brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk
provided by Loughborough University Institutional Repository

Modulating pulse solutions for
guasilinear wave equations

Mark D. Groves Guido Schneider
Department of Mathematical Sciences Mathematisches Institut |
Loughborough University Universitét Karlsruhe
Loughborough LE11 3TU 76128 Karlsruhe
UK Germany
Abstract

This paper presents an existence proof for symmetric modulating pulse solutions of a
quasilinear wave equation. Modulating pulse solutions consist of a pulse-like envelope ad-
vancing in the laboratory frame and modulating an underlying wave-train; they are also re-
ferred to as ‘moving breathers’ since they are time-periodic in a moving frame of reference.
The problem is formulated as an infinite-dimensional dynamical system with two stable, two
unstable and infinitely many neutral directions. Using a partial normal form and a generali-
sation of local invariant-manifold theory to the quasilinear setting we prove the existence of
modulating pulses on arbitrarily large, but finite domains in space and time.

1 Introduction

The following theory applies to a general class of quasilinear scalar wave equations with odd
nonlinearity, in particular to certain models used in nonlinear optics, which are characterised by
the fact that the focussing nonlinear Satinger equation appears as a modulation equation in
the sense explained below. In order to keep the notation simple we will concentrate upon the
prototype quasilinear wave equation of this kind, namely

Otu = 0%u — u — u*0u (1)

on the infinite linex € R.

It is well known that on timescales of ordéX(1/¢?) equation (1) ha®(¢)-amplitude solu-
tions which are slow spatial and temporal modulations of an underlying waveeitaiir<o?,
wherek, andw, are related by the linear dispersion relatigh= k2 + 1. Such solutions are
described by the formula

ua(z,t) = e(A(X, T)elkor=w0d) ¢ c) + O(e?),
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whereX = e(x — djt), T = €%, ¢, = ko/(1 + k3)"/* is the linear group velocity and satisfies
the nonlinear Sclidinger equation

2wy A+ (1 — (¢))2)0% A + 3k APA = 0 )

(e.g. see Kalyakin [7], Kirrmann, Schneider & Mielke [10] and Schneider [14]).
Equation (2) possesses a three-parameter family of time-periodic solutions of the form

A(X,T) = B(X — Xg)e 0Tel%,
in which the real-valued functioR satisfies the second-order ordinary differential equation
0%B = C1B — C,B?, (3)

whereC; = —2vowo /(1 —(c})?) andCy = 3k5/(1—(c)?). Foryy < 0 andw, > 0 this equation
has two homoclinic solutions

Cy

which connect the origin with itself. We have therefore identifisadulating pulse solutionsf
equation (1) which are described by the approximate formula

9 1/2
Bpulse(X) == ( Cl) SeCh(Cll/2X)

Upulse = g(Bpulse(X)e_i,YOTei(kox_wot) + C.C.)
= e(Bpusele(a — )= e c))

over timescales of ordeP(1/e?); herec, = (1 + k3)'/?/k is the linear phase velocity and

Y1 = Yo/ ko
In this paper we consider whether equation (1) possesses modulating pulse solutions which
exist on longer timescales th&h1/s%). We establish the following result.

Theorem 1.1 Fix a positive integer. and positive real numbers, and L. There exists, > 0
(depending upom, k, and L) such that for alle € (0,¢0) we have an infinite-dimensional,
continuous family of modulating pulse solutions to equation (1) of the form

u(z,t) = v(x — cot, x — cpt),
wherev is 27 /kq-periodic in its second argument and

_/+ 2 _l
Cp—Cp Y1E™, Cg—c.
P

These solutions satisfy
v(&y) =v(=&~y), (o€ y) —2q(&, ) coskoy| < "
forally € Rand{ € [—-L/e", L/"], where
q(&,€) = eBpuise(€€) + O(e?)

and hmg_d:oo q(ﬁ,s) =0.



Figure 1: A modulating pulse solution guaranteed by Theorem 1.1.

The modulating pulse solutions guaranteed by Theorem 1.1 consist of a permanent pulse-like
envelope with amplitude of orde&?(<) which moves with constant speed and modulates a
periodic wave train moving with velocity,. A modulating pulse of this kind is shown in Figure

1. Notice that their existence is not establishedéfar R, but for¢ € [—L/<™, L/<™] (which is

much larger thar®(1/¢?) for n > 2); this restriction is due to the lack of a sufficiently general
global existence theory for quasilinear wave equations (see below).

Theorem 1.1 is proved by formulating the governing equation fory) as an evolutionary
problem in which the unbounded spatial coordirggays the role of time. This idea was intro-
duced for nonlinear problems by Kircagsner [9] and has become known as ‘spatial dynamics’.
The evolutionary problem is considered as an infinite-dimensional, reversible dynamical system
in which the coordinates are the components of the Fourier-series expansienof The spec-
trum of the linearised system consists of infinitely many purely imaginary eigenvalues together
with one positive and one negative real eigenvalue which are both of geometric multiplicity two
andQ(e) in the bifurcation parameter. Our task is to find pulse-like solutions of this dynamical
system.

The basic difficulty in constructing pulse-like solutions is readily appreciated by a heuris-
tic argument for finite-dimensional dynamical systems. Considenalimensional dynamical
system with a large number of purely imaginary eigenvalues together with one positive and one
negative real eigenvalue of geometric multiplicity two. In this situation the stable and unstable
manifolds of the zero equilibrium are both two dimensional, and the existence of a homoclinic or-
bit (a pulse which tends to zero &s— oo) would imply an intersection of these manifolds in the
m-dimensional phase space. Such an intersection, and hence the existence of a pulse, is therefore
a nongeneric phenomenon fer > 4. A more promising approach is to relax the requirement
that a pulse should decay to zercfas> oo and accept as pulses those solutions whose amplitude
at infinity is much less than gt= 0. Pulse solutions of this type can be found by considering in-
tersections of an appropriately defingldbal centre-stable manifoldith the symmetric section.

The global centre-stable manifoltf s in question comprises the initial data for solutions of the
form v (&) = ¢(€) +w(&), whereg is anO(e) homoclinic solution to an approximate dynamical
system (for example a truncated normal form) anid a solution which remain®@ (1) for all

¢ > 0. The symmetric sectioR on the other hand consists of those points in phase space which
are invariant under the reversibility operation; orbits passing thraugte therefore necessarily
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symmetric with points of symmetry at their points of intersection Withntersections between
W< andX are generic sincd’* has codimension two aridis a hyperplane of dimension/2.

The situation in an infinite-dimensional setting for pulses which decay to zefo-asco
is clearly considerably worse, since the two-dimensional stable and unstable manifolds are now
required to intersect in an infinite-dimensional phase space, and in fact such an intersection typi-
cally only occurs in the presence of additional geometric structure such as complete integrability.
This argument is reinforced by work of Denzler [4], who proved mathematically that a certain
class of nonlinear wave equation has no homoclinic solution. The heuristic argument indicates
that intersections dil’** andX. are still to be expected in infinite dimensions, although one now
has the additional technical difficulty of constructing a global existence theory to facilitate a
discussion of the relevant manifolds.

The above spatial dynamics approach to modulating pulses was introduced for semilinear
wave equations such as

Otu = 0%u —u+u’

by Groves & Schneider [6], where a global centre-stable maniféfd(around the) () homo-

clinic solutiong identified by the nonlinear Sabdinger approximation) was shown to intersect
the symmetric sectioX in a continuum of points. The centre-stable manifold is constructed
by modifying the nonlinearities using a cut-off function to make them globally Lipschitz with

a small Lipschitz constant; global solutions of the modified problem are then found by refor-
mulating the dynamical system as an integral equation and applying semigroup theory and a
contraction-mapping argument. These global solutions of the modified problem yield local so-
lutions to the original problem, and in faatpriori estimates show that they remain within the
critical neighbourhood of the origin defined by the cut-off function ove©dn™) timescale, so

that they solve the original problem on this timescale. In this fashion we obtatabcentre-
stable manifoldV £ (0), whose intersections with yield symmetric modulating pulses which
existfor € [—L/e™, L/™]. The following supplemental argument is required to obtain a global
centre-stable manifold’ from W& (0), or equivalently to show that any solutigtt) + w(&)

with w(0) € W satisfiesw(¢) = O(e"™) for all ¢ > 0. Working with the modified system
again, one can show that a solution of the fay(g) + w(¢), wherew(0) € W<, converges
exponentially to a solution(¢) on thecentre manifoldV ¢, a graph in phase space upon which

all solutions remain so long as they ap¢=""!). By constructioniV’ is globally invariant for

the modified problem, but the existence of a Lyapunov function (the Hamiltonian function for
the wave equation) shows thifc is actually also globally invariant for the modified problem.
Careful book-keeping shows that control by the Lyapunov function takes hold at a time smaller
thanL /e, so thatw is O(e"*!) for all £ > 0.

