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Abstract
This article presents a rigorous existence theory for small-amplitude three-dimensional

travelling water waves. The hydrodynamic problem is formulated as an infinite-dimensional
Hamiltonian system in which an arbitrary horizontal spatial direction is the time-like vari-
able. Wave motions which are periodic in a second, different horizontal direction are de-
tected using a centre-manifold reduction technique by which the problem is reduced to a
locally equivalent Hamiltonian system with a finite number of degrees of freedom.

A catalogue of bifurcation scenarios is compiled by means of a geometric argument
based upon the classical dispersion relation for travelling water waves. Taking all parame-
ters into account, one finds that this catalogue includes virtually any bifurcation or resonance
known in Hamiltonian systems theory. Nonlinear bifurcation theory is carried out for a rep-
resentative selection of bifurcation scenarios; solutions of the reduced Hamiltonian system
are found by applying results from the well-developed theory of finite-dimensional Hamil-
tonian systems such as the Lyapunov centre theorem and the Birkhoff normal form.

We find oblique line waves which depend only upon one spatial direction which is not
aligned with the direction of wave propagation; the waves have periodic, solitary-wave or
generalised solitary-wave profiles in this distinguished direction. Truly three-dimensional
waves are also found which have periodic, solitary-wave or generalised solitary-wave pro-
files in one direction and are periodic in another. In particular, we recover doubly peri-
odic waves with arbitrary fundamental domains and oblique versions of the results on three-
dimensional travelling waves already in the literature.
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1 Introduction

This article is concerned with the classicalthree-dimensional gravity-capillary water-wave prob-
lem in hydrodynamics, namely the three-dimensional irrotational flow of a perfect fluid of unit
density subject to the forces of gravity and surface tension. The fluid motion is governed by the
Euler equations in a domain bounded below by a rigid horizontal bottom and above by a free
surface which is described as a graph{Y = h + η(X,Z, t)}, whereh represents the depth of
the fluid in its undisturbed state and the functionη depends upon the two unbounded horizontal
directionsX andZ and timet. In this paper we construct a wide variety of small-amplitudetrav-
elling gravity-capillary waves, that is waves which are uniformly translating in a distinguished
horizontal direction. Specifically, we study waves which travel with constant speedc in theX
direction, have qualitatively prescribed profiles in an arbitrary horizontal directionx forming an
angleθ1 with theX-axis and are periodic in another horizontal directionz forming an angleθ2

with theX-axis (see Figure 1). These waves are special solutions of the Euler equations in which
the free surface takes the form

Y = h+ η(x, z),

where

x = csc(θ2 − θ1)[(X − ct) sin θ2 − Z cos θ2], z = csc(θ1 − θ2)[(X − ct) sin θ1 − Z cos θ1]

and the functionη is periodic in its second argument; we refer to such solutions asoblique
travelling wavessince their main features are not necessarily aligned with their direction of
propagation. The Euler equations for oblique travelling gravity-capillary water waves are stated
in full in Section 2.1 below.

In contrast to the extensively studied two-dimensional travelling water-wave problem in-
volving only one horizontal coordinate, relatively few results are available concerning three-
dimensional travelling waves. Indeed, most of the existing literature deals with model equations
in either the long- or the short-wave approximation; a comprehensive survey is given in the re-
view papers by Aklyas [1] and Dias & Kharif [8]. There are several rigorous existence results
for three-dimensional travelling gravity-capillary water waves whose free surface is doubly pe-
riodic, for example the ‘hexagonal’ wave patterns observed in nature and predicted on the basis
of model equations (Hammack, Scheffner & Segur [12]) and the ‘short-crested waves’ whose
fundamental domain is a ‘symmetric diamond’ (doubly periodic waves with equal periods). Ex-
istence of the latter waves was established by Reeder & Shinbrot [29], and Craig & Nicholls [5]
have recently given an existence theory for waves with arbitrary fundamental domain using a
variational Lyapunov-Schmidt reduction of the Euler equations.

The existence question for three-dimensional travelling water waves which are periodic in
only one horizontal direction was first considered by Groves & Mielke [11], who considered
waves which have qualitatively prescribed profiles in the direction of propagation and are peri-
odic in the transverse direction; in particular, they found three-dimensional waves whose profiles
in the direction of propagation resemble periodic, quasiperiodic or generalised solitary waves.
Three-dimensional waves which are periodic in the direction of propagation and have qualita-
tively prescribed profiles in the perpendicular direction have been studied by Groves [10] and
Haragus and Kirchg̈assner [13], who found waves whose profiles in the transverse direction re-
semble periodic, quasiperiodic, solitary or generalised solitary waves. These results are special,
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Figure 1: The waves have a qualitatively prescribed profile in thex direction and are periodic
in thez direction; mathematically speaking these directions are respectively unbounded (‘time-
like’) and bounded (‘space like’).

non-generic cases (θ1 = 0, θ2 = ±π/2 or θ1 = ±π/2, θ2 = 0) of the waves discussed in the
present paper which require a specific analysis.

The theory in this paper is based upon Kirchgässner’s suggestion [19] that certain time-
independent problems can be studied by formulating them as evolutionary problems in which
an unbounded spatial direction takes the role of the time-like variable. This idea has become
known as ‘spatial dynamics’ and has been applied with success to a wide range of problems in
applied mathematics. Kirchgässner himself [20] showed how to apply the method to the two-
dimensional travelling water-wave problem by writing the governing equations as an ill-posed
quasilinear evolutionary system in which the unbounded spatial coordinateξ = X − ct plays
the role of time. This formulation of the hydrodynamic problem can be studied using the centre-
manifold reduction theorem of Mielke [24], which states that the evolutionary system is locally
equivalent to a system of ordinary differential equations whose solution set can, in theory, be
analysed. Kirchg̈assner’s method is the basis for several existence theories for two-dimensional
travelling gravity-capillary water waves (see Iooss & Kirchgässner [15, 16], Buffoni, Groves &
Toland [4], Buffoni & Groves [3], Lombardi [21], Dias & Iooss [7] and the references therein).

In this paper we apply Kirchg̈assner’s method to the three-dimensional travelling gravity-
capillary water-wave problem. Clearly any horizontal direction qualifies as an unbounded spatial
coordinate, and with complete generality we choose the horizontal directionxmaking an angleθ1

with theX-axis. To formulate the hydrodynamic equations as an evolutionary system in whichx
is the time-like variable we exploit the observation by Luke [23] that the hydrodynamic problem
follows from a variational principle. We treat the variational functional as an action functional
in which a density is integrated over thex direction and perform a Legendre transform to de-
rive a formulation of the hydrodynamic problem as an infinite-dimensional Hamiltonian system
in which x is the time-like variable. Although this procedure is formal it delivers a candidate
for a formulation of the hydrodynamic problem as an evolutionary system whose mathematical
correctness is readily confirmeda posteriori;full details are given in Section 2.2. Mielke’s reduc-
tion result specifies conditions on the spectrum of the linear operator in the evolutionary equation
which essentially require that there are no further ‘time-like’ (unbounded) spatial directions; we
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therefore restrict our attention to waves which are periodic in a second horizontal directionz
which makes an angleθ2 with theX-axis. Notice that this restriction excludes in particular the
‘fully localised’ solitary waves which decay to zero in all horizontal directions. The existence of
such solutions for the Euler equations remains an open problem, although they are known to ex-
ist in the long-wave approximation as solutions of generalised Kadomtsev-Petviashvili equations
(see de Bouard & Saut [6]).

The Hamiltonian structure of the evolutionary system plays a central role in the existence
theories in this article. Mielke [25] has shown that the Kirchgässner reduction preserves Hamil-
tonian structure, so that the reduced system of equations is also a Hamiltonian system. In this
fashion we show that the hydrodynamic problem is locally equivalent to a Hamiltonian system
with a finite number of degrees of freedom, and our task is reduced to one of finding solutions of
this finite-dimensional problem. Fortunately there is a cornucopia of existence theories for finite-
dimensional Hamiltonian systems, in particular for homoclinic and periodic solutions; the work
lies in selecting a suitable existence result and verifying that our reduced Hamiltonian system
satisfies its hypotheses.

Notice that there is a one-to-one correspondence between oblique waves in the(x1, z1) and
(x2, z2) coordinate systems defined by the pairs of angles(θ1

1, θ2) and(θ2
1, θ2), so that

x2 = csc(θ2 − θ2
1) sin(θ2 − θ1

1)x1, z2 = csc(θ1
1 − θ2) sin(θ2

1 − θ1
1)x1 + z1 :

a simple calculation shows that a wave which has a certain profile in thex1 direction and is
2π/ν-periodic inz1 corresponds to a wave which has a specific profile in thex2 direction and
is 2π/ν-periodic inz2. In principle one can therefore fix the value of the angleθ1 provided a
full set of oblique waves for this choice ofθ1 (that is a set of waves with all possible profiles in
thex direction) can be determined. This approach can, however, lead to more difficult existence
proofs. For example, a wave which is doubly periodic in the(x1, z1) coordinate system is typi-
cally not doubly periodic in the(x2, z2) coordinate system, being periodic inz2 and aperiodic in
x2. To find this wave it is necessary to find a periodic solution to the reduced equations on the
centre manifold withx1 as time or an aperiodic solution to the reduced equations on the centre
manifold withx2 as time; the former task is typically easier than the latter. In our analysis we
take advantage of this extra flexibility gained by varying the angleθ1 and concentrate on certain
types of profiles in thex direction (periodic, solitary-wave or generalised solitary-wave profiles).

Oblique line wavesare waves which are constant in thez-direction. We adopt this termi-
nology since such a wave depends only upon one spatial directionx, which is however not
aligned with the directionX of wave propagation. A travelling wave moving with velocity
c = c eX = c sin θ2ex + c sin θ1ez which is constant in thez direction is clearly equivalent to
a travelling wave moving with velocityc sin θ2ex which is constant in thez direction, and the
physical problem for the latter wave is independent of the value ofθ1. Indeed, an examination of
the Euler equations for such waves shows that they are related to the Euler equations for classical
two-dimensional travelling waves (z-independent waves withθ1 = 0 andθ2 = π/2 in the present
terminology) with speedc sin θ2 via a simple scaling (see the remarks near the end of Section
2.1). It follows that the set of oblique line waves, for any choices ofθ1, θ2 andc, lies in one-
to-one correspondence with the set of two-dimensional travelling waves. We therefore confine
ourselves here to a description of some of the oblique line waves which can be obtained from the
extensive literature on two-dimensional travelling waves together with some results which are
also novel in the two-dimensional context (see below).
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The hydrodynamic problem depends upon the anglesθ1 andθ2, the periodν in thez direction
and the dimensionless physical parametersα = gh/c2 andβ = T/hc2 whereg, h, c andT
denote respectively the acceleration due to gravity, the depth of the fluid in its undisturbed state,
the speed of the travelling wave and the coefficient of surface tension. We study bifurcation
phenomena by fixing values ofα, β, θ1, θ2, ν and perturbing around them with a bifurcation
parameterλ ∈ R5; the dimension of the reduced Hamiltonian system is equal to the number of
purely imaginary eigenvalues at criticality and the reduced equations are valid for values of the
bifurcation parameter in a neighbourhood of zero. The reduction procedure is explained in detail
in Section 2.3.

A purely imaginary eigenvalueiκ with corresponding eigenvector in thenth Fourier mode
corresponds to a linear travelling water wave of the formη(X,Z) = ηκ,ne

ikX+i`Z with

k = sin θ2 κ+ sin θ1 nν, ` = − cos θ2 κ− cos θ1 nν,

and it is well known that a solution of this kind exists if and only ifk and` satisfy the classical
dispersion relation

D(k, `) = −k2 +
(
α+ β(k2 + `2)

)√
k2 + `2 tanh

√
k2 + `2 = 0.

The above observation has an elegant geometric interpretation: purely imaginary eigenvaluesiκ
correspond to intersections in the(k, `)-plane of the real branchesCdr of the dispersion relation
with the parallel linesKn, n = 0,±1,±2, . . . given in parametric form by

Kn = {(k, `) ∈ R2 : k = sin θ2 κ+ sin θ1 nν, ` = − cos θ2 κ− cos θ1 nν, κ ∈ R}

(see Figure 2(b)). A point of intersection ofKn andCdr corresponds to a purely imaginary mode
n eigenvalueiκ; its imaginary part is the value of the parameterκ at the point of intersection,
that is the value ofK0 in the(K0, L)-coordinate system at the intersection, where

L = {(k, `) ∈ R2 : k = sin θ1 µ, ` = − cos θ1 µ, µ ∈ R}.

The geometric multiplicity of the eigenvalueiκ is given by the number of distinct lines in the
family {Kn} which intersectCdr at this parameter value, and a tangent intersection betweenKn

andCdr indicates that each eigenvector in moden has an associated Jordan chain of length2.
The(β, α) parameter plane is divided into regions I, II and III in whichCdr has respectively

zero, one and two nontrivial bounded branches (see Figure 2(a)). These regions are delineated
by the line{α = 1} and the curve

Γ =

{
(β, α) =

(
− 1

2 sinh2 κ
+

1

2κ tanhκ
,

κ2

2 sinh2 κ
+

κ

2 tanhκ

)
: κ ∈ [0,∞)

}
,

which are also associated with bifurcation phenomena in the Kirchgässner reduction for two-
dimensional travelling gravity-capillary water waves [20]. Regions II and III are in fact each di-
vided into two subregions, at the mutual boundary of which the qualitative shape of the branches
changes, namely from convex to nonconvex. The dimension of the central subspace is given by
the number of intersections of a discrete family of parallel lines with a bounded set of curves and
is therefore always finite (see Figure 2(b)). Notice, however, that in the case of gravity waves
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Figure 2: (a) Shape of the real branches of the dispersion relationD(k, `) = 0. (b) Position of
the linesKn in the(k, `)-plane; the linesK0 andL form respectively anglesθ2 andθ1 with the
positive`-axis.

(β = 0) the setCdr is always unbounded, so that the linear operator always has infinitely many
purely imaginary eigenvalues. Existence theories for periodic gravity waves are therefore likely
to encounter small-divisor problems. This observation has already been made in a short note by
Plotnikov [28], and although Plotnikov gave a sketch of an existence proof for doubly periodic
travelling gravity waves using superconvergence methods this problem remains essentially open.
Pego & Quintero [27] have recently constructed an infinite-dimensional centre manifold for a
semilinear model equation (the steady-wave Benney-Luke equation) with an infinite-dimensional
centre subspace, but their method does not apply to a spatial dynamics formulation for travelling
water waves, which is a quasilinear problem.

A catalogue of bifurcation scenarios in which the number of purely imaginary eigenvalues
changes upon varying a parameter is presented in Section 3. We begin with bifurcation scenarios
involving only mode0 eigenvalues (Section 3.2); these situations correspond to bifurcation phe-
nomena involving oblique line waves. Oblique line waves always lie in an invariant subspace of
the reduced system which do not depend upon the parametersν andθ1. These two parameters
play no role in the oblique line-wave problem. Purely imaginary eigenvalues correspond to in-
tersections of the lineK0, which depends upon the angleθ2, with the curveCdr, which depends
upon the physical parametersα, β, and bifurcation diagrams are obtained by fixing the physical
parametersα, β and varying the angleθ2 (see Figure 4) orvice versa(see Figure 5). The quali-
tative difference in the geometric shape ofCdr in the two subregions of region II or II plays no
role in oblique line-wave bifurcation theory but leads to a wealth of new bifurcation phenomena
in bifurcation scenarios involving higher Fourier modes.

