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Abstract

In this letter, the genesis of spike-wave activity - a hallmark of many generalized epileptic seizures

- is investigated in a reduced mean-field model of human neural activity. Drawing upon brain

modeling and dynamical systems theory, we demonstrate that the thalamic circuitry of the system

is crucial for the generation of these abnormal rhythms, observing that the combination of inhibition

from reticular nuclei and excitation from the external signal, interplay to generate the spike-wave

oscillation. We demonstrate that this is a nonlinear phenomena and that linear stability analysis

is not appropriate to explain such solutions.
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Epilepsy is a relatively common neurological disorder, with a life-time prevalence of ap-

proximately 1%. The generalized seizures (tonic-clonic and Absence) are defined as those

associated with abnormal activity across most, or all, of the cortex. Several models have

been proposed to explain the aggregated electrical activity of large scale neuronal popula-

tions, or mass action brain models. Pioneering work in this area was performed by Wilson

and Cowan [1], which was generalized to account for functional activity within the brain by

Nunez [2] and Freeman [3]. During the last decade, several groups have advanced mass-action

neural models to incorporate a range of increasingly plausible neurophysiological processes

[4, 5]. Robinson and co-workers explicitly incorporated thalamic circuitry and analytically

described the propagation and stability of electrical activity within the cortex by means of

a damped wave equation [6].

Absence seizures occur predominantly in children and are characterized by brief, inter-

mittent interruptions to consciousness. Preliminary studies of seizures generated by the

model [7] have demonstrated that it can correctly predict the occurrence of spike-wave mor-

phologies (∼3Hz paroxysmal oscillations) which are the hallmark of Absence seizures. In

this model, the two main subdivisions of the thalamus, the reticular nucleus (RTN) and

the specific relay nuclei (SRN), are both implicated in the generation of seizure waveforms.

Other work points to a specific role of the SRN underlying the generation of oscillations.

In particular, the SRN is widely accepted (both, through in-vitro and in-vivo experiments,

and modelling) to play a pivotal role in the generation of spike-wave activity [8–11]. Con-

sequently, the purpose of the present letter is to conduct a detailed examination of the role

of the thalamic circuitry in the initiation of Absence seizure dynamics. This has important

implications in understanding the pathophysiological mechanisms leading to seizure activity.

The model we consider [6] provides a unified description of both the EEG (Electroen-

cephlogram) recorded at rest and the ERPs (Evoked Response Potentials) which occur

following a sensory input. It incorporates a wide-range of neurophysiological processes, in-

cluding excitatory and inhibitory neural populations, axonal and dendritic time lags, long

range excitation, and the low-pass filter effect of dendritic integration on incoming impulses.

Importantly, the model incorporates the main features of corticothalamic loop which are be-

lieved to be one of the mechanisms for epileptogenesis [10]. These include excitatory inputs

between the cortex and the SRN, the excitatory influence of the cortex and the SRN on the

RTN, and the inhibitory feedback from the RTN onto the SRN. One should note that this
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description does not explicitly consider ionic currents. These currents are averaged out and

fitted parametrically to the data.

In this letter, we consider a reduced formulation where the asymptotic temporal evolution

is investigated. Further, only the thalamic circuitry driven by an external periodic signal is

considered. The first motivation for this is associated with the fact that observations from

the full model suggest that there is a phase shift in the dynamics of the specific neuronal

populations when compared to both cortical and reticular populations. This feature is

supported by both in-vivo and in-vitro experiments [8–11] that demonstrate spike-wave

activity is first initiated in the specific neurons which then propagates to the cortex and

finally induced in the reticular.

Secondly, in our preliminary study of the full model [7], we observed that in the absence

of a cortical signal, the thalamic subsystem was quiescent and that spike-wave activity (a

periodic signal with an extra spike per period) was generated via periodic dynamics from the

cortex fed into both specific and reticular populations. The strength of modulation of this

signal into the specific population was observed to be the crucial parameter for generation

of such rhythms (see Figure 2 of [7]).

Thus, as an approximation to the full model, we consider only the thalamic circuitry

driven by an external periodic signal. This reduced model is defined by
1

αβ

[
d2

dt2
Vs(t) + (α + β) d

dt
Vs(t) + αβVs(t)

]
= νsr

∑
[Vr(t)] + νseφexternal + νsnφn,

1
αβ

[
d2

dt2
Vr(t) + (α + β) d

dt
Vr(t) + αβVr(t)

]
= νrs

∑
[Vs(t)] + νreφexternal.

