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Abstract

We use geometric dynamical systems methods to derive phase equations for net-

works of weakly connected McKean relaxation oscillators. We derive an explicit

formula for the connection function when the oscillators are coupled with chemical

synapses modeled as the convolution of some input spike train with an appropri-

ate synaptic kernel. The theory allows the systematic investigation of the way in

which a slow recovery variable can interact with synaptic time scales to produce

phase-locked solutions in networks of pulse coupled neural relaxation oscillators.

The theory is exact in the singular limit that the fast and slow time scales of the

neural oscillator become effectively independent. By focusing on a pair of mutually

coupled McKean oscillators with alpha function synaptic kernels, we clarify the role

that fast and slow synapses of excitatory and inhibitory type can play in producing

stable phase-locked rhythms. In particular we show that for fast excitatory synapses

there is coexistence of a stable synchronous, a stable anti-synchronous, and one sta-

ble asynchronous solution. For slower synapses the anti-synchronous solution can

lose stability, whilst for even slower synapses it can regain stability. The case of

inhibitory synapses is similar up to a reversal of the stability of solution branches.

Using a return-map analysis the case of strong pulsatile coupling is also considered.

In this case it is shown that the synchronous solution can co-exist with a continuum

of asynchronous states.
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1 Introduction

The phenomenon of phase locking in networks of synaptically interacting neural oscil-

lators is common to many areas of neuroscience. Synchronous activity in thalamic and

hippocampal networks [1, 2], anti-synchronous rhythms in central pattern generators [3],

and synchronized cortical oscillations [4] are all examples of phase-locked behavior that

depend crucially upon the intrinsic mechanisms of neural oscillation as well as the nature

of synaptic coupling. Synchronous activity is especially important for synaptic plasticity

as cells firing within some common window of time are capable of increasing the strength

of the synapses between them. Moreover, synchronous spindle oscillations are observed

during sleep or anesthesia, behavior which is itself supported by oscillations within the

reticular thalamic nucleus [5]. Simulation studies have played an important role in uncov-

ering the way in which synchronization depends upon network architectures and single

neuron properties. (See for example [6, 7, 8, 5, 9, 10, 11].) In a complementary manner

mathematical tools are being used to clarify the role of synaptic time courses in gener-

ating network synchrony for analytically tractable single neuron models. The biophysical

mechanisms underlying neural oscillations are typically modelled in terms of a system of

differential equations describing the generation of an action potential due to the activation-

deactivation of various voltage-dependent ionic gates [12]. Unfortunately, analyzing a net-

work of such oscillators is a difficult task due to the complexity of the single-neuron model.

This motivates the application of techniques such as invariant manifold theory [13] and

averaging theory [14] to reduce the network dynamics to a system in which the rela-

tive phase between oscillators is the relevant dynamical variable [15, 16, 17]. For example,

there has been a comprehensive study of integrate-and-fire (IF) and related spike response

networks within a dynamical systems framework [18, 19, 20, 21, 22, 23, 24, 25] as well as

a growing number of studies on more biophysically realistic relaxation oscillator models

[26, 27, 28, 29, 30, 31, 32]. From the work on IF systems, and making extensive use of

the fact that the systems behave linearly between spiking events, it is apparent that IF

models of spiking cells can form coherent rhythms with purely inhibitory signals. If the

time course for the onset and offset of the inhibitory signal is long enough, and sufficiently

weak, inhibition alone can stabilize a synchronous rhythm. (See [25] for a discussion of

strong coupling instabilities.) The treatment of more biophysically realistic cells that in-
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corporate some notion of refractoriness, for instance with the inclusion of gating variables,

is much less amenable to an exact treatment. Not only are the equations for a network

of high dimension, but they are inherently nonlinear for all times. Perhaps the most sig-

nificant mathematical progress in the study of population rhythms for high dimensional

neural systems has come about with the use of geometric singular perturbation methods.

A recent review of this mathematical tool can be found in [33]. For example, this technique

may be used to show that for neurons possessing a slow recovery variable an inhibitory

network alone cannot exhibit stable synchronous oscillations if the synapses are fast [34].

The experimental observation of synchronous oscillations in inhibitory networks (for ex-

ample [1]) would therefore suggest that there may be some interaction between recovery

and synaptic time scales which, in the right circumstances, can lead to stable synchronous

rhythms. Indeed, although much research has been done on how the interaction of time

scales affects synchrony, novel effects continue to emerge so that a general picture is as yet

incomplete [32]. By focusing on the McKean neuron model [35], a caricature of the well

known FitzHugh-Nagumo neuron model, we are able to make precise statements about

synchronization properties in relation to these fundamental time scales. The analysis is

undertaken with a combination of geometric singular perturbation theory and the theory

of coupled limit cycle oscillators, and assumes both strong relaxation and weak coupling.