Bifurcation scenarios involving higher Fourier modes are readily detected by fixing the values
of the physical parameters(β, α) (in region II or III) and the anglesθ1, θ2 and varying the
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frequencyν: by decreasing a large initial value ofν one finds a sequence of critical frequencies

ν = νc,
νc

2
,
νc

3
, . . . ,

at which the pairs of lines(K1, K−1), (K2, K−2), (K3, K−3), . . . touch the dispersion curve
Cdr in the(k, `)-plane for the first time. We find that there are three basic bifurcation scenarios
at ν = νc, when the linesK1 andK−1 are tangent toCdr in the (k, `)-plane (Figure 6) and a
plus-minus pair of geometrically simple purely imaginary eigenvalues, each with a Jordan chain
of length2, are created; the cases are distinguished according to whether the lineK0 intersects
Cdr in zero, two or four points. These bifurcation scenarios are known as theHamiltonian-Hopf
bifurcation, theHamiltonian(iω0)

2iω1 resonanceand theHamiltonian(iω0)
2iω1iω2 resonance.

Notice that the value ofθ1 does not influence the nature of the bifurcations, it only determines the
relative position of the eigenvalues on the imaginary axis at bifurcation points. In particular, there
are special values ofθ1 for which purely imaginary eigenvalues vanish or have the same value
as purely imaginary eigenvalues in different Fourier modes; degenerate cases of the standard
bifurcations indicated above arise in this fashion (see Figure 7). In addition there are values of
α, β for whichK1 andK−1 are tangent toCdr at two points each because of the nonconvexity of
Cdr; Figure 8 illustrates several bifurcation scenarios involving double tangencies of this kind.

The solution set of the reduced Hamiltonian system is examined for a representative sample
of the above bifurcation scenarios in Section 4, beginning with periodic solutions in Section 4.2.
A 2π/κ-periodic solution of the reduced Hamiltonian system corresponds to a doubly periodic
travelling water wave which is2π/κ-periodic inx and2π/ν-periodic (or constant if only mode
0 eigenvalues are considered) inz, and two representative waves of this kind are sketched in
Figure 3. Such waves may be found by applying an appropriate version of the Lyapunov centre
theorem. This programme is carried out for oblique line periodic waves and hence also for two-
dimensional travelling waves. We show that there is one Lyapunov family in region II and two in
region III with the exception of those points on a family of curves{Rk}∞k=2 where aHamiltonian
−1 : k eigenvalue resonancetakes place. (In a Hamiltonian−1 : k or 1 : −k resonance two
pairs±iω, ±ikω of eigenvalues with opposite Krein signatures lie on the imaginary axis; the
sign indicates which pair has negative Krein signature.) Two-degree-of-freedom Hamiltonian
systems with two pairs of imaginary eigenvalues in1 : k or 1 : −k resonance were examined
by Schmidt [30] and Duistermaat [9], who presented an existence theory based upon persistence
results for periodic solutions of the fourth-order Birkhoff normal form associated with the reso-
nance; we apply their theory to resolve the bifurcation picture at the curvesRk. We also discuss
doubly periodic waves associated with mode0, 1 and−1 eigenvalues. In particular we give a
result obtained via the classical nonresonant Lyapunov centre theorem guaranteeing the exis-
tence of doubly periodic waves with any prescribed fundamental domain together with a result
obtained via the Lyapunov centre theorem for Hamiltonians with positive definite quadratic parts
formulated by Weinstein [32] and Moser [26].

In Section 4.3 we consider waves which are not periodic in thex direction, discussing waves
which are constant in thez direction and waves associated with mode0, 1 and−1 eigenvalues.
In the former class we confine ourselves to stating some results which are obtained as a conse-
quence of the corresponding results for two-dimensional travelling waves, namely bifurcations
connected with the Hamiltonian02 resonance and the Hamiltonian-Hopf bifurcation; we obtain
travelling waves which have the profile of a solitary wave in thex direction. In the second class

7



X

Z

x

z

X

Z

x

z

Figure 3: The wave on the left is periodic inx and independent ofz while the wave on the right
is periodic inx andz; they both move with constant speed and without change of shape in the
X direction (arrowed).

we treat waves connected with the Hamiltonian-Hopf bifurcation and the Hamiltonian(iω0)
2iω1

resonance; the theory is based upon persistence arguments for solutions of finite-order Birkhoff
normal forms and yields travelling waves which are periodic inz and have the profile of respec-
tively a solitary wave and a generalised solitary wave (a solitary wave with periodic ripples far
up- and downstream) in thex direction. We make particular use of results by Iooss & Péroùeme
[17] and Buffoni & Groves [3] for the Hamiltonian-Hopf bifurcation and by Groves & Mielke
[11] and Lombardi [22] for the Hamiltonian(iω0)

2iω1 resonance.
The above observations show that the hydrodynamic problem in its spatial dynamics formu-

lation exhibits a wealth of bifurcation phenomena even when only mode0, 1 and−1 eigenvalues
are considered. Working through mode±2, ±3, . . . eigenvalues, one can in principle systemat-
ically compile a complete catalogue of all the bifurcation scenarios embedded in this problem,
and taking all parameters into account, it is possible to detect virtually any bifurcation or reso-
nance known in Hamiltonian systems theory. In this sense one can regard the present version of
the water-wave problem as a paradigm for finite-dimensional Hamiltonian systems and conser-
vative pattern-formation problems.

AcknowledgementWe would like to thank Prof. A. Mielke for suggesting this problem to us
during theSteady Water Wavessession at theEquadiff conference in Berlin, August 1999.

2 The mathematical problem

2.1 The Euler equations for oblique water waves

The physical problem in question concerns the three-dimensional flow of a perfect fluid of unit
density subject to the forces of gravity and surface tension. Let(X, Y, Z) denote the usual
Cartesian coordinates. The fluid occupies the domainDη = {(X, Y, Z) : X,Z ∈ R, Y ∈
(0, h + η(X,Z, t))}, whereη > −h is a function of the spatial coordinatesX, Z and of timet,
andh represents the depth of the fluid in its undisturbed state. In terms of an Eulerian velocity
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potentialφ, the mathematical problem is to solve Laplace’s equation

φXX + φY Y + φZZ = 0 in Dη (1)

with kinematic boundary conditions

φY = 0 onY = 0, (2)

φY = ηt + ηXφX + ηZφZ onY = h+ η (3)

that the water cannot permeate the rigid bottom atY = 0 or the free surface atY = h+η(X,Z, t)
and the dynamic boundary condition

φt = −1

2
(φ2

X + φ2
Y + φ2

Z)− gη

+ σ

[
ηX√

1 + η2
X + η2

Z

]
X

+ σ

[
ηZ√

1 + η2
X + η2

Z

]
Z

+B onY = h+ η (4)

at the free surface. Hereg is the acceleration due to gravity,σ is the coefficient of surface tension
andB is a constant called the Bernoulli constant (e.g. see Stoker [31,§§1, 2.1]).

Travelling wavesare water waves which are uniformly translating in theX direction (there is
no loss of generality in choosing a specific horizontal direction since the hydrodynamic problem
(1)–(4) is invariant under rotations of the(X,Z)-plane). These waves are described by solutions
of (1)–(4) of the special formη(X,Z, t) = η(X − ct, Z), φ(Z, Y, Z, t) = φ(X − ct, Y, Z). Sub-
stituting this form ofη, φ into (1)–(4) and introducing the dimensionless independent variables

(X ′, Y ′, Z ′) =
1

h
(X,Y, Z)

and dependent variables

η′(X ′, Z ′) =
1

h
η(X,Z), φ′(X ′, Y ′, Z ′) =

1

ch
φ(X, Y, Z),

one obtains the equations

φXX + φY Y + φZZ = 0, 0 < Y < 1 + η, (5)

φY = 0 onY = 0, (6)

φY = ηXφX + ηZφZ − ηX onY = 1 + η (7)

and

−φX +
1

2
(φ2

X + φ2
Y + φ2

Z)− αη

− β

[
ηX√

1 + η2
X + η2

Z

]
X

− β

[
ηZ√

1 + η2
X + η2

Z

]
Z

= 0 onY = 1 + η, (8)

in which the primes have been dropped andX is now a shorthand for the variableX − ct and
the Bernoulli constant has been set to zero. The dimensionless numbers

α = gh/c2, β = σ/hc2
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are respectively the inverse square of the Froude number and the Weber number. Observe that
the hydrodynamic problem (5)–(8) has two discrete symmetries: it is invariant under the trans-
formations

X 7→ X, Z 7→ −Z, η 7→ η, Φ 7→ Φ, (9)

X 7→ −X, Z 7→ Z, η 7→ η, Φ 7→ −Φ, (10)

which arise as a remnant of the rotational invariance of the original water-wave equations (1)–(4).
This paper treats waves which are periodic in a distinguished horizontal directionz and have

a qualitatively prescribed profile in another distinguished horizontal directionx. Thex- andz-
axes make different anglesθ1, θ2 with theX-axis, whereθ1, θ2 ∈ (−π, π) are chosen arbitrarily
(see Figure 1). We therefore seek solutions of (5)-(8) of the form

η(X,Z) = η̃(x̃, z̃), φ(X, Y, Z) = φ̃(x̃, Y, z̃),

where
x̃ = sin θ2X − cos θ2 Z, z̃ = sin θ1X − cos θ1 Z (11)

andη, φ areP -periodic inz. These solutions satisfy the equations

φxx + φY Y + ν2φzz + 2ν cos(θ1 − θ2)φxz = 0, 0 < Y < 1 + η, (12)

φY = 0 onY = 0, (13)

φY = − sin θ2 ηx − ν sin θ1 ηz + ηxφx + ν2ηzφz

+ ν cos(θ1 − θ2)(ηxφz + ηzφx) onY = 1 + η, (14)

− sin θ2 φx − ν sin θ1 φz +
1

2

(
φ2

x + φ2
Y + ν2φ2

z + 2ν cos(θ1 − θ2)φxφz

)
+ αη

−β
(ηx

R

)
x
−βν2

(ηz

R

)
z
−βν cos(θ1−θ2)

[(ηx

R

)
z
+

(ηz

R

)
x

]
= 0 onY = 1 + η, (15)

in which the tildes have been dropped, the period inz has been normalized to2π andν = 2π/P ,

R =
√

1 + η2
x + ν2η2

z + 2ν cos(θ1 − θ2)ηxηz.

Apart from certain special values of the anglesθ1, θ2, the equations (12)–(15) for oblique waves
inherit only one of the symmetries of (5)–(8), namely the composition of (9) and (10), so that it
is invariant under the transformation

X 7→ −X, Z 7→ −Z, η 7→ η, Φ 7→ −Φ. (16)

These special angular values areθ1 = 0, θ2 = ±π/2 andθ1 = ±π/2, θ2 = 0, for which (12)–(15)
are invariant under both (9) and (10).

Oblique line wavesare solutions of equation (12)–(15) above which do not depend upon
z. Observe that oblique line-wave solutions are transformed into solutions of the mathematical
problem for two-dimensional travelling waves (z-independent solutions of (12)–(15) withθ1 =
0, θ2 = π/2) by the transformation(φ, η) 7→ (sin θ2φ, η), (β, α) 7→ (β sin2 θ2, α sin2 θ2). This
observation will be exploited at several points in the subsequent analysis.

Equations (12)–(15) depend upon two independent horizontal directionsx andz which are
respectively unbounded and bounded and the bounded vertical directiony. In Section 2.2 below
we formulate this hydrodynamic problem as an evolutionary problem in which the unbounded
directionx plays the role of time and the bounded directionsy andz are treated as spatial coor-
dinates.
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2.2 Hamiltonian formulation

Observe that equations (12)–(15) follow from the formal variational principle

δ

∫ 2π∫
0


1+η∫
0

(
− sin θ2 φx − ν sin θ1 φz +

1

2

(
φ2

x + φ2
Y + ν2φ2

z + 2ν cos(θ1 − θ2)φxφz

) )
dY

+
1

2
αη2 + β(R− 1)

}
dz dx = 0, (17)

in which the variation is taken in(η, φ). The change of variable

φ(x, Y, z) = Φ(x, y, z), Y = y(1 + η(x, z))

maps the variable domain{(x, Y, z) : x ∈ R, z ∈ (0, 2π), 0 < Y < 1 + η(x, z)} to R ×
(0, 2π) × (0, 1) and replacesφ with a functionΦ defined on this fixed domain. The variational
principle (17) is transformed into

δL = 0, L =

∫
L(η,Φ, ηx,Φx) dx,

where

L(η,Φ, ηx,Φx) =∫
Σ

{
− sin θ2

(
Φx −

yηx

1 + η
Φy

)
− ν sin θ1

(
Φz −

yηz

1 + η
Φy

)

+
1

2

(
Φx −

yηx

1 + η
Φy

)2

+
Φ2

y

2(1 + η)2
+

1

2
ν

(
Φz −

yηz

1 + η
Φy

)2

+ ν cos(θ1 − θ2)

(
Φx −

yηx

1 + η
Φy

) (
Φz −

yηz

1 + η
Φy

)}
(1 + η) dy dz

+

∫
S

{
1

2
αη2 + β(R− 1)

}
dz,

andΣ = (0, 1)× (0, 2π), S = (0, 2π).
The next step is to carry out a Legendre transform. Define new variablesω andξ by the

formulae

ω =
δL

δηx

=

1∫
0

{
sin θ2 −

(
Φx −

yηx

1 + η
Φy

)
− ν cos(θ1 − θ2)

(
Φz −

yηz

1 + η
Φy

)}
yΦy dy,

+
β

R
(ηx + ν cos(θ1 − θ2)ηz),

ξ =
δL

δΦx

=

(
− sin θ2 +

(
Φx −

yηx

1 + η
Φy

)
+ ν cos(θ1 − θ2)

(
Φz −

yηz

1 + η
Φy

))
(1 + η) ,
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in which the variational derivatives are taken formally in respectivelyL2(S) andL2(Σ), and
define the Hamiltonian function by

H(η, ω,Φ, ξ)

=

∫
Σ

ξΦx dy dz +

∫
S

ωηx dz − L(η,Φ, ηx,Φx)

=

∫
Σ

{
sin θ2 ξ + ν sin θ1 (1 + η)

(
Φz −

yηz

1 + η
Φy

)

+
ξ2

2(1 + η)
−

Φ2
y

2(1 + η)
− 1

2
ν2 sin2(θ1 − θ2)(1 + η)

(
Φz −

yηz

1 + η
Φy

)2

− ν cos(θ1 − θ2) (ξ + (1 + η) sin θ2)

(
Φz −

yηz

1 + η
Φy

)}
dy dz

+

∫
S

{
− 1

2
αη2 − ν cos(θ1 − θ2)Wηz +

1

2
sin2 θ2 (1 + η)

+ β − (β2 −W 2)1/2
(
1 + ν2 sin2(θ1 − θ2) η

2
z

)1/2
}

dz,

where

W = ω +
1

1 + η

1∫
0

yΦyξ dy.