(1)

where ∑
[Va(t)] =

Qmax
a

1 + exp

(
− π√

(3)

Va(t)−θa

σa
)

)
is a unipolar sigmoidal function representing the relationship between the transmembrane

potential Va and the axonal firing rate. Descriptions and typical values of these parameters

are provided in Table 1 of [7]. System (1) models the averaged postsynaptic activity at the

cell soma. It relates the induced transmembrane voltage Va(t) with the incoming pulses φa(t)

where a = {r, s}(reticular and specific). The perturbation in the induced transmembrane

voltage propagates along dendrites and reaches the cell body with some attenuation and lag.

Thus, α and β are constants representing the inverse rise and decay times parameterising

the dendritic response to impulse.
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This model is illustrated schematically in Figure 1. A similar model for the study of olfac-

tion has been considered in [12] where linear stability analysis was performed and stability

curves in the parameters space were derived.

As mentioned previously, in-vivo and in-vitro experiments from animal models [11], as

well as our own extensive numerical simulations of both the full and reduced models suggest

that the abnormal rhythms associated with Absence seizures originate in the specific relay

nuclei. Subsequently, if the excitation between specific to reticular, or specific to cortex, is

strong enough then these abnormal rhythms may also be observed there.

Simulations (see Figure 2) also indicate that the subthalamic input plays no part in the

generation of abnormal rhythms. We further observe that the solutions to Vr(t) are always

periodic and that only the amplitude of these oscillations change when the parameters are

varied.

Thus, for the purposes of understanding the genesis of abnormal activity in this reduced

case, we make the following assumptions. First, we assume that there is no interactions

between the specific and the reticular neuronal populations, i.e. νrs = 0. Second, we assume

that the subthalamic input is also zero, i.e. νsn = 0.

In this case, the homogeneous solution for the individual modules is a combination of de-

caying exponentials. This can be seen by studying the roots of the characteristic polynomial

derived from either of the differential operators in (1),

r2 + (α + β)r + αβ = 0,

the solution for which is given by V h
a (t) = Ae(−αt) + Be(−βt). A further important point to

note is that the dynamics of each individual system is overdamped; the damping factor in

this case is ζ = (α+β)

2
√

(αβ)
> 1. This demonstrates that spike-wave activity can not occur due

to any intrinsic dynamics within the individual thalamic modules.

In the absence of the excitatory input from the specific, the solution for the reticular

module when φexternal = sin(ωt) can be derived explicitly and is given by:

Vr(t) = K sin(ωt + δ) (2)

where K =
√

(C2 + D2) and δ = arcsin(D/K) with

C =
(αβ − ω2)νreαβ

((α + β)2ω2 + (αβ − ω2)2)(αβ − ω2)

4



and

D = − ωνreαβ(α + β)

(α + β)2ω2 + (αβ − ω2)2

Consequently the behavior of the specific module, Vs(t), is governed by the solution of

the differential equation:

1

αβ

[
d2

dt2
Vs(t) + (α + β)

d

dt
Vs(t) + αβVs(t)

]
= νsr

∑
[Vr(t)] + νseφexternal (3)

where Vr(t) is given in equation (2).

Since Σ is a unipolar sigmoidal function, an explicit solution to this equation is not

possible. However, a result from [13] shows that it is possible to relate the stability of

the full system to that of a related piecewise linearized system. Essentially, we perform a

piecewise linearization of the unforced system and then reapply the forcing term in each

case.

In order to do this, we obtain steady-states for V ?
r and V ?

s of the system, using the nu-

merical software package XPP [14]. Linearizing about these steady-state gives the following:

dx

dt
= Lx + Bu, (4)

where the vector B comes from the external drive,

B =


0

αβνse sin(ωt)

0

αβνre sin(ωt)

 ,

and L is the piecewise linear vector field of the system,

L =


0 1 0 0

−αβ −(α + β) αβνsryσ(V ?
r ) 0

0 0 0 1

αβνrsyσ(V ?
s ) 0 −αβ −(α + β)

 .

Essentially L is the Jacobian matrix of the unforced system on each considered segment of

the sigmoidal function Σ. The first order Taylor approximation of this function at a point

x0, is given by

y(v)|x0 =
Qmax

1 + e
− π√

3
(

x0−θ
σ

)
+ (v − x0)

Qmaxπ

σ
√

3
e
(− π√

3
(

x0−θ
σ

))

[1 + e
(− π√

3
(

x0−θ
σ

))
]2

+ H.O.T. (5)
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Hence, the specific piecewise approximation we consider is

yσ(v) =

 y(v)|V ?
s
−∞ ≤ v < b,

y(v)|V ?
r

b ≤ v < ∞,
(6)

where b > 0 is the intersection point of the lines (at this point the derivative loses

continuity). Note that we could have considered more line segments in the whole domain

of the function Σ. However, this would not change the conclusions, as the solution Vr(t) is

bounded and evolves around a steady state and consequently the solution for Vs(t) will also

be bounded. Considering more approximations will only smooth out the solutions obtained.