For fast synapses we are also able to treat the case of strong pulsatile coupling with an

alternative return-map analysis.

In section 2 we introduce the McKean model and discuss its description in the strong

relaxation limit using the binary terminology originally introduced by Abbott [36]. In

section 3 we develop an exact treatment of networks of weakly synaptically interacting

neural relaxation oscillators of the McKean type. The McKean model possesses a one-

dimensional variable responsible for determining the shape of an action potential as well

as providing the model neuron with a natural refractoriness. The fast relaxation limit

describes the case when the rise and fall time of the action potential is essentially instan-

taneous. Using averaging theory to construct phase equations for networks of McKean

oscillators shows quite clearly, in the fast relaxation limit, that the inclusion of a recovery

variable can significantly influence the synchronization properties of a network. Moreover,

the phase equations are different from those of non-relaxation oscillators because they are

discontinuous. A general discussion of relaxation oscillators and discontinuous phase in-

teraction functions has recently been presented by Izhikevich [37]. The detailed discussion

presented here for the McKean oscillator is entirely consistent with this formalism, with
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the added advantage of allowing an exact calculation of the phase response curve and

hence an explicit form for the phase-interaction function. Somers and Kopell [38] have

already shown that the synchronization of relaxation oscillators is fundamentally differ-

ent from those of non-relaxation type, at least for a form of synaptic coupling called fast

threshold modulation (FTM). In section 4 we analyze the case of two mutually coupled

McKean oscillators in some detail. Using the theory developed in section 3 we construct

the phase-locked response of the system when the synapse has a time course described by

an alpha function. Consistent with previous numerical studies of the Hodgkin-Huxley sys-

tem, we find that both the anti-synchronous and synchronous solution are stable for fast

excitatory synapses. A similar observation also holds for relaxation oscillators possessing

a cubic fast nullcline with FTM coupling [39]. Interestingly, for slower synapses the anti-

synchronous solution can destabilize, whilst for even slower synapses it can restabilize. A

pair of stable/unstable asynchronous solutions is also found for fast synapses and may be

thought of as the novel behavior to be associated with the McKean oscillator, in the limit

of fast relaxation. In section 5 we relax the assumption of weak coupling and show how

to treat the binary model as a type of IF neuron with a state dependent threshold. This

allows a formulation of the response of a binary neuron to pulsatile stimuli and hence a

study of networks of pulse coupled binary relaxation oscillators. Using a return-map anal-

ysis along similar lines to that introduced in the seminal paper of Mirollo and Strogatz

[40] (for the study of pulse coupled IF neurons) we show that the system can support

a synchronous solution co-existing with a continuum of asynchronous states. Finally in

section 6 we summarize the results of our analysis and discuss applications and extensions

of the theory.

2 The McKean model

The McKean model [35] may be regarded as a planar neuron model capable of generating

voltage pulses. Alternatively one may regard it as a reduction of the four dimensional

Hodgkin-Huxley neuron model which trades a detailed description of the usual Hodgkin-

Huxley gating variables for a slow recovery variable and analytical tractability. Even so, a

general analysis of networks of such neurons has yet to be given. However, mathematical

progress can be made under the simplifying assumption of fast relaxation which allows

one to use some of the tools of geometric singular perturbation theory. The equations for
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Fig. 1. The phase plane for the McKean model has a nullcline with an N shape (thick solid line)

corresponding to v̇ = 0 and a linear one associated with ẇ = 0 (thick dashed line). In this figure

the stable excitable fixed point lies at the intersection of the two nullclines on the S = 0 branch.

a single two-dimensional McKean oscillator take the form

µv̇ = f(v) − w − w0 + I + εX(t) (1)

ẇ = v − γw − v0, (2)

where the nonlinear function f(v) is given by

f(v) =


−v, v < a/2;

v − a, a/2 < v < (1 + a)/2;