According to the above calculation the equations

ηx =
δH

δω
, ωx = −δH

δη
, Φx =

δH

δξ
, ξx = −δH

δΦ

formally represent Hamilton’s equations for a formulation of (12)–(15) as a Hamiltonian system.
Writing down these equations, one finds that(η, ω,Φ, ξ) = (0, 0, 0,− sin θ2) is always a solution
(the state of rest in the hydrodynamic problem); we therefore introduce the new variableΨ =
ξ + sin θ2 and obtain the Hamiltonian

H(η, ω,Φ,Ψ)

=

∫
Σ

{
sin θ2Ψ + ν sin θ1 (1 + η)

(
Φz −

yηz

1 + η
Φy

)
+

(Ψ− sin θ2)
2

2(1 + η)

−
Φ2

y

2(1 + η)
− 1

2
ν2 sin2(θ1 − θ2)(1 + η)

(
Φz −

yηz

1 + η
Φy

)2

− ν cos(θ1 − θ2) (Ψ + η sin θ2)

(
Φz −

yηz

1 + η
Φy

)}
dy dz

+

∫
S

{
− 1

2
αη2 − ν cos(θ1 − θ2)Wηz +

1

2
sin2 θ2 (η − 1)

+ β − (β2 −W 2)1/2
(
1 + ν2 sin2(θ1 − θ2) η

2
z

)1/2
}

dz, (18)

12



in which

W = ω +
1

1 + η

1∫
0

yΦy (Ψ− sin θ2) dy. (19)

We introduce the Hilbert spaces

H t
per(S) = {u ∈ H t

loc(R) :u(x+ 2π) = u(x), x ∈ R},
H t

per(Σ) = {u ∈ H t
loc((0, 1)× R) :u(x+ 2π, y) = u(x, y), x ∈ R, y ∈ (0, 1)},

and define
Xt = H t+1

per (S)×H t
per(S)×H t+1

per (Σ)×H t
per(Σ).

Takes ∈ (0, 1/2) and consider the symplectic manifold(M,Ω), whereM = Xs andΩ is the
position-independent 2-form onM given by

Ω|m((η1, ω1,Φ1,Ψ1), (η2, ω2,Φ2,Ψ2)) =∫
S

(ω2η1 − η2ω1) dz +

∫
Σ

(Ψ2Φ1 − Φ2Ψ1) dy dz (20)

(the canonical 2-form with respect to theL2(S)× L2(S)× L2(Σ)× L2(Σ)-inner product). The
set

N = {(η, ω,Φ,Ψ) ∈ Xs+1 : |W (z)| < β, η(z) > −1, z ∈ [0, 2π]},

in whichW is defined by (19) is a manifold domain ofM : the pointwise constraints are valid
sinceη ∈ Hs+1

per ⊂ C(S) and it follows from the properties of the Sobolev spacesXs given in
ref. [11, Appendix A] that the same is true ofW . The results stated in ref. [11] also show that
the functionH given by (18) belongs toC∞(N,R) and thatdH[n] : N → T ∗N |n extends to an
operatordH|n : N → T ∗M |n for eachn ∈ N . The triple(M,Ω, H) is therefore a Hamiltonian
system.

It remains to compute Hamilton’s equations and to confirm that a solution to them defines
a solution of (12)–(15). Denote the Hamiltonian vector field associated with(M,Ω, H) by vH .
Recall that the pointn ∈ N belongs toD(vH) with vH |n = v|n if and only if

Ω|n(v|n, v1|n) = dH|n(v1|n)

for all tangent vectorsv1|n ∈ TM |n. Using this criterion one finds thatD(vH) is the set of
functions(η, ω,Φ,Ψ) ∈ N that satisfy the boundary conditions

Φy = 0 on y = 0, (21)

− Φy

1 + η
− ν sin θ1ηz + ν sin θ2 cos(θ1 − θ2) ηz + ν2 sin2(θ1 − θ2)

(
Φz −

ηzΦy

1 + η

)
ηzΦy

+ (Ψ− sin θ2)
W

1 + η

(
1 + ν2 sin2(θ1 − θ2)η

2
z

β2 −W 2

)1/2

= 0 ony = 1, (22)

and that Hamilton’s equations
ux = vH(u) (23)
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are given explicitly by

ηx = W

(
1 + ν2 sin2(θ1 − θ2)η

2
z

β2 −W 2

)1/2

− ν cos(θ1 − θ2) ηz, (24)

ωx =
W

(1 + η)2

(
1 + ν2 sin2(θ1 − θ2)η

2
z

β2 −W 2

)1/2 1∫
0

yΦy (Ψ− sin θ2) dy

+ αη − ν2 sin2(θ1 − θ2)

[
ηz

(
β2 −W 2

1 + ν2 sin2(θ1 − θ2)η2
z

)1/2
]

z

− 1

2
sin2 θ2 + ν(sin θ2 cos(θ1 − θ2)− sin θ1)Φz|y=1 − ν cos(θ1 − θ2)ωz

+

1∫
0

{
(Ψ− sin θ2)

2

2(1 + η)2
−

Φ2
y

2(1 + η)2
+

1

2
ν2 sin2(θ1 − θ2)

(
Φ2

z −
y2η2

zΦ
2
y

(1 + η)2

)

+ ν2 sin2(θ1 − θ2)

((
Φz −

yηzΦy

1 + η)

)
yΦy

)
z

+ cos(θ1 − θ2)
yΦy(Ψ− sin θ2)νηz

(1 + η)2

}
dy, (25)

Φx =
Ψ− sin θ2

1 + η
+
yΦyW

1 + η

(
1 + ν2 sin2(θ1 − θ2)η

2
z

β2 −W 2

)1/2

+ sin θ2 − ν cos(θ1 − θ2)Φz, (26)

Ψx = − Φyy

1 + η
− ν cos(θ1 − θ2)Ψz

+ ((yΨ)y − sin θ2)
W

1 + η

(
1 + ν2 sin2(θ1 − θ2)η

2
z

β2 −W 2

)1/2

+ ν2 sin2(θ1 − θ2)

(
yηz

(
Φz −

yηzΦy

1 + η

))
y

− ν2 sin2(θ1 − θ2)

(
(1 + η)

(
Φz −

yηzΦy

1 + η

))
z

. (27)

The results in ref. [11, Appendix A] show that the right-hand sides of equations (24)–(27) define
a smooth function fromN intoXs and that the boundary conditions (21), (22) are well defined.
Moreover, an explicit calculation shows that a solution to (24)–(27) defines a solution of (12)–
(15).

The Hamiltonian system(M,Ω, H) has the conserved quantities

H(η, ω,Φ,Ψ),

∫
S

ωηz dz +

∫
Σ

ΨΦz dy dz,

∫
Σ

Ψ dy dz,

which are associated with continuous symmetries, namely the invariance of equations (12)–
(15) under translations inx, z andφ and which are inherited by Hamilton’s equations (24)–(27).
Hamilton’s equations also inherit the discrete symmetry (16) of the hydrodynamic problem: they
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are reversible, that is the Hamiltonian vector field anticommutes with the reverserR : Xs → Xs

defined by

R(η(z), ω(z),Φ(y, z),Ψ(y, z)) = (η(−z),−ω(−z),−Φ(y,−z),Ψ(y,−z)). (28)

Hamilton’s equations have additional symmetries in the special casesθ1 = 0, θ2 = ±π/2 and
θ1 = ±π/2, θ2 = 0 identified in Section 2.1 above. In the former case Hamilton’s equations are
invariant under the reflectionS1 : Xs → Xs given by

S1(η(z), ω(z),Φ(y, z),Ψ(y, z)) = (η(−z), ω(−z),Φ(y,−z),Ψ(y,−z))

and have the additional reversibility defined byR1 : Xs → Xs, whereR1(η, ω,Φ,Ψ) =
(η,−ω,−Φ,Ψ). In the latter case Hamilton’s equations are invariant under the reflectionS2 :
Xs → Xs given by

S2(η(z), ω(z),Φ(y, z),Ψ(y, z)) = (η(−z), ω(−z),−Φ(y,−z),−Ψ(y,−z))

and have the additional reversibility defined byR2 : Xs → Xs given byR2(η, ω,Φ,Ψ) =
(η,−ω,Φ,−Ψ). Notice thatR = R1 ◦ S1 andR = R2 ◦ S2.

2.3 Centre-manifold reduction

Our strategy in finding solutions to the Hamiltonian system(M,Ω, H), and hence to the hy-
drodynamic problem (12)–(15), consists in applying a reduction principle which asserts that
(M,Ω, H) is locally equivalent to a finite-dimensional Hamiltonian system. The key result is the
following theorem, which is a parameterised, Hamiltonian version of a reduction principle for
quasilinear evolutionary equations presented by Mielke [24, Theorem 4.1] (see Buffoni, Groves
& Toland [4, Theorem 4.1]).

Theorem 1 Consider the differential equation

ux = Ku+N (u;λ), (29)

which represents Hamilton’s equations for the Hamiltonian system(M,Ωλ, Hλ). Hereu belongs
to a Hilbert spaceX , λ ∈ R` is a parameter andK : D(K) ⊂ X → X is a densely defined,
closed linear operator. RegardingD(K) as a Hilbert space equipped with the graph norm,
suppose that0 is an equilibrium point of (29) whenλ = 0 and that

(H1) The part of the spectrumσ(K) of K which lies on the imaginary axis consists of a finite
number of eigenvalues of finite multiplicity and that this part ofσ(K) is separated from
the rest ofσ(K) in the sense of Kato, so thatX admits the decompositionX = X1 ⊕ X2,
whereX1 = P(X ), X2 = (I − P)(X ) andP is the spectral projection corresponding the
purely imaginary part ofσ(K).

(H2) The operatorK2 = K|X2 satisfies the estimate

‖K2 − iaI)−1‖X2→X2 ≤
C

1 + |a|
, a ∈ R

for some constantC that is independent ofa.
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(H3) There exists a natural numbern and neighbourhoodsΛ ⊂ R` of 0 andU ⊂ D(K) of
0 such thatN is (n + 1) times continuously differentiable onU × Λ, its derivatives are
bounded and uniformly continuous onU × Λ andN(0, 0) = 0, d1N [0, 0] = 0.

Under these hypotheses there exist neighbourhoodsΛ̃ ⊂ Λ of 0 andŨ1 ⊂ U∩X1, Ũ2 ⊂ U∩X2 of
0 and a reduction functionh : Ũ1×Λ̃ → Ũ2 with the following properties. The reduction function
h is k times continuously differentiable oñU1 × Λ̃, its derivatives are bounded and uniformly
continuous onŨ1 × Λ̃ and h(0; 0) = 0, d1h[0; 0] = 0. The graphMλ

C = {u1 + h(u1;λ) ∈
Ũ1 × Ũ2 : u1 ∈ Ũ1} is a Hamiltonian centre manifold for (29), so that

(i) Mλ
C is a locally invariant manifold of (29): through every point inMλ

C there passes a
unique solution of (29) that remains onMλ

C as long as it remains iñU1 × Ũ2.

(ii) Every small bounded solutionu(x), x ∈ R of (29) that satisfies(u1(x), u2(x)) ∈ Ũ1 ×
Ũ2 lies completely inMλ

C.

(iii) Every solutionu1 : (a, b) → Ũ1 of the reduced equation

u1x = Ku1 + PN (u1 + h(u1;λ);λ) (30)

generates a solution
u(x) = u1(x) + h(u1(x);λ) (31)

of the full equation (29).

(iv) Mλ
C is a symplectic submanifold ofM and the flow determined by the Hamiltonian

system(Mλ
C,Ω

λ
C, H

λ
C), where the subscriptC denotes restriction toMλ

C, coincides with the
flow onMλ

C determined by(M,Ωλ, Hλ). The reduced equation (30) represents Hamilton’s
equations for(Mλ

C,Ω
λ
C, H

λ
C).

The next step is to write the Hamiltonian formulation of the hydrodynamic problem presented
in Section 2.2 above in a form to which Theorem 1 is applicable. Write

(α, β, θ1, θ2, ν) = (α0 + λ1, β0 + λ2, θ
0
1 + λ3, θ

0
2 + λ4, ν0 + λ5) (32)

whereα0, β0, θ0
1, θ0

2, ν0 are fixed andλj lies in a neighbourhoodΛj of the origin inR, and
consider solutions of Hamilton’s equations for(M,Ω, H) which lie in a neighbourhoodV of the
origin inXs+1. ChoosingV andΛ2 small enough so that

η(z) > −1

2
> −1, |λ2| <

β0

4
, |W (z)| < β0

2
< β0 + λ2

for all z ∈ [0, 2π], whereW is the function defined by (19), we arrive at the equation

ux = fλ(u), (33)

wherefλ : V → Xs is the smooth function defined by the right-hand sides of (24)-(27) with
α, β, θ1, θ2, ν replaced by the expressions in equation (32). Formula (33) represents Hamilton’s
equations for the Hamiltonian system(M,Ω, Hλ), whereHλ is the smooth functional defined
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upon the manifold domainV of M by equations (18) and (32); the domainD(vλ
H) of the Hamil-

tonian vector fieldvλ
H is the subset ofV specified by the boundary conditions (21), (22) with the

parameterisation (32) andvλ
H(u) = fλ(u) for eachu ∈ D(vλ

H).
The reduction procedure cannot be applied directly to (33) because of the nonlinear boundary

condition (22). This difficulty is overcome using the following change of variable which leads
to an equivalent problem in a linear space. Writeλ̃ = (λ2, λ3, λ4, λ5) andΛ̃ = Λ2 × · · · × Λ5,
and defineF : V × Λ̃ ⊂ Xs+1 × R4 → Hs+1

per (Σ) by the formula

F (η, ω,Φ,Ψ; λ̃)(y)

= −ν sin θ1y(1 + η)ηz + ν sin θ2 cos(θ1 − θ2) yηz + ν2 sin2(θ1 − θ2)yηz ((1 + η)Φz − ηzΦy)

+ yW (Ψ− sin θ2)

(
1 + ν2 sin2(θ1 − θ2)η

2
z

β2 −W 2

)1/2

,

in whichβ, θ1, θ2, ν are given by (32), so that the boundary conditions (21), (22) are equivalent
to

Φy = F (η, ω,Φ,Ψ; λ̃) on y = 0, 1. (34)

Consider the functionGλ̃ : V → Xs+1 given byGλ̃(η, ω,Φ,Ψ) = (η, ζ,Γ,Ψ), where

ζ = ω − sin(θ0
2 + λ4)

1∫
0

yΦy dy, Γ = Φ− χy

andχ ∈ Hs+3
per (Σ) is the unique solution of the elliptic boundary-value problem

χyy + χzz = F (η, ω,Φ,Ψ; λ̃) in Σ,

χ = 0 ony = 0, 1.

Notice that

Γy = Φy − χyy

= Φy + χzz − F (η, ω,Φ,Ψ; λ̃)

and sinceχzz = 0 ony = 0, 1, the boundary conditions (21), (22) are transformed into

Γy = 0 on y = 0, 1. (35)

The following lemma shows thatGλ̃ defines a valid change of variable (cf. Lemma 4 in ref. [11]).

Lemma 2

(i) For eachλ̃ ∈ Λ̃ the mappingGλ̃ is a smooth diffeomorphism from a neighbourhoodV

of 0 inXs+1 onto a neighbourhood̃V of 0 inXs+1. The mappingsGλ̃ and (Gλ̃)−1 and
their derivatives depend smoothly uponλ̃ ∈ Λ̃.

