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Abstract. The De Young Keizer model for intracellular calcium oscillations is
based around a detailed description of the dynamics for inositol trisphosphate
(IP3) receptors. Systematic reductions of the kinetic schemes for IP3 dynamics
have proved especially fruitful in understanding the transition from excitable to
oscillatory behaviour. With the inclusion of diffusive transport of calcium ions
the model also supports wave propagation. The analysis of waves, even in reduced
models, is typically only possible with the use of numerical bifurcation techniques.
In this paper we review the travelling wave properties of the biophysical De Young
Keizer model and show that much of its behaviour can be reproduced by a much
simpler Fire-Diffuse-Fire (FDF) type model. The FDF model includes both a re-
fractory process and an IP3 dependent threshold. Parameters of the FDF model
are constrained using a comprehensive numerical bifurcation analysis of solitary
pulses and periodic waves in the De Young Keizer model. The linear stability
of numerically constructed solution branches is calculated using pseudospectral
techniques. The combination of numerical bifurcation and stability analysis also
allows us to highlight the mechanisms that give rise to propagation failure. More-
over, a kinematic theory of wave propagation, based around numerically computed
dispersion curves is used to predict waves which connect periodic orbits. Direct
numerical simulations of the De Young Keizer model confirm this prediction. Cor-
responding travelling wave solutions of the FDF model are obtained analytically
and are shown to be in good qualitative agreement with those of the De Young
Keizer model. Moreover, the FDF model may be naturally extended to include
the discrete nature of calcium stores within a cell, without the loss of analytical
tractability. By considering calcium stores as idealised point sources we are able
to explicitly construct solutions of the FDF model that correspond to saltatory
periodic travelling waves.

1. Introduction

Ca2+ is critically important for a large number of cellular functions, such as
muscle contraction, cardiac electrophysiology, bursting oscillations, synap-
tic plasticity, sensory perception and adaptation in photoreceptors (Berridge
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[1997]). It is stored intracellularly in the endoplasmic reticulum (ER) or sar-
coplasmic reticulum (SR) at 2-3 orders of magnitude greater than its con-
centration in the cytosol. Ca2+ signalling in a wide diversity of cell types fre-
quently occurs as repetitive, but transient, increases in Ca2+ concentration.
Changes in cytosolic [Ca2+] are controlled, in part, by Ca2+ channels in the
surface membrane and the release of Ca2+ from internal stores In this latter
case, distinctions can be made on the basis of whether the release of Ca2+

is dominated by the ryanodine receptor, the inositol (1,4,5)-trisphosphate
(IP3) receptor, a combination of both of these or an unregulated leak (Sneyd
et al. [1995]). The IP3 receptors are Ca2+ channels which are opened by the
binding of IP3, generating a gradient-driven flux of Ca2+ from the ER into
the cytosol. Ryanodine receptors are Ca2+ sensitive and control the release
of Ca2+ from the SR. The major source of Ca2+ release from internal stores
in cardiac and skeletal muscle is from ryanodine receptors, whilst IP3 re-
ceptors are the major source of release from internal stores in non-muscle
cells. The amount of Ca2+ released, in response to a triggering event, can
be considerably greater than the initial flux of Ca2+, but only if this initial
flux exceeds some threshold (Callamaras et al. [1998]). In the case of IP3 re-
ceptors, the autocatalytic release of Ca2+ terminates once [Ca2+] reaches a
sufficiently high level. Beyond this level processes which take up Ca2+ from
the cytosol dominate the dynamics. These involve transport of Ca2+ into
the extracellular medium and into the SR by exchangers and pumps located
in the cell membranes. This is an example of a nonlinear feedback process,
often referred to as Ca2+-induced Ca2+ release (CICR), and is thought
to be one of the mechanisms underlying wave propagation (Allbritton and
Meyer [1993]). Travelling waves of Ca2+ concentration are believed to be an
important means for coordinating cellular activity over large regions (Calla-
maras et al. [1998]). These waves involve diffusion of locally released Ca2+

to neighbouring release sites, causing neighbouring channels to open and
release more Ca2+, which in turn diffuses. Waves can be initiated from sites
of oscillatory Ca2+ release or by a transient local release of Ca2+ termed a
Ca2+ spark (Lipp and Bootman [1997]).

The work in this paper is broadly concerned with the propagation and
propagation failure of Ca2+ waves in IP3 sensitive systems. We begin with
a study of one of the more popular models underlying Ca2+ waves and
oscillations, namely the De Young Keizer model (De Young and Keizer
[1992]). Our first aim is to use a systematic numerical bifurcation analysis
to obtain as much information as possible about travelling wave solutions
in this model. Our second and major goal is to construct a Fire-Diffuse-
Fire (FDF) type model that can capture the essential behaviour of the
more complicated biophysical model. The FDF model (Keizer et al. [1998])
models spark mediated wave propagation in terms of a simple threshold
process. Although useful in describing the propagation of solitary waves it
is unsuitable for general application since it lacks any notion of a recovery
variable. Moreover, although originally intended to model a system based on
ryanodine receptors (namely the heart) we show how it may be generalised
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to cover the case of IP3 receptors. To summarise, we present a generalised
FDF type model, constrained by the biologically plausible De Young Keizer
model, that includes both a refractory process and IP3 sensitivity. This is
important since it opens the way for a comprehensive mathematical analysis
of realistic Ca2+ waves.