The technique used by Groves & Schneider [6] relies heavily upon semilinearity, in par-
ticular that global existence theory is available for globally Lipschitz nonlinearities with small
Lipschitz constant. It is therefore not applicable to the present problem, whose spatial dynamics
formulation consists of a quasilinear wave equation coupled with a dynamical system. Instead
we directly apply anteration schemef the type suggested by Kato [8] to obtain a local ex-
istence theory over a timescale ©f<") and construct a local centre-stable manifolg’, by
this route; intersections of this manifold with the symmetric section yield symmetric modulat-
ing pulses which exist fof € [—L/e", L/<"]. We therefore follow the strategy developed by
Groves & Schneider [6] while replacing the organising centre of Hamiltonian structure in that
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reference by quasilinearity here. The spatial dynamics formulation is introduced in Section 2
and a suitable approximate system related to the nonlineab@&alyer equation is derived by
normal-form technigues in Section 3. The approximate system has a four-dimensional invariant
subspace containing a symmetric homoclinic oghifection 4) around which the local centre-
stable manifoldiW ¢ is constructed in Section 5. The proof of Theorem 1.1 is completed in
Section 6, where it is shown thet intersects the symmetric section in a continuum of points.

The result presented by Groves & Schneider [6] appears to be optimal in the sense that
that modulating pulses exist for &l € R. It is however obtained by exploiting the following

advantageous features of the spatial dynamics formulation of a semilinear wave equation.
(i) Atthe bifurcation point there is no spectrum outside the imaginary axis;
(i) The nonlinearities contain no quadratic terms;

(i) Results concerning invariant-manifold theory are readily generalised from finite-dimensional
dynamical systems to semilinear evolutionary equations;

(iv) The norm induced by the restriction of the Hamiltonian function to the centre manifold is
equivalent to that of the phase space.

Since many other physical problems without the above mathematical features also admit non-
linear Scliodinger equations as a modulation equations it is natural to seek existence theories
for modulating pulse solutions for these problems. The result in the present paper represents
a contribution to this programme in that it provides a satisfactory result when semilinearity is
replaced by quasilinearity (so that feature (iii) is lost) but features (i) and (ii) are retained. Our
result amounts to an existence theory for local invariant manifolds which is equivalent to that for
semilinear wave equations when feature (iv) is lost.

The extension of our method to other problems in which further features from the above list
are no longer present is planned as future research. Reduction theorems for quasilinear problems
with respectively finite- and infinite-dimensional centre and hyperbolic parts have been given by
Mielke [11] and Renardy [12], and it is likely that they generalise, in the semilinear setting, to
reduction principles which indicate that problems whose centre and hyperbolic parts are both
infinite-dimensional can be reduced to problems with feature (i). This approach may be helpful
for problems such as lattice dynamics and Boussinesq equations. The paradigm for modulating
pulses would however appear to be the two-dimensional water-wave problem: the cubic nonlin-
ear Schodinger equation has been identified as the relevant modulation equation (see Zakharov
[15], Ablowitz & Segur [1] and Craig, Sulem & Sulem [3]), but the full problem admits none of
the favourable properties listed above.

Acknowledgement: The work of Guido Schneider is partially supported by the Deutsche Forsch-
ungsgemeinschaft DFG under the grant Schn 520/3-1/2.



2 Spatial dynamics formulation

We look for modulating pulse solutions of the nonlinear wave equation (1) of the form
U($, t) = ’U([L‘ - Cgtv T — Cpt) = U(S, y),

wherev is periodic iny with period2x /k, for somek, > 0. Making thisAnsatz one arrives at
the equation

(1= )00+ 2(1 — ¢4¢,)0:0,v + (1 — ¢2)05v — v — v*Ofv — 20%8,0cv — v* v = 0.
It is convenient to choose
cp:c;nuyle?, cg = 1/cp,

so thatc, is a small perturbation of the phase velocify of the linearised problem and the
equation simplifies to

1—c2—0? 1 2
2 P 2 2 _
8$v+—1_cé_v28yv— 1—c§—v2v_ 1—c§—v2v 0y0¢v = 0. 4)

We study this equation, which is still a quasilinear wave equation, in the phase space

X° = {(v,ve) € HE1(0,2m ko) x HE, (0,27 /ko)}, s> 1,

per per

so that the equation itself holds i (0, 27 / ko).

Equation (4) has two discrete symmetries which play an important role in the following
theory. Firstly, it isreversible,that is invariant with respect to the transformatipn— —¢,
(v, 0cv) — S(v, Ocv), where thaeverserS is defined by the formula

S(v(y), ve(y)) = (v(=y), —ve(=y)).

This symmetry has the consequence that¢, —y) solves the equation wheneve(f¢, y) is a
solution. It also exhibitantisymmetry in the dependent variablbe equation is invariant under
the transformatiofiv, ¢v) — (—v, —0¢v).

We may express an element#f, (0,27 /kq) as a Fourier series

k oo
'U(’y) =1 / ?O TnXZ:l{Um’O Sin(k(]my) + Um,e COS(kOmy)}

and define projections,, o, P, P : HS (0, 27/ ko) — HE,.(0, 27/ ko) by the formulae

per per

Po (\/é > (v50l€) sinkajy) + e (6) cos(kojy») = 6 sinthm),
Pm,e (\/é Z(Uj,o(g) Sil’l(l{)@jy) + Uj,e(g) COS(kij))> = \/évm,e<€) COS(kOmy)



with P,, = P, , + P, .. By extending the Fourier series coordinatewise to vector-valued func-
tions we find that the phase spa&é decomposes into a direct sudy,cn, £,, Of subspaces,
where

Em = Lmo ©® Em,e7 Em,o = {(Um,m 8£Um,o>}7 Em,e = {(vm,ea aﬁvm,e>}~

We may therefore write
XS — €s+1 % gs’

in which
0t ={v = {vmmen | [V]} := Z m? |v,,|* < oo}, Um = (Um,01 Um,e)s
m=1
andP,, ., P, Py, also extend naturally to projectiods® — AX’® which are denoted by the same
symbols. Notice thab,, is infinitely smoothing due to its finite-dimensional range, so that
[Pnvlley < Cosellvlle,,  t0 >t

the same smoothing property is enjoyedBy, and P, .. The action of the reverset in the
new coordinate system is readily confirmed to be

S(/UO7 Ue, 86/007 aﬁve> = (_Um Ue7 afvou —85116),

wherev, = {0}, ve = {vm.}. Note also that the periodicity incombines with the translation
invariance in this variable to give an(2) symmetry represented in the new coordinates by

{(Um,m Umes 6E’Um,o> afvm,e)} = {(Rmkoa(vm,oa Um,e)a Rmkoa(aévm,m aivm,e))}a ac Ra

whereRy is the2 x 2 matrix representing a rotation through the angle

The spectrum of the linearised system associated with (4) was calculated by Groves &
Schneider [6]; we recall the complete result since extensive use is made of it in the following
analysis. Thenth Fourier component satisfies the ordinary differential equation

2k2(1 —2) + 1
mklz6) 1 (5)
(1—a)

352vm =

and the associated eigenvalugs. of this equation are given by
m?kg(1—c2) +1
(1-— cg)
= (k24 1)(1 —m?) — 2ko(1 + kD)2 (k2 + mP)me? + O(eY),

2 _
)\m,s -

in which theO(e*) estimate on the remainder term holds uniformlyin

m = 0: We have two simple, real eigenvalugs\,. = +(1 + k2)'/2 + O(c?). The corre-
sponding eigenvectors are given by

(f;sjv):(iil,s)'
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Figure 2: The spectrum of the linearised problem consists of infinitely many semisimple purely
imaginary eigenvalues together with two Jordan blocks of length two at the origin fer0

or two semisimple real positive and two semisimple real negative eigenvalues>foo; all
eigenvalues have geometric multiplicity two.

m = 1: Fore = 0 we have a geometrically simple and algebraically double zero eigenvalue in
E, ,. The eigenvector and associated generalized eigenvector are given by

( oo ) = ( ; ) sin(koy), ( oo ) - ( ; )sin(koy).