(ii) For each (u, λ̃) ∈ V × Λ̃ the operatordGλ̃[u] : Xs+1 → Xs+1 extends to an iso-

morphismd̃G
λ̃
[u] : Xs → Xs. The operators̃dG

λ̃
[u], (d̃G

λ̃
[u])−1 ∈ L(Xs, Xs) depend

smoothly upon(u, λ̃) ∈ V × Λ̃.
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A simple calculation shows that the diffeomorphismGλ̃ transforms (33) into

vx = gλ(v), (36)

wheregλ : Ṽ → Xs is the smooth vector field defined by

gλ(v) = d̃G
λ̃
[(Gλ̃)−1(v)] (fλ((Gλ̃)−1(v))).

Formula (36) represents Hamilton’s equations for the Hamiltonian system(M, Ω̃λ̃, H̃λ), where
Ω̃λ̃ andH̃λ are defined on the manifold domaiñV of M by

Ω̃λ̃|m(v1, v2) = Ω(d̃G
λ̃
[(Gλ̃)−1(m)]−1(v1), d̃G

λ̃
[(Gλ̃)−1(m)]−1(v2))

for λ̃ ∈ Λ̃, v1, v2 ∈ TM |m and

H̃λ(m) = Hλ((Gλ̃)−1(m)).

The domainD(vλ
H̃

) of the Hamiltonian vector field is the subset ofṼ given by the linear boundary
conditions (35) andvλ

H̃
(v) = gλ(v) for anyv ∈ D(vλ

H̃
).

We consider (36) as a quasilinear evolutionary equation

vx = Kv +N (v;λ) (37)

in the Hilbert spaceX = Xs to which we apply Theorem 1; hereK = dg0[0], D(K) =
{(η, ζ,Γ,Ψ) ∈ Xs+1 : Γy|y=0 = Γy|y=1 = 0} andN (u;λ) = gλ(v) − Kv, so thatK is

densely defined andN : Ṽ → X is smooth. The remaining spectral hypotheses onK are veri-
fied by studying the formal linearisation off 0 at 0, namely the operatorL : D(L) ⊂ X → X
defined by

L(η, ω,Φ,Ψ) = (η1, ω1,Φ1,Ψ1),

in which

η1 =
1

β0

ω − sin θ0
2

1∫
0

yΦy dy

− ν0 cos(θ0
1 − θ0

2)ηz,

ω1 = (α0 − sin2 θ0
2) η − ν2

0β0 sin2(θ0
1 − θ0

2)ηzz − ν0 cos(θ1 − θ2)ωz − sin θ2

∫ 1

0

Ψ dy

+ ν0(sin θ2 cos(θ1 − θ2)− sin θ1)Φz|y=1,

Φ1 = Ψ + sin θ0
2 η − ν0 cos(θ0

1 − θ0
2)Φz,

Ψ1 = −Φyy − ν2
0 sin2(θ0

1 − θ0
2)Φzz − ν0 cos(θ0

1 − θ0
2)Ψz −

sin θ0
2

β0

ω − sin θ0
2

1∫
0

yΦy dy

 ;
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the domainD(L) of L is the subspace of elements ofXs+1 that satisfy the linear boundary
conditions

Φy = 0 ony = 0,

Φy = ν0(sin θ
0
2 cos(θ0

1 − θ0
2)− sin θ1)ηz −

sin θ0
2

β0

ω − sin θ0
2

1∫
0

yΦy dy

 ony = 1.

The arguments given by Groves & Mielke [11,§3.3] show that the spectral properties ofK and
L are identical.

Lemma 3

(i) The spectrumσ(K) of K consists entirely of isolated eigenvalues of finite algebraic
multiplicity andσ(K) ∩ iR is a finite set. A complex numberσ is an eigenvalue ofK with
corresponding eigenvectors in thenth Fourier mode if and only if

(σ sin θ0
2 + inν0 sin θ0

1)
2 cos γ = (α0 − β0γ

2)γ sin γ, (38)

whereγ2 = σ2 − n2ν2
0 + 2 cos(θ0

1 − θ0
2)inν0 σ. Moreover, the setσ(K) is symmetric with

respect to the real and imaginary axis, that isσ(K) = σ(K) = −σ(K).

(ii) There exist real constantsC, q0 > 0 such that

‖(K − iqI)−1‖X→X ≤
C

|q|

for each real numberq with |q| > q0.

The above discussion shows that the reduction result in Theorem 1 may be applied at any pa-
rameter values for whichK has at least one purely imaginary eigenvalue. The Hamiltonian centre
manifoldMλ

C, which is of classk for any fixedk ∈ N, is equipped with the single coordinate
chartŨ1 ⊂ X1 and coordinate mapφ : Mλ

C → Ũ1 defined by

φ−1(u1) = u1 + h(u1;λ).

In the following calculations it is more convenient to change to the coordinate chartW̃1 =

(dG0[0])−1(Ũ1), so that̃W1 is a neighbourhood of the origin in the centre subspace of the linear
operatorL and to redefine the coordinate map by

ψ−1(w1) = w1 + ȟ(w1;λ),

whereȟ : W1 × Λ̃ → V is given by

ȟ(w1;λ) = (Gλ̃)−1
(
dG0[0]w1 + h(dG0[0]w1;λ)

)
− w1.
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In this coordinate systemMλ
C is {w1 + ȟ(w1;λ) ∈ V : w1 ∈ W1}; it lies inD(vλ

H) and defines a
centre manifold for the Hamiltonian system(M,Ω, Hλ). The reduced HamiltonianHλ

C and the
reduced 2-formΩλ

C are given by

Hλ
C(w1) = Hλ(w1 + ȟ(w1;λ)),

Ωλ
C|w1

(v1, v2) = Ω|w1+ȟ(w1;λ)(v
1 + d1ȟ[w1;λ](v1), v2 + d1ȟ[w1;λ](v2))

= Ω(v1, v2) +O(|(w1, λ)||v1||v2|),

andΩλ
C can be transformed intoΩ by a near-identity Darboux change of coordinates (cf. Groves

& Mielke [11, Theorem 4]). One can always choose a basis forW1 so thatΩ is the canonical
symplectic2-form Υ in this coordinate system (a ‘symplectic basis’); the reduction procedure
therefore delivers a finite-dimensional canonical Hamiltonian system.

3 A catalogue of bifurcation scenarios

3.1 Purely imaginary eigenvalues

According to Lemma 3(i) the purely imaginary numberiκ is an eigenvalue ofK with correspond-
ing eigenvectors in thenth Fourier mode (a ‘moden eigenvalue’) if and only if

(sin θ2 κ+ sin θ1 nν)
2 = (α+ β γ̃2) γ̃ tanh γ̃, (39)

whereγ̃2 = κ2 +n2ν2 +2 cos(θ1− θ2)nνκ (for convenience we drop the sub- and superscripts0
in this section). There is a simple connection between this equation and the classical dispersion
relation for the Euler equations (5)–(8). Clearlyσ = iκ is a moden eigenvalue ofK if and only
if the equation

Ku = iκu

has a nontrivial solutionu of the formu = uκ,neinz or equivalently if and only if the linear
equation

ux = Ku

has a nontrivial solution of the formu = uκ,ne
iκx+inz. Such a solution corresponds to a solution

of the linearised Euler equations (5)-(8) of the special form

Φ(X, Y, Z) = Φκ,n(Y )eikX+i`Z , η(X,Z) = ηκ,ne
ikX+i`Z

with
k = sin θ2 κ+ sin θ1 nν, ` = − cos θ2 κ− cos θ1 nν, (40)

and it is well known that a solution of this kind exists if and only ifk and` satisfy the classical
dispersion relation

D(k, `) = −k2 +
(
α+ β(k2 + `2)

)√
k2 + `2 tanh

√
k2 + `2 = 0. (41)

We conclude thatσ = iκ is a moden eigenvalue ofK if and only if the numbersk and` given
by equation (40) satisfyD(k, `) = 0.
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The above observation has an elegant geometric interpretation: purely imaginary eigenvalues
iκ of K correspond to intersections in the(k, `)-plane of the real branchesCdr of the dispersion
relation (41) with the linesKn, n = 0,±1,±2, . . . given in parametric form by

Kn = {(k, `) ∈ R2 : k = sin θ2 κ+ sin θ1 nν, ` = − cos θ2 κ− cos θ1 nν, κ ∈ R}. (42)

A point of intersection ofKn andD(k, `) corresponds to a purely imaginary moden eigenvalue
iκ ofK; its imaginary part is the value of the parameterκ in (42) at the point of intersection. The
geometric multiplicity of the eigenvalueiκ is given by the number of distinct lines in the family
{Kn} which intersectCdr at this parameter value, and a tangent intersection betweenKn and
Cdr indicates that each eigenvector in moden has an associated Jordan chain of length2.

The real branches of the dispersion relation (41) have been studied by Haragus & Pego [14].
They are curves in the(k, `)-plane given by

Cdr = {(k, `) ∈ R2 : k = ±
√

(α+ βa2)a tanh a, l = ±
√
a2 − (α+ βa2)a tanh a, a ∈ R},

whose shape is shown in Figure 2(a) (insets) in the indicated regions of the(β, α)-parameter
plane. Notice thatCdr is symmetric with respect to thek- and`-axes (a consequence of the dis-
crete symmetries (9), (10) of the Euler equations) and always contains the point(k, `) = (0, 0)
(a consequence of the invarianceφ→ φ+ c in the Euler equations); the eigenvalue correspond-
ing to this intersection betweenCdr andK0 is later eliminated by a symmetry reduction and is
therefore ignored in the discussion in the remainder of this section. We find thatCdr = {0} in
region I. In region II the equationD(k, 0) = 0 has one pair of simple nonzero roots±kc. The
real branches of the dispersion relation have the limiting behaviour

`2 ∼ α1(k − kc), α1 =
2kc (sinh(2kc)− 2kc − 2βkc tanh kc sinh(2kc))

sinh(2kc) + 2kc + 2βkc tanh kc sinh(2kc)
(43)

ask → kc; in a neighbourhood of(0, 0) they have the limiting behaviour

`2 ∼ (α−1 − 1)k2 +

(
1

3
− β

α

)
α−2k4 (44)

ask → 0 and therefore make angles±φα = arctan−1(α−1 − 1)1/2 with thek-axis at the origin.
Notice the qualitative difference in the shape ofCdr according to the size ofβ/α: for β/α > 1/3
the portionC+

dr of Cdr in the positive quadrant is concave, but a point of inflection emerges from
the origin asβ/α is decreased through this critical value, andC+

dr is convex between the origin
and this point of inflection.

In region III the equationD(k, 0) = 0 has two pairs of simple roots±k1
c , ±k2

c , and as
k → kj

c the real branches of the dispersion relation have the limiting behavior in (43). Passing
from region II into region III through the line{α = 1}, one finds that a second point of inflection
emerges from the origin, andC+

dr is concave to the left of the new point of inflection, convex
between the two points of inflection and concave to the right of the old point of inflection. For
each fixedβ the two points of inflection merge and disappear asα is increased, so thatC+

dr is
again concave. The curvesΓ and{α = 1} separating the three regions I, II and III consist of
those values of(β, α) for which the equationD(k, 0) = 0 has double roots, namelyk = ±k∗ 6= 0
for (β, α) ∈ Γ andk = 0 for α = 1. Solutionsk of D(k, 0) = 0 correspond to purely imaginary
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eigenvaluesik of the linear operator in the spatial dynamics formulation of the two-dimensional
steady water-wave problem, so thatΓ ∪ {α = 1} is the set of parameter values associated with
changes in the number of such eigenvalues (see Kirchgässner [20]); these parameter values are
associated with bifurcation phenomena in the two-dimensional steady water-wave problem.

For givenν, θ1 andθ2 the linesKn in the (k, `)-plane are parallel, equidistant and form an
angleθ2 with the positive`-axis. They pass through the pointsPn = (sin θ1 nν,− cos θ1 nν),
n ∈ Z on the line

L = {(k, `) ∈ R2 : k = sin θ1 µ, ` = − cos θ1 µ, µ ∈ R}

which passes through the origin and makes an angleθ1 with the positivè -axis (see Figure 2(b)).
Observe thatCdr depends only uponα andβ and the number of points in the setK0 ∩ Cdr

depends only uponα, β andθ2, which determines the slope of each lineKn. Furthermore, for
fixedα, β andθ2 the number of points in the setsKn ∩Cdr, n = ±1,±2, . . . depends only upon
ν, which determines the distance between the linesKn. At each fixed point of(β, α) parameter
space the number of purely imaginary eigenvalues of the linear operatorK therefore depends
upon the two parametersθ2 andν; the third parameterθ1, which specifies the slope of the lineL,
influences only the values of these eigenvalues and their relative positions on the imaginary axis:
the imaginary part of a purely imaginary eigenvalue corresponding to an intersection ofKn and
Cdr is the value ofK0 in the (K0, L)-coordinate system at the intersection (the signed distance
between the intersection and the pointPn). Finally, notice that the setsKn ∩Cdr andK−n ∩Cdr

have the same cardinality: the purely imaginary numberiκ is a moden eigenvalue if and only if
the purely imaginary number−iκ is a mode−n eigenvalue.

3.2 Bifurcation scenarios involving mode0 eigenvalues

According to Figure 2 it is, at each point in regions II and III of(β, α) parameter space, possible
to chooseθ2 so that the lineK0 intersectsCdr in at least two nonzero points in the(k, `)-plane;
these intersections imply that the linear operatorK has a plus-minus pair of purely imaginary
eigenvalues. Moreover, for each fixed value of(β, α) it is possible to chooseν large enough so
that no other lineKn, n 6= 0 intersectsCdr, so that the only purely imaginary eigenvalues are
mode0 eigenvalues. We are particularly interested in parameter values at which the number of
purely imaginary eigenvalues changes, since these points are associated with nonlinear bifurca-
tion phenomena. In this section we catalogue possible bifurcation scenarios of this kind which
involve only mode0 eigenvalues by fixing the values of the physical parameters(β, α) (in region
II or III), choosing a value ofν which ensures thatKn, n 6= 0 does not intersectCdr and varying
the angleθ2. The result is shown in Figure 4.

The basic bifurcation scenario in region III is aHamiltonian-Hopf bifurcation(Figure 4(a)),
in which a plus-minus pair of geometrically simple purely imaginary eigenvalues, each with
a Jordan chain of length2, are created whenK0 is tangent toCdr; their magnitude is given
by the distance along the linesK0 between the tangency and the originL. Figure 4(a) shows
that a Hamiltonian-Hopf bifurcation can also occur at certain points in region II forβ/α < 1/3.
(Notice that, althoughC+

dr is not always concave, for fixed(β, α) the lineK0 is tangent toCdr at a
pair of nonzero points for at most one value ofθ2.) In region II an additional bifurcation scenario
occurs when the lineK0 is tangent toCdr at the origin, that is whenθ2 = ±(π/2± φα). Here a
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(a) The number of purely imaginary mode0 eigenvalues increases from zero to four in a
Hamiltonian-Hopf bifurcation asK0 becomes tangent toCdr at two nonzero points.
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(b) The number of purely imaginary mode0 eigenvalues increases from zero to two in a Hamil-
tonian02-resonance asK0 becomes tangent toCdr at the origin.
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(c) The number of purely imaginary mode0 eigenvalues increases from two to four in a Hamil-
tonian02iω-resonance asK0 becomes tangent toCdr at the origin.

Figure 4: Bifurcation scenarios involving only mode0 eigenvalues; the value of(β, α) is fixed
and θ2 is varied. The solid dots represent simple eigenvalues while the hollow dots represent
geometrically simple eigenvalues whose eigenvectors have associated Jordan chains of length2.