In section 2 we introduce the De Young Keizer model and its reduction
to a so-called two-state model using the techniques of Li and Rinzel (1994).
Travelling waves are identified as stationary solutions in an appropriate
comoving reference frame. The linear stability of wave solutions is treated
as an eigenvalue problem.

In section 3 we present our numerical analysis of the De Young Keizer
model. Periodic waves are viewed as periodic solutions to a set of travelling
wave ODEs and solitary pulses as homoclinic orbits. In either case stan-
dard numerical techniques are used to construct and continue solutions in
parameter space. The eigenvalue problem that must be solved in order to
determine linear stability of solutions is performed numerically using pseu-
dospectral techniques. The solitary pulse is shown to have a bifurcation
structure entirely consistent with that of the two-state IP3 receptor model
of Sneyd et al. (2000), including an interesting set of global bifurcations. In
this section we also present a kinematic theory of wave propagation based
around numerically computed dispersion curves for periodic waves. We use
this to predict the existence of a non-periodic wave that may be regarded
as a travelling front that connects two different periodic orbits. Direct nu-
merical simulation of the De Young Keizer model confirms this prediction.

In section 4 we identify the essential features of the De Young Keizer
model that must be present in a simpler model for it to produce qualitatively
the same behaviour as that found in section 3. We present a generalised
FDF model with an IP3 dependent threshold and a simple refractory pro-
cess with parameters constrained using numerical data from the De Young
Keizer model. A mathematical analysis of periodic travelling waves is used
to highlight the ability of the generalised FDF model to describe realis-
tic travelling Ca2+ waves. We then consider the case that calcium stores
are located at discrete sites in a cell. This simple change to any contin-
uum model of calcium waves has highly non-trivial consequences since it
destroys translation invariance (and invalidates many of the standard tools
of analysis). However, within the FDF framework analytical progress is still
possible. To illustrate this point we explore the consequences of discreteness
on propagation failure for saltatory periodic travelling waves.

Finally in section 5 we summarise the major points of this paper and
discuss natural extensions of our work.

2. The De Young Keizer model

De Young and Keizer (1992) developed a detailed molecular model of a
subunit of the IP3 receptor that included the binding of one activating IP3

and two Ca2+ ions, the second of which produced an inhibited state of the
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subunit (see the book by Keener and Sneyd 1998 for an excellent review).
These subunits are treated as independent and identical; only when three
of the subunits have both IP3 and an activating Ca2+ bound is the IP3

receptor regarded as in the open state. In more detail there are three sites
on each subunit; an IP3 binding site, an activating Ca2+ binding site and
an inactivating Ca2+ site. Each state of the subunit is given by xijk, i, j, k ∈
{0, 1}, where the first index refers to the IP3 binding site, the second to the
Ca2+ activation site, and the third to the Ca2+ inactivation site. If any of the
indices i, j or k are equal to 1, then a binding site is occupied. Otherwise the
binding site is unoccupied. The eight possible receptor states are presented
in figure 1, where p and c denote IP3 and Ca2+ concentrations respectively.
The coefficients ki, k−i, i = 1, . . . , 5 parameterise the transitions between
the different receptor states.
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X0k0 X0k1

Xi0j Xi1j
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Fig. 1. Schematic binding diagram for the IP3 receptor model of De Young and
Keizer.

Seven differential equations based on mass-action kinetics together with
the constraint

∑
i,j,k xijk = 1 (conservation of probability) form a mathe-

matical model of the IP3 receptor. The model assumes that the IP3 receptor
releases Ca2+ only when three subunits are in the state x110 i.e. with one
IP3 and one activating Ca2+ bound. Thus the open probability of the re-
ceptor is x3

110. The De Young Keizer model is completed with the following
differential equation for Ca2+ dynamics:

dc

dt
= (r1x

3
110 + r2)(cer − c)− r3c

2

c2 + k2
p

, (1)

where cer denotes the concentration of Ca2+ in the ER. The first term in
this equation is the Ca2+ flux through the IP3 receptor, and it is propor-
tional to the concentration difference between the ER and the cytosol. The
constant r2 characterises an IP3-independent leak from the ER into the cy-
tosol. The second term in (1) describes the action of Ca2+ ATPases that
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pump Ca2+ from the cytosol into the ER. Experimental data shows that
the Ca2+ ATPase is cooperative, with a Hill coefficient of 2.

