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Abstract

A complete set of conditions describing the transition across the dissipationless un-
dular bore (dispersive shock) is derived for nonlinear weakly dispersive conservative
systems that generally are not integrable by the inverse spectral transform method. In
the absence of integrable structure, we postulate modulation description of the undular
bore with the aid of the averaged Whitham equations complemented by the Gurevich-
Pitaevskii type natural boundary conditions. The main assumption used is that of
the hyperbolicity of the Whitham system. The undular bore transition conditions are
obtained in a general form by finding a set of integrals available for the similarity
reductions of the Whitham systems regardless of the existence of the Riemann invari-
ants. The obtained set of conditions can be viewed as a “dispersive” replacement of
the classical shock conditions and allow one to fit an unsteady undular bore into the
solution of the ideal dispersionless equations. We apply the obtained general conditions
to (integrable) Kaup-Boussinesq shallow-water system and to (non-integrable) system
describing fully nonlinear ion-acoustic waves in collisionless plasma. A complete agree-
ment with previous analytical and numerical solutions is demonstrated.

1 Introduction

Undular bores (dispersive shocks) represent regions of rapidly oscillating nonlinear wave
structures generated in the breaking profiles of evolving large-scale perturbations in dis-
persive media. The phenomenon of the undular bore formation is quite ubiquitous and
its physical contexts range from gravity water waves and bubbly fluid dynamics to space
plasma physics and fibre optics. From the very beginning, one should distinguish between
two different types of undular bores depending on the role of dissipation relative to that of
nonlinearity and dispersion in the bore development and evolution.
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Weakly dissipative undular bores despite their oscillatory structure exhibit global prop-
erties characteristic for classical, turbulent bores or shock waves: they have steady (though
oscillatory in space) profile and constant width such that the speed of the bore propaga-
tion and the transition conditions can be derived within the frame of the classical theory of
hyperbolic conservation laws (see [1] for instance). The qualitative theory of such undular
bores has been first developed by Benjamin and Lighthill [2] for shallow-water waves and
by Sagdeev [3] for rarefied plasma flows (where they are called collisionless shocks). The
quantitative description of the weakly dissipative undular bores has been made in [4], [5],
[6] on the basis of the unidirectional KdV-Burgers equation and in [7] using the integrable
version of bi-directional Boussinesq equations modified by small viscous term.

The developed in [2] – [7] theory of steady undular bores, however, is valid only for the
fully established regime when nonlinearity, dispersion and dissipation are in balance. Con-
trastingly, in the dispersion-dominated case, the traditional analysis of the mass, momentum
and energy balance across the undular bore transition can not be applied (at least directly).
The reason for that is that the boundaries of the dissipationless undular bore diverge with
time, i.e instead of a single shock speed say c defined by the mass balance one has now two
different speeds s1 > s2 determining motion of the undular bore boundaries. These speeds,
however, can not be obtained without the analysis of the nonlinear oscillatory structure of
the undular bore because in the conservative dynamics, dispersion not only dramatically
modifies the fine structure of the flow in the bore region but also, along with nonlinearity,
determines the undular bore location.

The predominantly dispersive dynamics of undular bores is of a considerable interest on
its own and also, in many cases, can be viewed as an unsteady intermediate asymptotic
in a general setting when the small dissipation is taken into account. Physical examples of
such expanding undular bores include atmospheric undular bores (morning glory) [8], optical
shocks in the long-distance optical communication systems [9], [10], and nonlinear oscillatory
structures appearing in the profiles of powerful radio wave beams propagating in the lower
Ionosphere [11].

In a weakly nonlinear case when the original conservative system can be approximated
by one of the exactly integrable equations, the studies of the unsteady dispersive shock
phenomenon have lead to the discovery of a whole new class of mathematical problems
which can be broadly described as the singular semi-classical limits in integrable systems.
Lax and Levermore [12] and Venakides [13] (see also review [14]) showed that the initial-
value problem for the KdV equation reduces in the semi-classical limit to a certain natural
boundary-value problem for the corresponding Whitham equations originally obtained by
averaging over nonlinear wavepackets [15] [16]. The direct reformulation of the problem
in terms of the modulation dynamics had been proposed much earlier by Gurevich and
Pitaevskii [17] on the basis of a more universal, albeit more heuristic, reasoning and then
has been put in the context with general theory of integrable equations of hydrodynamic
type by Dubrovin an Novikov [18].

The modulation approach of Gurevich and Pitaevskii has been extended to other inte-
grable equations such as nonlinear Schrödinger (NLS) equation ( [19], [20], [10]), derivative
NLS [21], Benjamin-Ono equation [22] and Kaup-Boussinesq system [23]. The characteristic
feature of all cited works is that, owing to the integrable nature of the problems considered,
the determination of the oscillatory zone boundaries along with any other global character-
istics of the flow was naturally viewed as an intrinsic part of constructing the exact solution
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to the averaged Whitham equations.
The Whitham equations are known to inherit the integrability property from the original,

dispersive system and can be represented in this case in a diagonal, Riemann form (see
[18], [24] for instance). From this perspective, extracting the transition conditions from the
already obtained global solution for a specific system would not have much sense. However, in
many physically relevant cases the nonlinear wave propagation is described by non-integrable
systems. The most typical example is provided by fully nonlinear dispersive waves, which
are far less explored analytically (see for instance the discussion in [25]). In a non-integrable
case, the Riemann form for the Whitham equations is normally not available, and in this
context the possibility of determination of the undular bore transition conditions acquires
an essentially different significance since it allows one to put the entire problem of the
dissipationless undular bore dynamics in the classical hydrodynamic setting, when the shock
wave is “fitted” into the solution of the Euler equations of ideal hydrodynamics. In the
conservative weakly dispersive wave dynamics the role of the inviscid Euler equations is
played by the dispersionless limit of the original nonlinear dispersive system (which may or
may not coincide with the actual isentropic hydrodynamic system). In other words, such
transition conditions would make it possible to to treat the unsteady undular bore problem
in a self-consistent manner bypassing the construction of the full solution describing the
undular bore region.

In this paper, we, by adopting the asymptotic “averaged” formulation of the problem
established the integrable systems theory, derive a general set of conditions describing the
undular bore transition from one constant state, say (ρ2, u2) as x → −∞ to another constant
state (ρ1, u1) as x → +∞ such that the transition occurs in a finite space region. Our
theory is based on several assumptions, which essentially represent natural extensions of
the arguments of Gurevich and Pitaevskii formulated for the KdV undular bores in [17].
We notice that the original analytical Gurevich – Pitaevskii (GP) theory of the decay of
an initial discontinuity in the KdV dynamics in fact does not rely on the existence of the
Riemann invariants for the Whitham system: the Riemann form in the GP problem is only
a convenient tool for the effective integration of the modulation equations. Existence of the
Riemann invariants per se becomes crucial only when analysing the evolution of more general
initial profiles (see for instance [26] and references therein). In the present study, we show
that, in the case of the similarity (x/t) solutions one can extract the complete information
about the location of the undular bore from a set of integrals available for the Whitham
systems even in the absence of the Riemann invariants.

The obtained transition conditions include a relationship between the admissible values
of the afore-mentioned constant states ρ1,2, u1,2 (this relationship has been proposed earlier
by Gurevich and Meshcherkin [27] for “dissipationless shocks” in plasma using intuitive
physical arguments) and two ordinary differential equations defining the boundaries of the
expanding nonlinear oscillatory zone. These ordinary differential equations are obtained in
a general form and are easily integrated in particular instances. The transition conditions
are supplemented with a set of inequalities providing consistency of the whole construction.
It should be emphasized that, although the proposed construction exploits the formulation
of the problem established in the integrable systems theory it in no way depends on the
integrability of the system under study.

To validate the assumptions behind the developed theory we consider two specific exam-
ples where the transition conditions can be extracted either from the available full modula-
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tion solution or from the results of direct numerical simulations. Our first example is the
integrable version of the shallow water equations (the so-called Kaup-Boussinesq system)
where the quantities of our interest are available from the full modulation solution obtained
in [23]. The second example is the non-integrable system describing fully nonlinear flows
in a two-temperature collisionless plasma. The decay of an initial discontinuity problem for
this system has been studied numerically in [27]. In both cases our analytical results are
in complete agreement with the results of previous anlytical/numerical studies. In a more
broad context, such an agreement can be viewed as a strong indication of the asymptotical
validity of the Whitham theory in non-integrable initial-value wave problems.