1 − v, v > (1 + a)/2,

(3)

and is a piecewise linear caricature of the cubic FitzHugh-Nagumo nonlinearity f(v) =

v(1−v)(v−a). The variable v corresponds to a membrane potential whilst w is associated

with the recovery property of a neuron. The parameters a, µ, w0, v0 and γ may be

considered as combinations of membrane reversal potentials and conductance properties

whilst I is a constant input current. The term εX(t) represents a time varying external

input signal of strength ε. In the absence of any input (ε = 0) the system has nullclines

defined by f(v) = w + w0 − I and w = (v − v0)/γ. The case when the fixed point is such

that v < a/2 is said to define the excitable regime. It is convenient to keep track of which

branch of the nonlinear function (3) is playing a role in the dynamics. Following Abbott

[36] we introduce the binary variable:

S =


+1, v > (1 + a)/2;

0, v < a/2.
(4)
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If the time-scale for the v dynamics is fast compared to the time-scale for the w dynamics

(ie in the limit as µ → 0), then v spends no appreciable time off of the nullclines for v̇ = 0

and we may write f(v) = S − v. (More precisely we assume ε � µ → 0.) Introducing

S+(t) = limδ→0+ S(t + δ) we may write the dynamics for S(t) in the form

S+ = Θ(I − w0 + (S − a)/2 − w), (5)

where Θ(x) = 1 if x ≥ 0 and is zero otherwise. To establish the validity of (5) we refer to

figure 1 and check that S switches from 0 to 1 as w decreases through w1 and that this is

reversed as w increases through w2. The points w1 and w2 in figure 1 are easily calculated

as I − w0 − a/2 and I − w0 − a/2 + 1/2 respectively. On the branches S = 0 and S = 1,

the evolution of v may be expressed as

v = S − w − w0 + I, (6)

This allows us to re-write the slow dynamics in the form

ẇ ≡ G(w; S) = −βw + A + S, (7)

where β = 1 + γ and A = I − w0 − v0.

When µ = 0 the McKean model possesses an invariant manifold which may be written in

the form v = m(w), with

m(w) =


m(w; 0), v < a/2;

vc(w), a/2 < v < (1 + a)/2;

m(w; 1), v > (1 + a)/2,

(8)

where m(w; S) = S −w−w0 + I and vc(w) = w +a+w0 − I. Note that for µ = 0 the two

outer branches defined by S = 0 and S = 1 are attracting whilst the inner branch defined

by v = vc(w) is repelling. We shall refer to the model obtained by taking the singular

limit µ = 0 of the McKean model as the binary model. A study of a single binary neuron

experiencing repetitive pulsatile stimulation can be found in [41].

3 Phase equations

In the oscillatory regime it is a simple matter to calculate the periodic trajectory of the

system in the singular limit µ = 0. In this case the period of oscillation is given by
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T = T1 + T2 where

T1 =
∫ w1

w2

1

G(w; 0)
dw =

1

β
ln

[
(−βw2 + A)

(−βw1 + A)

]
, (9)

T2 =
∫ w2

w1

1

G(w; 1)
dw =

1

β
ln

[
(−βw1 + A + 1)

(−βw2 + A + 1)

]
. (10)

In the absence of synaptic input (ε = 0) the binary neuron (µ = 0) evolves on the invariant

manifolds described by S = 0 and S = 1. In the oscillatory regime the periodic trajectory

of the binary model takes the simple form

w(t) =


w2 exp(−βt) + A

β
[1 − exp(−βt)] , t ∈ [0, T1);

w1 exp(−β(t − T1)) + A+1
β

[1 − exp(−β(t − T1))] , t ∈ (T1, T ),
(11)

v(t) = S − w(t) − w0 + I (12)

with v(t + T ) = v(t) and w(t + T ) = w(t). This trajectory (with ε = 0) may be parame-

terized by a phase variable θ ∈ [0, 1) such that θ(t) = Ωt with Ω = T−1. Hence, for some

periodic functions Λv and Λw, of period one, we may write

w(t) = Λw(θ(t)), (13)

v(t) = Λv(θ(t)) = −Λw(θ(t)) + S − w0 + I, (14)

so that

ẇ = Ω
dΛw

dθ
= G(θ; S), (15)

v̇ = Ω
dΛv

dθ
= −G(θ; S) +

dS

dθ
. (16)

Whenever S changes value there is an instantaneous jump of the system between its slow

manifolds. Thus, a limit cycle attractor of the algebraic-differential system given by (14)

and (15) is discontinuous. Assuming the persistence of the periodic orbit in the presence

of a non-zero coupling term (ε �= 0) we look for a new coordinate system that describes

both the phase on the limit cycle (θ ∈ [0, 1)) and a normal coordinate (b ∈ R) in its

neighbourhood (that vanishes on the limit cycle). Such a coordinate transformation has

been found by Ermentrout and Kopell [42, 43] and used to great effect in dealing with

systems of coupled neural oscillators. Following closely the appendix of [42] we write the
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change of coordinates (v, w) → (θ, b) in the formv

w

 =

Λv(θ)

Λw(θ)

 +

Mv(θ)

Mw(θ)

 b +

1

1

 O(b2), (17)

subject to the constraints Λ′
vMv + Λ′

wMw = 0 and M2
v + M2

w = 1, where ′ ≡ d/dθ.