In a series of papers (Keizer and Young [1994], Li and Rinzel [1994],
Tang et al. [1996]) it has been suggested that the experimental observation
that IP3 and Ca2+ bind quickly to the activating site can be used to obtain a
reduced receptor model. By regarding the receptor as being in a quasi-steady
state with respect to IP3 binding and Ca2+ activation the eight differential
equations describing the full De Young Keizer model may be reduced to
just two. In the reduced model the variable h = x000 + x010 + x100 + x110

(a linear combination of so-called group I states) plays a fundamental role.
The reduced model is given by (1) with

x110 =
pch

(p + K1)(c + K5)
, Ki = k−i/ki, i = 1, . . . , 5. (2)

The dynamics of the inactivation variable h is reminiscent of that of the
gating variables in the Hodgkin-Huxley model of nerve membrane and is
written in the form

τ(c)
dh

dt
= h∞(c)− h, (3)

where
h∞(c) =

β

α(c) + β
, τ(c) =

1
α(c) + β

, (4)

with

α(c) =
(k−4K1K2 + k−2K4p)c

K2K4(p + K1)
, β =

k−2p + k−4K3

p + K3
. (5)

A common assumption in many models of intracellular Ca2+ waves is
that there is also diffusive transport of Ca2+ between release sites. Hence, it
is natural to add a term D∇2c to the right hand side of (1). For clarity we
shall restrict our attention to one spatial dimension. Since we shall shortly
focus on travelling waves with fixed velocity s it is convenient to rewrite the
De Young Keizer model in the comoving reference frame where ξ = x− st.
A transformation into this frame yields

∂tc = D∂2
ξ c + s∂ξc + f1(c, h) (6)

∂th = s∂ξh + f2(c, h), (7)

where

f1(c, h) = (r1x
3
110 + r2)(cer − c)− r3c

2

c2 + k2
p

, (8)

f2(c, h) =
h∞(c)− h

τ(c)
. (9)

In the comoving frame, travelling waves with speed s correspond to sta-
tionary solutions defined by ∂tc = ∂th = 0. Hence, they can be found by
studying solutions to the travelling wave ODEs

dc

dξ
= w, D

dw

dξ
= −sw − f1(c, h), s

dh

dξ
= −f2(c, h). (10)
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Travelling pulses correspond to a homoclinic orbit in these equations, whilst
periodic wave-trains correspond to limit cycle oscillations. Fixed points of
the travelling wave ODEs correspond to homogeneous states of the spatially
extended model.

Linearisation of (6) and (7) around a stationary (travelling wave) solu-
tion c0(ξ), h0(ξ) and considering small perturbations of type (rj(ξ, t), sj(ξ, t)) ∝
(rj(ξ), sj(ξ)) exp(λjt) yields an eigenvalue problem given by

M
[
rj(ξ)
sj(ξ)

]
= λj

[
rj(ξ)
sj(ξ)

]
, M =

[
D∂2

ξ + s∂ξ + A1(ξ) A2(ξ)
B1(ξ) s∂ξ + B2(ξ)

]
,

(11)
where

A1(ξ) = ∂cf1(c0(ξ), h0(ξ)), A2(ξ) = ∂hf1(c0(ξ), h0(ξ)),
B1(ξ) = ∂cf2(c0(ξ), h0(ξ)), B2(ξ) = ∂hf2(c0(ξ), h0(ξ)).

The linear stability of a travelling wave is then determined by an examina-
tion of the spectrum of the Jacobian M in (11). The eigenvalues associated
with perturbations around the homogeneous steady state (giving the es-
sential spectrum) can easily be found by substituting solutions of the form
u(ξ, t) = exp(λt + ikξ)u0 into the linear equation ut = Mu. Hence, the
continuous spectrum of M is defined by a characteristic polynomial of the
form det[M(k)− λI] = 0, where

M(k) =
[
−Dk2 + isk + A1 A2

B1 isk + B2

]
, (12)

where A1, A2, B1 and B2 are the forms taken by A1(ξ), A2(ξ), B1(ξ) and
B2(ξ) when (c0(ξ), h0(ξ)) = (c, h) is a homogeneous steady state. To find
the full spectrum of the linearised system it remains to determine the point
spectrum ofM (which we shall do numerically). In particular the eigenvalue
spectrum of a single pulse in an infinite system contains a continuous part
which can be identified with the spectrum of the stable rest state, as well as
a discrete part related to eigenfunctions localised near the pulse solution.

3. Travelling waves in the De Young Keizer model

Here we present a numerical analysis of the travelling wave ODEs for the
De Young Keizer model given by (10), treating p = [IP3] as the phys-
iologically significant bifurcation parameter. All bifurcation diagrams are
computed using AUTO as implemented in xppaut by Bard Ermentrout
(http://www.pitt.edu/∼phase/). Parameter values for the De Young Keizer
model are listed in table 1.

We see from figure 2 that the curve of steady states of (10) is folded,
so that for a small window of p values there are three solutions. For high
and low p there is only stable fixed point. For the parameter values of p
where the system has an unstable steady state periodic oscillations occur.
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k1 400 µM−1s−1 k−1 52 s−1 r1 20 s−1

k2 0.2 µM−1s−1 k−2 0.21 s−1 r2 0.004 s−1

k3 400 µM−1s−1 k−3 377.36 s−1 r3 1.2 µM−1s−1

k4 0.2 µM−1s−1 k−4 0.029 s−1 kp 0.1 µM
k5 20 µM−1s−1 k−5 1.65 s−1 cer 1 µM

Table 1. Parameters of the De Young Keizer model.