Some preliminary results of this study have been published in the Letter [28]. When this
paper was at the reviewing stage, one of the authors (G.A.E.) has made a more comprehensive
study of mathematical aspects of the proposed method [29].

2 General setting and formulation of the problem

We consider an important class of nonlinear dispersive systems describing bi-directional wave
propagation. The class we are going to study can be broadly described as “2 × 2 strictly
hyperbolic systems modified by a small amount of dispersion”. In a symbolic form such a
system can be represented as

Ut = K4(U, ∂xU, ∂2
xxU, . . . ) , (1)

where U = (ρ, u)T is a 2-vector and K4 is a nonlinear vector operator such that the system
has the fourth order with respect to spatial/mixed derivatives and also has a real-valued
linear dispersion relation ω = ω0(k), where ω is the frequency and k is the wavenumber .

We shall assume that the system (1):

• admits a dispersionless limit which we introduce in the following way. We set new
independent variables X = εx, T = εt, ε ¿ 1 in (1) and then tend ε → 0 assuming the
X- and T - derivatives to be finite. Then for a broad class of systems (1) that can be
characterised as weakly dispersive we obtain to leading order a hyperbolic quasilinear
system which we shall call the dispersionless limit of the system (1). Let this limit
have the form of the gas-dynamic Euler equations for the isentropic ideal gas

∂T ρ + ∂X(ρu) = 0 , ρ(∂T u + u∂Xu) + σ2(ρ)∂Xρ = 0, (2)

where ρ is the “density”, u is the “velocity”, and σ(ρ) is the “sound speed” in the
corresponding “gas dynamics”. It should be emphasized that generally speaking the
assumption about the gas dynamic “core” of the system (1) is just a convenient (and
in many cases physically relevant) way to convey our ideas – actually there is no
need to restrict oneself with this particular form of the dispersionless limit. The only
property of the dispersionless limit system that we used in this paper is that this
system can be represented in the Riemann form (which is always the case for 2 × 2
quasilinear systems). We also note that in terms of the linear dispersion relation the
“weak dispersion” property implies ω0 ∼ k as k → 0.
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• possesses a four-parametric family of periodic travelling wave solutions

ρ(x, t) = ρ(θ; A1, . . . , A4) , θ = kx− ωt , ρ(θ + 2π) = ρ(θ) , u = u(ρ) , (3)

where A1, . . . , A4 are constants of integration, k = k(A), ω = ω(A). It is convenient,
along with “natural” integration constants Aj introduce the “physical” parametrisation
of the periodic solution (3): {A1, . . . , A4} 7→ {ρ̄, ū, k, a}, where ρ̄ and ū are the mean
(averaged over the family (3)) density and velocity and a = ρmax − ρmin is the wave
amplitude. The averaged values are defined in terms of Aj according to

F (A) =
1

2π

2π∫

0

F (θ)dθ , (4)

where F (θ) ≡ F (ρ(θ)). The frequency ω is connected with the basis integrals of motion
by the nonlinear dispersion relation which follows from the periodicity condition in
Eq. (3) [41]. We also assume that solution (3) becomes sinusoidal as a → 0 and turns
into a localised solitary wave as k → 0, i.e. exhibits the familiar “cnoidal wave - type”
behaviour characteristic for weakly dispersive conservative systems.

• possesses four linearly independent conservation laws of the form

∂tPj + ∂xQj = 0 . (5)

(we will show later that only three of them are actually needed). For convenience of
explanation we will assume P1 = ρ, P2 = u although this identification is not essential.

The described class of nonlinear dispersive systems is quite broad and includes some
known integrable models such as defocusing nonlinear Schrödinger equation and Kaup-
Boussinesq system [30]. As physically important examples of non-integrable systems that
possess the above general properties (including the isentropic gas dynamic form of the dis-
persionless limit) one can indicate the Green-Naghdi system for fully nonlinear shallow water
gravity waves [31] which also describes nonlinear waves in bubbly fluids [32], the systems
for nonlinear ion-acoustic and magnetoacoustic waves in collisionless plasma [33], [15], and
many others. In this paper we shall not be concerned with the integrability properties of
the system under consideration.

As a structurally representative example of a system possessing the above properties
we present a (non-integrable) system describing propagation of fully nonlinear ion-acoustic
waves in a two-temperature collisionless plasma (see [33] for instance):

∂tρ + ∂x(ρu) = 0,

∂tu + u∂xu + ∂xφ = 0, (6)

∂2
xxφ = eφ − ρ ,

where ρ is plasma density, u is plasma velocity and φ is electric potential (the system does
not contain the time derivative of φ so φ is not a “real” dependent variable as concerns the
2× 2 representation (1)).
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We consider initial data for the system (1) in the form of a step for the variables ρ and
u:

t = 0 : ρ = ρ1, u = u1 for x > 0; ρ = ρ2, u = u2 for x < 0 , (7)

where ρ1,2 and u1,2 are constants.
Analytical studies of the decay of an initial discontinuity problem for integrable dispersive

wave equations (see for instance [20], [10], [23]) as well as direct numerical simulations for
non-integrable systems [27] show that the asymptotic solution to the decay of an arbitrary
initial discontinuity generally consists of three constant states separated by two expanding
waves: centered rarefaction wave(s) and/or undular bore(s), which is quite natural taking
into account the “two-wave” nature of the system (1). One of the possible decay patterns
is shown in Fig. 1. The undular bore, when occurs, occupies asymptotically as t À 1
a linearly expanding region s2t ≤ x ≤ s1t where s1 and s2 are the speeds of the leading
and the trailing edges of the undular bore respectively. The undular bore has the following

s1

s2

ρ2, u2

Rarefaction wave 

ρ1, u1

Undular bore 

X

Figure 1: Typical density profile in the resolution of an initial discontinuity (dashed line)
into an undular bore and a rarefaction wave in dispersive hydrodynamics

small-scale oscillatory structure : it represents a slowly varying nonlinear wave modulated in
such a way that in the vicinity of the trailing edge the oscillations have small amplitude and
the form close to sinusoidal, and they acquire the shape of successive solitary waves close to
the opposite, leading edge. The typical spatial scale of the oscillations is determined by the
characteristic dispersive length in the system.

Our aim in this work is to obtain a set of conditions describing the undular bore transition
between two different constant states (ρ1, u1) and (ρ2, u2). For that we need

• to obtain the equation of the undular bore curve (ρ - u transition diagram) Φ(ρ1, u1, ρ2, u2) =
0, which is to say to extract an admissible set of discontinuities resolving into a single
undular bore.

• to determine the spatial location of the undular bore, i.e. to find the edge speeds s1,2

in terms of the initial discontinuity parameters ρ1, u1; ρ2, u2

It is clear that the speeds s1,2 cannot be consistently defined in frame of the original system
(1) because of the presence of higher order spatial derivatives. These speeds, however, appear
in a natural way in the asymptotic as t À 1 reformulation of the problem (1), (7), based on
the quasi-linear Whitham equations [15].
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3 Modulation description of undular bores and natural

boundary conditions

We shall formulate the undular bore problem for a (generally) non-integrable system by
adopting the resulting “averaged” setting from the theory of integrable systems, i.e. by
direct application of the Whitham method to the system (1) in the conservative form (5)
and then by postulating appropriate boundary conditions. There is, of course, a basic
underlying assumption that the solution of the problem of our interest exists in some broad
sense, which will be clear from what follows.

We invoke the reasoning established in the Lax - Levermore - Venakides theory [12], [13],
[14] developed originally for the KdV equation, describing unidirectional wave propagation
and more recently extended to the bi-directional defocusing NLS equation [34]. According
to Lax-Levermore-Venakides results, the undular bore evolution is asymptotically described
by the zero-dispersion limit of the initial value problem solution for the original dispersive
wave equation ((1) in our case. Practically, it is achieved by introducing the slow variables
X = εx, T = εt, ε ¿ 1 directly into the original equations and then, by tending ε to
zero on the solution. The initial data in this approach are supposed to be large-scale in
comparison with the characteristic dispersion length. The parameter ε then can be viewed
as the dimensionless dispersion parameter of the system.