Evaluating the Jacobian of the transformation and evaluating its inverse for small b shows

that 
∂θ
∂v

∂b
∂v

∂θ
∂w

∂b
∂w

 =
1

ρ

Λ′
v ρMv

Λ′
w ρMw

 , ρ(θ) = (Λ′
v(θ))

2 + (Λ′
w(θ))2. (18)

From the chain rule and using the above results it is easily checked that θ̇ = Ω. For non-

zero ε the evolution of v is modified to v = S−w−w0 +I + εX(t) so that ẇ → ẇ+ εX(t),

which in turn means that v̇ → v̇ − εX(t). In this case

dθ

dt
= Ω + εR(θ)X(t), (19)

where the response function R(θ) is given by

R(θ) =
1

ρ(θ)

d

dθ
[Λw(θ) − Λv(θ)]

= Ω

[
1

G(θ; S)
+ κ(0)δ(θ) + κ(θT )δ(θ − θT )

]
, (20)

and we use the notation G(θ; S) = G(Λw(θ); S) and θT = T1/T . The last two terms in

(20) represent the contributions of dS/dθ to dΛv/dθ. The constants κ(0) and κ(θT ) may

be calculated by demanding that θ(t) evolve smoothly even when S changes from 0 to 1

and vice-versa. This is guaranteed upon choosing

κ(0) =

(
1

G(0; 0)
− 1

G(1; 1)

)
(21)

κ(θT ) =

(
1

G(θT ; 1)
− 1

G(θT ; 0)

)
. (22)

From the periodic solution given by (11), Λw = w(θT ) so that

G(θ; S) =


e−βθT [A − βw2], S = 0;

e−βT (θ−θT )[A + 1 − βw1], S = 1.
(23)
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Fig. 2. Phase response curve of the binary model for θ �= 0, θT . System parameters are taken as

v0 = w0 = 0, γ = 0.5, a = 0.25 and I = 0.5.

Note that S = 0 if θ ∈ [0, θT ) and S = 1 if θ ∈ (θT , 1). A plot of the response function

(for θ �= 0, θT ) is shown in figure 2. We may now use the averaging theorem to construct

the phase interaction function for a network of synaptically interacting binary oscillators.

3.1 Networks, weak coupling and averaging

By generalizing the above approach it is straightforward to see that a network of binary

relaxation oscillators may be described by the system

θ̇n = Ω + ε
∑
m

WnmR(θn)Xm(t), (24)

where εWnm is the strength of the coupling between oscillators m and n. In neural systems

the functions Xm(t) represent synaptic interactions which we shall consider to be solely

determined by the arrival times of pre-synaptic action potentials. Furthermore, we assume

that synaptic input can be modeled as a convolution of an incoming spike train with some

synaptic response kernel. Hence, we set

Xm(t) =
∫ ∞

0
η(τ)

∑
j

δ(τ − t + T j
m)dτ =

∑
j

η(t − T j
m), (25)

where the times T j
m represent the arrival time of the jth spike from oscillator m. For the

McKean oscillator we take the firing time to be on the upstroke of the action potential,

ie the time at which the jump from the S = 0 branch to the S = 1 branch occurs.
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Appropriate choices of the kernel function η(t) may be used to mimic realistic neuronal

responses to spike train input. For a further discussion of the forms of delay kernel typically

found in neural systems see [44]. Of course, synaptic currents may also be described using

a more dynamical approach as discussed by Rubin and Terman [30] or with the FTM

type of coupling studied intensively by Somers and Kopell [38, 27, 39]. For the latter type

of coupling interactions are assumed to instantaneously modify the slow manifolds of the

system and are ideally suited to analysis using geometric ideas.