Fore > 0 we have two simple eigenvalues\; . which satisfy the equatiof\, .)* = —2kgy12(1+
k2)%/2 + O(£*); they are therefore real ify < 0. The eigenvectors are

(1) (4, Yo

The same result holds iff; . with sin(kqy) replaced bycos(koy).

m > 1: We have two simple purely imaginary eigenvaluegip, given by+\,, . = +i(m? —
1)Y2(k2 + 1)'/2 + O(?). The eigenvectors are

(1) (oL, Yo

The same result holds if,,, . with sin(kqy) replaced byos(koy).

Recall that equation (4) is invariant under the transformatio®;v) — (—v,—0cv), and
this symmetry allows us to look for solutions in which ,, v, . Vanish for even values of:;
we continue to use the previous notation with the understandingthates only odd values. In
particular, this reduction has the effect of eliminating the subspacdhe eigenvalue picture is
summarised in Figure 2; far> 0 we have a four-dimensional hyperbolic pait = £, of phase
space together with an infinite-dimensional central g&rt= &°°_, Es,,,.1. Notice thatP, is the
projection onto the hyperbolic subspatg along the central subspad¢’; in the theory below
we therefore use the notatian, for P, write P, = I — B, and defing(z, 0¢z) = Py (v, 0¢v),
(w, Ocw) = Pe(v, Oev).



3 Normal-form theory

In this section we perform a sequence of changes of variable which simplifies the right-hand side
of the quasilinear wave equation (4) and predicts the existence of pulse solutions. To this end we
write (4) as

020 + 5020 + o + g5 (V)P0 + g5 (v) + g5(v)9, Dev = 0, (6)
where
€ 1— C?) 5 —1
63 fry s C4 =
1-— cg 1-— cg

are negative constants agi g3, ¢5 are functions defined by

G = 1-E—)/(1-J ),
Gutgil) = —v/(1—& o),
Go) = —20°/(1-3 ),

so thatg;(0) = 0,5 =0, 1,2,
Equation (6) is equivalent to the coupled system
2 — )\iaz + (2,2, w,w") =0, (7)
dfw + 500w + cGw

+ P.(g5(z, 2, w)@jw) + g5(z, 2", w,w') + Pe(gs(z, 2/, w)0,0cw) + he(z,2") =0, (8)
in which

F(a 2 ww) = Pilgi(z +w)d2(z +w) + gi(z + w) + g5(= + w)d, (= + w)],
(2,2 w) = gi(z+w),
gi(/Z? Z/’ w, w,) = PC[(QS('Z + w) - 98(2))852
+ 91z + w) — gi(2) + (922 + w) — g5(2))0, 0 2],
gi(z, 2\ w) = g5(z+w),
he(z,2') = g5(2)052 + gi(2) + g5(2)0, 062
satisfy the estimates
(2,2 w,w')] = O([[(2, 2/, w, w)[[ ),
lg5(z, 2", w)lls = O((z, ) + [wll?),  lg5(z, 2, w)lls = O((=z, 2)* + [wll?),  (9)
l9i(2, 2", w, w)|ls = O([l(w, w')[| xe xs) (10)
1h5(z, 2)]ls = O(I(2, 2) %)
and the prime is a shorthand f@f. (The stated structure of the nonlinearity in equation (8)
is actually more general than that implied by the formulae defiping; andg:; here we are
anticipating changes of variable which preserve this more general structure.) Notice that (7)

constitutes an ordinary differential equation in four-dimensional phase space while (8) is still a
quasilinear wave equation.

(ZJ 2,7 w? wl)‘



In the special case that is identically zero, one finds that
{<Z7 zla w, w/> ‘ (w> w/) = <O7 O)}

is an invariant subspace of (7), (8), the flow in which is described by the ordinary differential
equation
2= X z+ [%(2,7,0,0) = 0.

A geometric phase-space analysis of the above equation shows that it has a pair of symmetric ho-
moclinic orbits corresponding to the desired modulating pulse solution (see Section 4 below). A
natural approach to the general case would be to construct a change of variables which eliminates
he, and a sequence of normal-form transformations which successively remove each term in the
Taylor expansion oh® would be the classical method for the construction of such a change of
variables. However, in general we cannot expect a scheme of this type to converge since it would
imply a generic intersection of a pair of two-dimensional manifolds in an infinite-dimensional
phase space (see the remarks in Section 1); it is however possible to remove téfnup ito

an arbitrarily high order using the normal-form method. The homoclinic orbits identified above
are in this sense approximate modulating pulse solutions, and in Sections 5 and 6 we prove the
persistence of these solutions in the full system (7), (8) on intervglebliengthO ("), where

n is approximately the square root of the order of the leading term in the Taylor expangian of

Theorem 3.1 For eachn > 2 there is a near-identity and finite-dimensional change of coordi-
nates which transforms the coupled system (7), (8) into
2= Az + fe(z, 2 w,w') =0, (11)
85210 + cgﬁjw + cw
+ P.(g5(z, z',w)@iw) + g5(z, 2, w,w') + Pe(Gi(z, 2/, w)0,0:w) + ho(z,2) =0, (12)
in which the transformed nonlinearitief, 95, g3, g; satisfy the same estimates as respectively

f%, 95, 9%, g5 and N / . .
1h°(z, 2)[|s = O(I(2, 2) °|(e, 2, 2)[™").

The change of coordinates preserves the reversibility.
Proof. We proceed inductively by assuming that
1h5(2, 2)[ls = O(| (2, 2)P|(e, 2, 2) [ 7%)

and constructing a near-identity transformation which removes the/tgym(z, z’) that is ho-
mogeneous of degre® + 1 in (¢, 2, 2") from k. Observe thahs, , is a mapping from¥; to

@®F _, Eamy1. This observation suggests using a finite-dimensional change of coordinates of the
form

~ o 2 : o q.i 07 k10
Woam+1,0 = W2m+1,0 + C2m+1,qijk65 I (13)
~ . e q. i 07 k10
Wom+1,e = Wom41,e + E C2m—i—1,qijk€5 Zo%6 “e “e (14)
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form =1,2,...,p, where the sum is taken over the index§et i, j, k,¢) | g+i+j+k+ (=
2p+1,i+j+k+¢ >3}, and
U~)j,o = Wj,o, wj,e = Wje, j7é 3a cee 72p+ 1

to eliminatehs,, (2, ') from the equation.
Differentiating (13), (14) with respect toand using (7) to eliminate second derivatives of
we find that

~/ _ i—1 /g+1 k10 7 /] "H+1
w2m+1,o - w2m+10+§ CQm—‘rl quk(‘g [ZZ %5 e Pe +kzo o %e Ze

+O(ll(2, 2w, 0|3 (€% + || (2, 2, w, ) [F2), (15)

together with the corresponding equation g, ., .. One can solve this system of equations
using the implicit-function theorem to find that

Womito = Womiro+ Oz, 2,0, @)% (€% + [I(2, 2, @0, @) |F)),

w/2m+1,e - wémqtle—i_O(H( U~)U~J)||Xs<€2p+||( ,12),12)/”

A further differentiation with respect toyields

~ 1 o
w2m+1,o - w2m+1,0

+chm+1qijk£€ [Z(Z—l) i—2 /j+2 k /€_|_k,<k, )Zzzljzk 2Zé€+2]

0’70 Te

§ q i—1 lj+1 k—1 I@Jrl
+ 2C2m+1 qz]kﬁg ZkZ %o e + (I)2m+1 o(’z Z , W 'lU)

where

|

2

o
N\
8

yu')l

= O(”(Z? Zlv w, QI}/)|

)

+));

together with a corresponding expressionddy, ., .; here we have used (7), (8) to eliminate
second derivatives of andw in the nonlinear terms and the smoothing property<ofo obtain
the estimate on the remainder terms.

Observe that

o (7 |2, 2w, )|

e (€ (2, 2

|(I)2m+10(z 'Z , W w)|

s

w')|

" 2 € /

Womt1,0 — )‘2m+1,sw2m+1,o + P2m+1,oh2p+1(za ')
~ 1 2 ~ € / /
Womi1,0 — /\2m+1,6w2m+1,0 - cI)2m+1 O(Z 5w, w )

- E : o} q 12 i 17 7 i—1 /]+1 k—1 _r+1
62m+1 qijk@g )\2m+1 0%0%0 ze Ze + QZkZ 25 e e ]
§ : i—2 /g+2 k /é i 05 k=2 1042
- ch—&-qujkfg (Z - 1) + k(k )ZOZO e e ]
q. i 07 k1 _
+ E d2m+17qijk€€ 202325 % s m=1,...,p, (16)

where the notation

q. i 05k 10
P2m+loh2p+1 z,2') E d2m+1,qijk£5 Zo%6 e Re
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has been adopted, and of course
Wl — A2 wje + Piohy, 1 (2,2) = @), — X2 i, J#3,...,p+ 1.