The composition of this piecewise linear approximation yσ(v) in (6) with the explicit

solution for Vr(t) given in (2) results in two regions of interest:

RegionI =

{
t ∈ R, N ∈ Z :

arcsin( b
K

)− δ + 2Nπ

ω
≤ t ≤

π − arcsin( b
K

)− δ + 2Nπ

ω

}

RegionII =

{
t ∈ R, N ∈ Z :

− arcsin( b
K

)− π − δ + 2Nπ

ω
< t <

arcsin( b
K

)− δ + 2Nπ

ω

}
It is now possible to solve explicitly this piecewise linear appoximation to (3) using the

method of variation of parameters, taking care to ensure that the boundary conditions for

each interval are satisfied. The resulting calculation is long and complex and for reasons of

conciseness is omitted. However, a full discussion of the solution will be submitted elsewhere.

The spike-wave oscillation arises as a result of the interaction of the positive sinusoid

due to the excitatory external input and the negative sinusoid-like function resulting from

the composition of the piecewise linear approximation to Σ with Vr(t). This composite

function has the same total period as the external signal, however, it consists of two sinusoids

of different amplitudes acting on each of the Regions I and II. The peaks of each bump

correspond to the transition between regions. Noting that the area of RegionI is less than

that of RegionII, this can technically be classed as a ‘spike-wave’ oscillation, since the area

of the spike part of the solution is less than that of the wave. This phenomena is illustrated

more clearly in Figure 3 and a comparison between the explicit solution and that numerically

generated for the same case using XPP is given in Figure 4.

The fact that the solution of the two parts are opposite facing in each region is also

crucial for the generation of the abnormal rhythm. Were both to point the same way, then
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only a one-bump solution would be observed. These opposite facing solutions are due to

the inhibitory effect of the reticular on the specific parameter and explains why no such

solutions are ever observed in the reticular in the absence of the specific, since the synaptic

interactions between specific and reticular are excitatory in nature. Finally, note that the

gradient of the sigmoidal function Σ varies dramatically between the two regions and it is

this marked difference in gradient that leads to the different amplitudes on each Region,

which in turn gives the spike-wave solution. This illustrates the need for at least a piecewise

linear approximation to Σ and explains why attempts to use linear stability analysis to

explain this phenomena are doomed to failure.

A final point concerns time-delays in the system. The mechanisms responsible for genera-

tion of the abnormal rhythms elucidated in this letter do not require any time-delays, which

is consistent with the work of [11]. However, the full model [6], from which this reduced

model was obtained, has delays between cortex and thalamus. Thus, it is imperative to

determine the precise role that these time-delays play in the full system and this work is

currently underway.
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FIG. 1: COLOR ONLINE Schematic of the reduced Thalamic model considered. All interactions

illustrated by black (thin) arrows are assumed to be excitatory. The one between reticular and

specific illustrated by the blue (thick) arrow is inhibitory.
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FIG. 2: In this Figure, we demonstrate that the subthalamic interactions have no effect on the

occurence of spike-wave like activity. The two graphics are numerical simulations of system (1)

using XPP. The top graphic shows Vs(t) with νsr non-zero. The bottom graphic shows the same

system with νsr = 0. In both cases the abnormal rhythm persists, with the subthalamic input

acting effectively as an amplifier.
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FIG. 3: COLOR ONLINE In the top graphic, the upper solution (in red) is the solution of the

system when driven by the periodic forcing term νsesin(ωt) and the lower solution, is that of the

system when driven by the composition of the piecewise linear approximation yσ(v), and Vr(t).

The difference in amplitudes of the second solution on each of the regions, combined with Region I

being less than half the period gives rise to the spike-wave activity, illustrated in the lower graphic.

The length of these regions can be adjusted by varying the parameters b̂ = arcsin
(

b
K

)
and δ as

indicated on the circle.
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FIG. 4: The top graphic shows the solution of Vs(t) from the numerical package XPP for the

peicewise linear system in the absence of νsn. The bottom graphic shows the explicit solution

obtained, demonstrating precise agreement between the numerics and our analysis.
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