In the domains where the flow is smooth enough (∆x À ε, where ∆x is the characteristic
spatial scale of the flow variations) the solution, asymptotically as ε → 0, converges in a
strong sense to the solution of the dispersionless limit (ε ≡ 0) of the original equations i.e.
it satisfies (2). Contrastingly, in the oscillatory regions ∆x ∼ ε and the variations of the
flow become more and more rapid as ε decreases. Here, as ε → 0 the solution manifests
itself as a distribution, or a generalized solution. The corresponding limit then exists in a
weak, i.e. averaged, sense (for non-integrable systems existence of weak limits is established
numerically (see [14] and references therein)). Then by existence of the global solution one
implies the continuous dependence of the mean values (moments) of the oscillatory quantities
on the initial data.

Lax and Levermore [12] showed that the slow evolution of the mean values is governed
by a system of quasilinear equations which turned to coincide with the so-called Whitham
equations obtained earlier by averaging the nonlinear multiphase wavepackets [15], [16].
Venakides [35] showed that the higher order in ε of Lax-Levermore theory indeed leads to
the description of the local waveform by the n-phase solution of the original system, where
n ≥ 1 (see also [14], [36]). The number of independent moments (and the order of the
Whitham system) N coincides with the number of independent integrals of motion in the
n-phase solution. For the initial conditions in the form of a step-like transition between two
constant states, n = 1 (see [12], [37], [38]) and N coincides with the differential order of the
original system with respect to the spatial/mixed derivatives i.e. N = 4 for the systems (1)
studied in this paper.

The resulting, averaged formulation of the problem has been proposed (although without
rigorous justification) much earlier by Gurevich and Pitaevskii (GP) [17] who complemented
the Whitham system for the KdV equation with natural matching conditions at the free
phase transition boundaries. We notice that GP formulation, although being consistent
with the Lax-Levermore-Venakides theory, essentially does not rely on the integrability, and,
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therefore, could be extended to a more general class of nonlinear dispersive wave equations
where spectral transform is not available. Our basic hypothesis in this work is that the GP
formulation of the problem can be applied to the description of unsteady undular bores in
conservative non-integrable systems belonging to the class (1) described in previous section
within the domain of existence of the single-phase travelling wave solution (3).

Thus, the main premise of our construction is that the undular bore is locally described
by the single-phase periodic travelling wave solution (3) of system (1). The travelling wave
solution is parametrised by a certain number of integrals of motion (four in our case), which
now are allowed to depend on slow slow variables X = εx , T = εt, ε ¿ 1, i.e. ρ̄ = ρ̄(X, T ),
ū = ū(X, T ), k = k(X, T ), a = a(X,T ). Then the evolution of these local integrals is
governed as ε → 0 by the Whitham averaged equations [15]

∂T P̄j + ∂XQ̄j = 0 , j = 1, . . . , 4 , (8)

where the averaging is done over the family (3) according to Eq. (4). The averaged equa-
tions, thus, describe slow modulations of the travelling wave solution. One more modulation
equation is provided by the wave number conservation law

∂T k + ∂Xω = 0 , (9)

which is a compatibility condition in the formal perturbation procedure equivalent to the
the Whitham method and can be used instead of any of the modulation equations (8).
Its consistency with the system (8) can be usually verified directly [15]. Thus, to obtain a
closed modulation system for the original dispersive system (1) one actually needs only three
linearly independent conservation laws. If the original system (1) is completely integrable,
then the averaged system (8) can be represented in the Riemann form, which makes it
possible to effectively integrate the modulation equations (see [18] and references therein).
In the case when the Riemann invariants for the Whitham equations are not available, the gas
dynamic “core” nature of the original system (1) having the equations (2) as a dispersionless
limit suggests a straightforward choice of the basis modulation variables: ρ̄, ū, k, a. In the
absence of the oscillations, ρ̄ = ρ, ū = u, F (ρ, u) = F (ρ, u) and the two first equations of
the modulation system (8) describing evolution of ρ̄ and ū must become consistent with the
dispersionless limit (2) of the original system (1). This degeneration can occur in two ways
(see [29] for a more detailed explanation):

i) via the harmonic, vanishing amplitude wave limit a → 0 (i.e. the oscillations become
infinitesimally small);

ii) via the solitary wave limit, when k → 0 (i.e. the oscillations become infinitely rare).
The first type of the transition is realised at the trailing edge of the undular bore, and the
second one – at the leading edge (to be definite we assume here the negative sign of dispersion
in the system, in the positive dispersion case the structure of the undular bore is reversed
(see for instance [20]) ).

Thus in both harmonic and solitary wave limits, the Whitham equations must admit the
exact reduction

∂T ρ̄ + ∂X(ρ̄ū) = 0 ,

ρ̄(∂T ū + ū∂X ū) + σ2(ρ̄)∂X ρ̄ = 0 , (10)

∂T k + ∂Xω = 0 ,
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where the wave number conservation law (9) should also be considered in the corresponding
(harmonic or solitary wave) limit. We shall call the system (10) the extended dispersionless
limit of the original system (1). To make it a closed system one should complement it with
the dependence of the frequency ω on k, ρ̄ and ū. The full travelling wave frequency ω is
expressed in terms of the basis modulation variables by the nonlinear dispersion relation
[15],

ω = ω(ρ̄, ū, k, a) , (11)

which follows from the 2π-periodicity condition for the solution (3). In the harmonic (linear)
limit, when a → 0 this relation assumes the form

ω = ω0(k, ρ̄, ū) , (12)

which closes the system (10). The function ω0(k, ρ̄, ū) can be obtained directly from the
original system (1) by linearization against the slowly varying background Ūj(X,T ):

Uj ≈ Ūj + bje
i(kx−ωt) , bj(X,T ) ¿ 1 (13)

and represents a usual linear dispersion relation where the constant background parameters
say ρ0, u0 are replaced with the mean flow ρ̄(X, T ), ū(X,T ). Owing to the two-wave nature of
the problem under study, the linear dispersion relation (12) has two branches describing the
waves propagating in the opposite directions (in the frame of reference moving with velocity
ū). Hereafter, unless otherwise explicitly specified, we will consider the branch describing the
waves moving to the right. Also, for sake of definiteness we assume ∂2ω0/∂k2 < 0 (negative
dispersion).

In the solitary wave limit, the finite speed of the wave propagation (hyperbolicity of the
modulation system) implies the vanishing frequency: ω → 0 as k → 0, while the phase
velocity ω/k → cs(ρ̄, ū, a) remains O(1). Thus, the solitary wave limit is a singular one for
the wave number conservation law in (10). This limit will be considered in Section 5.2.

Now, for convenience we explicitly itemize the major implications of our hypothesis about
the GP-type description of the undular bore in a non-integrable system (the details can be
found in [29]).

• We assume the upper half-plane of the space-time of the asymptotic as ε → 0 solution
to the initial value problem (1), (7) to be split into three domains : {(X, T > 0) :
(−∞, X2(T )), [X2(T ), X1(T )], (X1(T ), +∞)} in which the solution is governed by
different equations (see Fig. 2):

i) Outside the undular bore region, when X ∈ (−∞, X2(T ))∪(X1(T ), +∞) the solution
is governed by the dispersionless limit (2) of the original system (1).

ii) Within the undular bore domain X ∈ [X2(T ); X1(T )], we replace the original system
(1) with the modulation system (8).

• The solutions of the “inner” (Whitham (8)) and “outer” (Euler (2)) systems are then
subject to matching conditions at the (free) boundaries of the undular bore X1,2(T ).
These edges are often referred to as the phase transition boundaries since the disper-
sionless limit system (2) can be viewed also as a result of the zero-phase averaging,
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Figure 2: Splitting the upper (XT ) half-plane in the generalised Gurevich – Pitaevskii
problem

i.e. as the “zero-phase Whitham system”. We require a “weak” continuity matching
at the phase transition boundaries [39]:

X = X2(T ) : a = 0 , ρ̄ = ρE(X,T ) , ū = uE(X,T ) , (14)

X = X1(T ) : k = 0 , ρ̄ = ρE(X,T ) , ū = uE(X, T ) . (15)

Here (ρE(X,T ), uE(X, T )) stands for the solution of the dispersionless system (2) with
the initial conditions appearing in the original formulation of the problem for the
system (1). This solution is supposed to be known from the classical theory of quasi-
linear hyperbolic systems of the second order (see for instance [40]). The conditions
(14), (15) represent a natural extension of the GP conditions formulated for the KdV
equation in [17], and then generalized for the defocusing NLS equation [19], [20] and
the Kaup-Boussinesq system [23]. Of course, such a matching is only possible owing
to the fact that the dispersionless system is consistent with the Whitham equations in
the indicated limits.

