in which the dot denotes differentiation with respect toz and the remainder termsRi satisfy the
estimates

R1,R2 = O(|(q, p)|2),
R3,R4 = O(|p||(q, p)|) + O(|(q, p)|3)

and have the symmetries

(R1,R2,R3,R4)(q,−p) = (−R1,−R2,R3,R4)(q, p),

(R1,R2,R3,R4)(−q1, q2,−p1, p2) = (−R1,R2,−R3,R4)(q1, q2, p1, p2),

(R2,R4)(0,−q2, 0,−p2) = (−R2,−R4)(0, q2, 0, p2).

Introducing the scaled variables

Z = µz, (Q1(Z), Q2(Z)) =
1

µ2
(q1(z), q2(z)), (P1(Z), P2(Z)) =

1

µ3
(p1(z), p2(z)),

we find from equations (35)-(38) that

Q′
1 = P1 + O(µ), (39)

Q′
2 = P2 + O(µ), (40)

P ′
1 = (1 + C1δ)Q1 − cQ1Q2 + O(µ), (41)

P ′
2 = (1 + C2δ)Q2 −

1

2
cQ2

1 + O(µ), (42)

in which the prime denotes differentiation with respect toZ. In the limit µ → 0 equations
(39)–(42) admit the invariant subspace{(Q1, P1) =

√
2(Q2, P2)}, which contains the explicit

homoclinic solution

(Q2(Z), P2(Z)) =

(
3

2c
sech2

(
Z

2

)
,− 3

2c
tanh

(
Z

2

)
sech2

(
Z

2

))
(43)

at δ = 0, from which a second explicit homoclinic solution is obtained using the reflectorT1

(that is, reversing the sign of(Q1, P1)).
The next step is to show that the homoclinic orbit given by (43) is transverse in the usual sense

in Hamiltonian-systems theory, namely that the tangent spaces to the stable and unstable mani-
folds of the zero equilibrium span the tangent space to the zero energy surface of the Hamiltonian
function at each point of the homoclinic orbit. This property holds if and only if the only com-
mon tangent vector to the stable and unstable manifolds at each point of the homoclinic orbit is
the ‘time’-derivative of the homoclinic orbit itself.
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Proposition 3.4 The formula (43) defines a transverse homoclinic solution to the Hamiltonian
system (39)–(42) atµ = 0, δ = 0.

Proof A straightforward linear change of variables transforms equations (39)–(42) withµ = 0,
δ = 0 into the same equations withc replaced by1. It therefore suffices to prove the proposition
for c = 1, and this result has been obtained by Yew [24, Lemma 2.2], who examined the equation
of variations around the homoclinic orbit and showed that its only globally bounded solution is
the ‘time’-derivative of the homoclinic orbit itself. 2

Since transversality is an open phenomenon, we obtain the following result as an immediate
consequence of Proposition 3.4.

Corollary 3.5 There exists a branch of transverse homoclinic solutions to equations (39)–(42),
parameterised by values of(µ, δ) in a neighbourhood of the origin inR2, which contains the
explicit solution (43) atµ = 0, δ = 0. A second branch of transverse homoclinic solutions is
obtained from the first using the reflectorT1.

Let us now examine the flow associated with the reduced Hamiltonian system in the invariant
subspace{(q1, p1) = (0, 0)}, in which the reduced equations are

q̇2 = ∂p2H̃
µ,δ = (1 + ωµ,δ)p2 +R2,

ṗ2 = −∂q2H̃
µ,δ = µ2(1 + C2δ + ωµ,δ)q2 − (d + ωµ,δ)q3

2 +R4,

where the remainder termsRi satisfy the estimates

R1 = O(|(q2, p2)|3), R2 = O(|p2||(q2, p2)|2) + O(|(q2, p2)|5)

and have the symmetries

(R1,R2)(q2,−p2) = (−R1,R2)(q2, p2), (R1,R2)(−q2,−p2) = (−R1,−R2)(q2, p2).

Introducing the scaled variables

Z = µz, Q2(Z) =
1

µ
q2(z), P2(Z) =

1

µ2
p2(z),

we find that

Q′
2 = P2 + O(µ), (44)

P ′
2 = (1 + C2δ)Q2 − dQ3

2 + O(µ), (45)

in which the prime denotes differentiation with respect toZ. In the limit µ → 0 these equations
admit the explicit homoclinic solution

(Q2(Z), P2(Z)) =((
2(1+C2δ)

d

)1/2

sech (1 + C2δ)
1/2Z,−

(
2(1+C2δ)2

d

)1/2

tanh(1 + C2δ)
1/2Z sech (1 + C2δ)

1/2Z

)
,

(46)
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from which a further explicit homoclinic solution is obtained using the reflectorU2 (that is,
reversing the sign of the right-hand side of (46)). It is a straightforward exercise to show that
(46) defines a transverse homoclinic solution to the two-dimensional Hamiltonian system under
consideration here, and the following proposition is a direct consequence of this observation.