It is convenient to introduce new phase variables θn = φn + Ωt so that (24) may be

re-written as

φ̇n = ε
∑
m

WnmR(φn + Ωt)X(t). (26)

In the weak coupling regime each oscillator approximately fires at its natural frequency

Ω. However, this relatively fast oscillation is slowly modulated by the O(ε) drift in the

phases φn(t). We can expect to describe the output of the network in a periodic state

with the ansatz T j
n = (j + θT − φn)T for some integer j and period T (ε-close to that of

the natural period of the uncoupled oscillator). The right-hand side of equation (26) then

becomes a T -periodic function of t and we can apply the method of averaging [14]: there

exists a change of variables, φn → φn + εf(φn, t, ε) that maps solutions of (26) to those of

dφn

dt
= ε

∑
m

WnmH(φm − φn) + O(ε2), (27)

where H(φ) is the phase interaction function

H(φ) =
1

T

∫ T

0
R(t/T + θT )P (t + φT )dt (28)

and

P (t) =
∑
j

η(t − jT ), t ∈ [0, T ). (29)

The function P (t) is periodically extended such that P (t + T ) = P (t). In neural models

the effective phase interaction may be regarded as a convolution (over one period of

oscillation) of the synaptic current and the so-called phase response curve (PRC) of a

single neuron. The PRC can be found experimentally by perturbing a neuron with a brief

depolarizing stimulus at different points on its limit cycle and measuring the resulting

phase-shift. For certain types of neuron such a stimulus always advances the onset of the

next spike, that is, the PRC is always positive, whereas for others the stimulus may also

delay the next spike. Differences in the nature of a neuron’s PRC are known to have a

major effect on phase dynamics at the network level [17].
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The method of averaging is only expected to yield sensible results in the limit ε � µ → 0

(see [37] for a discussion). In general the function f(φ, t, ε) is not small when t → ∞.

However, for ε � 1, the dynamics of (26) are ε-close to those of (27) for times of O(ε−1).

Moreover, hyperbolic periodic orbits of (27) correspond to hyperbolic periodic orbits of

(26). Consider, in particular, phase-locked solutions of (27) for which φn(t) = ψn + Ω̃t,

where ψn is a constant phase and Ω̃ is an O(ε) contribution to the effective frequency

of the oscillators. Substituting into (27) and working to O(ε) leads to the fixed point

equations

Ω̃ = ε
∑
m

WnmH(ψm − ψn). (30)

The neural firing times in the phase-locked state are given by T j
n = (j + θT − ψn)T , with

T−1 = Ω + Ω̃. For intermediate levels of coupling, where the method of averaging breaks

down, one must deal directly with (26) in which the interaction between neurons involves

the direct product of the PRC with the post-synaptic current, Xm(t) = P (t + φm − θT ),

such that the phases no longer occur as differences. This generally makes the analysis far

more difficult and will not be pursued here.

The (linear) stability of solutions is determined by setting φn(t) = ψn + Ω̃t + ϕn(t) to

obtain

dϕn

dt
=

∑
m

Hnm(Ψ)[ϕm − ϕn], (31)

where Hnm(Ψ) = εWnmH ′(ψm − ψn). Hence stability is determined by the eigenvalues of

the Jacobian matrix Ĥnm(Ψ) = Hnm(Ψ) − δnm
∑

k Hnk(Ψ).

We finish the construction of the phase interaction function by writing the response func-

tion (for θ �= 0, θT ) in the form

R(t/T ) ≡


R1(t) = Ω eβt /(A − βw2), t/T mod 1 ∈ [0, θT );

R2(t) = B e−βθT T R1(t), t/T mod 1 ∈ (θT , 1),
(32)

where B = (A − βw2)/(A + 1 − βw1). Then, using the periodicity properties of P (t) and

11



R(t) we may write

H(φ) − Ĥ(φ) =



BF (φ; 0, 1 − φ, 0)

+BF (φ; 1 − φ, 1 − θT ,−1)

+ eβ(θT−1)T F (φ; 1 − θT , 1,−1), φ > θT ;

BF (φ; 0, 1 − θT , 0)

+ eβ(θT−1)T F (φ; 1 − θT , 1 − φ, 0)

+ eβ(θT−1)T F (φ; 1 − φ, 1;−1), φ < θT .

(33)

where

F (φ; a, b, c) =
1

T

∫ b

a
R1(t)P (t + φT + cT )dt (34)

and

Ĥ(φ) = Ω2 [κ(0)P ((φ − θT )T ) + κ(θT )P (φT )] . (35)

Note that Ĥ(φ) is discontinuous, with discontinuities at φ = 0 and φ = θT , since P (0) �=
P (T ). For a general discussion of discontinuous phase interaction functions in relaxation

oscillator systems see the recent paper by Izhikevich [37].