23



α

β

sin2θ2

sin2θ2
1
3

ΓΓθ2

1

1
3

Figure 5: Behaviour of mode0 eigenvalues in the(β, α)-plane for a fixed value ofθ2. Solid and
dashed curves denote respectively bifurcation curves and curves where the qualitative properties
ofCdr changes.

geometrically simple zero eigenvalue with a Jordan chain of length2 is created in aHamiltonian
02 resonance(β/α > 1/3, Figure 4(b)) or in aHamiltonian02iω resonance(β/α < 1/3, Figure
4(c)).

It is also instructive to examine the complementary point of view in which one fixesθ2 and
looks for values of(β, α) at which bifurcations occur. Figure 5 shows the behaviour of mode0
eigenvalues at points in(β, α) parameter space for fixedθ2. In particular, the number of purely
imaginary mode0 eigenvalues changes at points on the line{α = sin2 θ2}, where two real
eigenvalues become purely imaginary by passing through the origin, and on the curveΓθ2 given
in parametric form by

Γθ2 =

{
(β, α) =

(
− sin2 θ2

2 sinh2 κ
+

sin2 θ2

2κ tanhκ
,
κ2 sin2 θ2

2 sinh2 κ
+
κ sin2 θ2

2 tanhκ

)
: κ ∈ [0,∞)

}
,

where four complex eigenvalues become purely imaginary without passing through the origin.
Choosing(β, α) on one of the curves{α = sin2 θ2, β > 1/3}, {α = sin2 θ2, β > 1/3} or Γθ2

and choosingν sufficiently large (depending upon(β, α)), one obtains respectively a02 reso-
nance, a02iω resonance and a Hamiltonian-Hopf bifurcation point. In the special caseθ1 = 0,
θ2 = ±π/2 (Z-independent waves), we recover the bifurcation diagram for the two-dimensional
steady water-wave problem presented by Kirchgässner [20].
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ν=νc ν=νcν>νc ν<νc

Case IIa: the number of purely imaginary eigenvalues increases from zero to four in a
Hamiltonian-Hopf bifurcation.

k

l

ν=νc ν=νcν>νc ν<νc

Case IIb: the number of purely imaginary eigenvalues increases from two to six in a Hamiltonian
(iω0)

2iω1 resonance.

ν=νc ν=νcν>νc ν<νc

k

l

Case IIc: the number of purely imaginary eigenvalues increases from four to eight in a Hamilto-
nian (iω0)

2iω1iω2 resonance.

Figure 6: Basic bifurcation scenarios in region II. The diagrams on the left show the linesK0,
K1,K−1 (solid) andL (dashed) and the curveCdr in the(k, `)-plane. The diagrams on the right
show the eigenvalues of the linear operatorK; the solid dots represent simple eigenvalues while
the hollow dots represent geometrically simple eigenvalues whose eigenvectors have associated
Jordan chains of length2.
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3.3 Further bifurcation scenarios

In this section we identify bifurcation scenarios by fixing the values of the physical parameters
(β, α) (in region II or III) and the anglesθ1, θ2 and varying the frequencyν: by decreasing a
large initial value ofν one finds a sequence of critical frequencies

ν = νc,
νc

2
,
νc

3
, . . . ,

at which the pairs of lines(K1, K−1), (K2, K−2), (K3, K−3), . . . touch the dispersion curveCdr

in the(k, `)-plane for the first time. In particular, we catalogue the bifurcation scenarios in which
only the first pair(K1, K−1) of lines is involved.

There are three basic bifurcation scenarios in region II, both of which occur at the critical
valueν = νc, when the linesK1 andK−1 are tangent toCdr in the (k, `)-plane (Figure 6). A
plus-minus pair of geometrically simple purely imaginary eigenvalues, each with a Jordan chain
of length2, are created atν = νc; their magnitude is given by the distance along the linesK1 and
K−1 between the tangency and the lineL. The cases are distinguished according to whether the
lineK0 intersectsCdr in zero, two or four points. In case IIa the lineK0 does not intersectCdr,
and hence there are no further purely imaginary eigenvalues (a Hamiltonian-Hopf bifurcation); in
case IIb the lineK0 intersectsCdr in two nonzero points, so that there is an additional plus-minus
pair of simple purely imaginary eigenvalues (a Hamiltonian(iω0)

2iω1 resonance); and in case IIc

the lineK0 intersectsCdr in four nonzero points, so that there are two additional plus-minus pairs
of simple purely imaginary eigenvalues (a Hamiltonian(iω0)

2iω1iω2 resonance). The transitions
between the above cases occur when the mode0 eigenvalues undergo one of the bifurcations
described in Section 3.2 above. Turning to region III, notice that there are two basic bifurcation
scenarios, namely those described above for cases IIa and IIc, which will henceforth be termed
cases IIIa and IIIc.

The relative position of the eigenvalues on the imaginary axis at bifurcation points is deter-
mined by the value ofθ1. In particular, there are special values ofθ1 for which purely imaginary
eigenvalues with eigenvectors in different Fourier modes have the same value. Although the ge-
ometric multiplicity of the new eigenvalue is increased in this situation, the overall structure of
the central subspace remains the same: eigenvectors in different Fourier modes remain linearly
independent and the existence and length of Jordan chains is unaffected. Figure 7(a) shows an
example of case IIa which is degenerate in the above sense. Whenever the lineL passes through
the points of intersection ofK1 with Cdr andK−1 with Cdr the values of the purely eigenvalues
with eigenvectors in modes1 and−1 are both zero, so that zero is now a geometrically double
eigenvalue; each eigenvector has a Jordan chain of length2. A further degeneracy occurs when
L additionally coincides with thek-axis (Figure 7(b)), so thatθ1 = ±π/2, θ2 = 0. This special
case, in which all eigenvalues are geometrically double, was studied in detail by Groves [10] and
Haragus & Kirchg̈assner [13]. A degeneracy analogous to that shown in Figure 7(a) also occurs
in cases IIb and IIc wheneverL passes through one of the points of intersection ofK1 with Cdr

andK−1 with Cdr; a new geometrically double zero eigenvalue is created. In general values of
θ1 for which theK0 coordinates of two intersections of{Kn} andCdr in the(K0, L)-coordinate
system coincide lead to plus-minus pairs of geometrically double purely imaginary eigenvalues.

Decreasingν further, one finds in cases IIb, III a and IIIc that there is a second critical value
of ν at whichK1 andK−1 become tangent toCdr; the resulting bifurcation scenario does not
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ν=νc ν=νcν>νc ν<νc

(a) A degenerate version of case IIa in which the lineL passes through the points of intersec-
tion ofK1 with Cdr andK−1 with Cdr at criticality: four complex eigenvalues become purely
imaginary by passing through the origin.

k

l

x2x2 x2 x2

x2

ν=νc ν=νcν>νc ν<νc

(b) A further degeneracy arises in case (a) above when the lineL coincides with thek-axis
(θ1 = ±π/2, θ2 = 0): two geometrically double real eigenvalues become purely imaginary by
passing through the origin.

Figure 7: Degenerate versions of case IIa. The geometric multiplicity of the eigenvalues is
shown; those depicted as solid dots are semisimple and those depicted as hollow dots have
corresponding eigenvectors with Jordan chains of length2.

involveKn for |n| ≥ 2 provided that the second critical value ofν is greater thanνc/2. This
situation is illustrated in Figure 8(a) for case IIIa, where the number of purely imaginary eigen-
values decreases from four to zero in a Hamiltonian-Hopf bifurcation, and in Figure 8(b) for
case IIIc, where the number of purely imaginary eigenvalues increases from eight to twelve in
a Hamiltonian(iω0)

2iω1iω2iω3iω4 resonance. Notice that the two tangencies in case IIIc occur
simultaneously atν = νc wheneverK0 coincides with thek-axis (Figure 8(c)); at criticality
we have four simple purely imaginary eigenvalues accompanied by two pairs of geometrically
simple eigenvalues whose eigenvectors (in modes±1) have Jordan chains of length 2 (a Hamil-
tonian(iω0)

2(iω1)
2iω2iω3 resonance). Finally, a degenerate version of this bifurcation scenario

occurs whenL additionally coincides with thè-axis (Figure 8(d)), so thatθ1 = 0, θ2 = ±π/2.
This special case, in which all eigenvalues are geometrically double, was studied in detail by
Groves & Mielke [11]. (The case IIb is analogous to case IIIc; there are merely two fewer purely
imaginary eigenvalues.) The above discussion relates to the ‘nondegenerate’ case whenC+

dr is
concave; the presence of points of inflection leads to further values ofν at whichK1 andK−1

are tangent toCdr and hence to further bifurcation scenarios which are catalogued similarly.
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(a) The Hamiltonian-Hopf bifurcation in case IIIa may be followed by a further Hamiltonian-
Hopf bifurcation asν is decreased.
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(b) The Hamiltonian(iω0)
2iω1iω2 resonance in case IIIc may be followed by a Hamiltonian

(iω0)
2iω1iω2iω3iω4 resonance asν is decreased.

k

l

(c) The bifurcations in case IIIc and (a) above occur simultaneously whenK0 coincides with the
k-axis: the number of purely imaginary eigenvalues increases from four to twelve in a Hamilto-
nian (iω0)

2(iω1)
2iω2iω3 resonance.
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}

(d) A denegerate case of (c) above occurs when in additionL coincides with thè-axis (θ1 = 0,
θ2 = ±π/2): two geometrically double complex eigenvalues become purely imaginary without
passing through the origin.

Figure 8: Further bifurcation scenarios in region III. The geometric multiplicity of the eigenval-
ues is shown; those depicted as solid dots are semisimple and those depicted as hollow dots have
corresponding eigenvectors with Jordan chains of length2.
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Figure 9: Bifurcation curves in(β, α) parameter space for (a)θ2 = ±π/2 and (b)θ2 = 0.

Let us now turn to the complementary point of view in which one fixes the anglesθ1, θ2 and
frequencyν and looks for values of(β, α) at which the number of purely imaginary eigenvalues
ofK changes that is, values of(β, α) for whichκ is a double root of equation (39). One finds that
K has a plus-minus pair of purely imaginary eigenvaluesiκ (moden) and−iκ (mode−n), each
with an associated Jordan chain of length2, at each point of the curveCn in (β, α) parameter
space given in parametric form by the formulae

β =
coth Ω̃ sin θ2(κ sin θ2 + nν sin θ1)

Ω̃(κ+ nν cos(θ1 − θ2))
− (coth Ω̃ + Ω̃ csch2Ω̃)(κ sin θ2 + nν sin θ1)

2

2Ω̃3
,

α =
(3 coth Ω̃ + Ω̃ csch2Ω̃)(κ sin θ2 + nν sin θ1)

2

2Ω̃
− Ω̃ coth Ω̃ sin θ2(κ sin θ2 + nν sin θ1)

κ+ nν cos(θ1 − θ2)
;

clearlyC0 is the curveΓθ2 in Figure 5. Observe thatCn is the locus in(β, α) parameter space
of those parameter values at whichKn andK−n are tangent toCdr in the(k, `) plane. It follows
from the above discussion that, except in the exceptional casesθ2 = 0 andθ2 = ±π/2, the curve
Cn has at least two branches and may self-intersect in those regions of(β, α) parameter space
for whichC+

dr is not convex; furthermore each pairCn andCm typically also intersect in several
points. Whenθ2 = ±π/2 eachCn consists of one branch and the curvesCn are well ordered in
the(β, α) plane,Cn+1 lying to the left ofCn (see Figure 9(a)). In the further special caseθ1 = 0,
θ2 = ±π/2 the moden and mode−n eigenvalues forn 6= 0 coincide to form geometrically
double eigenvalues; this case was investigated in detail by Groves & Mielke [11]. Whenθ2 = 0
each bifurcation clearly occurs at` = 0 in the (k, `)-plane, so thatκ = −nν cos θ1 and iκ is
always a double root of equation (39). It follows thatCn is the straight line

(α+ βn2ν2 sin2 θ1) tanh(nν sin θ1) = nν sin θ1,

which connects a point(βn, 0) on theβ-axis with a point(0, αn) on theα-axis, whereβ1 > β2 >
. . . andα1 < α2 < . . ., so that every pair of curves(Cn, Cm), n < m intersect in precisely one
pointPnm (see Figure 9(b)). In the further special caseθ1 = ±π/2, θ2 = 0 the moden and mode
−n eigenvalues forn 6= 0 again coincide to form geometrically double eigenvalues; this case
was investigated in detail by Groves [10] and Haragus & Kirchgässner [13].
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4 Existence theories for oblique waves

4.1 Coordinates on the centre manifold

We begin by choosing a symplectic basis forX1 consisting of generalised eigenvectors ofL. The
operator always has a zero eigenvalue with eigenvectorv0 = (0, 0, 1, 0)T. Direct calculations
show that this eigenvector has a Jordan chain of length2 if α0 6= sin2 θ2, of length4 if α0 =
sin2 θ2, β0 6= sin2 θ2/3 and of length6 if α0 = sin2 θ2, β0 = sin2 θ2/3. Starting from this Jordan
chain, one can find a basis{e1, . . . , en, f1, . . . , fn} for E0 consisting of generalised eigenvectors
of Ls such thatΩ(ei, fi) = 1 and the symplectic product of any other combination of basis
vectors is zero. HereE0 is the generalised eigenspace corresponding to the zero eigenvalue
andn is 1, 2 or 3 as appropriate. Notice that it is always possible to choose eithere1 or f1 to
be a scalar multiple ofv0. The real coordinatesqi, pi in the ei andfi directions are canonical
coordinates forE0 and the action of the reverserR on this generalised eigenspace is given by
either(q, p) 7→ (−q, p) or (q, p) 7→ (q,−p).

Any other purely imaginary mode0 eigenvalues occur in pairs±iq and there is an eigenvector

e0q =


i sinh q

sin θ2

cosh q sin θ2 − sin θ2
sinh q

q
− βq sinh q

sin θ2

cosh qy
iq cosh qy − i sinh q

 , (45)

such thatLe0q = iqe0q, Lē
0
q = −iqē0q. There is one such pair of eigenvalues whenα0 < sin2 θ2,

and two pairs±iq1, ±iq2 exist whenα0 > sin2 θ2 and (β0, α0) lies to the left of the curve
Γθ2 (see Section 3.2 above). In the latter case the two pairs of purely imaginary eigenvalues
have opposite Krein signature since they are created in a Hamiltonian-Hopf bifurcation atΓθ2 (a
direct calculation shows that the pair of lesser modulus has the negative Krein signature). When
(β0, α0) 6∈ Γθ2 one can normalisee0q in such a way thatΩ(e0q, ē

0
q) = ±i, so that{e0q, ē0q} is a

symplectic basis forEiq ⊕E−iq. Canonical coordinates forEiq ⊕E−iq are given by the complex
coordinatesC, C̄ in the e0q, ē

0
q directions, and the action of the reverserR on Eiq ⊕ E−iq is

C 7→ C̄. When(β0, α0) ∈ Γθ2 there is a generalised eigenvector

f 0
q =



cosh q

sin θ2
i

q
cosh q

(
βq2

sin θ2

+ sin θ2

)
+

i

q2
sinh q

(
βq2

sin θ2

− (1 + q2) sin θ2

)
−iy sinh qy

− cosh q + cosh qy + qy sinh qy

 ,

such that(L − iqI)f 0
q = e0q, (L + iqI)f̄ 0

q = ē0q. After normalisinge0q and modifyingf 0
q by

the addition of a suitable multiple ofe0q if necessary, one finds that{e0q, f0
q , ē

0
q, f̄

0
q } is a basis for

Eiq ⊕ E−iq such thatΩ(e0q, f̄
0
q ) = 1, Ω(f 0

q , ē
0
q) = −1 and the symplectic product of any other

combination of basis vectors is zero. The complex coordinatesA, B in the e andf directions
are canonical coordinates forEiq ⊕ E−iq, the action of the reverserR on this space is(A,B) 7→
(Ā,−B̄).
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Purely imaginary eigenvalues in higher Fourier modes occur in pairs±is, where

Len
s einz = isen

s einz, Lēn
s e−inz = −isēn

s e−inz.