Proposition 3.6 The Hamiltonian system (44)–(45) admits a branch of homoclinic solutions,
parameterised by values of(µ, δ) is a neighbourhood of the origin inR2, which contains the
explicit solution (46) atµ = 0; a further branch is obtained by applying the reflectorU2 to this
basic branch.

3.3 The reduced equations nearPk,k+1 for k ≥ 2

To compute the leading-order terms in the ‘nonlinear’ part of the reduced Hamiltonian, we note
that according to Proposition 3.2 the cubic part of the Hamiltonian is identically zero and the only
monomials inq in its quartic part areq4

1, q4
2 andq2

1q
2
2. The ‘nonlinear’ part of the Hamiltonian is

therefore given by

H̃µ,δ
NL(q1, q2, p1, p2)

=
1

4
(c1 + ωµ,δ)q4

1 +
1

4
(c2 + ωµ,δ)q4

2 +
1

2
(c3 + ωµ,δ)q2

1q
2
2 + O(|p|2|(q, p)|2) + O(|(q, p)|6),

in which the coefficientsc1, c2, c3 are given by the formulae

c1 = 4H0
4 (e1, e1, e1, e1) + 6H0

3 (e1, e1, h0,2000),

c2 = 4H0
4 (e2, e2, e2, e2) + 6H0

3 (e2, e2, h0,0020),

c3 = 12H0
4 (e1, e1, e2, e2) + 6H0

3 (e1, e2, h0,1010) + 6H0
3 (e2, e2, h0,2000)

andh0,2000, h0,0020, h0,1010 are the coefficients of respectivelyq2
1, q2

2, q1q2 in the Taylor-series
expansion ofh(q, p, 0). Formulae forc1, c2, c3 are presented in Appendix A; we find that they
are all positive. The reduced equations are

q̇1 = ∂p1H̃
µ,δ = (1 + ωµ,δ)p1 +R1, (47)

q̇2 = ∂p2H̃
µ,δ = (1 + ωµ,δ)p2 +R2, (48)

ṗ1 = −∂q1H̃
µ,δ = µ2(1 + C1δ + ωµ,δ)q1 − (c1 + ωµ,δ)q3

1 − (c3 + ωµ,δ)q1q
2
2 +R3, (49)

ṗ2 = −∂q2H̃
µ,δ = µ2(1 + C2δ + ωµ,δ)q2 − (c2 + ωµ,δ)q3

2 − (c3 + ωµ,δ)q2
1q2 +R4, (50)

in which the dot denotes differentiation with respect toz and the remainder termsRi satisfy the
estimates

R1,R2 = O(|(q, p)|3),
R3,R4 = O(|p||(q, p)|2) + O(|(q, p)|5)

The reduced Hamiltonian system is reversible, so that

(R1,R2,R3,R4)(q,−p) = (−R1,−R2,R3,R4)(q, p),
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and has certain additionalZ2-symmetries. For odd values ofk it has aZ2-symmetry with re-
flector T1 : (q1, q2, p1, p2) 7→ (−q1, q2,−p1, p2) together with aZ2-symmetry with reflector
U2 : (q2, p2) 7→ (−q2,−p2) in the invariant subspace FixT1 = {(q1, p1) = (0, 0)}, so that

(R1,R2,R3,R4)(−q1, q2,−p1, p2) = (−R1,R2,−R3,R4)(q1, q2, p1, p2),

(R2,R4)(0,−q2, 0,−p2) = (−R2,−R4)(0, q2, 0, p2),

and similarly for even values ofk it has aZ2-symmetry with reflectorT2 : (q1, q2, p1, p2) 7→
(q1,−q2, p1,−p2) together with aZ2-symmetry with reflectorU1 : (q1, p1) 7→ (−q1,−p1) in the
invariant subspace FixT2 = {(q2, p2) = (0, 0)}, so that

(R1,R2,R3,R4)(q1,−q2, p1,−p2) = (R1,−R2,R3,−R4)(q1, q2, p1, p2),

(R2,R4)(−q1, 0,−p1, 0) = (−R2,−R4)(q1, 0, p1, 0).

Furthermore, Corollary 3.3 asserts that the subspaces{(q1, p1) = (0, 0)} and{(q2, p2) = (0, 0)}
are both invariant under the flow generated by the Taylor expansion of the Hamiltonian vector
field to every order; these subspaces are equipped with theZ2-symmetries with reflectorsU2

andU1 respectively. Recall, however, that the Hamiltonian function is not analytic, and this
fact prevents us from concluding that{(q1, p1) = (0, 0)} and{(q2, p2) = (0, 0)} are invariant
subspaces under the flow generated by the Hamiltonian vector field itself (see the discussion
following Corollary 3.3).