4 Phase locking in a pair of mutually coupled binary relaxation oscillators

In this section we illustrate the theory of weakly connected McKean oscillators for a pair

with reciprocal connections and an alpha function synaptic kernel. An alpha function is

a common way of representing a synaptic response when the rise and fall time of the

synapse is comparable. For this model of the synaptic transmission process we set η(t) =

α2t e−αt Θ(t). The calculation of the interaction function for this case is straightforward

since we may sum the infinite series (29) to obtain

P (t) =
α2 e−αt

(1 − e−αT )

[
t +

T e−αT

1 − e−αT

]
, t ∈ [0, T ). (36)

The calculation of (34) is also straightforward and yields

F (φ; a, b, c) =
α2 e−α(φ+c)T

T 2(1 − e−αT )(β − α)(A − βw2)
M(φ; aT, bT, c), (37)
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Fig. 3. The function K(φ) = H(1 − φ) − H(φ) for two synaptically coupled binary oscillators

with alpha function kernels. v0 = w0 = 0, γ = 0.5, I = 0.5. On the left α = 5 and on the right

α = 20.

with

M(φ; a, b, c) =

[
(φ + c)T +

T e−αT

(1 − e−αT )
− 1

(β − α)

] (
eb(β−α) − ea(β−α)

)

+
(
b eb(β−α) −a ea(β−α)

)
. (38)

For the study of phase-locking it is natural to follow the evolution of the phase difference

φ = φ1 − φ2. Using (27) we have that

φ̇ = εK(φ) ≡ ε[H(1 − φ) − H(φ)]. (39)

By symmetry the synchronous solution φ = 0 and the anti-synchronous solution φ = 1/2

are guaranteed to exist for all system parameter values. Other phase-locked solutions,

which we term asynchronous, will satisfy K(φ) = 0 with 1 − φ also a solution if φ is a

solution. Solutions are linearly stable if εK ′(φ) < 0. Some numerical plots of the function

K(φ) are shown in figure 3. For large values of α one finds three other types of phase-

locked solution apart from the synchronous and anti-synchronous solution. However with

decreasing α these solutions can cease to exist. By examining the derivative of K(0) it is

simple to determine that the synchronous solution is stable for all α when ε > 0 (excitatory

coupling) and unstable when ε < 0 (inhibitory coupling). The full bifurcation diagram for

the system, as a function of the inverse rise time α, is presented in figures 4 and 5. Here

we present results for excitatory coupling and use solid lines to represent stable solutions

and dashed lines for unstable. For inhibitory coupling the stability of solution branches

is simply reversed. In common with phase oscillator studies of Hodgkin-Huxley neurons

with mutual weak excitatory coupling through alpha functions [18] we find that for fast

synapses the synchronous and anti-synchronous states can co-exist stably. The existence
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insets show the shape of the interaction function K(φ) away from the pitchfork bifurcation.

Note that K ′(0) does not change sign whilst K ′(1/2) does. Hence, for excitatory coupling the

synchronous solution is always stable and the anti-synchronous solution may be stable for very

small α. For larger α the anti-synchronous solution can destabilize via a pitchfork bifurcation.

The stability of solution branches is reversed for inhibitory coupling.
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Fig. 6. Numerical simulation of a pair of synaptically coupled McKean neurons showing

co-existence of the synchronous (a), anti-synchronous (b) and one asynchronous state (c) for

large α (α = 20). Other parameters v0 = w0 = 0, a = 0.25, γ = 0.5, I = 0.5, µ = 0.01 and

ε = 0.001.

of an unstable asynchronous solution that can connect to the anti-synchronous state with

decreasing α (at around α = 4) is also a phenomenon seen in the weakly coupled Hodgkin-

Huxley pair. For slow synapses the anti-synchronous solution is unstable (see figure 4 with

2 < α < 4).

For extremely slow synapses (see figure 5) the anti-synchronous solution can change sta-

bility type in a pitchfork bifurcation. Once again just this type of bifurcation has been

observed with Hodgkin-Huxley dynamics. One difference to the simulations presented in

[18] is that the asynchronous states, seen for very slow synapses, do not reconnect to the

synchronous solution. Rather the underlying discontinuous nature of the phase interaction

function means that they can cease to exist as α is varied, preventing reconnection. This

subtle difference is associated with the fast relaxation limit µ → 0, which is not expected

to capture all the essential features of the usual Hodgkin-Huxley dynamics with standard

parameter values. The appearance of a pair of stable/unstable phase-locked solutions at

high α is also expected to be another artifact of the fast relaxation assumption, since

these states were not seen in the numerics presented in [18]. A direct numerical exam-

ple of this particular type of phase-locked state, in conjunction with a synchronous and

anti-synchronous orbit is shown in figure 6.