In fact there are two disconnected branches of stable periodic orbits, both
of which arise in a homoclinic bifurcation and end in a supercritical Hopf
bifurcation. Oscillations of Ca2+ first occur with a large period and a very
spiky profile. As p increases the period of oscillations rapidly decreases. All
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Fig. 2. Bifurcation diagram of the reduced De Young Keizer model when s = 2
and D = 1. Circles denote amplitude of periodic orbit. HB: Hopf bifurcation; HC:
homoclinic bifurcation.

numerically computed homoclinic orbits are just periodic orbits with large
period, which for practical purposes we take as 104.

In figure 3 we trace the locus of Hopf bifurcations (HB) from figure 2 in
the (p, s) plane, as well as three branches of homoclinic orbits (HC) defin-
ing travelling pulses. The locus of Hopf bifurcations forms a distinct loop,
with only one of the three homoclinic branches (labelled (A)) occupying a
significant window of p values. From figure 3 we see that solitary waves on
branch A fail to propagate if p is too small. Precisely this form of bifurcation
structure has been observed by Sneyd et al. (2000) in a numerical analysis
of travelling waves in a model of pancreatic acinar cells. They have dis-
cussed this bifurcation diagram in some detail, although without an explicit
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Fig. 3. Two-parameter bifurcation diagram of the travelling wave equations. HB:
the curve of Hopf bifurcation points; HC: branches of homoclinic orbits.

determination of wave stability. Using the theory of linear wave stability
presented in section 2, we may further develop their arguments. Since, in
general, solutions c0(ξ), h0(ξ) and the eigenfunctions of the Jacobian M are
not available in closed form, the eigenspectrum of M has to be determined
numerically. We have used Fourier spectral methods (see (Trefethen [2000])
for further discussion) on a bounded domain (with a discretization of 300
points) to do precisely this. The zero eigenvalue, which always exists due to
the translational symmetry of the problem, is used as a numerical accuracy
check and has been obtained with a precision of 10−4. Figure 4 shows the
eigenspectrum for travelling pulse solutions on the upper and lower part of
homoclinic branch A in figure 3. We see that, in both cases, the continuous
spectrum lies completely in the left complex half-plane. The discrete spec-
trum for the solution on the upper branch remains in the left half-plane.
However, the discrete spectrum for the solution on the lower branch crosses
the imaginary axis and has an isolated eigenvalue in the right half-plane.
Hence, we conclude that of the two possible coexisting solitary pulses it is
the faster one that is stable. We now discuss some further aspects of the bi-
furcation diagram, figure 3, which are interesting from a dynamical systems
perspective.

First of all, we take a closer look at the upper part of homoclinic orbit
branch A and show a magnified view of figure 3 in figure 5. The homoclinic
branch A is found to end at a T-point. This is a point where a heteroclinic
cycle exists between a saddle and a saddle focus. Note that global bifurca-
tions in this model can be directly linked to windows of parameter space
where there are three fixed points. Previous work by Glendinning and Spar-
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Fig. 4. Left: eigenvalues of the linearised system in the complex plane for the
pulse solution at p = 0.2363 and s = 2. Right: eigenspectrum at p = 0.2408 and s
= 0.6. The solid lines correspond to the analytically obtained continuous spectrum
at the same parameter values.

row (1986) predicts the existence of a winding homoclinic branch near a
T-point. This phenomenon is clearly seen in figure 5, where the homoclinic
branch B connects to homoclinic branch A in a spiral. Next we examine
the lower part of homoclinic orbit branch C using the magnified view pre-
sented in figure 6. As the speed of travelling wave decreases, folds in the
homoclinic branch C occur before the branch intersects a curve of Hopf
bifurcation points. Balmforth et al. (1994), have shown that the resulting
oscillations in the branch of homoclinic orbits correspond to homoclinic or-
bits that make multiple loops around one of the other steady states before
returning to the starting point. Just such an orbit is presented in figure 7,
which is taken from branch C at a point near where the branch intersects
the locus of Hopf points.

Using direct numerical simulations Sneyd et al. (2000) also show that
secondary waves and irregular behaviour can arise near the point where
homoclinic branch A disappears at a T-point. Such waves are also expected
in the De Young Keizer model. Sneyd et al. conclude that homoclinic branch
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Fig. 5. Magnified view of the upper part of figure 3 where homoclinic branch A
connects to homoclinic branch B at a T-point.
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Fig. 6. Magnified view of the lower part of homoclinic branch C, showing the
folding of the branch as it approaches a locus of Hopf bifurcation points..

A is the one that generates physiologically significant travelling waves. Our
stability analysis would also suggest that one may restrict attention to the
faster branch.