• We assume hyperbolicity of the modulation system (8) for the solutions of our interest.
In the context of the undular bore problem the hyperbolicity implies the modulational
stability of the undular bore. Another implication of hyperbolicity is a possibility of
using the classical characteristics method [40].

• In order to provide continuous matching of the solutions of two quasilinear hyperbolic
systems of different order (the fourth order Whitham system and the second order
Euler system in our case) the matching lines (the undular bore edges) X = X1,2(T )
must necessarily be the double characteristics for the system with a higher order, i.e.
for the Whitham system. These free boundaries are defined by the kinematic conditions

a = 0 :
dX2

dT
=

∂ω0

∂k
, (16)

k = 0 :
dX1

dT
= lim

k→0

ω

k
(17)
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– consistent with the matching conditions (14), (15). Thus, the trailing edge moves with
the group velocity of the linear wave packet generated at the rear end of the undular
bore whereas the leading edge is identified with the position of the lead solitary wave.
It is shown in [29] that these physically natural definitions of the undular bore edges
indeed agree with the double characteristic velocities of the Whitham system.

The matching conditions (14),(15) complemented by the definitions of free boundaries
(16), (17) completely determine the modulation solution {ρ̄(X,T ), ū(X, T ), k(X, T ), a(X, T )}
describing along with the travelling wave solution (53) the undular bore. One should note
that the boundary values for k at the trailing edge and for a at the leading edge can not be
specified arbitrarily due to the fact that the boundaries of the modulation solution are the
characteristics of the Whitham system which imposes certain restrictions on Cauchy data
prescription along these lines (see [40] for instance).

Since in our asymptotic formulation the governing equations (8), (2) are quasilinear, the
solution of the decay of an initial discontinuity problem must depend on the self-similar
variable s = X/T alone. Hence the boundaries of the undular bore are the straight lines

X1,2 = s1,2T , (18)

and the matching conditions (14), (15) assume the form

s = s2 : a = 0, ρ̄ = ρ2 , ū = u2 , (19)

s = s1 : k = 0, ρ̄ = ρ1 , ū = u1 . (20)

Using definitions of the edges (16) – (18) we obtain the expressions for s1, s2 in terms of the
characteristic modulation velocities:

s2 =

[
∂ω0

∂k

]
(k2, ρ2, u2) , (21)

where k2 is the value of the wavenumber at the trailing edge, and

s1 =
[
lim
k→0

ω

k

]
(a1, ρ1, u1) , (22)

where a1 is the lead solitary wave amplitude.
Thus, to find the speeds s1,2 of the undular bore edges as functions of the initial step

parameters ρ1,2, u1,2 one has to
i) obtain the values of k2 and a1 in terms of ρ1,2, u1,2;
ii) evaluate the singular limit lim

k→0

ω
k
.

These two issues will be addressed in Section 5.
In the conclusion of this section we note that the parameter ε formally introduced in the

definition of the slow variables X and T appears naturally in the undular bore solution of the
original system (1) (the existence of the solution is established in general case numerically)
as a ratio of the characteristic scale of oscillations to the expanding oscillation zone width
and, therefore, is proportional to t−1. Thus, our definition of the undular bore edges is
asymptotically accurate as t →∞.
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4 Simple undular bore transition curve

4.1 Derivation of the simple undular bore transition curve

It is clear that since an arbitrary four-parametric discontinuity (7) for the system (1) resolves
into two expanding waves (undular bore(s) and/or rarefaction wave(s)) separated by three
constant states we need to impose some restriction on the initial parameters in order to
produce a single undular bore. Finding this restriction is equivalent to extracting the family
of the initial discontinuities resolving into a single undular bore propagating in a given
direction (we associate the direction of the undular bore propagation with the direction of
the corresponding linear characteristic). The condition to be found would have a form of a
relationship

Φ(ρ1, ρ2, u1, u2) = 0 (23)

so the undular bore solution must be three-parametric.
Suppose that the initial discontinuity (7) satisfies the restriction (23) such that it resolves

into a single undular bore propagating to the right. Using the asymptotic reformulation of
the initial value problem for (1) as the generalised GP problem, i.e. a matching problem
for two quasi-linear hyperbolic systems, the solution of our interest can be, in principle,
constructed using characteristics. We note that due to (assumed) hyperbolicity (finite speed
of propagation) the undular bore has zero width at T = 0. Therefore the line T = 0 of the
characteristic XT - plane lies entirely in the “Euler”, dispersionless part of the solution of
the generalized GP problem (8), (14),(15).

We represent the Euler system (2) in the Riemann invariant form

∂r+

∂T
+ V+(r+, r−)

∂r+

∂X
= 0 ,

∂r−
∂T

+ V−(r+, r−)
∂r−
∂X

= 0 , (24)

where

r±(ρ, u) = u±
∫ ρ

ρ0

σ(ρ′)
ρ′

dρ′ ; V± = u± σ(ρ) , ρ0 = constant. (25)

The initial conditions (7) are rewritten in terms of the Riemann invariants as

r±(X, 0) = r
(2)
± for X < 0 ; r±(X, 0) = r

(1)
± for X < 0 , (26)

where r
(1)
± = r±(ρ1, u1), r

(2)
± = r±(ρ2, u2). We will assume that ρ2 > ρ1, u2 > u1, which in

ideal hydrodynamics implies formation of the compression wave moving to the right (and it
is the wave that, after the breaking, is resolved into the undular bore moving to the right).
The latter inequality is taken for convenience and will be shown later to be redundant. In
view of (26), (25) and the fact that c(ρ) > 0, c′(ρ) > 0 the assumed inequalities imply

r
(2)
+ > r

(1)
+ , V

(2)
+ > V

(1)
+ , V

(1)
− < u1 , (27)

where V
(1)
± = r±(ρ1, u1), V

(2)
± = r±(ρ2, u2).

Now we note that although construction of the solution to the generalised GP problem in
the upper XT -plane can be a very involved task for a non-integrable case, when the Riemann
invariants for the modulation system (8) are not available; this problem can be easily solved
in ’non-physical’ domain T < 0. Indeed, there is a unique three-parametric solution to the
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gas dynamic system (24) in the lower XT - half-plane satisfying the initial conditions (26)
and subject to inequalities (27). This solution is a centred expansion fan (in −X, −T -
coordinates) given by the expressions

r− = r0 = constant . (28)

r+ = r
(2)
+ , X > a1T ;

X

T
= V+(r+, r0); a2T ≤ X ≤ a1T ; (29)

r+ = r
(1)
+ ; X < a2T.

Here
a1,2 = V

(1),(2)
+ , a2 > a1 . (30)

The solution (28) – (30) is characterised by three parameters (r
(1)
+ , r

(2)
+ , d−) and it exists for

all T < 0.
It is clear from the construction above that solution (28) – (30) represents a continuation,

along the characteristics to the lower XT - half-plane of the full simple undular bore solution
to the generalised GP problem. Therefore, one can extract from it the global restriction (23)
imposed on possible values of the hydrodynamic variables at the opposite sides of the simple
undular bore. This restriction follows from (28) and has the form

r
(1)
− = r

(2)
− , (31)

Using (25) we represent the sought dependence in the gas dynamics form (23)

u2 − u1 =

∫ ρ2

ρ1

σ(ρ)

ρ
dρ . (32)

Given the state in front of the undular bore ρ1, u1 this relation yields all admissible states
(ρ2, u2) behind it i.e. it represents the equation of the ρ-u diagram of the simple undular bore
(simple undular bore curve). One can also see that since σ(ρ) > 0, the inequality u2 > u1

assumed in (27) now trivially follows from the condition ρ2 > ρ1 and can be omitted as
redundant. Thus the condition (32) singles out the family of initial discontinuities consistent
with the self-similar GP problem for (8).