The following argument shows that it is always possible to choose the coeffieignts, ;...
to ensure cancellation of the sums on the right-hand side of equation (16). First notice that the
special case in whictt;,, ., ., vanishes for + k > 2, so that

2:0 q.i 07k 10 _ 2 q.i 7 k1
d2m+1,qijk€5 RoRo Re e T dy 77’L-|—1,qijl<:€8 Ro%6 %e Pe 3

i+k<1
is clearly solved by choosing
1
(0) (o)
Com+1,qijkt = )\2 o d2m+1,qijké' (17)
m+

Next suppose thats, ., ., vanishes fori + k& > « for somer > 2 (and possibly equal to
2p + 1). Choosing coeﬁuentsé’;fwmiw according to formula (17), we find that

E : 0,0 q 2 i 1j 10 -1 /g+1 k—1 /12+1
Coma1 qijM8 [_AZm—l-l,OZozo Zc Ze + 21]432: 25 Re e ]
12/]+2k/£ i 05 k=2 1042
+ E :CQerl ngk[g (2 - 1) + k(k )zozo Re o }
_ § q .0 07 74
ds m-l—l,qijkfg 20”0 ’Ze Ze

_ 0 q. it 0 ke
- Zde-l—l qzykég 2025 %e %e 1

where the coefficients), . | aijkt vanish fori+k > x—2. The next step is to repeat the argument
with d3, .., i replaced b;de+1 qijkes the resulting coeﬁicient@;ﬂlﬂ’qiw either solve the new
problem or yield further new coefficient§;” ijke Which vanish fori+£ > k—4. This iteration
scheme terminates aftr/2] steps, and the choieg,, 1 i1 = st gijee + - + c;’,ffﬁ];;u
solves the original problem. We apply the same method to the equation,fqr . to determine
the coefficientss,, ., ;-

Using the above choices of coefficierts, ,, ., andcs,,, ., ;. ONE finds that our change
of coordinates transforms (7), (8) into (11), (12) with

fe(z7 Z/7 /L’[}’ /lD,) = f8(27 Z/’ w7 w/)7
g5(z, 2 w0) = g5(2, 2" w),  G5(z, 2 ) = g5(2, 2", w)
and
Gi(z, 2, ') + hE(z, 2)
= g3(2, 2", W) (w — W) + g5(2, 2, w) 90, (w — )
+ gi(2, 2, w,w') — (2,2, w,w') + h¥(2, ") — hy, (2, 7)),

in which the specification gf; is completed by the requirement that it should vanislifgni’) =
(0,0) and by constructiorks,,, , is identically zero. Careful book-keeping shows that the re-
versibility is preserved by each change of coordinates. The reversibility of the original system
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implies thatd2er1 qijke VANIShes when + k is even (so that+ /is odd) andls, ., ., Vanishes
whenj + k is odd (so that + ¢ is even). The coefficients,,, 1 4;r have the same proper-
ties, and by examining the formulae (13)—(15), one finds thé§ (0, 0:v)), 0cv(S(7, 0¢0))) =
S(v(0, 0¢D), Ocv(0, 0¢0)), wheret = (z, ), so that the transformed system is also reversible.

4  Construction of an approximate modulating pulse
In this section we examine the ordinary differential equation
2= N2+ f5(2,2,0,0) =0 (18)

obtained by neglecting the small perturbatishand settingw, w’) = (0,0) in equations (11),
(12). We seek a homoclinic solutigf to (18), since such a solution serves as an approximation
to a modulating pulse solution of the full system (11), (12). The argument is completed in
Sections 5 and 6 below, which establish the persistence with respect to the pertutbatian
pulse-like solution neag® on intervals of lengtlO(s~"), wheren is approximately the square
root of the order of the leading term in the Taylor expansioh“of

The real-valued functions, andz, satisfy the coupled second-order differential equations

(19)
(20)

)‘% 520 + fs(’ZO? Zes Zo? e)

0,
Re )\%,EZG + fee(Zo,Ze,ZO,Ze) O

in which fo = P, f° | (w,0)=(0,0) and f¢ = P, f* |(ww)=(0,0) are O(|(zo, ze, 25, 22)|*). This

0’ Ye

system of equations mherlts the reversibility an@) symmetry of the full system; itis invariant
under the transformatiof) — —¢, (2o, 2e, 25, 2L) — Sh(zo, 2, 21, 2.), Where the reverses,, is
defined by

Sh(ZO,Ze,Z Z, ) - (_ZO7ZE7Z(/)7 —Z )7

07 e

and under the transformation

Zo Zo 2l 2zl
(2)=me(2) (3) e ()

for eacha € [0, 27 /ky).
Introducing the scaled variables

g =&, (2(8),2(8)) = 6(730(5)7%(5))7
one finds from (19), (20) that
032, = CiZo — CoZo(Z) 4 22) + Ri (%0, Zes o, OgZe), (21)
02 = Cize— CoZe(Z) 4 22) + RE(Z0, Zey OgZor i), (22)

in which )
. . Bky(1+KY)

Cl = —2]%'0’}/1(1 + /{?3)3/2 > O, CQ = 1 >0
7I

13



Figure 3: Dynamics in théz., 9;Z.) coordinate plane.

and the remainder ternf@; andR; are bothO(<*) and respectively odd and even(if, J; %).

In the limite — 0 the system (21), (22) has the property that(thed;z.) coordinate plane is in-
variant; its phase portrait is shown in Figure 3. Notice in particular that there are two homoclinic
orbits given by the explicit formulae

< 0\ 1/2

#O =+ (%) sl
2

In fact each orbit in the four-dimensional phase space of the limiting equations is obtained from

an orbit in the(Z, J¢%.) coordinate plane by a rotatiaf,, for somea € (0,27 /ko) (so that

each subspad@ry,.(0, %), Rk (0, 9Z.)), a € (0,27 /ko) is invariant).

The homoclinic solutions to the limiting form of (21), (22) in th&, 0¢Z.) coordinate plane
arereversible that is, they satisfysy,¢*(—¢) = ¢*(¢). This feature can be exploited to prove
their persistence for small values=0fThe stable manifold of the zero equilibrium for the limiting
equations is clearly given by;"(0) U W, (0), where

WH0) = {(Rioad"(€), Rroaled ™ (€)) : a € [0,27/ko), € € (—o00, 4]},

Wo(0) = {(Rrad™ (€), Rroaleq (€)) : a € [0,27/ko), € € [~6,00)}

andJ is a small positive number. Observe thEt (0) intersects the symmetric section Fix =
span{(0,1,0,0), (0,0,1,0)} at the pointP* = (RyG"(0), Ry0z¢*(0)), and

TW(0)]p-
= Span{aa(Rkoaq (5) szoa gq (g))| )vaé(Rkoa(f_(g) Rkoa gq (é))' )}
= span{(1,0,0,0),(0,0,0,1)}.

It follows that W (0)|} + Fix S, = R*, so that the intersection betweBn" (0) and FixsS;, at

Pt is transversal. The same argument shows that the intersection béfe@n and Fix.S,, at

P~ = (Roq(0), Ro0gg(0)) is also transversal. According to the stable manifold theorem (e.g.
see Coddington & Levinson [2, Chapter 13]), the stable manifigfd0) of the zero equilibrium

for equations (21), (22) depends uniformly smoothly uppand since the symmetric section is
independent of it follows that¥2(0) and Fix.Sy, intersect transversally in two points, one near

14



P*, one near”, for sufficiently small positive values af It follows that (21), (22) also has

a pair of reversible homoclinic orbits. Lemma 4.1 below is obtained by returning to unscaled
coordinates and using the fact that any solution on the stable manifold of (18) decays to zero at
an exponential rate strictly less thanp..

Lemma 4.1 Equation (18) has a paif¢°*, ¢°*') of reversible homoclinic orbits of the form

( ¢ (§) ) _ ( G (e€) )
¢ () e2q(e€) )
whereg® is a smooth function with bounded derivatives. These homoclinic orbits satisfy

@ (€)] < cee™gT(€)] S e ceR (23)

for any6 € (0, (—2koy1)"/2(1 + k2)*/*).