Introducing the scaled variables

Z = µz, (Q1(Z), Q2(Z)) =
1

µ
(q1(z), q2(z)), (P1(Z), P2(Z)) =

1

µ2
(p1(z), p2(z)),

we find from equations (47)–(50) that

Q′
1 = P1 + O(µ), (51)

Q′
2 = P2 + O(µ), (52)

P ′
1 = (1 + C1δ)Q1 − c1Q

3
1 − c3Q1Q

2
2 + O(µ), (53)

P ′
2 = (1 + C2δ)Q2 − c2Q

3
2 − c3Q

2
1Q2 + O(µ), (54)

in which the prime denotes differentiation with respect toZ. In the limit µ → 0 equations
(51)–(54) admit the invariant subspace

(Q1, P1) = α (Q2, P2), α =

√
c2 − c3

c1 − c3

provided that(c2−c3)/(c1−c3) > 0, and this subspace contains the explicit homoclinic solution

(Q2(Z), P2(Z)) =

((
2(c1−c3)

c1c2−c23

)1/2

sech Z,−
(

2(c1−c3)

c1c2−c23

)1/2

sech Z tanh Z

)
(55)

atδ = 0. (The quantity within the square root is equal to twice the reciprocal ofc2 + c3α
2 and is

therefore positive.) A further explicit homoclinic solution is obtained using the reflectorT1 (that
is, reversing the sign of(Q1, P1)) for odd values ofk or the reflectorT2 (that is, reversing the
sign of(Q2, P2)) for even values ofk.
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Proposition 3.7 The formula (55) defines a transverse homoclinic solution to the Hamiltonian
system (51)–(54) atµ = 0, δ = 0 provided that

λ =
2(3c1c2 − 2c1c3 − 2c2c3 + c2

3)

c1c2 − c2
3

is not a positive integer.

Proof Linearising equations (51)–(54) around the homoclinic solution given by (55), we obtain
the equations(

−Q′′
1 + Q1

−Q′′
2 + Q2

)
− 2(c1 − c3)

c1c2 − c2
3

sech2(Z)

(
3c1α

2 + c3 2αc3

2αc3 3c2 + α2c3

)(
Q1

Q2

)
=

(
0
0

)
. (56)

The square matrix on the left-hand side of this equation is real and symmetric and therefore
diagonalisable; it has two real eigenvalues

λ1 =
3(c1c2 − c2

3)

c1 − c3

, λ2 =
3c1c2 − 2c1c3 − 2c2c3 + c2

3

c1 − c3

.

It follows that there is a linear change of coordinates(Q1, Q2) 7→ (Q̃1, Q̃2) which transforms
(56) into the decoupled system

Q̃′′
1 = Q̃1 − 6 sech2(Z)Q̃1, Q̃′′

2 = Q̃2 − λ sech2(Z)Q̃2. (57)

The solution set of the first of these equations is spanned by the two linearly independent solu-
tions

Q̃1(Z) = sech Z tanh Z, Q̃1(Z) =
1

4
sech Z tanh Z(6Z − 4 coth Z + sinh 2Z),

the latter of which is unbounded asZ → ±∞. A result given by Yew [24, Lemma 2.3] shows
that the second equation has no globally bounded solution forλ < 0, and forλ = 0 its solution
set is clearly spanned by the two linearly independent, unbounded solutionsQ1(Z) = eZ and
Q1(Z) = e−Z . Turning now to the caseλ > 0, notice that the change of independent variable
T = tanh Z transforms the second equation into the Legendre equation

(1− T 2)
d2Q̃2

dT 2
− 2T

dQ̃2

dT
−
(

r(r + 1)− 1

1− T 2

)
Q̃2 = 0, r =

1

2

(√
1 + λ− 1

)
.

This equation has two linearly independent solutions, namely the associated Legendre functions
of the first and second kindP 1

r (T ), Q1
r(T ), which are unbounded at respectivelyT = −1 and

T = 1 provided thatr is not an integer. Returning to the original independent variableZ, we find
that the corresponding solutions are unbounded respectively asZ → −∞ andZ →∞ provided
thatr is not an integer, and it follows from the assumption thatλ 6∈ Z that this condition is met.

We conclude that the equation of variations about the homoclinic solution given by formula
(55) has only one linearly independent solution which is bounded forZ ∈ R, namely theZ-
derivative of the homoclinic solution, which is therefore transverse. 2

Using the expressions forc1, c2 andc3 given in Appendix A one can verify that(c2−c3)/(c1−
c3) > 0 and thatλ is not a positive integer.
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Corollary 3.8 There exists a branch of transverse homoclinic solutions to equations (51)–(54),
parameterised by values of(µ, δ) in a neighbourhood of the origin inR2, which contains the
explicit solution (55) atµ = 0, δ = 0. A further branch of transverse homoclinic solutions is
obtained from the first using the reflectorT1 for odd values ofk or T2 for even values ofk.

In the limit µ → 0 equations (51)–(54) admit the invariant subspace{(Q2, P2) = (0, 0)},
which contains the explicit homoclinic solutions

(Q1(Z), P1(Z)) =

±
((

2(1+C1δ)
c1

)1/2

sech (1 + C1δ)
1/2Z,−

(
2(1+C1δ)2

c1

)1/2

tanh(1 + C1δ)
1/2Z sech (1 + C1δ)

1/2Z

)
(58)

and the invariant subspace{(Q1, P1) = (0, 0)}, which contains the explicit homoclinic solutions

(Q2(Z), P2(Z)) =

±
((

2(1+C2δ)
c2

)1/2

sech (1 + C2δ)
1/2Z,−

(
2(1+C2δ)2

c2

)1/2

tanh(1 + C2δ)
1/2Z sech (1 + C2δ)

1/2Z

)
.