One should note that the whole construction above is subject to the additional inequalities

V
(2)
− < s2 < V

(2)
+ , V

(1)
+ < s1 , s1 > s2 . (33)

These inequalities provide validity of our original assumption (23) about the existence of
the three-parametric solution. Indeed, the number of parameters characterizing the solution
of the hyperbolic system in some domain is equal to the number of families of character-
istics transferring given initial or boundary data into this domain (see for instance [42]).
The inequalities (33) imply that only three of four families of characteristics (specifically,

dX/dT = V
(2)
+ , dX/dT = V

(1)
+ , and dX/dT = V

(1)
− ) transfer initial data (26) from the

X-axis into the undular bore domain (see Fig. 3).
Now we discuss briefly the meaning of the obtained transition relation (32). One can see

that it coincides with the relationship between any two pairs ρ, u in the simple wave solution
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TaX 2=

Figure 3: Qualitative behaviour of characteristics in the “simple-wave” decay in dispersive
hydrodynamics. Dashed lines: the dispersive shock boundaries. Dotted lines: the “mirror”
expansion fan boundaries. a) Family dx/dt = V

(1)
+ transfers the values of r+, b) Family

dx/dt = V
(2)
− transfers the values of r−.

of the isentropic gas dynamics (see for instance [41], [42]). A nontrivial fact is that, in view of
(27) the corresponding wave is the simple wave of compression which breaks after a certain
time interval. Contrastingly, the similarity solution of the Whitham equations satisfying the
relationship (28) and describing the expanding undular bore does not break. This solution
essentially represents a compression fan, which does not exist in usual hydrodynamics.

It is natural to call the undular bore satisfying the relationship (28) a simple undular
bore. We emphasize that, according to the matching conditions (19), (20) the relationship
(32) is only valid for the boundary values of the modulation parameters ρ̄ and ū and, of
course, does not hold within the undular bore region.

In the solutions of the GP problem for integrable systems, the simple undular bore
condition is a mere consequence of the constancy of one of the Riemann invariants of the
Whitham system (see [20], [23] for instance). For instance, the simple undular undular bore
resolution is, by definition, the case for the KdV dynamics where the dispersionless limit

14



is governed by the Riemann-Hopf equation. In a non-integrable case, when the Riemann
invariants are not available for the Whitham system, the condition (32) is not obvious at
all. However, the obtained result can be put in an easy to understand framework using an
intuitive argument that since the undular bores do not dissipate, it is “reasonable” to expect
that the “external” Riemann invariant will be conserved across them (even if it does not
have a meaning inside the bore region). “Hence” the simple wave behaviour. One should
keep in mind that inequalities (33) are the necessary part of the transition conditions. In
Section 6.1 an example will be presented where one of these inequalities is violated so that
the single undular bore resolution becomes impossible for some domain of the initial data
parameters even if the initial discontinuity satisfies relation (32).

We recall that the consideration above was concerned with the undular bores propagating
to the right. For the left-propagating undular bores, an analogous construction leads to the
relationship

r
(1)
+ = r

(2)
+ , (34)

which extracts the discontinuities producing a single undular bore moving to the left. The
corresponding simple undular bore relationship in terms of hydrodynamic variables assumes
the form

u2 − u1 = −
∫ ρ2

ρ1

σ(ρ)

ρ
dρ . (35)

The set of inequalities for this wave, analogous to (33) has the form

V
(2)
− < s∗2 < V

(2)
+ , V

(2)
− > s∗1 , s∗2 > s∗1 . (36)

The simple undular bore conditions in the form (32), (35) have been formulated for the
first time in [27] using qualitative physical arguments and then interpreted in [39] in terms
of “local Riemann invariant transport” through the Whitham zone. The previous studies,
however, did not take into account the inequalities (33), (36), which represent an essential
part of the transition conditions. We note in conclusion that in a more general case, when
the dispersionless limit has the form other than isentropic gas dynamics, one should use the
simple undular bore transition relations in the invariant form (31) or (34).

4.2 Comparison of the transition curves for steady and unsteady
shallow water undular bores

To illustrate the difference between the steady (dissipative) and the expanding (dissipation-
less) undular bore transition relations we consider a particular example of the shallow water
undular bores, which has been extensively discussed both in dissipative (see [41] and ref-
erences therein) and dissipationless (see for instance [23] and references therein) contexts.
We note that we use the term “shallow water” here in a broad, mathematical, sense which
encompasses, for instance, some nonlinear optics applications. The inviscid dispersionless
shallow water equations have the form

∂th + ∂x(hu), ∂tu + ∂x(u
2/2 + h) = 0. (37)

In the presence of additional small dissipation the established undular bore has constant
width so that the jump relations follow from the balance of the mass and momentum across
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the transition (here we are only interested in the jump relations for h and u and assume
that the “equation of state” p = h2/2 does not change in the course of the undular bore
propagation, which is the case, say for the shallow water gravity waves [41]):

−U [h] + [uh] = 0; −U [uh] + [u2h + h2/2] = 0 , (38)

Here U is the bore speed and [f ] ≡ f2−f1. Eliminating U from (38) we obtain the transition
relation for the right-propagating dissipative undular bore (a classical shock curve)

u2 − u1 = (h2 − h1)

√
h1 + h2

2h1h2

. (39)

For the dissipationless undular bore we have from (32), (35), taking into account that for
the shallow water waves σ(h) =

√
h,

u2 − u1 = 2(
√

h2 −
√

h1) , (40)

which is a totally different transition relation.
For weak bores propagating to the right, h2 = 1 + δ, δ ¿ 1 we get from (39) and (40)

the decompositions

u2 = δ − 1

4
δ2 +

1

8
δ3 + . . . , steady undular bore (41)

u2 = δ − 1

4
δ2 +

7

32
δ3 + . . . , unsteady undular bore (42)

i.e. the undular bore transition curve and the classical shock curve have high contact for
small jumps which is to be expected in view of the invariant form of the undular bore
transition curve (31). Indeed, it is well known that the Riemann invariants have the higher
order jumps across weak shocks [41]. Thus, the distinction between the jump condition
(39) and the simple undular bore relation (40) becomes noticeable only for finite-amplitude
shallow water undular bores (which is not very relevant to the actual free-surface gravity
shallow-water waves where the undular bores are known to exist only for h2/h1 ≤ 1.28
due to the turbulent viscosity [41]). One should emphasize, however, that it is the simple
undular bore transition relation (40) (rather than jump condition (39)) that is consistent
with the Whitham equations and allows for correct analytic determination of the undular
bore location.

5 Location of the undular bore edges

In general terms, the self-similar reduction of the fourth-order Whitham system (8) describing
the simple undular bore has three three independent integrals, say

Fj(ρ̄, ū, k, a) = Ij ; j = 1, 2, 3 , (43)

Ij being constants. We note that this number of parameters is consistent with the restriction
imposed by the simple undular bore relation (32) relating four initial parameters ρ1,2, u1,2 and
leaving only tree of them independent. When the modulation system is diagonalisable, the
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functions Fj(ρ̄, ū, k, a) coincide with its Riemann invariants (see [17], [20], [23])). However,
generally the Riemann structure is not available for the Whitham systems and obtaining
these functions in an analytically amenable form can be a very involved task. At the same
time, the zero-amplitude and zero-wavenumber reductions F(ρ̄, ū, k, 0) and F(ρ̄, ū, 0, a) of
Eqs. (43) can be obtained indirectly by analysing much more simple extended dispersionless
limit systems (10). Indeed, since Eqs. (10) represent an exact reduction of the full Whitham
system, their possible integrals must be consistent with the corresponding reductions of
Eqs. (43). These integrals will provide us with the missing information about the values of
k at the trailing edge and a at the leading edge (see the end of Section 3) so that one could
take advantage of the kinematic conditions (21), (22) to determine the speeds s1,2 of the
undular bore edges.

5.1 Trailing edge

We consider the exact reduction (10) of the modulation system (8) for a = 0:

∂T ρ̄ + ∂X(ρ̄ū) = 0 , ρ̄(∂T ū + ū∂X ū) + σ2(ρ̄)∂X ρ̄ = 0 , (44)

∂T k + ∂Xω0(k, ρ̄, ū) = 0 , (45)

where ω = ω0(k, ρ̄, ū) is the linear dispersion relation, and will look for its integrals of the
form

Φ1(ū, ρ̄) = C1 , Φ2(k, ρ̄) = C2 , (46)

C1, C2 being constants. Eqs. (46) specify a zero-amplitude section of the integral family
(43) in the four-dimensional space {ρ̄, ū, k, a} and provide constraints on admissible values
of ū and k at the trailing edge of the undular bore where a = 0. Thus they should yield
dependencies u2(ρ2) and k(ρ2) for the trailing edge given fixed ρ̄ = ρ1, ū = ρ1 at the leading
edge. Also, the function u2(ρ2)ρ1,u1 must agree with the simple undular bore curve (32).