5 The local centre-stable manifold

Let us now fixn € N and suppose that the normal-form transformations described in Section
3 have been carried out to a sufficiently high order that, z') = O(|(z, 2")]?|(e, z, 2/)|*").
We proceed by constructing solutions= (z, w) of the transformed equations (11), (12) whose
pointwise distance from the approximate pulse (¢, 0) identified in Section 4 remaing(c"!)
over the timescal@, L./="] (see Figure 4); for notational simplicity we drop the tildes in equa-
tions (11), (12).

The first step is to formulate equation (11) as the first-order system

Z'=NZ+ F(Z,w,w")

for the variableZ = (z,, z., 2, z.), in which

0 0 1 0 0

o 0 01 ; . 0
A= )\3’5 0O 00 |’ F(Z,w,u') = —Piof(z, 2, w,w)
0 M. 00 —Prefo(z, 2, w,w)

Writing Z = Q° + R, whereQ® = (¢, ¢5, ¢Z, ¢Z'), one finds that
R =L°R+ N°(R,w,w'), (24)

whereLsR = A*R+d, F*[Q°,0,0](R) andN*(R,w,w’) = F¢(Q*+ R, w,w")— F¢ (R, w,w") —
dFe[Qs,0,0](R). With a slight abuse of notation, equation (12) becomes
Ow + 505w + cGw + Pe(g5(Q° + R, w)dw)
+ g5(Q° + R,w,w') + Pu(g5(Q° + R,w)d,0qw) + he(Q° + R) =0,  (25)

and our task is to find solution{$?, w) of (24), (25) for which|R(¢)| and||(w (), w'(§))|
O(e™*th) for € € [0, L/e"].

xs are
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Figure 4: Solutions with initial data on the local centre-stable manifdf¢f. remain within an
O(e"*1) neighbourhood of)° on a timescale o® (¢ ™).

The following result describes the stable and unstable directions associated with the time-
dependent linear operatgf; it is proved by noting that

L7 — A¥[[xs e < ce VIl §ER

and using the method explained by Groves & Mielkesis3].

Lemma 5.1 The equation
O¢eR=L°R

has solutions; (§), s2(&), u1 (&), ua(§) on [0, co) such that
15,(6)] < ce ™€ |uy(€)] < ce™ef,  j=1,2, £€[0,00).
The dual basigs; (&), s3(£), ui(£), us (&)} to {s1(€), s2(€), ui(§), ua(€)} in Ay satisfies

[55(6)] < ——eMeE, Jui(e)] < ~—e M j=1,2, €€ [0,00).
)\175 )\1,6

We seek solutions of (24), (25) using a modification of a construction familiar in dynamical-
systems theory. Thiocal centre-stable manifoldonsists of the initial data for solutions of a
dynamical system which exist for some time interval starting at 0. This manifold is con-
structed by modifying the nonlinearities using a cut-off function to make them globally Lipschitz
with a small Lipschitz constant; global solutions (corresponding to local solutions of the original
problem) can then be found by reformulating the dynamical system as an integral equation and
applying a contraction-mapping argument. This technique of finding solutions is not applicable
to the present problem, which consists of a quasilinear wave equation coupled with a dynami-
cal system. Instead we directly apply the followigration schemeo obtain a local existence
theory from which the local centre-stable manifold can be constructed.

Choose real number3. , R? whose magnitude is at mast™ and(w®, w”) € X such that
[(w?, w”) | xe+1 < ™1, The iteration scheme is initiated by lettifjy) = 0 and (wq), wiy)) €
C([0, L/e™], X?) be the solution of the inhomogeneous linear wave equation

Bzw(o) + 505wy + w() + h*(Q°) =0
16



with initial data (w, w’)|¢=o = (w°,w®), s0 that]| (w(), w(p))lxs < ce"*'. Form =0,1,2,...
we defineR,,+1y € C([0, L/e"],R*) by the formula

Rim+1)(&) = RY s1(€) + Ry, 52()

L/e™
+Zjﬂmn»] )dr sy(€ 21/ (N (7). 5(7)) dras(6), (26)

and let(w (1), w(,,,1y) € C([0, L/e"], X7) be the solution of the equation
agw(m+1) + c§8§w<m+1) + CGWmt1)
+ Pc(gg(m)agw(m+l)) + Gim) T Pe(950m) 0y OcWima1)) + My = 0, (27)

with initial data (win 1), Wi, 41y le=o = (W’ w®); hereNE i, g5y, h{,,, are abbreviations for
respectivelyN< (R m), wWim), W(,,)), 951(Q° + Rm), Wim), Wi,y,)), K (Q° + Rimy) andgs;,,,) is an
abbrevation foy: (Q° + Rny, Wimy), J = 3, 5.

Lemma 5.2 Suppose thaf(w”, w”)||xs < ™', For eachL > 0 the estimates

sup sup Ry () =™ sup sup [ (wien) (€), )y (€)|ax < e
meN ¢e[0,L/en] meN £€[0,L/en]

hold for all sufficiently small values ef
Proof. It suffices to demonstrate that

sup | Rims1y (€)] < e, SUp || (wem1) (€)s W1y ()l < ™™

£€l0,L/em] £€(0,L/em]
whenever
sup  |Rm)(§)] <€, sup  [[(wim)(§), Wiy (§)) |l ae < €™
§€[0,L/e] §€[0,L/em]
the lemma follows inductively from this result.
Observe that
NG| < el| Ry |” 4 ([ (wimys Wiy [[3s) < ™
from which it follows that
| Rm1)(€)
2n 13 €2n L/e™
S | + |R / e)\l,eT dT e*/\l,sg + / e*)\l,sT dT e)\l,sg
)\1,5 0 )\1,6 £
5271
< ( TR A2) (28)
l,e
<

for ¢ € [0, L/e"]. The corresponding result far,, 1 is obtained by applying energy estimates
to equation (27); we differentiate this equatiotimes with respect tg, multiply the result by
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0:0;w(m+1) and integrate with respect gpover one period. After an integration by parts the
linear terms yield the relationship

1
/(858;W(m+1))(8£8 W(m+1) + 038 w (m+1) T 648 W(m+1) )dy = —855 ( (m+1)),
where theenergyé, is defined by
= /{(353510)2 — c§(8§+1w)2 + cj(@jwf} dy.

Working in Fourier space, one finds that
Es(w) = / DeOyw)? dy + Z 5o (27 +1)° + Dk (25 + 1)* (lwaj 1,01 + [wajinel?),

and the facts thetw, w’) has zero mean while 3k (25 +1)* + ¢ = ((25 +1)* = 1)/(1 = c3)
is positive for all; and behaves asymptotically likg; + 1)? imply that

1
—(l'lls + w5 < Ew) < e(llw'lfs + w3,

so thaté, defines a norm equivalent to the usual normign
Turning to the nonlinear terms, notice that

o = / (608 wms1) O oy Iy

is semilineay that is it can be estimated in terms&fw,,+1)) and&,(w,y,)); in fact it obeys the
estimate

IN

|s1] 100y w(m1)llol| 0 g4 my llo

= c€s(w<m+1>>“2|\gi(m)Hs

CEs(Wm41)) "2 | (wieny, Wiy |2z (| (wirmy, Wiy )1 zes + 1Q° + Ry *)
CEs(wimsn)) 2 Es(wim)) ' (Es(wimy) +Q° + Ry ),

in which the estimate (10) has been used. Furthermore, we find that
/(@sajw(mﬂ))3§(Pc(9§(m)0§w(m+1))) dy

— [ Ocd3110051)03 1 )y + 52

IA A

e (

IN

= [ O350 5 1)+ 52+ 59

= — /(8§GZ+1ZU(m+1))(gg(m)8;+1IU(m+1)) dy + s9 + 53+ 54
1

=5 /(5’ (0," "Wint))? )G5(m) Ay + 82 + 53+ 54

== ——6 / m+1 §(m)dy+82+83+54+85,
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where

59

53

Sq

S5

- / (06081000 11)0% (P (G5 P20 s1y)) s,
s—1
s S S—7] € 1
/(afayw(erl)) (Z ( i ) (9, ]gg(m))(8§+2w(m+1))> dy,
=0

[ 0300005005 )

1

2

/(agj+1w(m+1))2a§g§(m) dy;

these quantities can be estimated using the inequalities

\52|

|s3]

|54]

|s5]