By treating the period of oscillations as a parameter it is also possible
to construct dispersion curves showing the speed of a wave as a function
of its period. In figure 8 we present a typical dispersion curve, s = s(∆),
for a periodic orbit. A numerical calculation of the eigenspectrum of M



Travelling waves in DYK and FDF models 11

c

0.005

0.01

0.02

0.015

0.80.2 0.60.4 10 x

Fig. 7. A Homoclinic orbit from the marked point in figure 6.

shows that it is the faster of the two branches that is stable. Knowledge of
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Fig. 8. The dispersion curve for periodic travelling waves when p = 0.2622.

dispersion curves opens the way for the development of a kinematic theory of
irregular wave propagation that attempts to follow irregularly spaced spikes
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of activity (Rinzel and Maginu [1984]). In this approach the dynamics of
Ca2+ spikes are considered to evolve according to

dTn

dx
=

1
s(∆n)

, ∆n(x) = Tn(x)− Tn−1(x), (13)

where the time at which the nth spike occurs at position x is defined in
terms of a threshold parameter cth as

Tn(x) = inf{ t | c(x, t) ≥ cth,
∂c(x, t)

∂t
> 0; t ≥ Tn−1(x)}. (14)

We shall call ∆n(x) the interspike interval (ISI), as it measure the time be-
tween spikes of activity at position x. A linear stability analysis of the kine-
matic equations shows that solutions are stable if s′(∆n) > 0 for all n. For a
periodic orbit with ∆n = ∆ the stability predictions of the kinematic theory
(solutions are stable if s′(∆) > 0, i.e. on the upper branch) are in complete
agreement with those obtained from the eigenspectrum of M. Interestingly
it has been shown that when the stable branch of the dispersion curve has
an exponential shape then there are solutions to the kinematic equations
that describe stable connections to periodic orbits (Coombes [2001b]). This
form of wave may also be regarded as a travelling front in the ISIs such
that ∆n(x) = ∆(κx − ωn) for some κ and ω where ∆(z) has a sigmoidal
shape. To confirm this prediction we perform a direct numerical simulation

0

0.2

0.4

0.6

5900 6000 6100 6200 6300
t

c

Fig. 9. Stimulation of a cell of length L = 200 and p = 0.26 with a spike train
input at x = 0 with ISI changing from ∆(1) = 30 to ∆(2) = 50 after 200 spikes.

Dynamics of Ca2+ is shown at a position of 3L/4 from the point of stimulation,
showing a connection between periodic orbits with ISI ∆(1) and ∆(2).

of the De Young Keizer model. Since we are looking for a travelling front
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in the ISIs we choose initial data (at one end of a cell of length L) with a
spike train that has a step change in the interspike intervals (changing from
∆(1) to ∆(2)). An example of such a direct simulation is shown in figure 9
. Another way to visualise these connection between periodic orbits is to
plot the ISIs at various values of x as a function of the number of spiking
events at those position, as shown in figure 10 (where we have used values
of ∆(1) to ∆(2) that best illustrate the sigmoidal nature of the front). Here,
it is clearly seen that the step change can smooth out to form a transition
layer of the form predicted by the kinematic theory.

180 200 220 240
29.5

30

 30.5

31

 31.5

� n

n

D

increasing  x

Fig. 10. Travelling front in the ISIs, showing a connection between periodic orbits.
Initial data is in the form of a spike train with a step in the ISIs after 200 spikes
from ∆(1) = 30 to ∆(2) = 31. Here, p = 0.26 and cth = 0.3. Data is represented
at the following positions: 0, L/4, L/2 and 3L/4, with L = 200.

In the next section we introduce a minimal FDF type model of Ca2+

release that exhibits many of the waves we have just described for the De
Young Keizer model. Analytically obtained wave solutions corresponding to
pulses, periodics and connections to periodics are shown to behave qualita-
tively like those in the De Young Keizer model under parameter variation.
Moreover, the simplicity of the model means that it is also possible to per-
form a full linear stability analysis of all travelling wave solutions.

4. A fire-diffuse-fire type model

The FDF model of Keizer et al. (1998) was originally introduced as a mini-
mal model of spark-mediated Ca2+ waves. In one dimension the model may
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be written in the form

∂u

∂t
= − u

τd
+ D

∂2u

∂x2
+ ρ(x)

∑
m

η(t− Tm(x)), (15)

where u = [Ca2+]. The function ρ(x) describes the distribution of Ca2+

release sites, and τ−1
d is the rate at which Ca2+ is pumped back into the

stores. Note that in comparison to the De Young Keizer model, the model of
a pump is linear and is one of the reasons why the model is mathematically
tractable. The other reason is that there is no explicit inclusion of a receptor
dynamics. Rather, Ca2+ puffs are triggered from the release site at position
x at times Tm(x), m ∈ Z. These release times are defined in terms of a
threshold process according to

Tm(x) = inf{ t | u(x, t) > h,
∂u(x, t)

∂t
> 0; t ≥ Tm−1(x)}. (16)

The function η(t) describes the shape of the puff and is often considered to
be a simple rectangle:

η(t) =
σ

τR
Θ(t)Θ(τR − t), (17)

where σ is the strength of the puff and τR its duration. Because of its
threshold nature, waves in the FDF model may be generated by a form of
CICR. In contrast, biological mechanisms of CICR typically arise when a
receptor channel is activated at a low cytosolic Ca2+ level and inhibited at
a higher one. For low Ca2+ levels, an increase in Ca2+ stimulates a further
increase. At higher levels receptors inactivate and cannot reopen for some
time during which they are said to be in a refractory state. Thus, the re-
lease of Ca2+ by intracellular stores is self-regulating. As it stands the FDF
model ignores this physiologically important process and cannot therefore
be sensibly used to understand periodic travelling waves. It is of course per-
fectly satisfactory when studying solitary waves, since single release events
are not affected by refractoriness. To remedy this lack of refractoriness we
introduce a time dependent threshold. The idea is to mimic refractoriness,
whilst retaining analytical tractability, with a threshold which is high just
after a release event but gradually decays back to some more normal level.
Such a process may be written

ḣ =
uth − h

τ
+ γ

∑
m

δ(t− Tm(x)), (18)

where τ determines the refractory time-scale and γ is some large positive
constant. Using this scheme h decays towards a constant threshold uth at a
rate τ−1 and h → γh, whenever a Ca2+ puff is triggered.

A further weakness of the FDF model is that it is independent of IP3

concentration, which as we have seen is an important parameter of the De
Young Keizer model. To include a notion of IP3 sensitivity within an FDF
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model it is natural to modify the threshold parameter, such that release
events are easier to generate in the presence of high IP3. We suggest that
the level of Ca2+ in the endoplasmic reticulum, cer, required to generate
a periodic travelling wave is a good candidate for determining a threshold
function uth = uth(p). In figure 11 we continue Hopf and limit points of
figure 3 that define the borders of such a region in the (p, cer) parameter
plane. This figure shows that for small values of IP3 waves fail to propagate
and that lower levels of cer are required to generate waves with increasing
[IP3], as observed experimentally. We approximate the threshold function

0

1

2

3

4

0 1 2 3 4p

cer

Fig. 11. Concentration of calcium in the endoplasmic reticulum, cer, as a func-
tion of IP3 concentration, p, in the De Young Keizer model, required to generate
travelling waves.

of figure 11 using

uth(p) = u0 + A
e−Bp

p− C
, (19)

where u0 = 0.48, A = 0.1627, B = 0.5583 and C = 0.055 are fitted numeri-
cally. The inclusion of an IP3 dependent threshold level in the FDF model
makes it sensitive to IP3 and allows a more direct comparison with results
from the De Young Keizer model.

4.1. Continuum model

Let us first construct periodic waves in our generalised FDF model when
ρ(x) = 1, i.e. a simple continuum model. In the language of release events
these waves are described by solutions of the form Tm(x) = (m + kx)∆,
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where k is the wavenumber and s = 1/(k∆) the wave velocity. Assuming
u(x, t) = u(ξ), where ξ = st− x, gives the following travelling wave ODE:

Duξξ − suξ −
u

τd
= − σ

τR
Θ(ξ)Θ(sτR − ξ), (20)

where uξ ≡ du/dξ. The solution to (20) takes the form u(ξ) = u(ξ + m∆):

u(ξ) =

{
α1eλ+ξ + α2eλ−ξ + τdσ/τR 0 < ξ < sτR

α3eλ+ξ + α4eλ−ξ sτR < ξ < s∆,
(21)

with
λ± =

1
2D

[
s±

√
s2 + 4D/τd

]
. (22)

By demanding continuity of the solution and its first derivative the coeffi-
cients α1 . . . α4 may be found as follows

α1 =
τdσ

τR

λ−
(λ− − λ+)

(1− eλ+s(∆−τR))
(eλ+s∆ − 1)

(23)

α2 = −τdσ

τR

λ+

(λ− − λ+)
(1− eλ−s(∆−τR))

(eλ−s∆ − 1)
(24)

α3 =
τdσ

τR

λ−
(λ− − λ+)

(1− e−λ+sτR)
(eλ+s∆ − 1)

(25)

α4 = −τdσ

τR

λ+

(λ− − λ+)
(1− e−λ−sτR)
(eλ−s∆ − 1)

. (26)

The self-consistent speed of the periodic travelling wave may be found by de-
manding u(s∆) = h. This generates an implicit equation for the dispersion
relation s = s(∆):

ũ
1− e−∆/τ

1− γe−∆/τ
=

λ−
(λ− − λ+)

(1− e−λ+sτR)
(eλ+s∆ − 1)

− λ+

(λ− − λ+)
(1− e−λ−sτR)
(eλ−s∆ − 1)

,

(27)
where ũ = uth(p)τR/τdσ. We plot a typical dispersion curve in figure 12,
showing a similar shape to that of the De Young Keizer model (see figure
8). No attempt has been made to tune free parameters of the FDF model
to obtain a quantitative fit. We invoke the model independent kinematic
theory presented earlier to establish that it is the faster of the two possible
branches that is stable. Moreover, since the stable branch of the dispersion
curve has an exponential shape stable waves representing connections to pe-
riodics are also expected. Note that if we neglect refractoriness and consider
a constant threshold the resulting dispersion curve exhibits unphysical di-
vergent speeds. This is expected in the absence of a refractory process since
release events can occur arbitrarily close in time.