For numerical simulation, and considering a synaptic kernel described with an alpha
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function, it is convenient to rewrite (25) in the form

1

α

dXm

dt
= −Xm + Ym (40)

1

α

dYm

dt
= −Ym +

∑
j

δ(t − Tm
j ) (41)

where we have made use of the fact that η(0) = 0. A practical way in which to simulate

this second order synapse is therefore to evolve the system of equations (40) and (41) until

a firing event is reached and then to discontinuosly adjust Ym according to Ym → Ym +α.

Throughout we have assumed that the input εXn(t) is insufficient to switch the dynamics

from the branch S = 0 to S = 1. The possibility of a transition from the branch S = 0 to

S = 1 at other phase than θ = θT will be considered next. Importantly, new phase-locked

phenomenona, most notably the existence a continuum of stable asynchronous states,

becomes possible for strong coupling in the limit α → ∞ and µ = 0.

5 Strong pulsatile coupling

In this section we show how the binary model can be interpreted as a type of IF oscillator

with a state-dependent threshold and recovery variable. In this framework it is possible to

treat the case of fast pulsatile synaptic interactions (where η(t) → δ(t)) with a return-map

analysis [40, 45, 46, 47, 48] The state dependent threshold function of the binary model

is identified as the middle part of the v̇ = 0 nullcline described by the linear equation

v = vc(w) (see figure 1). Initial data with v < vc(w) will be attracted to the S = 0

branch, whilst if v > vc(w) it is attracted to the S = 1 branch. Hence, if a binary neuron

evolves freely on S = 0 until v is perturbed by a pulse of strength κ then it will make a

transition to the other branch only if v + κ > vc(w). If it fails to make a transition or if it

is stimulated whilst on the branch S = 1 it will instantaneously relax back to its original

branch. Hence, even though stimulated it would appear to behave as if it were evolving

freely (at least in the singular limit µ = 0). Note that is very different from the case of

weak coupling where the assumption was made that jumps from S = 0 to S = 1 could

only occur when w = w1. We may keep track of which branch the system is on by writing

S+
n = Θ(Sn − h(wn, κn)), (42)
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where

κn(t) =
∑
m

Wnm

∑
j

δ(t − T j
m), h(w, κ) = 2w + a − κ − 2(A + v0). (43)

The parameters Wnm are to be interpreted as the size of the kicks communicated by

oscillator m to oscillator n. The delta function may be regarded as the large α limit of

the alpha function of the previous section. Transitions from S = 0 to S = 1 will occur

whenever w = w1 or if the system is kicked with a strength κ whilst in the state wn and

wn < wD, where wD is the solution to h(wD, κ) = 0, ie wD = A + v0 + (κ − α)/2. The

dynamics of a network of pulse-coupled binary neurons may now be written in the simple

form

ẇn = −βwn + A + Sn, (44)

with Sn determined by (42).

For further analysis it is convenient to describe the system in terms of the phase variables

introduced in the previous section. Note that on the branch S = 0 we may write

θ = f(w) =
1

βT
ln

[
−βw2 + A

−βw + A

]
. (45)

This allows us to define an impact phase θD = f(wD) (for a kick of strength κ) such that

the phase just after a neuron receives a pulse of strength κ is given by

θ+ = F+(θ) =




θ, θ < θD;

F (θ), θD ≤ θ < θT ;

θ, θ ≥ θT .

(46)

We take κ ≤ 1 so that 0 < θD < θT . F (θ) is simply the new phase after jumping from the

branch S = 0 to S = 1:

F (θ) = 1 − 1

T

∫ w2

g(θ)

dw

G(w; 1)
=

1

βT
ln

[
1 − ν

1 − ν e−βθT

]
, (47)

where g(θ) = f−1(θ) and ν = βw2 − A.

We shall now illustrate how this system may be analyzed with a return-map approach

by considering the evolution of a pair of excitatory pulse-coupled binary oscillators. We

introduce two neurons with phases θ1 and θ2 respectively and take initial data such

that (θ1(0), θ2(0)) = (φ, θT ). Just after the firing of neuron 2 we have that (θ1, θ2) =
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Fig. 7. Return-map for a pair of binary neurons with mutual excitation. v0 = w0 = 0, γ = 0.5,

a = 0.25, I = 0.5. On the left κ = 0.5 and on the right κ = 1.