INIAIA

IN

IA A

ININ A

ININIA

1005w m-+1) llo || Pagm) O wim1) |l s
cHﬁg(?Sw(mH)Hon(mH)Hngg(m)Hs
s (Wim 1)) (Es(wimy) + 1Q° + Rimy[?),

s—1
(105 sl [ 1005010005 ]
j=1

#1050 [ 195550060 w0 00

cl1g3m) s | Ogwm-1) lls[[wim-+1) [l s+1

c&s(w W(m+1 )(gS(W(m)) +1Q° + R(m)|2)a

10,650 1o / 10605 w1y 0 W 1)y

cll g5 1| Ocwimn | lwim1) [l s+1
Es(Wim1)) (Es(Wimy) + Q7 + Ry ),

210605 / (O wimsny) dy

cEs(Wim+1 )||8£9§(m)||s
CEs(Wimi1) (Es(wim) + Q71> + | Ry [?),

in which we have used the smoothing property®f the estimates (9) and the calculation

d1g5Q° + Rim), w)(0eQ° + Ripny) + d2[Q° + Rim), w](w)

We similarly find that
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/(858§w(m+1))8;(ch§(m)8y65w(m+1)) dy
= /(agazw(mﬂ))a;(Qg(m)ayagw(mﬂ)) dy + s6
— [ (@B50000) B (05 ety 5+ 5

1
=3 / By (00 wm+1))?) g5 my Ay + 6 + 57

2
= Sg + S7 + S8,
where
5= = [ OB5000)0} PulFPhetionsn)
s—1
S S S—j € j
s7 = /(3§8yw(m+1)) (Z ( j ) (9, 395(m))(8;+18§w(m+1))> dy,
=0
1 S £
Sg = ) /(aﬁayw(m+1))2(ay95(m))dy

satisfy the estimate
|8 < cEs(Wimi1)) (Es(Wimy) +|Q° + Rimy[*).
Finally, let us define

and note that .
—&s(w) < & (w) < c&s(w) (29)

since

IN

[0 P ] < €

Es(w) | g50my Il
cEs(w)|[wimy + Q% + R lls
ce&s(w).

IN A IA

Altogether, we have that

Ol (W) < CEL(Wms1)) P Es(wiam)) P (Es(Wimy) + QI + [Rimy )
+ € (Wins1)) (Es(Wimy) + Q] + |Rimy ) + €8 (winny) |17,

and the estimateS (wn))/? < e, |Rin| < e, |Q°| < cee™% and
1h%[ls < @ + RI*|(e, @ + R)J" < e
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show that
OcES (W) < (€22 + "2 P0) E(Wipn11)) /2 + (€ + % P9) EL(Wino1)).
It follows that

£ (Wim+1)(§))

< EJ(Wn1)(0)) + c&( 81[1p]82”5§(w<m+1>(7)) + sup E2E (Wi (1))?)
T7€[0,& T€|0,

+ c(esup E(Wimi) (7)) + " sup Eﬁ(w(mﬂ)(T))l/Z)
T€[0,¢] T€[0,¢]

< E(wins1)(0) + clesup E(Wint1)(T)) + ™ sup E(Wint1)(7))"?)
r€[0,¢] T€[0,¢]

< E(Wiman)(0)) 4+ cle + ) sup E5(Wint1)(T)) 4+ o™ 1.2n+2

for ¢ < L /<", and choosing sufficiently small (independently af), we conclude that

sup  Es(Wimt1) (1)) < e(Es(w?) + %) < ™2,
T€[0,L/e™]

where we have used (29) to replagewith &;.

Lemma 5.3 Suppose thaf(w’, w”)|| ys+1 < "' The iteratesR,,,) andw,,,) satisfy

sup | Rimy1)(€)]

£€[0,L /"]
1 ~ . -
<5 | sup [Buy(@)|+ sup (0 m) (&) Wy (EN Ml s |
£€l0,L/em] £€[0,L/en]
sup ||(ﬁ’(m+1)(§)a wEm+1)(§))| xg
£e[0,L/em]
1 ~ - .
<5 | suw |Re )|+ sup 1 (@(m) (§)s Wiy () || 25
£€(0,L/em] £€(0,L/em]

for eachm € Ny, where

Rim+1) = Rin+1) — Rimy, W(m+1) = Wimnt1) — Wm)-

Proof. To establish the first estimate we examine the equation

R Z/ NE 1)) (7). 55(r)) dr s5(€)

Ljen
-y /£ (N = N 1) (7)) 1, 6).
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Observe that
IN°(RY, wh, w") — N¥(R?,w?, w”)| < ee"(|R" — R?| + [|[(w', w") — (w®, w?)| x¢)
for each( R, w!, w"), (R?, w? w?) € B.., Where

B = {(R,w,w') : |R| <&, ||(w,w)|

X S 8n}7
sinced N*[R, w,w'lis O(|R| + || (w, w")|
| Rim+1) ()]

En 5 ~/ A -T A f
0 e 1.e

l,e

x:) = O(e™) on B.». It follows that

n

n Ljem
.%;ﬁé' 1Ry ()] + (o) (€), Wy (€)

Xs)e’h’” dr e)‘LEf)

n

e sup (|Romy ()] + | (@ (€), @y (€))
1,e £€[0,L/e™]

for¢ € [0, L/e"].
Similarly, the second estimate is obtained by studying the equation

Xg )

O W(m1) + 5O W(m+1) + GD(mr1) + Pe(950m) 0 Wm+1)) + Pe(95m) OyOcD(m1))
+ Gim) — Jagm—1) + Momy = Pim—1y =0 (30)

and using the additional estimates

195m) — Gim-plls < (@ + %) (E(m) > + | Rim) ),

||g§(m) - g;(m—l)”s < e+ 56_66)(85(15(771))1/2 + |R(m)|)7 J=35
and 3

WSy = Wiy lls < 22| Ry,

which are obtained from the facts th&g;[Q° + R, w,w'] is O(|Q°|* + |R|* + ||(w,w')||%:),
dg; [Q° + R, w]is O(|Q°| + |R| + |lwll,) for j = 3,5 anddh®[Q* + R] is O(|Q + R|*|(e, @7 +
R)|?™). We proceed by applying the operat@j to (30), multiplying byd:9; 1, 1) and inte-
grating over one period; arguing using the strategy explained in the previous lemma, we find
that

Oe &5 (Wimt1))
< e(E(wimy) + QP + | Ry |*)ES (D 41))
+ & (Wm1)) 2 E 1 (wien)) P (" + 27" (Es(Wim)) /2 + [ Rn)
+ (W) 2 (€™ + €27 ) (&5 (Wim)) 2 + | Rin) + 22| Ry |EE (W mos1)) /*
< o+ eI EN (Din )
+ (e + &%) E (Wim 1)) (Es (W) ? + [ Bin]) + 22| R (o | €S (Dm +1)) ",
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where we have used the estiméte; (w,)) < £*", which is obtained by repeating Lemma 5.2
with s replaced by + 1 (and requires the stronger conditipfw’, w®”) || s+1 < ™). It follows
that

E(Wim+1)(£))

< < ( o e E(Wim1)(T)) + e 2" EL(W(m1) (1)) /2 (Es(Wimy (1)) + \R(m(ﬂ!))
7€|0, 7€|0,

+c ( sup e&(Wm+1) (1)) + e &5 (Wm11) (7)) (Es(@imy (1) + \f?<m><7>!)>
T7€|0, T7€|0,

+c€ sup 22| Ry (T)|E(Wimsny (1)) 2

rel04]
< ce sup EN(Wman) (1)) + e sup (E(Wim) (7)) + |Rimy(7)[?)
ref0g] rel0.4]

for ¢ < L/<™ and hence that

sup  Es(Wimt1)(7)) < ce sup (Es(Wamy (7)) + |R(m)(7)|2). O
T7€[0,L/e™] T€[0,L/e™]

The following convergence result is a direct consequence of the above lemmata.
Theorem 5.4 For eachR? , R?, and (w°, w”) with

|R21| S €n+1’ |R22’ S €n+1’ H(w07w0/)“2’(§ S En-l—l

the seqUENCER ), Wim), W(,,) Jmen, cONVerges irC'([0, L/e"], X*) to alimit (R, w,, w;) which
satisfies the estimate

xs < g™t

sup || (Ra(§), w(§), wi(§))]

£€[0,L/em]

and solves equations (24), (25).