Each such pair±is1 is typically created together with a partner pair±is2 of opposite Krein
signature in a1 : −1 resonance at a point of the curveCn (see Section 3.3 above). Of course
for fixedα0, β0, ν, θ2 there are special values ofθ1 for which s1 = s2 (a semisimple resonance)
or one ofs1, s2 vanishes, the Krein signature of±is1 or±is2 thereby changing in a semisimple
resonance. Furthermore the pair±iκ of purely imaginary eigenvalues in the1 : −1 resonance
giving rise to±is1,±is2 may coincide in the origin (cf. Figure 7(a)), be geometrically double (cf.
Figure 8(d)) or indeed both (cf. Figure 7(b)). Away from1 : −1 resonances we can normalise
the eigenvectors corresponding to the eigenvalues±is in such a way thatΩ(en

s , ē
n
s ) = ±i, so

that {en
s einz, ēn

s e−inz} is a symplectic basis forEis ⊕ E−is; canonical coordinates are given by
the complex coordinatesCn, C̄n in the directions of the symplectic basis, and the action of the
reverserR isCn 7→ C̄n. At a 1 : −1 resonance involving the eigenvalues±is we find that there
are generalised eigenvectors such that

(L− isI)fn
s einz = en

s einz, (L+ isI)f̄n
s e−inz = ēn

s e−inz.

The usual normalisation yieldsΩ(en
s , f̄

n
s ) = 1, Ω(fn

s , ē
n
s ) = −1 and the symplectic product of

any other combination of basis vectors is zero. The complex coordinatesAn, Bn in theen
s and

fn
s directions are canonical coordinates forEis ⊕ E−is and the action of the reverserR on this

space is(An, Bn) 7→ (Ān,−B̄n).
Let us now turn briefly to the special casesθ1 = 0, θ2 = ±π/2 andθ1 = ±π/2, θ2 = 0

in which all eigenvalues are geometrically double and Hamilton’s equations have the additional
symmetryS1 or S2. Focusing upon pairs±is of purely imaginary eigenvalues not involved in
1 : −1 resonances, we find in the former case that

Len
s cosnz = isen

s cosnz, Lēn
s cosnz = −isēn

s cosnz,

Len
s sinnz = isen

s sinnz, Lēn
s sinnz = −isēn

s sinnz

so that{en
s cosnz, ēn

s cosnz, en
s sinnz, ēn

s sinnz} is a symplectic basis forEis ⊕ E−is; canoni-
cal coordinates are given by the complex coordinatesC1, C̄1, C2, C̄2 in the directions of the
symplectic basis, and the actions of the reverserR and reflectorS1 are respectively(C1, C2) 7→
(C̄1, C̄2) and(C1

s , C
2
s ) 7→ (C1

s ,−C2
s ). In the latter case we find thatLvs,n

+ = isvs,n
+ , Lv̄s,n

+ =
−isv̄s,n

+ , S2v
s,n
+ = vs,n

+ andLvs,n
− = isvs,n

− , Lv̄s,n
− = −is̄vs,n

− , S2v
s,n
− = −vs,n

− , and these eigenvec-
tors can be normalised so that

Ω(vs,n
+ , v̄s,n

+ ) = Ω(vs,n
− , v̄s,n

− ) = −i,

so that both pairsis of eigenvalues have positive Krein signature (see Section 4.2 below). Clearly
one finds that(vs,n

+ , v̄s,n
+ , vs,n

− , v̄s,n
− ) is a symplectic basis forEis ⊕ E−is; canonical coordinates

are given by the complex coordinatesC1, C̄1, C2, C̄2 in the directions of the symplectic basis,
and the actions of the reverserR and reflectorS2 are respectively(C1, C2) 7→ (C̄1, C̄2) and
(C1, C2) 7→ (C1,−C2). (It is no contradiction that two pairs±is1, ±is2 of imaginary eigen-
values with opposite Krein signature are created in a1 : −1 resonance at points of the lineCn
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whenθ2 = 0, θ1 6= ±π/2. Upon varyingθ1 to ±π/2, one finds that the two purely imaginary
eigenvalues of lesser magnitude pass through the origin in a semisimple resonance, thus chang-
ing their Krein signature, and then increase their magnitude to coincide with the other pair. This
behaviour is readily predicted by varying the angleθ1 in Figure 7(b) forν ≤ νc.)

Observe thatΩ is the canonical symplectic2-form Υ in the coordinate system introduced
above, and according to the remarks at the end of Section 2.3 it is, after a near identity change of
variables, convenient to study the centre manifold in this coordinate system. The subspace

T = {An = Bn = Cn = 0}

ofX1 is important in the following theory: it consists ofz-independent vectors and is an invariant
subspace for the reduced dynamics. Note also that the actionΦ 7→ Φ+ c of the translation group
onX1 is given by eitherq1 7→ q1 + c or p1 7→ p1 + c. The centre-manifold reduction procedure
preserves reversibility and symmetries, so that the action of the reverserR upon the coordinates
for W̃1 introduced above correctly describes the reversibility of(Mλ

C ,Υ, H̃
λ), for whichT is an

invariant subspace. The translation invariance inΦ is reflected in the fact that eitherq1 or p1 is
always cyclic; the conjugate variable is a conserved quantity (which will be set to zero in the
following analysis), and the dimension of the system of equations can always be reduced by two.

It remains to find solutions of the reduced equations on the centre manifold which correspond
to three-dimensional travelling water waves of interest. This task is undertaken in Sections 4.2
and 4.3 below, where we take advantage of the Hamiltonian structure of the reduced equations
to find solutions by applying available existence theories for general classes of Hamiltonian
systems.

4.2 Periodic waves

A 2π/κ-periodic solution of the reduced equations on the centre manifold corresponds to a dou-
bly periodic travelling water wave which is2π/κ-periodic inx and2π/ν-periodic inz. Such
solutions may be found by applying an appropriate version of the Lyapunov centre theorem to
the reduced equations, which constitute Hamilton’s equations for a finite-dimensional Hamilto-
nian system. The number and character of these solutions therefore depends crucially upon the
purely imaginary eigenvalues of the original hydrodynamic problem.

Let us begin by examiningz-independent solutions of the water-wave problem, so that the
reduction procedure involves only mode0 quantities and the centre manifold lies in the subspace
T . A 2π/κ-periodic solution of the reduced equations in this case corresponds to a travelling
water wave which is2π/κ-periodic inx and independent ofz; a wave of this kind is sketched
in Figure 3. The behaviour of the mode0 eigenvalues is described comprehensively in Section
3.2 above; in particular Figure 4 shows that the reduced Hamiltonian system has one pair±iq
of purely imaginary eigenvalues whenα < sin2 θ2 and two pairs±iq1, ±iq2 whenα > sin2 θ2

and(β, α) lies to the left of the curveΓθ2 . A direct calculation shows thatq2/q1 is equal to the
positive integerk ≥ 2 when(β, α) lies on the curveRk given in parametric form by

β =
sin2 θ2

(1− k2)q tanh q
− k sin2 θ2

q(1− k2) tanh kq
,

α = − k2q sin2 θ2

(1− k2) tanh q
+

qk sin2 θ2

(1− k2) tanh kq
;
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1
3

Figure 10: The two pairs of purely imaginary mode 0 eigenvalues to the left ofΓθ2 and above
{α = sin2 θ2} lie in −1 : k resonance at points of the curveRk.

these curves are sketched in Figure 10. The following result is obtained by a direct application
of the classical nonresonant Lyapunov centre theorem (e.g. see Ambrosetti & Prodi [2, Chapter
7, Theorem 3.4]).

Theorem 4

(i) Suppose thatα < sin2 θ2. The reduced equations on the centre manifold admit a peri-
odic solution on the energy surface{H̃C = ε} for each sufficiently small value ofε > 0.

(ii) Suppose thatα > sin2 θ2, that(β, α) lies to the left ofΓθ2 and that(β, α) 6∈ Rk for any
k. The reduced equations on the centre manifold admit two geometrically distinct periodic
orbits on the energy surface{H̃C = ε} for each sufficiently small value ofε > 0.

The periodic solutions identified above correspond to travelling water waves which are periodic
in x and independent ofz.

The eigenvalues±is1, ±is2 are created in a1 : −1 resonance at points of the curveΓθ2 and
therefore have opposite Krein signature. A direct calculation shows that the Krein signature of
the pair of lesser magnitude is negative, so that a−1 : k eigenvalue resonance takes place at
points of the curveRk. This situation, in which the quadratic part of the Hamiltonian is not
positive definite, was examined by Schmidt [30] and Duistermaat [9]. The Schmidt-Duistermaat
theory is an existence theory for small-amplitude periodic solutions of two-degree-of-freedom
Hamiltonian systems with two pairs of imaginary eigenvalues in1 : k or 1 : −k resonance,
and the resonant eigenvalues±iq, ±ikq are also allowed to depend upon a detuning parameter
µ which takes them out of resonance forµ 6= 0. The theory is based upon a Lyapunov-Schmidt
reduction (Schmidt) and singularity theory (Duistermaat), and is in essence a persistence result
for periodic solutions of the fourth-order Birkhoff normal form associated with the resonance.

Turning to the present water-wave problem, let us introduce a detuning parameter by choos-
ing (β0, α0) ∈ Rk and writingα = α0 +µ and carry out the centre-manifold reduction procedure
using the coordinate system described in Section 4.1 above. The Birkhoff normal-form theory
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(a) The−1 : 4 resonance:µ > 0 (left),µ = 0 (centre),µ < 0 (right).
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(c) The−1 : 2 resonance:µ 6= 0 (left),µ = 0 (right).

Figure 11: Schmidt-Duistermaat bifurcation diagrams for(β0, α0) ∈ Rk, α = α0 + µ; each
point on a solid line represents a periodic solution. The symbolsPs, Pl denote the short and
long period waves associated with the (nonresonant) Lyapunov centre theorem andr1, r2 are
polar coordinates along the (nonresonant) Lyapunov manifolds.
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states that there is a near-identity, analytic, symplectic change of variables which transforms the
Hamiltonian in the reduced Hamiltonian system into

H = −q|C1|2+kq|C2|2+
1

2
c1|C1|4+c2|C1|2|C2|2+

1

2
c3|C2|4+O(|µ||(C1, C2)|2)+O(|C1, C2)|5)

(46)
for the−1 : k resonance,k ≥ 4, into

H = −q|C1|2 + 3q|C2|2 + c4C
3
1 C̄2 + c̄4C̄

3
1C2 +

1

2
c1|C1|4 + c2|C1|2|C2|2 +

1

2
c3|C2|4

+O(|µ||(C1, C2)|2) +O(|C1, C2)|5) (47)

for the−1 : 3 resonance and into

H = −q|C1|2 + 2q|C2|2 + c4C
2
1 C̄2 + c̄4C̄

2
1C2 +

1

2
c1|C1|4 + c2|C1|2|C2|2 +

1

2
c3|C2|4

+O(|µ||(C1, C2)|2) +O(|C1, C2)|5). (48)

for the−1 : 2 resonance. The hypotheses in the Schmidt-Duistermaat theory take the form
of conditions on the real coefficientsc1, c2, c3; notice however that it is necessary to convert
the−1 : k resonances here into1 : −k resonances to apply the theory directly (for example
using the transformationz1 = iC̄1, z2 = iC̄2, which is a symplectic change of variable with
multiplier−1). The coefficientsc1, c2, c3 are efficiently calculated using a procedure explained
in detail by Groves & Mielke [11, Appendix B] and are stated in Appendix A of the present
paper. The Schmidt-Duistermaat bifurcation diagrams for small-amplitude periodic solutions
near the−1 : k resonances are given in Figure 11. In the special caseθ1 = 0, θ2 = π/2 (that is,
two-dimensional travelling water waves) periodic waves associated with the−1 : 2 resonance
are referred to as ‘Wilton ripples’ (Wilton [33]) and have been investigated using a Lyapunov-
Schmidt reduction of a formulation of the two-dimensional travelling water-wave problem as an
integral equation by Jones [18]; his results are recovered and extended in Figure 11(c). Of course
the results presented above all apply to the two-dimensional problem and yield results which are
also novel in this special case.

Let us now turn to the general case in which eigenvalues associated with higher Fourier
modes are also involved. A procedure for identifying all purely imaginary eigenvalues is ex-
plained in detail in Section 3.3 above, where in particular a full catalogue of situations involving
only mode0, mode1 and mode−1 purely imaginary eigenvalues is given. In principle periodic
solutions of the reduced equations, corresponding to doubly periodic travelling water waves, can
be found by applying the Lyapunov centre theorem. There are, however, many choices of pa-
rameters for which eigenvalues are in resonance, and these resonances can involve eigenvalue
pairs of equal or opposite Krein signatures. The following theorem is a representative application
of the Lyapunov centre theorem to periodic solutions controlled by mode±1 purely imaginary
eigenvalues. It has the character of an ‘inverse’ result in which the fundamental domain of a
doubly periodic surface wave is specified and values of the physical parametersα andβ are
found which guarantee the existence of the desired wave, an example of which is sketched in
Figure 3. The parameters are selected so that±iκ are mode±1 eigenvalues which are not in
nonsemisimple resonance with any other mode±1 eigenvalues or in semisimple resonance with
eigenvalues in any of the other Fourier modes.

35



Theorem 5 Choose anglesθ1, θ2 and frequenciesκ andν in respectivelyx andz. For any pair
(β, α) on the line

α+ γ̃2β =
(sin θ2κ+ sin θ1ν)

2

γ̃ tanh γ̃
,

whereγ̃2 = κ2 + ν2 + 2 cos(θ1− θ2)νκ, and which does not belong to the curveC1 or any of the
lines

α+ γ̃2
m,nβ =

(m sin θ2κ+ n sin θ1ν)
2

γ̃m,n tanh Ω̃m,n

, (m,n) ∈ N0 × N0 \ {(1, 1)},

whereγ̃2
m,n = m2κ2 +n2ν2 +2 cos(θ1−θ2)mnνκ, the reduced equations on the centre manifold

possess a periodic orbit on the energy surface{H̃0
C = ε} for each sufficiently small value of

ε > 0. Each of these periodic orbits corresponds to a travelling water wave which is periodic in
x andz with frequencies respectively nearκ and equal toν.

Craig & Nicholls [5] have recently given results of this kind using a variational Lyapunov-
Schmidt reduction of the equations for travelling water waves; Both approaches give existence
theories for the ‘hexagonal’ wave patterns observed in nature and predicted on the basis of model
equations (Hammack, Scheffner & Segur [12]) (take|θ1 − θ2| = π/3 for a true hexagonal fun-
damental domain) and for the ‘short-crested waves’ whose fundamental domain is a ‘symmetric
diamond’ (doubly periodic waves with equal periods) and whose existence was proved by Reeder
& Shinbrot [29].