Substitution ū = ū(ρ̄) into (44) yields the standard simple-wave integrals of the Euler
equations

ū = ±
∫

σ(ρ̄)

ρ̄
dρ̄ . (47)

To provide consistency with the simple undular bore transition curve (32) one has to choose
the plus sign in (47) and to fix an arbitrary constant C1 in such a way that (47) becomes

ū = u1 +

∫ ρ̄

ρ1

σ(ρ)

ρ
dρ . (48)

The system (44), (45) then reduces to a 2× 2 system,

∂T ρ̄ + V (ρ̄)∂X ρ̄ = 0 , ∂T k + ∂XΩ0(k, ρ̄) = 0 , (49)

where

V (ρ̄) = V+(ρ̄, ū(ρ̄)) = σ(ρ̄) +

∫ ρ̄

ρ1

σ(ρ)

ρ
dρ + u1 , Ω0(k, ρ̄) = ω0(k, ρ̄, ū(ρ̄)) . (50)
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Now, substituting k = k(ρ̄) into this system we arrive at the ordinary differential equation

dk

dρ̄
=

∂Ω0/∂ρ̄

V (ρ̄)− ∂Ω0/∂k
(51)

with the initial condition k(ρ1) = 0 following from the boundary condition (20). Indeed, the
integral k(ρ̄) holds for a = 0 and does not bear any restrictions on other variables, hence
can be applied to ρ̄ = ρ1 which, according to Eq. (20), implies k = 0. Integrating (51) one
obtains k(ρ̄)ρ1,u1 . Then the self-similar coordinate (the speed) of the trailing edge is found
according to (21) as

s2 =
∂Ω0

∂k
(k2, ρ2) , (52)

where k2 = k(ρ2)ρ1,u1 .

5.2 Leading edge

Now we consider the zero-wavenumber section of the integral curve family (43). The plan
is to find the integrals of the reduced as k → 0 Whitham system (10) analogous to those
in the trailing edge case (see Eq. (46)) and then to evaluate the leading edge speed using
Eq. (21). The complication, compared to the zero-amplitude case, is that, since both k
and ω now vanish, one should consider a singular limiting transition for the wave number
conservation law in the extended dispersionless system (10). To do that, it is convenient to
introduce instead of {ρ̄, ū, k, a} a new system of the basis modulation variables in which, as
we will see, the description of the leading edge will become essentially equivalent to that of
the trailing edge.

First, we recall that the modulation variables locally represent a set of independent
parameters specifying the travelling wave solution (3) of the original system (1). This solution
is normally given by the ordinary differential equation of the form

(kλθ)
2 = R(λ) , θ = kx− ωt , f(θ + 2π) = f(θ) , (53)

where λ is usually one of the component of the two-vector U; generally U = U(λ). To be
definite, we assume that the potential curve R(λ) has at least three real roots λ1 < λ2 < λ3

and a (single) minimum between λ2 and λ1 so that the 2π-periodic solution of (53) oscillates
between the roots λ2 and λ3 (see Fig. 4a). The wavenumber and the mean values in this
travelling wave are given by the integrals

k = π




λ3∫

λ2

dλ√
R(λ)



−1

, F (λ) =
k

π

λ3∫

λ2

F (λ)dλ√
R(λ)

. (54)

We assume that the function R(λ) has generic quadratic behaviour in the vicinity of its
minimum:

R(λ) ≈ (λ− λ1)(λ− λ2)(λ3 − λ)G(λ) , G(λ) = O(1) for

∣∣∣∣
λ− λ1

λ3 − λ

∣∣∣∣ ¿ 1 . (55)
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Figure 4: Potential curve R(λ): a) general configuration; b) solitary wave configuration

Then the following general asymptotic behaviour of the modulation parameters can be in-
ferred from Eq. (54) for nearly soliton configuration (Fig. 4b):

m′ =
λ2 − λ1

λ3 − λ1

¿ 1 : k ∼ 1

ln(1/m′)
,

ω

k
= c +O(m′) , c = O(1) . (56)

The latter follows from 2π-periodicity (53). Also it is not difficult to show that in the limit

λ2 → λ1 : F (λ) → F (λ2) . (57)

Now we introduce an alternative (conjugate) system of modulation variables which is more
convenient when studying the solitary wave limit λ2 → λ1 in the modulation system. We
define the conjugate wavenumber and the conjugate mean value as

k̃ = π

(∫ λ2

λ1

dλ√
−R(λ)

)−1

, < F (λ) >=
k̃

π

∫ λ2

λ1

F (λ)dλ√
−R(λ)

. (58)

As a matter of fact, any of these quantities can be taken as a modulation variable instead of
any one from the set (54). The corresponding limiting behaviour for the conjugate variables
are (cf. (56))

λ2 → λ1 : k̃ → k̃s = O(1) , < F (λ) >→ F (λ2) . (59)

Comparing (57) and (59) one can see that in the limit considered

λ2 → λ1 : < F (λ) >→ F (λ) . (60)

We introduce a new equivalent set of basic modulation variables {ρ̄, ū, k, a} 7→ {ρ̄, ū, Λ, k̃},
where Λ = k/k̃ and consider the solitary wave limit k → 0 using these new variables in which
we tend Λ → 0. We will look for two integrals analogous to (46),

Λ = 0 : Φ∗
1(ū, ρ̄) = C∗

1 , Φ∗
2(k̃, ρ̄) = C∗

2 , (61)

C∗
1,2 being constants.
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First we note that the hydrodynamic part of the reduction as Λ → 0 remains the same
as in (10) i.e. ideal Euler hydrodynamics for ρ̄ and ū. Then, using the arguments identical
to those in the zero-amplitude case (see Section 5.1) we find the first integral in the form

ū = u2 −
∫ ρ2

ρ̄

σ(ρ)

ρ
dρ (62)

equivalent to (48) but parametrised by ρ2, u2 instead of ρ1, u1. Using Eq. (62) we further
reduce the Euler system to the simple wave equation

∂T ρ̄ + V (ρ̄)∂X ρ̄ = 0 (63)

where

V (ρ̄) = V+(ρ̄, ū(ρ̄)) = c(ρ̄)−
∫ ρ2

ρ̄

c(ρ)

ρ
dρ + u2 , (64)

which, in view of (32) coincides with Eq. (49).
The wave number conservation law in (10) requires a somewhat more detailed analysis.

After the passage to new modulation variables it assumes the form

Λ(∂T k̃ + ∂X ω̃) + k̃(∂T Λ +
ω̃

k̃
∂XΛ) = 0 , (65)

where ω̃(ρ̄, ū, Λ, k̃) = ω/Λ = k̃c. We also introduce a notation

ω̃s(ρ̄, ū, k̃) ≡ ω̃(ρ̄, ū, 0, k̃) (66)

for the conjugate frequency in the solitary wave limit. Making a decomposition for Λ ¿ 1 in
(65) and taking advantage of Eqs. (61), (63) to leading order in Λ we obtain an asymptotic
equation

∂T Λ +
Ωs

k̃
∂XΛ +

Λ

k̃

{
dk̃

dρ̄

(
∂Ωs

∂k̃
− V (ρ̄)

)
+

∂Ωs

∂ρ̄

}
∂X ρ̄ = O (Λ∂XΛ) , (67)

where Ωs(k̃, ρ̄) = ω̃s(ρ̄, ū(ρ̄), k̃) and the dependence k̃(ρ̄) (the second integral in (61)) is
unknown. Since the sought characteristic integral k̃ = k̃(ρ̄) holding for Λ = 0 must not
depend on the way Λ tends to zero, Eq. (67) splits into two:

∂T Λ +
Ωs

k̃
∂XΛ = O (Λ∂XΛ) (68)

and
dk̃

dρ̄
=

∂Ωs/∂ρ̄

V (ρ̄)− ∂Ω̃s/∂k̃
. (69)

To get the initial condition for ordinary differential equation (69) we reformulate the match-
ing conditions (19), (20) in terms of new field variables ρ̄, ū, Λ, k̃ :

s = s2 : k̃ = 0, ρ̄ = ρ2 , ū = u2 , (70)

s = s1 : Λ = 0, ρ̄ = ρ1 , ū = u1 . (71)
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Now the initial condition for (69) follows from the boundary condition (70) and has the form
k̃(ρ2) = 0.