(59)

Proposition 3.9 The formulae (58), (59) define transverse homoclinic solutions to the Hamilto-
nian system (51)–(54) atµ = 0 provided that8c3/c1 is not an integer.

Proof It suffices to establish this result forδ = 0. Linearising equations (51)–(54) around one of
the homoclinic solution given by formula (58), we obtain the equations

Q̈1 = Q1 − 6sech2(Z)Q1, Q̈2 = Q2 −
8c3

c1

sech2(Z)Q2.

Comparing this formula with (57) and using the method explained in the proof of Proposition 3.7,
we find that the equation of variations about one of the homoclinic solutions given by formula
(58) has only one linearly independent solution which is bounded forZ ∈ R, namely theZ-
derivative of the homoclinic solution, which is therefore transverse. The same argument shows
that the homoclinic solutions given by formula (59) are also transverse. 2

Using the formulae forc1 andc3 given in Appendix A, one can verify that8c3/c1 is not a
positive integer.

Proposition 3.10 The Hamiltonian system (51)–(54) admits

(1) two branches of homoclinic solutions, parameterised by values of(µ, δ) in a neighbour-
hood of the origin inR2, which contain the explicit solutions (58) atµ = 0;

(2) two branches of homoclinic solutions, parameterised by values of(µ, δ) in a neighbour-
hood of the origin inR2, which contain the explicit solutions (59) atµ = 0.

Notice that Proposition 3.10(1) is an immediate consequence of the invariance of the sub-
space FixT2 = {(q2, p2) = (0, 0)} for even values ofk: it is a straightforward exercise to show
that formula (58) defines a transverse homoclinic solution to the two-dimensional Hamiltonian
system in this subspace. Similarly, Proposition 3.10(2) follows from the invariance of the sub-
space FixT2 = {(q1, p1) = (0, 0)} for odd values ofk.
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4 Existence theory for multipulse homoclinic orbits

4.1 Homoclinic Lyapunov-Schmidt theory

We begin by outlining the homoclinic Lyapunov-Schmidt theory developed by Lin [18] and
Sandstede [21,§3] which is applied in Section 4.2 below to find multipulse homoclinic solutions
to the reduced equations near the pointsPk,k+1. Consider a Hamiltonian system

u̇ = f δ(u), (60)

with Hamiltonian functionHδ(u), whereu and δ lie in a neighbourhood of the origin in re-
spectivelyR4 andR. We suppose that equation (60) has certain discrete symmetries, namely
reversibility (with reverserS) and`1 distinctZ2-symmetries (with reflectorsT1, . . . , T`1). It is
also supposed to have`2 distinct transverse homoclinic orbitsu0

1(t), . . . ,u0
`2

(t) atδ = 0 which are
not related to each other by means of the reflectorsT1, . . . , T`1. Since transversality is an open
phenomenon, these transverse homoclinic orbits persist for small, nonzero values ofδ, where
they are denoted byuδ

1(t), . . . ,uδ
`2

(t) and satisfy

Tuδ
j (t)W

u ∩ Tuδ
j (t)W

s = span{u̇δ
j(t)}, t ∈ R;

a consequence of the transversality is that the subspace

[Tuδ
j (t)W

u + Tuδ
j (t)W

s]⊥

of R4 is one-dimensional for eacht ∈ R, being the linear span of the vectorΨδ
j(t) = ∇Hδ(uδ

j(t)).
The Hamiltonian system (60) is thus equipped with a catalogueuδ

1(t), . . . ,uδ
`2

(t) of basic ‘primary’
homoclinic orbits and an accompanying catalogue of reflectorsT1, . . . , T`1; further transverse
homoclinic orbits are obtained from the basic primary orbits using the reflectors.

The homoclinic bifurcation theory introduced below relies crucially upon information from
the ‘tails’ of the primary homoclinic solutions. It is therefore necessary to obtain suitable es-
timates on their asymptotic behaviour ast → ∞. We record here a result for four-dimensional
systems which is suitable for this purpose; its proof has been given by Yew [24, Lemma 2.1 and
Corollary 2.1].

Lemma 4.1 Suppose the four-dimensional dynamical system

u̇ = f δ(u)

has four real, nonzero eigenvalues±λδ
1, ±λδ

2 whose corresponding eigenvectorseδ+
1 , eδ−

1 , eδ+
2 ,

eδ−
2 are linearly independent and defineλs = min{|λδ

1|, |λδ
2|}. Any solutionuδ(t) to this dynam-

ical system which lies upon its two-dimensional local stable manifold satisfies the asymptotic
estimate

uδ(t) = bδeδ−
1 e−λδ

1t + cδeδ−
2 e−λδ

2t + O(e−2λst),

u̇δ(t) = −bδλδ
1e

δ−
1 e−λδ

1t − cδλδ
2e

δ−
2 e−λδ

2t + O(e−2λst)

ast →∞, where the coefficientsbδ, dδ depend smoothly uponδ.
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Pj−1
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Σj−1
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U−j |[−Tj−1,0]

U+
j |[0,Tj ]

U−j+1|[−Tj ,0]

Ψj−1

Ψj

Figure 6: Piecewise continuous orbitsU±
j for δ near 0. The primary homoclinic orbitsu0

j(t),
uδ

j(t) are depicted by respectively dashed and dotted curves.