We conclude this Section with an illustrative example of an application a version of the Lya-
punov centre theorem for eigenvalues in resonance. Consider the caseθ1 = ±π/2 andθ2 = 0,
where all eigenvalues are real or purely imaginary and always have double geometric multiplic-
ity. In particular, the eigenspace corresponding to a nonzero purely imaginary eigenvalueiq is
spanned by the eigenvectors

vs,n
+ =


iγ̃

nν
sinh γ̃ cosnz

−βqγ̃
nν

sinh γ̃ cosnz

i cosh(γ̃y) sinnz
−q cosh(γ̃y) sinnz

 , vs,n
− =


− γ̃

nν
sinh γ̃ sinnz

− iβqγ̃

nν
sinh γ̃ sinnz

cosh(γ̃y) cosnz
iq cosh(γ̃y) cosnz


which are respectively symmetric and antisymmetric with respect to the reflectorS2, and a direct
calculation shows that

Ω(ivs,n
+ , v̄s,n

+ ) = Ω(ivs,n
− , v̄s,n

− ) =
πq

n2ν2γ̃
(4βγ̃3 sinh2 γ̃ + n2ν2(2γ̃ + sinh 2γ̃)) > 0.

It follows that for (β, α) 6∈ Rk for any k all pairs of purely imaginary eigenvalues have posi-
tive Krein signature, so that the quadratic part of the reduced Hamiltonian is positive definite.
We can therefore apply the resonant version of the Lyapunov centre theorem due to Weinstein
[32] and further developed by Moser [26], which states that the nonresonance condition on the
eigenvalues can be replaced by the requirement that the quadratic part of the Hamiltonian is
positive-definite. The following result is obtained by applying the Weinstein-Moser theorem to
the reduced Hamiltonian system and to its further reduction by the symmetryS2; in the latter
case we recover the result given by Groves [10, Theorem 5] with the nonresonance condition
removed.
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Theorem 6 Suppose thatθ1 = ±π/2 andθ2 = 0.

(i) Suppose that(β0, α0) lies below the lineC1, to the left ofCj and to the right ofCj+1 for
somej ∈ N. The reduced equations on the centre manifold have2j geometrically distinct
periodic orbits on the energy surface{H̃0 = ε} for each sufficiently small value ofε > 0
andj of these orbits are invariant underS2.

(ii) Suppose that(β0, α0) lies above the lineCi and below the lineCi+1 for somei ∈ N, to
the left ofCj and to the right ofCj+1 for somej ≥ i. The reduced equations on the centre
manifold have2j geometrically distinct periodic orbits on the energy surface{H̃0 = ε}
for each sufficiently small value ofε > 0 andj of these orbits are invariant underS2.

The periodic solutions identified above correspond to doubly periodic travelling water waves
whose fundamental domain is a rectangle aligned with the direction of propagation.

4.3 Waves of infinite spatial extent

Let us now turn to waves which have an aperiodic profile in thex (‘timelike’) direction; in partic-
ular we discuss waves whose profile in this direction resembles a solitary or generalised solitary
wave. We again begin by briefly examiningz-independent solutions of the water-wave problem,
so that the reduction procedure involves only mode0 quantities and the centre manifold lies in the
subspaceT . The behaviour of the mode0 eigenvalues is described comprehensively in Section
3.2 above; in particular Figure 4 shows that they undergo a02 resonance along the line segment
{(β, α) : α = sin2 θ2, β > 1/3 sin2 θ2} and a Hamiltonian-Hopf bifurcation along the curve
Γθ2. These situations are typically associated with bifurcations of small-amplitude homoclinic
solutions from the zero equilibrium and can be investigated using Hamiltonian normal-form the-
ory. The relevant investigations have been carried out in detail by Kirchgässner [20], Iooss &
Kirchgässner [15] and Buffoni & Groves [3] in the context of two-dimensional travelling waves;
the corresponding results for oblique line waves are obtained by a simple scaling of the solutions
obtained in the above references and are stated below.

The Hamiltonian 02 resonance along{(β, α) : α = sin2 θ2, β > 1/3 sin2 θ2}

We choose physical parameters(β0, α0) with β0 > 1/3 sin2 θ2, α0 = sin2 θ2 and introduce a
bifurcation parameter by writingα = α0 + µ.

Theorem 7 (Kirchgässner) For each sufficiently small, positive value ofµ the one-degree-of-
freedom reduced Hamiltonian system has a unique, symmetric homoclinic solution. This homo-
clinic solution corresponds to an oblique line solitary wave of depression which is described by
the formula

η(x) = − csc2 θ2(β csc2 θ2 − 1/3)1/2µ sech2

(
3

4(3β − sin2 θ2)

)1/2

µ1/2x+O(µ3/2).

and sketched in Figure 12.
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Figure 12: This wave has the profile of a solitary wave of depression in one distinguished spatial
direction and is constant in another; it moves without change of shape in the direction indicated
by the arrow.

The Hamiltonian-Hopf bifurcation at points of Γθ2

We choose physical parameters(β0, α0) ∈ Γθ2 and introduce a bifurcation parameter by writing
α = α0 + µ.

Theorem 8

(i) (Iooss & Kirchg̈assner) For each sufficiently small, positive value ofµ the two-degree-
of-freedom reduced Hamiltonian system has two distinct symmetric homoclinic solutions.

(ii) (Buffoni & Groves) For each sufficiently small, positive value ofµ the two-degree-
of-freedom reduced Hamiltonian system has an infinite number of geometrically distinct
homoclinic solutions which generically resemble multiple copies of one of the Iooss &
Kirchgässner homoclinics.

The homoclinic solutions identified above correspond to travelling water waves which are inde-
pendent ofz and have an envelope solitary-wave profile in thex direction whose amplitude is of
order

√
µ; they are sketched in Figure 13.

Figure 13: These waves have the profile of (a) one-pulse and (b) two-pulse envelope solitary
waves in one distinguished spatial direction and are constant in another; they move without
change of shape in the direction indicated by the arrow.
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Let us now turn to the general case in which eigenvalues associated with higher Fourier
modes are also involved. A procedure for identifying all bifurcation scenarios obtained by fixing
α, β, θ1, θ2 and decreasingν through aνc is given in Section 3.3 above, where in particular a
full catalogue of bifurcation scenarios involving only mode0, mode1 and mode−1 eigenvalues
is presented. In the material below we examine small-amplitude bifurcation phenomena which
arise in two of these bifurcation scenarios, namely the Hamiltonian-Hopf bifurcation and the
Hamiltonian(iω)2iω1 resonance.

The Hamiltonian-Hopf bifurcation in cases IIa and III a

A Hamiltonian-Hopf bifurcation involving only mode1 and mode−1 eigenvalues occurs in
the basic bifurcation scenarios referred to as cases IIa and IIIa in Section 3.3 above: asν is
decreased through a critical valueνc four complex eigenvalues become purely imaginary by
colliding in pairs on the imaginary axis, and we introduce a bifurcation parameter by writing
ν = νc +µ. Observe that there are two degenerate versions of the Hamiltonian-Hopf bifurcation
(both of which are included in the theory below), in which the eigenvalues are zero at criticality
(see Figure 7); in one of these cases the eigenvalues are complex forµ > 0 while in the other
(θ1 = ±π/2, θ2 = 0) they are real.

At criticality the central subspace of the linear operatorL consists of the geometrically simple
eigenvalues0 and±is, all of which have Jordan chains of length two. We choose a symplectic
basis{e1, f1, e

1
se

iz, ē1se
−iz, f1

s eiz, f1
s e−iz} for the six-dimensional centre manifold according to

the procedure described in Section 4.1 above, so thatLe1 = 0, Lf1 = e1, Le1se
iz = ie1se

iz,
(L− isI)f 1

s eiz = e1se
iz with Ω(e1, f1) = 1, Ω(e1se

iz, f̄ 1
s e−iz) = 1, Ω(f 1

s eiz, ē1se
−iz) = −1, and we

write
u1 = qe1 + pf1 + Ae1se

iz +Bf 1
s eiz + Āē1se

−iz + B̄f̄ 1
s e−iz;

in particular

e1 =
1√

1− sin2 θ2/α


0
0
1
0

 , f1 =
1√

1− sin2 θ2/α


sin θ2/α

0
0

1− sin2 θ2/α


and

e1s =
eiz

√
γ1



− iΩ̃ sinh Ω̃

ν sin θ1 + s sin θ2

cosh Ω̃ sin θ2 −
1

Ω̃
sinh Ω̃ sin θ2 −

βΩ̃(s+ ν cos(θ1 − θ2)) sinh Ω̃

ν sin θ1 + s sin θ2

cosh Ω̃y

i(s+ ν cos(θ1 − θ2)) cosh Ω̃y − iΩ̃ sin θ2 sinh Ω̃

ν sin θ1 + s sin θ2


, (49)

where the formula forγ1 is stated in Appendix A. The dimension of the centre manifold
is reduced by two by eliminating the cyclic coordinateq, and the flow of the resulting four-
dimensional Hamiltonian system can be analysed using the theory developed by Iooss & Péroùeme
[17] and Buffoni & Groves [3].
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The Birkhoff normal-form theory states that for eachn0 ≥ 2 there is a near-identity, analytic,
symplectic change of coordinates with the property that

H̃µ(A,B) = iq(AB̄ − ĀB) + |B|2

+HNF(|A|2, i(AB̄ − ĀB), µ) +O(|(A,B)|2|(µ,A,B)|n0) (50)

in the new coordinates; the functionHNF is a real polynomial of ordern0 + 1 which satisfies

HNF(|A|2, i(AB̄ − ĀB), µ) = O(|(A,B)|2|(µ,A,B)|);

in these coordinates Hamilton’s equations for the reduced system are given by

Ax = iqA+B + iA∂2HNF(|A|2, i(AB̄ − ĀB), µ) +O(|(A,B)||(µ,A,B)|n0), (51)

Bx = iqB + iB∂2HNF(|A|2, i(AB̄ − ĀB), µ)

− A∂1HNF(|A|2, i(AB̄ − ĀB), µ) +O(|(A,B)||(µ,A,B)|n0). (52)

The theory by Iooss & Ṕeroùeme and Buffoni & Groves demands that the coefficientsc1 andc3
in the expansion

HNF = µc1|A|2 + µic2(AB̄ − ĀB) + c3|A|4

+ ic4|A|2(AB̄ − ĀB)− c5(AB̄ − ĀB)2 + µ2c6|A|2 + µ2ic7(AB̄ − ĀB) + . . .

are respectively negative and positive; these coefficients are efficiently calculated using a proce-
dure explained in detail by Groves & Mielke [11, Appendix B] and are stated in Appendix A of
the present paper.

Theorem 9

(i) (Iooss & Ṕeroùeme) For each sufficiently small, positive value ofµ the two-degree-of-
freedom Hamiltonian system (51), (52) has two distinct symmetric homoclinic solutions.

(ii) (Buffoni & Groves) Suppose that(θ1, θ2) 6= (±π/2, 0). For each sufficiently small,
positive value ofµ the two-degree-of-freedom Hamiltonian system (51), (52) has an infinite
number of geometrically distinct homoclinic solutions which generically resemble multiple
copies of one of the Iooss & Péroùeme homoclinics.

The homoclinic solutions identified above correspond to travelling water waves which are
2π/(νc + µ)-periodic inz and have an envelope solitary-wave profile in thex direction whose
amplitude is of order

√
c1µ; they are sketched in Figure 14.

Finally note that in case IIIa the Hamiltonian-Hopf bifurcation atν = νc may be followed by
a second Hamiltonian-Hopf bifurcation asν is decreased (see Figure 8). The above theory also
applies in this case, but the signs of the bifurcation parameterµ and the coefficientc1 are reversed.
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Figure 14: These waves have the profile of (a) one-pulse and (b) two-pulse envelope solitary
wave in one distinguished spatial direction and are periodic in another; they move without
change of shape in the direction indicated by the arrow.

The Hamiltonian (iω0)
2iω1 resonance in case IIb

A Hamiltonian(iω0)
2iω1 resonance occurs in the basic bifurcation scenario referred to as case IIb

in Section 3.3 above: asν is decreased through a critical valueνc four complex mode±1 eigen-
values become purely imaginary by colliding in pairs on the imaginary axis, and two nonzero
purely imaginary mode0 eigenvalues are present throughout the collision. (The degenerate case
in which the mode±1 eigenvalues are zero at criticality is included in the following theory.)

We introduce a bifurcation parameter by writingν = νc + µ and notice that at criticality
the central subspace of the linear operatorL has a pair±iq of simple mode0 eigenvalues and
geometrically simple eigenvalues0 (mode0) and±is (mode±1), all of which have Jordan chains
of length two. We choose a symplectic basis{e1, f1, e

0
q, f

0
q , e

1
se

iz, ē1se
−iz, f1

s eiz, f1
s e−iz} for the

eight-dimensional centre manifold according to the procedure described in Section 4.1 above, so
thatLe1 = 0, Lf1 = e1, Le0q = iqe0q, Lē

0
q = iqē0q, Le

1
se

iz = ie1se
iz, (L − isI)f 1

s eiz = e1se
iz with

Ω(e1, f1) = 1, Ω(e0q, ē
0
q) = −i, Ω(e1se

iz, f̄ 1
s e−iz) = 1, Ω(f 1

s eiz, ē1se
−iz) = −1, and we write

u1 = qe1 + pf1 + Ce0q + C̄ē0q + Ae1se
iz +Bf 1

s eiz + Āē1se
−iz + B̄f̄ 1

s e−iz;

in particular we have that

e1 =
1√

sin2 θ2/α− 1


sin θ2/α

0
0

1− sin2 θ2/α

 , f1 =
1√

sin2 θ2/α− 1


0
0
1
0


ande1s ande0q are given by respectively (49) and (45) with normalisation factor

(−4α csc2 θ2 sinh2 q + q(2q + sinh 2q))/(2q))−1/2.

The dimension of the centre manifold is reduced by two by eliminating the cyclic variablep, and
the flow of the resulting six-dimensional Hamiltonian system can be analysed using the theory
developed by Groves & Mielke [11,§4] and Lombardi [22, Chapter 9].
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Under the assumption thatq/s 6∈ Q, the Birkhoff normal-form theory states that for each
n0 ≥ 2 there is a near-identity, analytic, symplectic change of coordinates with the property that

H̃µ(A,B) = is(AB̄ − ĀB) + |B|2 + q|C|2

+HNF(|A|2, i(AB̄ − ĀB), |C|2, µ) +O(|(A,B,C)|2|(µ,A,B,C)|n0) (53)

in the new coordinates; the functionHNF is a real polynomial of ordern0 + 1 which satisfies

HNF(|A|2, i(AB̄ − ĀB), |C|2, µ) = O(|(A,B,C)|2|(µ,A,B,C)|);

in these coordinates Hamilton’s equations for the reduced system are given by

Ax = isA+B + iA∂2HNF(|A|2, i(AB̄ − ĀB), |C|2, µ) +O(|(A,B,C)||(µ,A,B,C)|n0),

Bx = isB + iB∂2HNF(|A|2, i(AB̄ − ĀB), |C|2, µ)

− A∂1HNF(|A|2, i(AB̄ − ĀB), |C|2;µ) +O(|(A,B,C)||(µ,A,B,C)|n0),

Cx = iqC + iC∂3HNF(|A|2, i(AB̄ − ĀB), |C|2, µ) +O(|(A,B,C)||(µ,A,B,C)|n0).