We now use the above results to define a local centre-stable manifold & tim@for the
nonautonomous equations (24), (25). According to Lemmata 5.2 and 5.3 the solutions defin-
ing this manifold are available under the hypothesis fiat’, w”)|| ,s+1 < €"*'; to ensure its
differentiability one however requires the stronger hypothesis|fthatt, w”)|| y:+s < "™ (see
Section 6 below), and we therefore make this hypothesis from the outset.

Definition 5.5 The set of points

Wig. = (J{(R(0), w,(0), w,(0))},
in which the union is taken over the setiff , R?, and (w°, w”) such that
|R21’ < 5n+17 |R22’ < 5n+1> H(w07w0/)||)(§+3 < 5n+17

is called the local centre-stable manifold for solutions to (24), (25) at time0.
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6 Construction of symmetric modulating pulses

In this section we identify solutiongR,, w,) to equations (24), (25) on the intervil L/c"]
whose initial datd R, (0), w,(0), w.(0)) lies onW&, and which can be extended to solutions that
remainO(e"*!) on[—L/e", L/e"]. The idea is to exploit the reversibility of equations (24), (25)
(see Section 2); in particular, solutions with the property ti#gt0), w,(0),w,(0)) lies on the
symmetric section

S = Fix S = X N {(vs,v) = (0,0)}

can be extended to symmetric solutions[erd. /", L/c"|. Becaus€w, (0), w,(0)) = (w°, w")
we have thafw,(0), w’(0)) € . wheneverw®, w”) € X. and our task is reduced to that of
finding a criterion on(RY , RY ) which guarantees thd, (0) € .

The next step is to introduce an artificial parameter by replaking equations (24), (25)
by ph®; the construction ofV°c undertaken in Section 5 above clearly remains valid for all
values ofp € [0,1]. Observe thap = 1 yields the original equations while = 0 yields the
system considered in Section 4, in whieh, w’) = (0, 0) is an invariant subspace containing the
homoclinic solution®® (generated by the solutiof?, w) = (0,0) in the present coordinates).
We consider a solutiofiR,, w,) with (R,(0),w,(0),w,(0)) € W as a function ofR} ,R),
which depends upop € R and(w?, w”) € ¥, as parameters (with € [0, 1], [|(w®, w”)||x: <
e"*%) and therefore writd R, , w.) as (R, .0 w0, W, w0 w0) (RS, RY)) in the following analysis.
Notice that(R,, w0 wor, Wpwo wor, W), o o) (R, B, )|e=o € X whenever(R , Ry,) is a solution
of the equation

Jpa0 w0 (RY L RY) =0, (31)

S17

whereJ, o0 0 : Boar1(0) C R? — R? is defined by

Tt w00 (R

S17?

Rgg) = (I - Sh)RPKLUO,wO/ (R217 Rgg)‘gzt)'

(The right-hand side of this equation is a vectoAifiwith only two nonzero entries, namely its
z, andz., components, and is therefore identified with a pair of real numbers.) Equation (31) has
the solution(R? , R),) = (0,0) at(p, w®,w”) = (0,0, 0) since the unique solution of (24), (25)
with (p, w?, w”) = (0,0,0) is (R, w) = (0,0). We therefore seek a solution of (24), (25) near
this known solution for parameter valugs w°, w") near(0, 0, 0), and it seems natural to apply
the implicit-function theorem; notice, however, that we are forced to work from first principles
(by applying the contraction mapping principle) since we require precise information concerning
the parameter-dependence of the solutions, in particular that the solution exists for values of
up to one.

In order to carry out the above programme it is necessary to show/that, is differen-
tiable with respect t&?? , R? and obtain some estimates on its derivatives. We therefore need
to show that the solutiong?,, 0 .0/, w, .0 .0 ) described above are differentiable with respect to
RY , R? and obtain some estimates on their derivatives. To this end we formally differentiate

s1?

equations (24), (25) with respectity, and use a dot to denomg1 ; we treat the resulting linear
equations forR, w with the iteration scheme
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R(m+1)(f) = Ri’l 51(5)

2 e .
= 32 OV ) Bt ) 7,550 759

L/e™
—Z/ (AN=(R,0,0) By s 00 (1), 051} ), (32)

Ofti(mr1) + 5O m41) + CGU(mt1)

+ Pe(g5(Q° + R, w0)0ptin1)) + Pe(95(Q° + R, )0,y 0timo1))

+ Pe(dg5[Q° + R, w](Rim), tm)) Ow) + Pe(dg5Q° + R, w](Rmy, tim)) 8y dew)

+dgilQ° + R, w, w'](Rmy, tm), W)

+ pdh®[Q° + R)(R(my) = 0. (33)
Let us now chooseR, w, w') which satisfy| R(£)], [|(w(§), w'(§))| xs+2 < €™ for & € [0, L/e"],
take Ry = 0, W) = 0, and form = 0,1,2,... defineR,1) € C([0,L/"],R*) by the
formula (32) and le{w 1), Wy, .,y) € C([0,L/"], A7) be the solution of (33) with initial
data(w, v')|e—o = (0,0).

Lemma6.1

() The estimates

sup  |Rmi1)(€)]
£€[0,L/en]

<

C

DN | —

£€[0,L/en] £€[0,L/en]

( sup  [Riny ()] + sup  [[(@my (), ©(,,,) (£)) XS): m € Ny,

sup  [[(@Wm11)(€), Wiy (§))
£€[0,L/em]

Xz

N | =

( sup Ry (&) + sup |[(@0m) (€), Wiy (€)) x) m € N,

£€l0,L/em) £€(0,L/em]

hold uniformly over the set diR, w, w') which satisfy|R(¢)], ||(w(&),w'(§))
for{' € [0 L/Z—Z ] whereR (m+1) R(m—H) R(m), (m+1) = w(mH) — w(m).

Xs+1 S En

(if) Suppose additionally thaf(w (&), w'(£))|| xs+2 < €™ for 5 € [0,L/e"]. For each
fixed value of R(m), tim), i) the iterate( Ry 1), Wm1), Uf,,,,) depends Lipschitz-
continuously ori R, w, w’) in the topology oft’®; the Lipschitz constant is a linear function

Of [|(Rm), Wiy, Wipy)llc(io,L/em),205)

Proof. The first assertion is established by adapting the proof of Lemma 5.3. Estimating
[ANG,) [R, w, w'][ asO(e"), we find that
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n &
< (0 [ QR0+ N (7). ()

l,e

X )e>\1,s7' dr e—>\1,s§

n L/e™
€ _ ) . N 8
+)\1 /g <|R(m)(7—>| + ||(w(m)(7'),w£m)(7'))\ Xg)e AT 7 M 5)

for ¢ < L/e™ and hence

n

_ 6 _ _ _
sup  |Riny1)(&)] < e sup  (JR(E)|+ [(w(E), w'(£))]
£€l0,L/en] 1,e £€[0,L/e™]

xe)-
Similarly, applying the operatad.d; w110, to the equation for,,, 1, integrating over one
period and estimatindg;[Q° + R, w, w'] asO(|Q°|* + |R* + [ (w, w")[%:), dg5[Q° + R, w] as

O(|Q°| + |R| + ||w]|s) for j = 3,5 anddh®[Q° + R] asO(|Q° + R|?|(s, Q° + R*")|), one obtains
the formula

&S (W(m1))
< (82n + 826_665)5§(w(m+1))
+ Sg(w(erl))l/QSS-i-l (w)1/2 (5n + Ee_eag)(‘S‘S(w(m))l/2 + |Rm|)
+ E( W) (%" + %) (Es (W) + | Rinl) + cpe™™ 2| Riyny | ES (W (mas1y)
< C(E2n + 526_065)5§(w(m+1))
+ e(® + %) E (Wit 1)) VP (Es(Wim)) 2 + | Rin|) + e 2| Ry |EE (W (m11)) s

I

the argument used in the last step of Lemma 5.3 shows that

sup  Es(Wim1)(7)) < cg sup (Es(@Wm) (1)) + | Ry (7) 7).
T€[0,L/e™] T€[0,L/e™]