Let us now consider a cycle of (not necessarily distinct) transverse homoclinic orbitsuδ
1(t),

. . . , uδ
N(t) which connectN + 1 copies of the zero equilibrium, denoted byP1, . . . ,PN+1. The

following lemma was proved by Sandstede [21,§3]; its conclusions are illustrated in Figure 6.

Lemma 4.2 LetΣ1, . . .ΣN be codimension-one transverse sections to the orbitsu0
1(t), . . .u0

N(t)
at t = 0, so thatΨδ

j(0) lies in Σj. For sufficiently small values ofδ and any sequenceT =
{Tj}N

j=1 withT := minj=1,...,N Tj sufficiently large there exists a unique set{U±
j }N

j=1 of functions
with the following properties:

(1) U±
j are solutions to (60) on respectively[0, Tj] and [−Tj−1, 0] which lie close touδ

j ;

(2) U+
j (Tj) = U−

j+1(−Tj);

(3) U−
j (0)− U+

j (0) = ξj(T , δ)Ψδ
j(0).

The jump sizesξj(T , δ) are given by the formula

ξj(T , δ) = 〈Ψδ
j(−Tj−1), u

δ
j−1(Tj−1)〉 − 〈Ψδ

j(Tj), u
δ
j+1(−Tj)〉+Rj(T , δ),

where the remainder termRj(T , δ) is a continuously differentiable function ofT which depends
smoothly uponδ and satisfiesRj(T , δ), ∂1Rj(T , δ) = O(e−3λsT ) asT →∞.

The above lemma indicates the strategy we follow to find a multipulse homoclinic orbit which
resembles a concatenation of the ‘primary’ homoclinic orbitsuδ

1(t), . . . , uδ
N(t): we attempt to

solve the bifurcation equations

ξj(T , δ) = 0, j = 1, . . . , N.

Notice thatδ = 0, Tj = ∞, j = 1, . . . , N is a solution of these bifurcation equations which
corresponds toN unipulse homoclinic orbits, namely the primary orbitsuδ

1(t), . . . , uδ
N(t). We

therefore seek to apply the implicit function theorem atTj = ∞, j = 1, . . . , N , introducing an
appropriate change of variables to deal with the ‘point’∞. In this respect we note thatT1, TN =
∞ since we are seeking a homoclinic orbit, and the following proposition shows that it suffices
to solve the firstN − 1 bifurcation equations; it is proved using the fact that the Hamiltonian
function is a conserved quantity (see Sandstede, Jones & Alexander [22, Lemma 3.2]).
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Proposition 4.3 The equationsξj(T , δ) = 0, j = 1, . . . , N − 1 imply thatξN(T , δ) = 0.

The formulae for the jump sizesξj(T , δ) can be simplified by exploiting the structure of
equation (60). The reversibility implies that

uδ
j(−Tj) = Suδ

j(Tj)

while the Hamiltonian structure shows that

Ψδ
j(Tj) = ∇Hδ(uδ

j(t))

= ∇2Hδ(0)uδ
j(Tj) + O(|uδ

j(Tj)|2)

and similarly

Ψδ
j(−Tj−1) = ∇2Hδ(0)uδ

j(−Tj−1) + O(|uδ
j(−Tj−1)|2)

= ∇2Hδ(0)Suδ
j(Tj−1) + O(|uδ

j(Tj−1)|2).

Furthermore, recall that the ‘primary’ homoclinic orbitsuδ
1(t), . . . , uδ

N(t) are obtained by ap-
plying the reflectorsT1, . . . , T`1 to the catalogueuδ

1(t), . . . , uδ
`2

(t) of basic primary homoclinic
orbits: we can write

uδ
j(t) = γ1

j . . . γ`1
j vδ

j (t), γi
j ∈ {I, Ti}, vδ

j ∈ {uδ
1, . . . , u

δ
`2
}.