In a similar fashion we may construct solitary pulses defined by T 1(x) =
x/s or just take the limit ∆ →∞ of periodic travelling waves. In figure 13
we plot the wave speed of a pulse as a function of the IP3 concentration. For
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Fig. 12. The dispersion curve obtained from (27) when eu = 0.2, τ = 2, γ = 3,
τR = 1, τd = 1 and D = 1.

a comparison between the De Young Keizer model and the generalised FDF
model we choose the same diffusion coefficient and adjust the remaining
time and strength scales appropriately. A value for τR is chosen simply by
reading off the temporal duration of a calcium spike in the De Young Keizer
model. The time scale of the linear pump in the FDF model is chosen so
as best to agree with that of nonlinear pump term in equation (1). This
term is sigmoidal with a slowly varying gradient for intermediate levels of
calcium concentration. The gradient in this intermediate regime provides
a reasonable estimate for τd. This leaves only one free parameter, namely
ũ, which we choose so as to give the best quantitative agreement of the
generalised FDF and De Young Keizer models (compare figures 3 and 13).
In the absence of an IP3 dependent threshold function no such compar-
ison would have been possible. Hence, the generalised FDF model (with
parameters given in the caption of figure 13) that we have presented can
capture many of the wave solutions present in the more complicated De
Young Keizer model. The analytical tractability of the model also opens up
the possibility to study more realistic distributions of release sites.

4.2. Discrete model

One of the major advantages of the FDF model is to account for both salta-
tory and continuous travelling waves. Unlike continuous waves, saltatory
ones do not travel with a constant profile. They arise when the translation
symmetry of the model is broken, say with the inclusion of stores at discrete
points in space. For simplicity we consider an idealised set of point sources
so that ρ(x) =

∑
n δ(x − nd), where d is the spacing between stores. The
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Fig. 13. Speed of the travelling pulse in the FDF continuum model as a function
of [IP3] with eu = 0.17uth(p), τR = 0.5, τd = 0.29 and D = 1.

solution to the FDF model can be expressed using Green’s functions as

u(x, t) =
σ

τR

∞∑
n=−∞

∞∑
m=0

∫ T m(xn)+τR

T m(xn)

G(x− nd, t− t′)dt′, (28)

where

G(x, t) =
e−t/τd

√
4πDt

e−x2/(4Dt)Θ(t). (29)

We consider periodic travelling waves that satisfy Tm(nd) = nd/s + m∆ =
n∆1 + m∆, where s is the speed of threshold crossing events given by s =
d/∆1 and ∆ is the time between successive Ca2+ release events at a store.
For simplicity we shall consider ∆ to be sufficiently large that we do not have
to worry about the inclusion of refractory processes and take the threshold
for release to be uth(p). The solution describing saltatory periodic travelling
waves in the FDF model is

u(x, t) =
σ

τR

∑
n,m

∫ min(t−n∆1−m∆,τR)

0

G(x−nd, t− t′−n∆1−m∆)dt′. (30)

Generalising the analysis of a saltatory travelling pulse presented in (Coombes
[2001a]) shows that the speed of the wave is implicitly determined by

uth(p) = σ
∞∑

n=0

∞∑
m=0

H(nd, n∆1 + m∆), (31)

where
H(x, t) =

1
τR

∫ τR

0

G(x, t− t′)dt′. (32)



Travelling waves in DYK and FDF models 19

In the special case τR → 0 we see from (32) that H(x, t) → G(x, t). For finite
τR, the function H(x, t) is evaluated in (Coombes [2001a]) as H(x, t) =
A(x, t− τR)−A(x, t), where

A(x, t) =
√

τdD

4DτR

[
exp

(
−|x|√
τdD

)
erfc

(
− |x|√

4Dt
+

√
t

τd

)
+exp

(
|x|√
τdD

)
erfc

(
|x|√
4Dt

+
√

t

τd

)]
. (33)

A saltatory periodic travelling wave determined by (30) and (31) is shown in
figure 14. This nicely illustrates that waves propagate with a non-constant
profile and that large increase in Ca2+ concentration occur just after a
release event.

0
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-20d 20d 40d

ud/s

Fig. 14. An example of a stable saltatory periodic travelling wave. The period
∆1 is determined self-consistently as ∆1 = 0.2. Other parameters are τd = 1,
d2/D = 1, τR = 0.1, ∆ = 4.2 and uth(p)d/σ = 0.1 . The system is sampled at
some large release time t0, then at t0 + τR and t0 + ∆1.

In figure 15 we show how the period of travelling waves depends on the
value of τ−1

d for the case that τR = 0. We see that there is propagation
failure at some critical value of τd, where two branches of the solutions
coalesce. To illustrate the effects of a finite width for the calcium puff on
the speed of the periodic travelling wave we continue the limit point of the
bifurcation diagram in figure 15 as a function of τR. The results of numerical
continuations are shown in figure 16. This plot shows the parameter region
where saltatory periodic travelling waves can exist and highlights the fact
that with increasing τR the limit point in 15 occurs at increasingly larger
values of τd.
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Fig. 15. Period ∆1 as a function of the parameter τ−1
d with τR = 0. Other

parameters as in figure 14.
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Fig. 16. Continuation of the limit point of figure 15 in the (τ−1
d , τR) plane.