Turning to the second assertion, note that
2

R € :
RO = 3 [ ANT = ANG) Byt ) (7). 55(7)) 7356

2

L/em )
- Z / <(d]\/v1E - ng)(R(M)v w(M)v U.}Em))(T), u;(T» dr uj(f)?
j=1"¢
Oz Win+1) + 5O Winr) + CG(m1) + Pe(95105Wnr1)) + Pe(9510,0chnr1))
+ Pc((9§,1 - 95,2)a§w(m)) + PC((gg,l - gg,Q)ayaEw(m))
+ Pc((dgg,l - dg§’2)0§w2) + PC((dgg,l - dgg,z)ayaEWQ)
+ Pe(dg5 ,05w) + Pe(dgs 18,0e0) + dgf, — dgi, + pdhS — pdhs =0,

where (R, %) is the difference in the value AR 41y Wimg1y) for (R,w) = (Ry,w;) and
(R,w) = (Rz,ws), dN; is an abbreviation folN7[R1, w1, wi|(Rm), Wm), W(,,)), J = 1,2
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(similar abbreviations have been used for the other nonlinearities)antd) = (R, — Ry, w; —
w-). The usual arguments show that

#(©)
< (5 [ 1 . )(0)

L/e™ ) )
R(m), W), Wi,
A/5 Ryt ) ()l

(Rm)s Wiy s Wiy ) (7) || 0s€ =T d7 @708

XS (m

(Riomy, @iy W) (7] s 17 5)

for ¢ < L/e", whence

xe sup (R, @, d')(€)]

sup  |R(E)| <o sup [[(Rimy, Wimys W{pm)) ()]

Xs
¢€l0,L/em] £€l0,L/em] §€[0,L/em]
and
0:ES(W(m1))

< &(w m+1)(5 +ee 65&)(‘5‘5( . )1/2 + ‘Rm)D
+ &S (Wim 1) E et (i )1/2(<€ + e (& (w)"? + | R])
+ &5 (Dmr1)) P Earr (w2) P (Eu (o)) * + [ Ry ) (Ea(0) '/ + | RY)
+ Cg;(@mﬂ))l/z Es1 (@)2(e" + 59_9&5)(58(1&(@)1/2 + |R(m)|)
+ €S (imy1) P (" + e ) (E(@)'? + | R (Es(tom)? + | Riamy)
+ e EL (men))* (E(B) 2 + | R)),

where we have used the first assertion witreplaced bys + 1 (which requires the stronger
condition||(w(§), w'(§))| ys+2 < €™ for & € [0, L/e™]), whence

sup  Es(W(m+1)(T))
T€[0,L/e™]

<o sup [(Rmys iy, Wiy () llxs sUp (Ea(m) (7)) + [Rimy (7))
£€[0,L/em) T7€[0,L/em]

O

Corollary 6.2 Any solution(R,, w,) to equations (24), (25) whose initial data lies O, is
differentiable in the topology ot with respect tak. and R}, .

Proof. Let T} andT; be the operators which map respectively(,..), w(m)) t0 (Rant1)s Wimt1))
and (R, Wimy) 10 (Rm1), ms1y) in the iteration schemes (26), (27) and (32), (33), which
may therefore be written as
(Bn+1)s Win+1)) = T1(Bmy, Wimy),
(R(m+1)7 (m+1)) = TQ((R7 w)7 (R(m)u w(m)))
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Consider the new iteration scheme

(R(erl)a (m+1)) = TQ((R(m)a w(m))a (R(m)a w(m)))

with initial dataR(o) = 0, W) = 0, which is obtained by differentiating (26), (27) with respect
to R, and using the dot to denotk, . Let us write this iteration scheme as

(R(erl)a w(erl)) = T2((R*a w*)> (R(m) (m))) + A(m),

where _ '
Am) = Ta((Rmy, Wny ) (Rmy, Wimy)) — To((Ray W), (Rimys Wimy))-
It follows from Lemma 6.1(i) that the further iteration scheme defined/by iz, w.), -)
alone converges i@([0, L/e"], X®) to alimit (R, W, W} ) whenevet| (w. (&), w,(£))
for ¢ € [0, L/e"] and from Lemma 6.1(ii) that

poas S en

ot | (o, 7m0 = o(1)|| (B m)s Wiyl ((0,2/e),x)
whenever || (wn) (€), Wi, () Lxs+2, [[(wa(§), wi(§))|[xe+2 < €™ for £ € [0,L/e"]; the hy-

pothesis|| (w”, w”)|| ys+s < €"*! in the definition of IV}, guarantees that these conditions are

loc

met (see Lemmata 5.2 and 5.3). Elementary arguments shO\AIRb@t W(m w( ))meNO con-
verges inC([0, L/e"], X*) to (R,,,,,). By construction, one has thak,, Wy Wippy) =
(8321 8Ro W), 8Ro w ) for eachm € Ny, and a familiar uniform contlnwty argument
asserts that

(R*,u')*,wi) = (83(5)1 R*,aRglw*,ﬁRgl w;) O

We now turn to the requisite estimates on the derivativé,gb o'
Proposition 6.3

(i) The operatord.Jy [0, 0] : R* — R? is a bijection and

C
[d70,0,0[0, 07" < 5 (34)
l,e
(i) The operatordJ, 0 .o [R) , RY] : R* — R* satisfies the estimate
1A 0,00 (R0, BY] — dJo00[0, 0]] < e (35)

Mo
Proof. Clearly
9;J0,0,0[0,0] = (I — Sh)ajo Ro,0,0(0,0)¢=o, J=12,

and )
8jo Ro,0,0(0,0)[e=0 = josj(0>> Jj=12,
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so that o . .
dJo’(]’o[O, O](RO R22) = RSI ([ — Sh)51<0) + R22 (I — Sh)SQ(O).

517

Taking the inner product of this equation W(th+Sh)s;‘.(0) and using the fact that, : A, — A},
is a self-adjoint involution, one finds that

~ 1 S0 )
R = S(ddogol0, O)(RS, RY), (T + 5050, j=1,2

Sj

from which the first assertion is a direct consequence.

Define Ry = R,.0.0(R%, RY), Ri = dR, 0 ,0[RY, Ry,], R2 = dRg,[0,0], and note

that Ry o o is identically zero. By construction we have that
(R — R)(€)
2 13 ]
S / (ONE Ry + 0Nz, + O5N:0etin) (), 5%(7)) dr 55(€)
=170
2

L/&n .
B / ((OUNF By + 0y Niuiy + Os N D) (7), (7)) dr 15 (€),
1Y€

Jj=

whence
. . en . . .
sup |(Ry — Re)(§)| < e sup ([Ra(§)] + [[(@1(8), 0y (§)) ),
£€[0,L/e] Le &€[0,L/e]
and this inequality implies the second assertion. O

We now study the solution set of the equation

Ty (R

S1)

RS,) =0
near the known solutiofiz} , R2,) = (0,0) at (p, w’, w”) = (0,0,0) by writing it as
(R),R.) = (R),R)) — dJo0[0,0] " J, 0 w0 (R, RY) (36)

517 517 S17

and examining this fixed point problem. According to a standard argument in nonlinear anal-
ysis the fixed-point problem (36) has a unique soluti®j , R? ) = (R, R )(p, w",w”) in
B,(0) C R? whenever

|dJ07070[07 0]_1 ||Jp,w0,w0’(07 0)| S

N~ N3

dJo,0[0, 0] || 00 a0 [RY

0 RY]—dJopl0,0] < =, (RY ,RY ) € B,(0).

517 52

The estimates (34), (35) and

| ‘]p,wo,wm (07 0) |

IN

C|Rp,wo,w0/ (Rgl ) RS2) |§:0 |

62n

C
2
/\1,6
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(see formula (28)) show that we can take- e"*!.

We have therefore constructed a family of symmetric soluti@Rso .0/, w0 ,0/) t0 (24),
(25) on[—L/e", L/"] which are parameterised jy°, w”) € X, with [[(w°, w®)||xs < "3
and satistyl| (R0 .0 (§), W0 wor (§), Wiyo o (§))lvs < ce™*! for eaché € [~L/e", L/e"]. The

formula
Zwo,wo’ (5) = Qs(g) + Rwo,wo’ (5)7 5 € [—L/gn’ L/Sn]a
whereZ = (z,, z., 2., z.), yields a family of pulse-like solutions to the coupled system (11),

(12) which was obtained from the original spatial dynamics formulation of the problem by the
normal-form theory in Section 3. These solutions are parameteriséd’hy®), and although

all w, andw/ components ofw", w”) vanish becauséuw’, w”) € . there still exists a con-
tinuum of solutions parameterised by the andw’, components ofw?, w”). Finally note that

Q°(0), Ry ,0(0) lie in Xy, so that theirz, and 2z, components vanish. Tracing the coordinate
transformations back to the original variablg, ), we find thatv(—¢, y) = v(—¢, y) for these
pulse-like solutions, which are therefore indeed symmetric. These remarks complete the proof

of the existence result given in Section 1 (Theorem 1.1).
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