Combining these observations and the fact that∇2Hδ(0), S, T1, . . . ,T`1 are all self-adjoint and
mutually commuting, we find that

ξj(T , δ) = 〈M δ
j−1v

δ
j (Tj−1), v

δ
j−1(Tj−1)〉 − 〈M δ

j vδ
j (Tj), v

δ
j+1(Tj)〉+ R̃j(T , δ),

where
M δ

j = ∇2Hδ(0)Sγ1
j . . . γ`1

j γ1
j+1 . . . γ`1

j+1

and the remainder term̃Rj(T , δ) satisfies the same asymptotic estimates asRj(T , δ). Finally,
we introduce the new variablesηj = (ξ1 + . . . + ξj)/2, j = 1, . . . ,N − 1, in terms of which the
bifurcation equations are

ηj(T , δ) := 〈M δ
j vδ

j (Tj), v
δ
j+1(Tj)〉+ R̂j(T , δ) = 0, j = 1, . . . , N − 1

and the remainder term̂Rj(T , δ) again satisfies the same asymptotic estimates asRj(T , δ).
We now proceed to write down and study these bifurcation equations as they relate to the

reduced Hamiltonian system near the pointsPk,k+1. The equations and homoclinic orbits dis-
cussed here depend upon two parametersδ andµ; the former plays the role of the bifurcation
parameter in the homoclinic Lyapunov-Schmidt theory while the latter is treated as a small, fixed
positive number.
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4.2 Multipulse homoclinic orbits nearPk,k+1

Our starting point in this section is the reduced system near the codimension-two pointPk,k+1,
which is conveniently described in scaled coordinates by equations (39)–(42) fork = 1 or equa-
tions (51)–(54) fork ≥ 2. We consider the catalogue of basic primary orbits consisting of the
single orbituµ,δ

k,k+1(t) which, at(µ, δ) = (0, 0), has the explicit representation (43) fork = 1 or
(55) for k ≥ 2, where we replaceZ by t in keeping with the notation in Section 4.1 above. Its
catalogue of reflectors also has just one entry, namelyT1 = diag(−1, 1,−1, 1) for even values
of k or T2 = diag(1,−1, 1,−1) for odd values ofk.

The linear part of the reduced Hamiltonian system nearPk,k+1 is

Q′
1 = (1 + ωµ,δ)P1,

Q′
2 = (1 + ωµ,δ)P2,

P ′
1 = (1 + C1δ + ωµ,δ)Q1,

P ′
2 = (1 + C2δ + ωµ,δ)Q2

and the quadratic part of the reduced Hamiltonian function is

H̃µ,δ
L (Q,P ) =

1

2
(1 + ωµ,δ)P 2

1 +
1

2
(1 + ωµ,δ)P 2

2 −
1

2
(c1 + ωµ,δ)Q2

1 −
1

2
(c2 + ωµ,δ)Q2

2,

where we recall that the symbolωµ,δ denotes various, possibly different smooth functions ofµ
andδ which areO(µ2). This system has the eigenvalues±(1+C1δ+ωµ,δ)1/2,±(1+C2δ+ωµ,δ)1/2

with corresponding eigenvectors
(1 + ωµ,δ)1/2

0
±(1 + C1δ + ωµ,δ)1/2

0

 ,


0

(1 + ωµ,δ)1/2

0
±(1 + C2δ + ωµ,δ)1/2

 ,

and using Lemma 4.1, we find that our basic primary homoclinic orbit has the asymptotic expan-
sion

uµ,δ
k,k+1(t) = bµ,δ


(1 + ωµ,δ)1/2

0
−(1 + C1δ + ωµ,δ)1/2

0

 e−(1+C1δ+ωµ,δ)1/2t

+ dµ,δ


0

(1 + ωµ,δ)1/2

0
−(1 + C2δ + ωµ,δ)1/2

 e−(1+C2δ+ωµ,δ)1/2t + O(e−2λst) (61)

as t → ∞, wherebµ,δ, dµ,δ are smooth functions ofµ andδ which, according to the explicit
formulae foru0,0

k,k+1(t), satisfy

b0,0 =


6
√

2
c

, k = 1,

2
(

2(c1−c3)

c1c2−c23

)1/2

, k ≥ 2,
d0,0 =

{ 6
c
, k = 1,

2
(

2(c2−c3)

c1c2−c23

)1/2

, k ≥ 2.
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The above calculations show that

Mµ,δ
j = ∇2H̃µ,δ(0)Rγjγj+1 = −diag(δj(1+C1δ +ωµ,δ), 1+C2δ +ωµ,δ, δj(1+ωµ,δ), 1+ωµ,δ)

for odd values ofk and

Mµ,δ
j = ∇2H̃µ,δ(0)Rγjγj+1 = −diag(1+C1δ +ωµ,δ, δj(1+C2δ +ωµ,δ), 1+ωµ,δ, δj(1+ωµ,δ))

for even values ofk, where

δj =

{
1, γj = γj+1,
−1, γj 6= γj+1.