It follows from (68) that Λ = constant for dX/dT = Ωs/k̃. Applying the boundary
condition (71) we obtain the speed of the leading edge in terms of conjugate variables:

s1 =
Ωs(k̃1, ρ1)

k̃1

, (72)

where k̃1 = k̃(ρ1). Note that owing to the definition of Ωs via the conjugate frequency ω̃
, the formula (72) is equivalent to our original expression (22) for s1 in terms of the usual
frequency ω and the wavenumber k. Expression (72), however, is much more attractive for
actual calculations since it does not contain any singular limiting transitions.

One cannot help noticing that equations (51) and (69) describing relationships between
the modulation variables in the linear and the solitary wave trains are identical in terms of
the “effective” dispersion relations Ω0(k, ρ̄) and Ωs(k̃, ρ̄). The latter, however, is yet to be
obtained.

To obtain the solitary wave dispersion relation ω̃s(k̃, ρ̄, ū) we observe that expressions
(58) can be viewed as analogs of (54) for the conjugate travelling wave given by the equation

(k̃λ̃θ̃)
2 = −R(λ̃) , θ̃ = k̃x̃− ω̃t̃ , λ̃(θ̃ + 2π) = λ̃(θ̃) , (73)

where x̃, t̃ are the new independent variables. This travelling wave is determined by the same
(but inverted) potential curve R(λ) as in (53) so that the oscillations now occur between the
roots λ2 and λ1. For problems associated with polynomial potential curves, the functions
λ(θ) and iλ̃(iθ̃) represent the same analytic function in the complex θ-plane, which is an
elliptic function with the periods 2π and 2πi along the real and the imaginary axes.

The next observation is that the solitary wave limit λ2 → λ1 in the original travelling wave
(53) corresponds to the vanishing amplitude limit in the conjugate travelling wave equation
(73) (see Fig. 4b) and therefore, ω̃s and k̃ must satisfy the linear dispersion relation for the
conjugate dispersive hydrodynamics system, which is obtained from the original system (1)
by the change of variables x̃ = ix, t̃ = it,

−iŨt̃ = K4(Ũ,−i∂x̃Ũ,−∂2
x̃x̃Ũ, . . . ) , (74)

where Ũ = (ρ̃, ũ)T and Ũ = Ũ(λ̃). The transformation above is equivalent to a mere change
of the dispersion sign in the original system (1). The conjugate linear dispersion relation of
our interest is obtained by linearizing the system (74) in the way similar to (13), i.e. against
the slowly varying mean background < Ũj > (X,T )

Ũj ≈< Ũj > +ãje
i(k̃x̃−ω̃t̃) , ãj << 1 , (75)

and has the form
ω̃ = ω̃s(k̃, < ρ̃ >, < ũ >). (76)

Since in both original and conjugate travelling wave solutions the relationships U = U(λ)
and Ũ = Ũ(λ̃) do not contain independent variables and the operator K4 is the same in (1)
and (74), the functions U(λ) and Ũ(λ̃) must be identical i.e.

U(z) = Ũ(z) (77)

21



Then it follows from (60) that in the limit

λ2 → λ1 : < ρ̃ >→ ρ̄ , < ũ >→ ū . (78)

Therefore, the solitary wave dispersion relation has the form ω̃ = ω̃s(k̃, ρ̄, ū) and can be
obtained from the original linear dispersion relation (12) by the formal change

k 7→ ik̃ , ω 7→ iω̃ , ω0 7→ iω̃s. (79)

In other words, ω̃s(k̃, ρ̄, ū) = −iω0(ik̃, ρ̄, ū) and, consequently,

Ωs(k̃, ρ̄) = −iΩ0(ik̃, ρ̄) . (80)

Thus, the relationship between the parameters of the lead solitary wave in the undular bore
is determined by the original linear dispersion relation! Now, having Ωs(k̃, ρ̄) we integrate
(69) and then find s1 with the aid of formula (72). For our consideration to be self-consistent
the inequalities (33) should be satisfied, which ensures validity of the simple undular bore
transition condition (32) used in the derivation of (51), (69).

Remark. We emphasize that all the obtained relationships between the original and
the conjugate averaged variables essentially represent algebraic identities between integrals
of the form (54) and (58) associated with given potential curve R(λ) and do not imply
any connection between their spatio-temporal dynamics in the original and the conjugate
systems (1) and (74).

6 Validation of the developed theory

Since we have made several fundamental assumptions in the derivation of the undular bore
transition conditions (see Section 2), the developed construction requires validation. It can
be done by applying our resulting formulas to the nonlinear dispersive systems where the
transition conditions can be extracted either from exact analytic solution (for the completely
integrable systems) or from results of the direct numerical simulation (for non-integrable
systems).

6.1 Integrable shallow water equations

We consider undular bores in the integrable version of the shallow-water equations derived
by Kaup [30]. This system, which is often referred to as the Kaup-Boussinesq (KB) system,
has the form

∂th + ∂x(hu) +
1

4
∂3

xxxu = 0, ∂tu + u∂xu + ∂xh = 0. (81)

Here h is total depth of the fluid and u is horisontal velocity averaged over depth. The
decay of an initial discontinuity problem for the KB system has been studied in [23] where
the exact solutions of the corresponding Whitham equations have been constructed for all
possible values of the initial jump within the hyperbolicity region. We now construct the
transition conditions for the KB undular bore using the general theory developed in the
previous sections and compare them with the corresponding relationships extracted from
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the full modulation solution of [23]. For that, we need the dispersionless limit of (81), which
is defined by the Riemann invariants and the characteristic velocities

r± =
u

2
±
√

h , V± = u±
√

h , (82)

and the generalized linear dispersion relation (12), which for the KB system has the form

ω0 = kū + kh̄1/2
(
1− k2/4h̄

)1/2
(83)

(i) Simple undular bore transition curve

For the simple undular bore propagating to the right the transition relation (48), taking
into account that for the KB system σ(h) =

√
h, assumes the form already discussed in

Section 4.1
u2 − u1 = 2(

√
h2 −

√
h1) (84)

This relationship agrees with the full modulation solution of the KB system [23].

(ii) Undular bore location

(a)Trailing edge
For the evaluation of the trailing edge s2 of the KB undular bore we need two functions

V (h̄) and Ω0(k, h̄) entering the basic ODE (51) (with ρ̄ ≡ h̄). These functions are obtained
by setting the restriction (48) which in our case assumes the form

ū = 2h̄1/2 + u1 − 2h1
1/2 , (85)

– into (82), (83). As a result, we obtain

V (h̄) = V+(h̄, ū(h̄)) = 3h̄1/2 + u1 − 2h1
1/2 , (86)

Ω0(k, h̄) = ω0(k, h̄, ū(h̄)) = k[2h̄1/2 + h̄1/2(1− k2/4h̄)1/2 + u1 − 2h1
1/2] . (87)

The ODE (51) for k(h̄) after simple algebra assumes the form

h̄
dα

dh̄
= −1

2
(α + 1) , α(h1) = 1 , (88)

where instead of k(h̄) we have used a combination α(h̄) = (1 − k2/4h̄)1/2. Integrating (88)

we find k2(h̄) = 16h
1/2
1 (h̄1/2−h

1/2
1 ). Then the trailing edge is found from formula (52), which

becomes in our case

s2 =
∂Ω0

∂k
|h̄=h2

= u1 + h
1/2
2 − 4h1

1/2 h
1/2
2 − h

1/2
1

2h
1/2
1 − h

1/2
2

, (89)

(b) Leading edge
The solitary wave dispersion relation Ωs(k̃, h̄) is obtained from the linear dispersion re-

lation Ω0(k, h̄) (87) by the change of variables k 7→ ik̃, Ω0 7→ iΩs:

Ωs(k̃, h̄) = k̃[2h̄1/2 + h̄1/2(1 + k̃2/4h̄)1/2 + u1 − 2h1
1/2] , (90)
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while V (h̄) remains the same as in Eq. (86). Substituting this into ODE (69) for k̃(h̄) we
arrive at

h̄
dα̃

dh̄
= −1

2
(α̃ + 1) , α̃(h2) = 1 , (91)

where α̃(h̄) = (1 + k̃2/4h̄)1/2. Integrating (91) we get k̃2(h̄) = 16h
1/2
2 (h

1/2
2 − h̄1/2). The

leading edge is then found from formula (72),

s1 =
Ω̃s

k̃
|h̄=h1

= u2 + h
1/2
1 . (92)

To make a comparison of the trailing and the leading edge speeds obtained here with the
corresponding values from the full modulation solution in [23] we have to set u2 = 0, h2 = 1,
h1 = (c + 1)2/4, where −1 < c < 1 into (84), (89), (92). Then we get

u1 = c− 1 , s2 = 2c− 1

c
, s1 =

1 + c

2
, (93)

which agrees with the results of [23].