The theory by Groves & Mielke and Lombardi demands that the coefficientsc1, c4 andc6 in the
expansion

HNF = c1µ|A|2 + ic2µ(AB̄ − ĀB) + c3µ|C|2 + c4|A|4 − c5(AB̄ − ĀB)2 + c6|C|4

+ ic7|A|2(AB̄ − ĀB) + c8|A|2|C|2 + ic9(AB̄ − ĀB)|C|2 + . . .

satisfyc1 < 0, c4 > 0 andc6 6= 0; expressions for these coefficients are given in Appendix A.

Theorem 10 (Lombardi) Consider the Hamiltonian(iω0)
2iω1 resonance in case IIb. Letm be

any natural number. There exist positive constantsε1, ε2, ε3 such that the following statements
hold for each sufficiently small, positive value ofµ.

(i) The reduced sixth-order Hamiltonian system has an invariant subspace{A = B = 0}
containing a Lyapunov family of periodic orbitsXε,µ of arbitrarily small amplitudeε ∈
[0, ε1µ

7/4].

(ii) The reduced sixth-order Hamiltonian system has a pair of reversible homoclinic con-
nections toXε,µ, for everyε ∈ [ε2µ

m, ε3µ
7/4].

The homoclinic solutions identified above correspond to travelling water waves which are
2π/(νc + µ)-periodic inz and have the profile of a generalised solitary wave in thex direction
with central ‘localised’ part of amplitude

√
|c1|µ; as x → ±∞ the free-surface displacement

converges to az-independent periodic wave of ampltiudeε (see Figure 15).

We conclude with a brief commentary on the casesθ1 = 0, θ2 = ±π/2 andθ1 = ±π/2, θ2 =
0. In these special situations Hamilton’s equations possess an additional reflection symmetry
since the equations (12)–(15) are invariant under both (9) and (10). This symmetry is inherited
by the reduced equations on the centre manifold and may be exploited to halve the dimension
of the reduced Hamiltonian system. At the linear level this symmetry manifests itself in the
fact that all eigenvalues of the corresponding linear operator are geomtrically double, half of
them corresponding to wave motions which are respectively symmetric and antisymmetric with
respect to the symmetry operator. These special cases, and the symmetry reductions involved
in them, have been discussed in detail by Groves & Mielke [11], Groves [10] and Haragus &
Kirchgässner [13].
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Figure 15: This wave has a generalised solitary-wave profile in one distinguished spatial direc-
tion and is periodic in another; it moves without change of shape in the direction indicated by
the arrow.

Appendix A Normal-form coefficients

The −1 : 2 resonance at points ofR2

The coefficients in the formula (48) for the Hamiltonian in Birkhoff normal form are given by

c1 = −9q2 cosh q csc2 θ2 sinh q

×[4q(4021 + 9072q2) cosh q + 2q(3281 + 9216q2) cosh 3q

+ 16(56 cosh q + 15 cosh 3q + cosh 5q)2 sinh3 q

+ 2q(−5041 cosh 7q − 1337 cosh 9q − 144 cosh 11q − 7 cosh 13q

+ 6((−799 + 1332q2) cosh 5q

+ 4q(3q(69 cosh 7q + 15 cosh 9q + cosh 11q)− 13 sinh q

+ 569 sinh 3q + 623 sinh 5q + 175 sinh 7q + 4 sinh 9q − 2 sinh 11q)))]

×[8(2 + cosh 2q)(−12q cosh q + 9 sinh q + sinh 3q)3(12q − 8 sinh 2q + sinh 4q)]−1,

c2 = 9q2 coth2 q csc2 θ2 csch q

×[−158541q + 559008q3 + 11474 sinh 2q − 6790 sinh 4q − 1206 sinh 6q

+ 1538 sinh 8q + 98 sinh 10q − 126 sinh 12q − 22 sinh 14q − sinh 16q

+ q((89833 + 841464q2) cosh 2q + 11183 cosh 6q + 25532 cosh 8q

+ 13333 cosh 10q + 3016 cosh 12q + 339 cosh 14q + 17 cosh 16q

− 12(−14(91 + 2802q2) cosh 4q + q(−6q(3635 cosh 6q + 1228 cosh 8q

+ 229 cosh 10q + 22 cosh 12q + cosh 14q) + 40726 sinh 2q + 18480 sinh 4q

+ 17614 sinh 6q + 9902 sinh 8q + 2774 sinh 10q

+ 400 sinh 12q + 30 sinh 14q + sinh 16q)))]

×[16(2 + cosh 2q)(−12q cosh q + 9 sinh q + sinh 3q)3(12q − 8 sinh 2q + sinh 4q)]−1,
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c3 = 9q3 coth q csc2 θ2 csch2q

×(146 + 140 cosh 2q + 23 cosh 4q + 78 cosh 6q + 38 cosh 8q + 6 cosh 10q + cosh 12q)

×[2(2 + cosh 2q)(12q − 8 sinh 2q + sinh 4q)2]−1.

The −1 : 3 resonance at points ofR3

The coefficients in the formula (47) for the Hamiltonian in Birkhoff normal form are given by

c1 = −q3(1 + 2 cosh 2q) csc2 θ2 csch3q sech3q

×(109634 + 192616 cosh 2q + 121897 cosh 4q

+ 55780 cosh 6q + 15022 cosh 8q + 2484 cosh 10q + 231 cosh 12q)

×[768(−4q − 8q cosh 2q + 4 sinh 2q + sinh 4q)2]−1,

c2 = 3q3 csc2 θ2 csch3q sech3q

(369855 + 667539 cosh 2q + 493080 cosh 4q + 282937 cosh 6q + 125052 cosh 8q

+ 41595 cosh 10q + 9320 cosh 12q + 1209 cosh 14q + 69 cosh 16q)

×[256(4 + 3 cosh 2q)(4q − 5 cosh q sinh q + 3 coth 3q sinh2 q)]−1

×[12q − 3 sinh 2q − 3 sinh 4q + sinh 6q]−1,

c3 = 27q3(1 + 2 cosh 2q) csc2 θ2 csch3q sech3q

×(7381 + 1671 cosh 2q + 2373 cosh 4q + 2819 cosh 6q + 114 cosh 8q + 2409 cosh 10q

+ 1291 cosh 12q + 240 cosh 14q + 105 cosh 16q + 29 cosh 18q)

×[256(11 + 10 cosh 2q)(12q − 3 sinh 2q − 3 sinh 4q + sinh 6q)2]−1.

In particular, we find that the quantitiesm = −c2 − 3c1, n = −c3 − 3c2 have the properties that
the cubic polynomialx3 +mx2 + 9x+ n always has one real root and thatn is always positive.

The −1 : 4 resonance at points ofR4

The coefficients in the formula (46) for the Hamiltonian in Birkhoff normal form are given by

c1 = −45q3 cosh 2q coth q csc2 θ2 csch2q

×(75744 + 143863 cosh 2q + 106288 cosh 4q + 63211 cosh 6q + 32096 cosh 8q

+ 8981 cosh 10q + 1616 cosh 12q + 201 cosh 14q)

×[16(4 + 8 cosh 2q + 3 cosh 4q)(−60q(cosh q + cosh 3q) + 25 sinh 3q + 9 sinh 5q)2]−1,
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c2 = 45q3 coth q csc2 θ2 csch2q

×(3007448 + 5633998 cosh 2q + 4806712 cosh 4q + 3605238 cosh 6q

+ 2321376 cosh 8q + 1284901 cosh 10q + 612120 cosh 12q

+ 240621 cosh 14q + 71304 cosh 16q + 14389 cosh 18q

+ 1776 cosh 20q + 117 cosh 22q)

×[8(4 + 3 cosh 2q)(6 + 7 cosh 2q + 2 cosh 4q)(4 + 8 cosh 2q + 3 cosh 4q)]−1

×[(30q + 16 coth 4q sinh q2 − 17 sinh 2q)(120q − 16 coth q sinh2 4q + 17 sinh 8q)]−1,

c3 = 90q3 csc2 θ2 csch3q

×(26704 cosh q + 27856 cosh 3q + 10087 cosh 5q + 8241 cosh 7q + 7867 cosh 9q

+ 8325 cosh 11q + 4920 cosh 13q + 5936 cosh 15q + 4840 cosh 17q

+ 2144 cosh 19q + 635 cosh 21q + 285 cosh 23q + 127 cosh 25q + 33 cosh 27q)

×[(4 + 8 cosh 2q + 3 cosh 4q)(15 + 20 cosh 2q + 7 cosh 4q)]−1

×[−120q + 16 sinh 2q + 16 sinh 4q + 16 sinh 6q − 9 sinh 8q]−2.

In particular, we find that the quantitiesm = −c2 − 4c1, n = −c3 − 4c2 are always positive.

The Hamiltonian-Hopf bifurcation in cases IIa and III a

The coefficients in the formula (50) for the Hamiltonian in Birkhoff normal form are given by

c1 = −4bγ̃4a cosh γ̃ sin θ2

[cosh γ̃(−b2a(3a2 + γ̃(a2 − γ̃2) coth γ̃)

+ 2bγ̃2(2a2 + γ̃2 + 2a2γ̃ coth γ̃) sin θ2 − 2aγ̃4 sin2 θ2)

+ baγ̃(−b(2a2 + γ̃2 + 2a2γ̃ coth γ̃) cschγ̃

+ (b(a2 − γ̃2)− 4aγ̃2 sin θ2) sinh γ̃)]−1,
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γ2
1c3

=
π

12αb2γ̃

(−4γ̃ sinh2 γ̃(αaγ̃2(6a− 2aγ̃2 + 4νγ̃2 cos(θ1 − θ2) + 3a cosh 2γ̃)

+6bνγ̃2 cos(θ1 − θ2) sin θ2)

−12(αa2γ̃2(1 + 2γ̃2)− 4αaνγ̃4 cos(θ1 − θ2)) cosh γ̃ sinh3 γ̃

+12bγ̃4(bγ̃ + ν cos(θ1 − θ2) sin θ2 sinh 2γ̃))

+
π

32βb4γ̃2

(4b4a2γ̃2 cosh2 2γ̃2

+8βb2γ̃4 cosh 2γ̃ sinh2 γ̃(4a2 + 3ν2 − 8aν cos(θ1 − θ2)− 3ν2 cos 2(θ1 − θ2))

+32βb2γ̃4 sinh2 γ̃(3a2 + γ̃2 + ν2γ̃2 sin2(θ1 − θ2))

+8βb2γ̃3 cosh γ̃ sinh3 γ̃(8a2 − 3ν2 − 2(2 + 3ν2γ̃2

+ν(8a cos(θ1 − θ2) + 3ν(1 + 2γ̃2) cos 2(θ1 − θ2)))

+48β2γ̃10 sinh4 γ̃ + b4a2(sinh2 2γ̃ − 2γ̃ sinh 4γ̃))

+
π

48βb3γ̃2

(−6b3a2γ̃2 cosh2 2γ̃

−2(3b3a2 cosh2 γ̃

+2βγ̃4(2b(6γ̃2 + a2(6 + 4γ̃2) + 9ν2 cosh 2γ̃ sin2(θ1 − θ2)

+2νγ̃2(−4a cos(θ1 − θ2) + 3ν sin2(θ1 − θ2)))

−3a(a2 − γ̃2 + 2a(a− 2ν cos(θ1 − θ2)) cosh 2γ̃

+ν2(1 + 2 cosh 2γ̃) sin2(θ1 − θ2)) sin θ2)) sinh2 γ̃

+12βγ̃3 cosh γ̃(2b(−a2 + γ̃2) + a(−a2 + γ̃2 + 4aν cos(θ1 − θ2)) sin θ2

+ν2 sin2(θ1 − θ2)(4b(2 + γ̃2)− a sin θ2)) sinh3 γ̃

+3βbγ̃4(2γ̃2 − 8aν cos(θ1 − θ2)) sinh2 2γ̃

+3bγ̃(a2(b2 − 4βγ̃4)

−4βνγ̃4(−2a cos(θ1 − θ2) + ν sin2(θ1 − θ2))) sinh 4γ̃)

+ π sinh γ̃[48b3γ̃(−4b2 cosh 2γ̃ + 2γ̃(α+ 4βγ̃2) sinh 2γ̃)]−1

[−12γ̃(−6a2 − 3ν2 + γ̃2 + 10aν cos(θ1 − θ2) + 3ν2 cos 2(θ1 − θ2)) cosh γ̃

+6γ̃(2γ̃2 − 4aν cos(θ1 − θ2)) cosh 3γ̃

+ sinh γ̃(−11(2a2 + ν2 − 2γ̃2) + ν(120a cos(θ1 − θ2) + 11ν cos 2(θ1 − θ2))

+24aν cos(θ1 − θ2) cosh 2γ̃)]

[4b3γ̃3 cosh 2γ̃

−4(4b3γ̃3 + (αaγ̃3 + 4βaγ̃5 − 2b2νγ̃ cos(θ1 − θ2)) sin θ2) sinh2 γ̃

+b sinh 2γ̃(−b2a2 + b2γ̃2 + 2αa2γ̃2 + 2αγ̃4 + 8βa2γ̃4 + 8βγ̃6

−ν2(b2 − 2γ̃2(α+ 4βγ̃2)) sin2(θ1 − θ2)− 4bνγ̃2 cos(θ1 − θ2) sin θ2)],
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wherea = s+ ν cos(θ1 − θ2), b = s sin θ2 + ν sin θ1 and

γ1 =
π

b3γ̃2
(b(b2a2 + βγ̃2(2a2 + γ̃2))− 2aγ̃2(b2 + βγ̃2) sin θ2) cosh 2γ̃

+
π

2b2γ̃3
((1 + 4βa2)γ̃4 + b2(γ̃2 − a2)− γ̃4 cos 2θ2 − 2baγ̃2 sin θ2) sinh 2γ̃

+
π

b3
(b(b2 − β(2a2 + γ̃2)) + 2βaγ̃2 sin θ2).

In particular, we find thatc1 < 0, c3 > 0.

The Hamiltonian (iω0)
2iω1 resonance in case IIb

The coefficientsc1 andc4 in the formula (53) for the Hamiltonian in Birkhoff normal form are
given by the formulae in the previous section for respectivelyc1 andc3 and

c6 = q4(8q(3(8q2 + α2) + 8q2(−4 cos 2θ2 + cos 4θ2)) sin2 θ2 − 216qα2 cosh 4q sin2 θ2

+ 4q(24q2 + 51α2 + 8q2(−4 cos 2θ2 + cos 4θ2)) cosh 2q sin2 θ2

+ α(−12qα cosh 6q sin2 θ2 + 8q2(−4 cos θ2 + cos 4θ2) cosh3 q(27 sinh q + sinh 3q)

+ 3((57q2 + 60α2) sinh 2q + 6(5q2 − 8α2) sinh 4q + (q2 + 12α2) sinh 6q)))

×[64α(2q(2 + cosh 2q) sin2 θ2 − 3α sinh 2q]−1

×[q2 + 2α+ q2 cos 2θ2 − 2α cosh 2q + q sin2 θ2 sinh 2q]−2.

In particular, we find thatc1 < 0, c4 > 0 andc6 6= 0.
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