It follows that

〈Mµ,δ
j uµ,δ

k,k+1(Tj), u
µ,δ
k,k+1(Tj)〉 = −2δj(1 + C1δ + ωµ,δ

1 )(bµ,δ)2e−2(1+C1δ+ωµ,δ
2 )1/2Tj

− 2(1 + C2δ + ωµ,δ
3 )(dµ,δ)2e−(1+C2δ+ωµ,δ

4 )1/2Tj + O(e−3λst)

for odd values ofk and

〈Mµ,δ
j uµ,δ

k,k+1(Tj), u
µ,δ
k,k+1(Tj)〉 = −2(1 + C1δ + ωµ,δ

1 )(bµ,δ)2e−2(1+C1δ+ωµ,δ
2 )1/2Tj

− 2δj(1 + C2δ + ωµ,δ
3 )(dµ,δ)2e−(1+C2δ+ωµ,δ

4 )1/2Tj + O(e−3λst)

for even values ofk, whereωµ,δ
j denotes a specific function ofµ andδ which is O(µ2). It is

convenient to introduce the new variables

r = e−2(1+C1δ+ωµ,δ
2 )1/2T , aj = e−2(1+C2δ+ωµ,δ

4 )1/2(Tj−T ),

in terms of which

ηj(T , µ, δ) = 2δj(1 + C1δ + ωµ,δ
1 )(bµ,δ)2(akr)

1+γ + 2(1 + C2δ + ωµ,δ
3 )(dµ,δ)2akr + S1(a, µ, δ)

for odd values ofk and

ηj(T , µ, δ) = 2(1 + C1δ + ωµ,δ
1 )(bµ,δ)2(akr)

1+γ + 2δj(1 + C2δ + ωµ,δ
3 )(dµ,δ)2akr + S1(a, µ, δ)

for even values ofk, where

a = {aj}N−1
j=1 , γ =

(
1 + C1δ + ωµ,δ

1

1 + C2δ + ωµ,δ
3

)1/2

− 1

andS1(a, µ, δ), ∂1S1(a, µ, δ) = O(r1+θ) for some fixed positive numberθ. A necessary condi-
tion for the bifurcation equations

ηj(T , µ, δ) = 0, j = 1, . . . , N − 1

to have a solution is therefore clearly thatδj = −1.
A straightforward application of the implicit function theorem yields the inverse relation

δ =
1− (1 + γ)2

C2(1 + γ)2 − C1

+ O(µ), (62)
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which is well-defined sinceC2 < C1 < 0 (see equation (34)). Defining

cµ,γ =
(bµ,γ)2(1 + C1δ + ωµ,γ

1 )

(dµ,γ)2(1 + C2δ + ωµ,γ
3 )

and settingδj = −1, we finally arrive at the equations

ajr[−cµ,γ(ajr)
γ + 1] + S1(a, µ, δ(µ, γ)) = 0,

which are conveniently written in terms of the variablesρj := (ajr)
γ as

−cµ,γρj + 1 + Ŝ1(ρ, µ, γ) = 0, (63)

whereρ = {ρj}N−1
j=1 andŜ1(ρ, µ, γ), ∂1Ŝ1(ρ, µ, γ) = O(ρθ/γ).

Proposition 4.4 For each sufficiently small value ofµ equations (63) have a local branch of
solutionsρ = ρ(γ) for γ > 0 which satisfiesρj(0) = 1/cµ,0.

Proof DefineF(ρ, δ) = {−cµ,γρj + 1}N−1
j=1 + Ŝ(ρ, µ, δ), and note that

F({1/cµ,0}N−1
j=1 , 0) = {0}N−1

j=1 , d1F [{1/cµ,0}N−1
j=1 , 0] = {−cµ,0}N−1

j=1 ,

where we have used the fact thatγ > 0 to show thatŜ(0, µ, 0) and∂1Ŝ(0, µ, 0) both vanish;
note also thatcµ,0 > 1 becausec0,0 > 1. The result follows from an application of the implicit
function theorem. 2

Our final result follows from the above proposition and the fact that sgnδ = sgnγ (see
equation (62), bearing in mind thatC2 < C1 < 0).

Theorem 4.5 ChooseN ≥ 2. For sufficiently small values ofµ ≥ 0 there exists, for sufficiently
small values ofδ > 0, a multipulse homoclinic solution to equations (39)–(42) whoseN excur-
sions away from the origin lie close to those ofuµ,δ

k,k+1 andT1u
µ,δ
k,k+1 (odd values ofk) or uµ,δ

k,k+1

andT2u
µ,δ
k,k+1 (even values ofk) in a strictly alternating sequence.

Finally note that the other homoclinic orbits detected nearPk,k+1 (one fork = 1 and two for
k ≥ 2) cannot be included in the catalogue of basic primary homoclinic orbits. Computing the
expansion analogous to (61) for these orbits, one finds that one ofb0,δ andd0,δ vanishes, so that
ηj(T, µ, δ) is always single-signed and no multipulse homoclinic bifurcation is detected.

Appendix A Formulae for the coefficients in the reduced Hamiltonians

The coefficients in the Hamiltonian functions discussed in Sections 3.2 and 3.3 are obtained from
the formulae

c = − πν2

γ2
1γ2

(4 sinh 2ν + sinh 4ν),

C1 = − 2k(1 + 2k)ν sinh2 kν

2k(1 + 2k)ν + 4k(1 + k) coth(1 + k)ν sinh2 kν + (1− 2(k − 1)k) sinh 2kν
,
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γ2
kγ

2
k+1c3 =

4k2(1 + k)2πν4

α
+ πν3((1 + k)(k sinh 2ν + sinh 2kν) + k sinh 2(1 + k)ν)