(iii) Inequalities

Now, we have to check fulfillment of the inequalities (33) to verify consistency of our
construction. In view of (25), (84) the inequalities assume the form

u1 − 2h1
1/2 + h

1/2
2 < s2 < u1 − 2h1

1/2 + 3h
1/2
2 , s1 > 3h1

1/2 + u2 − 2h2
1/2 , s1 > s2 . (94)

One can see that the second and the third inequalities (94) are satisfied if h2 > h1. Now
without loss of generality setting u2 = 0, h2 = 1, h1 = (c + 1)2/4, −1 < c < 1 as in (93)
we see that right-hand part of the first inequality (94) is satisfied unconditionally. However,
the left-hand part of this inequality imposes a restriction on the initial data compatible with
the above analysis. Specifically, if 0 < c < 1/2 the mentioned inequality is violated and that
means that the corresponding discontinuity cannot be resolved with a single undular bore.
This, again, agrees with the full modulation solution of [23] where the region 0 < c < 1/2
implies “interaction of the undular bore and the rarefaction wave”, i.e. two waves are
involved.

6.2 Fully nonlinear ion-acoustic collisionless shocks in plasma

As an example of effective description of the undular bore transition in a non-integrable sys-
tem we apply the obtained conditions to the classical system (6) describing finite-amplitude
ion-acoustic waves in a two-temperature (Te À Ti) collisionless plasma (see for instance
[33]). For convenience we reproduce it once more:

∂tρ + ∂x(ρu) = 0,

∂tu + u∂xu + ∂xφ = 0, (95)

∂2
xxφ = eφ − ρ .

The system (95) satisfies all the necessary requirements described in Section 2 to be amenable
to methods developed in this paper. Its four conservation laws can be found in [43]. In the
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dispersionless limit, φ = ln ρ, and, therefore, the sound speed σ = 1 in (2), while the linear
dispersion relation has the form

ω0(k, ρ̄, ū) = k[ū + (1 + k2/ρ̄)−1/2] . (96)

The undular bore transition condition (32) then assumes the form u2 − u1 = ln(ρ2/ρ1).
Without loss of generality we put u1 = 0, ρ1 = 1. Then the relationship (48) between ρ̄ and
ū in the extended dispersionless limit system (44) – (45) becomes ū = ln ρ̄. As a result, we
get all the necessary ingredients (49) for the basic ordinary differential equations (51), (69):

V (ρ̄) = ln ρ̄ + 1 , Ω0(k, ρ̄) = k[ln ρ̄ + (1 + k2/ρ̄)−1/2] . (97)

The equation (51), after elementary transformations, assumes the form with separated vari-
ables

ρ̄
dα

dρ̄
= − (1 + α)2α

2(1 + α + α2)
, α(1) = 1 , (98)

where α = (1 + k2/ρ̄)−1/2. Integrating (98) we get

ln ρ̄ + 2 ln α +
1− α

1 + α
= 0 . (99)

Now, using (52) we obtain a simple implicit formula determining velocity of the trailing edge
s2 in terms of the density ratio across the collisionless shock d = ρ2/ρ1 = ρ2,

ln d +
2

3
ln(s2 − ln d) =

(s2 − ln d)1/3 − 1

(s2 − ln d)1/3 + 1
. (100)

The leading edge is handled in the same way. The solitary wave dispersion relation is
obtained from Eq. (97) using the relationship (80) and has the form

Ω̃s(k̃, ρ̄) = k̃[ln ρ̄ + (1− k̃2/ρ̄)−1/2] . (101)

Then, integrating Eq. (69) we obtain k̃s(ρ̄) (it is also convenient to introduce α̃ = (1 −
k̃2/ρ̄)−1/2 as an intermediate variable instead of k̃, cf.(98)). Substituting it into Eq. (72) we
eventually get for the leading edge

1− s1

1 + s1

+ 2 ln s1 = ln d . (102)

One can easily verify that all inequalities (33) are satisfied provided d > 1. The curves s1(d)
and s2(d) are presented in Fig. 5 and demonstrate complete agreement with results of direct
numerical simulation of the decay of an initial discontinuity for the system (95) obtained
in [27]. From theoretical point of view this agreement can be viewed a strong indication
of validity of the modulation theory in non-integrable initial value problems where rigorous
derivation of the Whitham asymptotics is not available.

The weakly nonlinear asymptotics of (100) and (102) for δ ≡ d− 1 ¿ 1:

s2 ≈ 1− δ , s1 ≈ 1 +
2

3
δ , (103)
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Figure 5: Speeds s1,2 of the ion-acoustic undular bore edges versus density jump d = ρ2/ρ1

across the undular bore; upper curve s1 – leading edge, lower curve s2 – trailing edge

corresponds to the boundaries in the well-known exact modulation solution for the KdV
equation found by Gurevich and Pitaevskii [17], which is another confirmation of validity
of our approach. Curiously, as is clearly seen from Fig. 5, the fully nonlinear dynamics
of the leading (solitary wave) edge s1 is quite well approximated by the weakly nonlinear
asymptotics (103) while the speed of the trailing (vanishing amplitude) edge s2 demonstrates
significant qualitative and quantitative deviations from its weakly nonlinear analog even for
quite moderate values of the initial jump.

7 Conclusions

An asymptotic dynamics of undular bores in 2 × 2 hyperbolic systems modified by small
dispersion has been studied. By postulating modulation description and the Gurevich -
Pitaevskii type natural boundary conditions we have derived a complete set of transition
conditions for the undular bore connecting two different constant states (ρ1, u1) and (ρ2, u2).
The results can be summarized as follows. Let the dispersionless limit of the governing
equations be represented in the Riemann form with the Riemann invariants r±(ρ, u) and
the respective characteristic velocities V±(ρ, u) such that the r− = constant corresponds to
the simple wave propagating to the right. Let the linear dispersion relation for the wave
propagating on the background ρ̄, ū have the form ω = ω0(k, ρ̄, ū). Then the transition
conditions for the undular bore propagating to the right include:

(i) A relationship between the admissible values of (ρ1, u1) and (ρ2, u2) that can be
connected by a single undular bore

r−(ρ1, u1) = r−(ρ2, u2) ≡ r0 (104)

(ii) The speeds (self-similar co-ordinates) of the undular bore edges s1,2 determined by
the expressions

s2 =
∂Ω0

∂k
(k2, ρ2) , s1 =

Ωs(k̃1, ρ1)

k̃1

, (105)
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where
Ω0(k, ρ̄) = ω0(k, ρ̄, ū(ρ̄)) Ωs(k̃, ρ̄) = −iΩ0(ik̃, ρ̄) . (106)

Here the dependence ū = ū(ρ̄) is given by

r−(ρ̄, ū) = r0 . (107)

The parameters k2, k̃1 in Eqs. (105) are found as k2 = k(ρ2) , k̃1 = k̃(ρ1), where the functions
k(ρ̄) and k̃(ρ̄) are determined from the ordinary differential equations:

dk

dρ̄
=

∂Ω0/∂ρ̄

V (ρ̄)− ∂Ω0/∂k
, k(ρ1) = 0 , (108)

dk̃

dρ̄
=

∂Ωs/∂ρ̄

V (ρ̄)− ∂Ωs/∂k̃
, k̃(ρ2) = 0 , (109)

where V (ρ̄) = V+(ρ̄, ū(ρ̄)).
(iii) Inequalities providing consistency of (i) and (ii):

V−(ρ2, u2) < s2 < V+(ρ2, u2) , V+(ρ1, u1) < s1 , s1 > s2 . (110)

The construction (104) – (110) in no way relies on the integrability of the original nonlinear
dispersive system (1).

To validate the assumptions underlying our analysis, the obtained general conditions have
been applied to the integrable Kaup-Boussinesq system, where the full modulation solution
for the undular bore is available from [23] and also to the non-intergrable system describing
fully nonlinear ion-acoustic waves in collisionless plasma studied numerically in [27]. In both
cases a complete agreement with previous analytical/numerical results is shown. The agree-
ment in the latter (non-integrable) case can also be viewed as a strong indication of validity
of the Whitham asymptotics in the initial-value problems for non-integrable dispersive wave
systems at least for a certain class of initial data.
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