(F+(φ), θT ). If we evolve the system until neuron 1 fires then (θ1, θ2) = (θT , P (φ)), where

P (φ) = 2θT − F+(φ) + 1 mod 1. (48)

Thus after one firing, the system has moved from an initial state (φ, θT ) to a current state

(θT , P (φ)). Hence the system is in essentially the same state as when it started, but with

φ replaced by P (φ) and the oscillators interchanged. The so-called return-map [40] for the

system is obtained by following the system through one more firing event and is simply

P 2(φ). Using the observation that F+(θT ) = θT it is a simple matter to establish that one

fixed point of the return-map, P 2(φ) = φ, is the synchronous solution φ = θT . The graph

of the return-map is shown in figure 7 and illustrates that as well as the synchronous

solution there are asynchronous solutions with φ ∈ (θM , θD), θM ∈ (0, θD). Interestingly,

a continuum of states is also observed for pulse-coupled IF neurons with the inclusion of

a refractory period [49]. The reason why there is a continuum of asynchronous solutions

can be traced to the fact that a neuron with phase φ ∈ (0, θD) does not feel the effect

of a firing event (at least for instantaneous relaxation where µ = 0). If neuron one has

some phase φ ∈ (θM , θD) when neuron two fires, then neuron two will also be immune

to the firing of neuron one only if θT + (θT − φ) mod 1 < θD. Hence, one may easily

calculate that θM = 2θT − 1− θD. The system as a whole then behaves as if there were no

coupling and the relative phase between oscillators is completely specified by initial data

and will remain fixed for all time. In the limit θD → 0 (or equivalently κ → 1) the only

remaining fixed point of the return-map is the synchronous solution. In common with

the results for FTM coupling, synchronization is robust and can be extremely rapid. The

FTM theory applies to relaxation oscillators with cubic fast nullclines, fast relaxation and

synaptic kernels in the form of Heaviside step functions. In common with the analysis of
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this section there is no restriction on the strength of coupling. However, unlike the FTM

theory we do not seem to have to invoke the compression hypothesis in which the rate

of change of the slow variable must decrease through a jump between slow manifolds.

An example of the evolution into a synchronous and asynchronous state for a pair of

pulse-coupled binary oscillators is shown in figure 8.

Note that if κ > 1 then the firing of one neuron will guarantee the firing of its partner.

Even though they may not have the same phase the two oscillators are synchronized in

the sense that they always fire at the same time. Moreover, they will synchronize, in this

weaker sense, at the first firing event.

6 Discussion

The McKean model is a low-dimensional and uncomplicated neural relaxation oscillator,

originally introduced as a minimal model of excitable neural tissue relevant for describing

action potential propagation in models of spatially extended axons [35]. We have now

shown that it is possible to explicitly calculate the PRC of a point McKean oscillator using

simple geometric notions. Unlike oscillators of non-relaxation type, the PRC is seen to be

discontinuous, as predicted by Izhikevich [37]. This discontinuous PRC forms the basis of a

description of networks of synaptically interacting oscillatory McKean neurons. Under the

assumption of fast relaxation and weak coupling it has been possible to analyze the way

in which synaptic and recovery time scales interact to generate phase-locked states. An

application of the general theory to a pair with mutual coupling through alpha functions

is found to be consistent with earlier numerical studies of Hodgkin-Huxley networks.
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This lends further support to the usefulness of the fast relaxation limit of the McKean

oscillator in providing a sound starting point for the mathematical analysis of networks

of biologically motivated spiking neural oscillators. The application of this work to cover

specific neuronal architectures and synaptic kernels (such as those described in [44]) is

relevant to the study of phase-locked solutions of neural systems, solutions that arise

through instabilities, and indeed phase waves of the type discussed by Crook et al. [50]. A

more challenging mathematical problem is the development of a theory of strongly coupled

relaxation oscillators (perhaps without recourse to the fast relaxation assumption). One

step in this direction has also been presented in this paper, and shows that the synchronous

solution can co-exist with a continuum of asynchronous states. Unfortunately the study of

pulse-coupled binary oscillators, via a return-map analysis, would not seem to lend itself

to a study of non-instantaneous synapses. However, recent techniques developed for the

numerical study of synaptically interacting Hodgkin-Huxley neurons [51], when combined

with the PRC of the McKean model, may allow such a programme to be developed. These

and related issues are topics of current investigation.
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