[2k(1 + k)ν cosh ν − 2ν sinh kν sinh(1 + k)ν

+(α + βν2)(− sinh ν + (1 + 2k) sinh(1 + 2k)ν)]

[−ν cosh ν + (α + βν2) sinh ν]−1

− πν3((1 + 2k)((1 + k) sinh 2kν + k sinh 2(1 + k)ν) + k(1 + k) sinh 2(1 + 2k)ν)

[−2k(1 + k)ν cosh(1 + 2k)ν + 2(1 + 2k)2ν sinh kν sinh(1 + k)ν

+ (α + βν2(1 + 2k)2)(sinh ν − (1 + 2k) sinh(1 + 2k)ν)]

[−(1 + 2k)ν cosh(1 + 2k)ν + (α + βν2(1 + 2k)2) sinh(1 + 2k)ν]−1

+
πν

3k
[4k3ν(3 + (1 + k)2ν2) + 6k(1 + k)2ν cosh 2kν

− 3(1 + k(2 + 3k + 2k(1 + k)2ν2)) sinh 2kν] sinh2(1 + k)ν

+
πν

3(k + 1)
[2(1 + k)3ν(6 + k2(2− 9β)ν2)

+ 6k2(1 + k)ν(1 + 3(1 + k)2βν2) cosh 2(1 + k)ν

− 3(2 + k(4 + 3k + 2k(1 + k)2ν2)) sinh 2(1 + k)ν] sinh2 kν

+
48πν

3(1 + 2k)3
k2(1 + k)2 sinh kν sinh(1 + k)ν

[−2(1 + 2k)3ν cosh ν + 2(1 + 2k)ν cosh(1 + 2k)ν

+ (1 + 2k)3(2 + ν2) sinh ν − (2 + ν2(1 + 2k)2) sinh(1 + 2k)ν]

+
πν

12k(1 + k)(1 + 2k)3

[−24k(1 + k)(1 + 2k)(1 + 2k(1 + k))(−1 + 4k(−1 + k(1 + 2k(2 + k))))ν

+ 16k3(1 + k)3(1 + 2k)3ν3 − 3 sinh 2ν − 6 sinh 2kν + 3 sinh 2(1 + 2k)ν

− 6k(1 + k)(1 + 2k)3(1 + 2k(1 + k)(1 + 8k(1 + k)))ν cosh 2ν

+ k[−4(1 + k)3(1 + 2k)ν(3 + 2k(6 + k(−6(3 + 8k(1 + k)) + (ν + 2kν)2))) cosh 2kν

− 4k2(1 + k)(1 + 2k)ν(−3(15 + 4k(15 + k(27 + 8k(3 + k))))

+ 2(1 + k)2(1 + 2k)2ν2) cosh 2(1 + k)ν

− 6(1 + k)(1 + 2k)(1 + 6k(1 + k)(1 + 2k)2)ν cosh 2(1 + 2k)ν

+ 3(−7 + k(−19 + 6k + 268k2 + 1048k3 + 2016k4 + 2112k5 + 1152k6 + 256k7

+ 2(1 + k)2(1 + 2k)3(3 + 8k(1 + k))ν2)) sinh 2ν

+ 6(−9 + k(−35− 77k − 6k2 + 404k3 + 968k4 + 1056k5 + 576k6 + 128k7

+ 2(1 + k)3(−1 + 2k)(1 + 4k)(ν + 2kν)2)) sinh 2kν

− 6(2 + k(16 + k(83 + 274k + 644k2 + 1048k3 + 1056k4 + 576k5 + 128k6

+ 2(1 + k)2(1 + 2k)2(3 + 2k)(3 + 4k)ν2))) sinh 2(1 + k)ν

− 3(1 + k)(−11 + 2k(1 + k)(−20 + 3ν2

+ 8k(1 + k)(−5 + 2(1 + k + k2)ν2))) sinh 2(1 + 2k)ν]],
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γ4
kc1 = kπν[2α(4α− 2k2(2 + 3α− 10β)ν2 − 8k4(−1 + 3β)ν4)

− (5α2 + 2k2α(−2 + α + 10β)ν2 + 8k4(4 + α(4 + β))ν4) cosh 2kν

+ 2α(−5α + 2k2(−2 + 3α− 10β)ν2 + 8k4(1 + 3β)ν4) cosh 4kν

+ α(5α + 2k2(6 + α + 10β)ν2 + 8k4βν4) cosh 6kν

+ 2kν(5(−1 + α)α + 4k2α(10 + 2α + 5β)ν2 + 32k4(1 + α)βν4) sinh 2kν

+ 4kαν(5 + α− 2k2(−1 + α− 2β)ν2 − 8k4βν4) sinh 4kν

− 2kαν(5 + 3α + 12k2βν2) sinh 6kν]

[−8kαν cosh 2kν + 4α(α + 4k2βν2) sinh 2kν]−1,

where(β, α) = Pk,k+1 andγk, γk+1 are given by (28). The coefficientC2 is given by the formula
for C1 with k replaced byk + 1 and the coefficientsc2, d are given by the formula forc1 with k
replaced by respectivelyk + 1 and2.
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