The fact that there are two solution branches for a periodic travelling
wave raises the question of stability. To determine the stability of salta-
tory waves we consider perturbation of the release times where Tm(nd) →
Tm(nd) + δnemλ, λ ∈ C, and examine the linearised evolution of these per-
turbations. We restrict our attention to the class of perturbations where
δn = 1 for all n. Solutions are linearly stable if Re λ < 0. After substituting
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into (31) and expanding to first order we obtain

Φ(α, β) ≡
∑
n,m

emαeimβH ′(nd, n∆1 + m∆) = 0. (34)

where we have set λ = α + iβ, α, β ∈ R. Here, H ′(x, t) = ∂H(x, t)/∂t.
Differentiation of (32) shows that H ′(x, t) = [G(x, t) − G(x, t − τR)]/τR.
To find the stability of the solution as a function of system parameters
the system of two equations Re Φ(α, β) = 0 and Im Φ(α, β) = 0 has to be
solved simultaneously for α and β along the solution branch. Two possible
types of bifurcation point are defined by the conditions α = 0, β = 0 and
α = 0, β 6= 0. For the first case a change in stability occurs when Φ(0, 0) = 0.
The second type of instability arises when a complex eigenvalue crosses the
imaginary axis. Then a change of stability occurs when β = π. A plot of
the function Φ(0, π) in figure 17 shows that the change of stability for the
solution shown in figure 15 occurs at the limit point defining propagation
failure. A direct examination of α = Re λ, along the two solution branches,
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Fig. 17. A plot of the function Φ(0, π) along the solution of figure 15, showing
that there is a change in stability at the limit point where propagation failure
occurs.

shows that the faster branch is stable, while the slower one is unstable.

5. Discussion

In this paper we have presented a detailed numerical bifurcation analysis of
travelling waves in the reduced De Young Keizer model of calcium release.
The linear stability of these waves has been found by numerically solving
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an appropriate eigenvalue problem. A by-product of this investigation is
the observation that this model has qualitatively the same dynamics as the
recently introduced two-state model of IP3 receptor dynamics (Sneyd et al.
[2000]) for pancreatic acinar cells. We have also shown, using a kinematic
theory, that models of this type will support travelling waves that connect
periodic orbits. We have used a detailed numerical analysis to motivate the
form of a minimal FDF model capable of exhibiting qualitatively similar
behaviour. An important feature of this FDF model is the inclusion of a dy-
namic IP3 sensitive threshold. The main advantage of studying FDF models
is their mathematical tractability. Indeed the explicit construction of sta-
ble travelling periodic waves has allowed us to probe the mechanisms for
propagation failure in the two extremes of i) a continuous distribution of
calcium stores and ii) a discrete distribution. Now that we have established
the usefulness of using generalised FDF models for studying propagation of
Ca2+ it opens up new possibilities for mathematical progress in the field
of intracellular signalling. In particular the FDF model may be naturally
extended to include further layers of biological reality. These important ex-
tensions include more general choices of the distribution of release sites, the
stochastic triggering of release and studying the model in two and three
dimensions.

The effect of discrete, asymmetric distributions of calcium stores and
anisotropic Ca2+ diffusion has been numerically investigated by Bugrim
et al. (1997). They demonstrate that disordered distributions can lead to
irregular propagation of waves. The inclusion of disorder within an FDF
model is achieved in a straightforward manner by an appropriate choice
of the function ρ(x). One may then use scaling techniques along the lines
developed in (Pencea and Hentschel [2000]) for CICR models (without IP3

sensitivity) to produce criterion for wave propagation as a function of disor-
der. The stochastic triggering of release has been investigated in relatively
few papers. Notable exceptions are the papers by Keizer and Smith (1998)
and Falcke et al. (2000), who numerically combine stochastic simulations of
Ca2+ release with deterministic current balance equations. More recently a
model of stochastic release has been introduced using the notion that the
probability of release depends algebraically on the local Ca2+ concentra-
tion (Izu et al. [2001]). This second approach can be incorporated within an
FDF framework by treating the threshold as a random variable. Interest-
ingly a simple stochastic model for IP3 clusters has been shown to support
waves that have statistics associated with the class of directed percolation
(DP) models (Bär et al. [2000]. This then begs the question as to whether
a stochastic FDF model will also generate waves belonging to the DP uni-
versality class. Finally, it is unlikely that Ca2+ waves are restricted to one
dimensional z-lines as assumed in the FDF model discussed here. The FDF
model may be easily extended to two or three dimensions and its mathe-
matical analysis may proceed in a similar fashion to the one dimensional
model. Of course, in higher dimensions the model will not only support
travelling plane waves but is likely to support circular and spiral motion.
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These more exotic solutions can be treated using the techniques for plane
waves once an appropriate ansatz for the release times is identified. The
analysis of these three further important extensions to the FDF model will
be presented elsewhere.

Acknowledgements. We would like to thank Greg Smith for providing the param-
eters of the De Young Keizer model given in table 1.
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