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Abstract. Bifurcations of periodic solutions from homoclinic ones are investigated

for certain singularly perturbed systems of autonomous ordinary di�erential equa-

tions in R4. Results are applied to discretization of travelling waves of certain p.d.e.

1. Introduction

F. Battelli [2], W. Eckhaus [3], J. M. Hammersley and G. Mazzarino [5], and

C. Lazzari [8] examined the existence or nonexistence of homoclinic solutions of

singular ordinary di�erential systems of the following type

(1.1) "
2
y
(4) + �y � y + y

2 = 0 :

which arises in the theory of water-waves in the presence of surface tension [1].

Setting v = y, u = �y � y + y
2, eq. (1.1) leads to [2]

"
2�u+ u = "

2
�
2 _v2 � (1� 2v)(u+ v � v

2)
�
;(1.2)

�v = u+ v � v
2
:

The present paper can be considered a direct continuation of the investigations [2,

8], on the systematic study of bifurcations of periodic solutions in more general

systems of the form

�x+ h(x) = f(x; _x; y; " _y; ") ;(1.3)

"
2�y + y = "

2
g(x; _x; y; " _y; ") ;
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where " > 0 is a small parameter and we assume the following assumptions

(A1) h; f; g 2 C
1, f(x1; x2; 0; 0; 0) = 0.

(A2) f(x1; x2; y1; y2; "), g(x1; x2; y1; y2; ") are even in the variables x2 and y2, i.e.

f(x1;�x2; y1;�y2; ") = f(x1; x2; y1; y2; ")

g(x1;�x2; y1;�y2; ") = g(x1; x2; y1; y2; ") :

(A3) h(0) = 0, h0(0) = �a2 < 0 and there is a homoclinic solution � of �x+h(x) =

0 such that �(t) = �(�t) and �(t)! 0 as t! �1.

F. Battelli has shown in [2] that bifurcation functions of homoclinic solutions

of eq. (1.3) under the above assumptions are exponentially small in addition that

h; f; g are analytical. W. Eckhaus [3], and J. M. Hammersley and G. Mazzarino [5]

established the nonexistence of certain homoclinic solutions of (1.1).

In this paper, we study the existence of periodic solutions of (1.3) near (�(t); 0).

Substituting y = 0; " = 0 into the equation (1.3), we get the equation

(1.4) �x+ h(x) = 0 :

Eq. (1.4) has a hyperbolic �xed point (0; 0) with the homoclinic solution (�; _�)

which is accumulated by periodic solutions with periods tending to in�nity. We

show that in spite of the fact that generally the homoclinic solution of (1.4) does

not survive under the singular perturbation (1.3). The problem (1.3) has many

layers of continuum periodic solutions near the solution (�; 0): The smaller " the

more layers of continuum periodic solutions of (1.3) exist near (�; 0) with very large

periods.

In the last section, we study the (kink/antikink) travelling wave solutions in a

chain of interacting particles. We prove the existence of discrete travelling waves

near to the continuum limit for a large period, applying the centre manifold reduc-

tion and our Theorem.

2. Preliminary Results

We take the linearization of the equation

(2.1) �x+ h(x) = 0

along �(t) and consider the variational equation

(2.2) �u+ h
0(�(t))u = z(t); 0 � t � T

with the boundary value conditions

(2.3) _u(0) = 0; _u(T ) = b :

Since h0(0) = �a2 < 0, a > 0, we have �(t); _�(t) � e�at as t ! +1, i.e. it holds

that

�(t)=e�at ! c1 6= 0 and _�(t)=e�at ! c2 6= 0 as t! +1 :

The homogeneous equation (2.3) with z = 0 has solutions wi(t), i = 1; 2 such

that:

. w1 is odd, w1(0) = 0, _w1(0) = 1, w1(t); _w1(t) � e�at as t! +1,

. w2 is even, w2(0) = �1, _w2(0) = 0, w2(t); _w2(t) � eat as t! +1.
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The general solution of (2.2) has the form

u(t) = LT (z; b) � c1w1(t) + c2w2(t) + z1(t) ;

z1(t) =

tZ

0

�
w2(t)w1(s)� w1(t)w2(s)

�
z(s) ds :

The condition (2.3) gives c1 = 0 and c2 = � _z1(T )

_w2(T )
+ b

_w2(T )
. Hence, we get

u(t) = b
w2(t)

_w2(T )
�

TZ

t

w2(t)w1(s)z(s) ds

+
_w1(T )

_w2(T )

TZ

0

w2(t)w2(s)z(s) ds�

tZ

0

w1(t)w2(s)z(s) ds :

Then

_u(t) = b
_w2(t)

_w2(T )
�

TZ

t

_w2(t)w1(s)z(s) ds

+
_w1(T )

_w2(T )

TZ

0

_w2(t)w2(s)z(s) ds�

tZ

0

_w1(t)w2(s)z(s) ds :

By using the above asymptotic properties of w1 and w2 for t; s large, we get

w2(t)= _w2(T ) � ea(t�T )
; w2(t)w1(s) � ea(t�s) ;

_w1(T )

_w2(T )
w2(t)w2(s) � ea(�2T+t+s)

; w1(t)w2(s) � ea(s�t) ;

_w2(t)w1(s) � ea(t�s); _w1(t)w2(s) � ea(s�t) ;

_w2(t)= _w2(T ) � ea(t�T )
;

_w1(T )

_w2(T )
_w2(t)w2(s) � ea(�2T+t+s)

:

These estimates imply the existence of a constant c > 0 such that

(2.4) jjujj+ jj _ujj � c(jbj+ jjzjj) ;

where jjxjj = max[0;T ] jx(t)j. Summarizing, we get the next result.

Lemma 2.1. Problem (2:2�3) has a unique solution u = LT (z; b) satisfying (2:4).

Now, we consider the problem

"
2�v + v = "z(t); 0 � t � T ;(2.5)

_v(0) = _v(T ) = 0 :
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We can immediately see that the solution of eq. (2:5) is given by

v(t) = L";T (z; b) �
1

sin(T=")

TZ

0

cos
T � s

"
z(s) ds cos(t=") +

tZ

0

sin
t� s

"
z(s) ds :

If T satis�es

(2.6)
���T
"
� 2k� �

�

2

��� � �=4; k 2 N

then 1 � j sin(T=")j �
p
2=2, and we obtain the estimate

(2.7) jjvjj+ jj" _vjj � 2T jjzjj(
p
2 + 1) :

Summarizing, we get the next result.

Lemma 2.2. If condition (2:6) holds then problem (2:5) has a unique solution

v = L";T (z) satisfying (2:7).

3. Periodic Solutions

We are looking for periodic solutions of (1.3) near (�; 0). For this reason, we

make the change of variables

x(t) = �(t) + "
1=4

u(t); y(t) =
p
"v(t) ;

and we get

"
2�v + v = "

3=2
g(�+ "

1=4
u; _�+ "

1=4 _u;
p
"v; "

3=2 _v; ")

�u+ h
0(�)u = �

1

"1=4

n
h(�+ "

1=4
u)� h(�)� h

0(�)"1=4u
o

(3.1)

+
1

"1=4
f(�+ "

1=4
u; _�+ "

1=4 _u;
p
"v; "

3=2 _v; ") :

We are looking for solutions of (1.3) satisfying _x(0) = _x(T ) = 0, _y(0) = _y(T ) = 0.

This gives

_u(0) = 0; _u(T ) = � _�(T )="1=4(3.2)

_v(0) = 0; _v(T ) = 0 :

The next results deals with this problem.

Theorem 3.1. For any k0 2 N there is an "0 > 0 such that for any 0 < " < "0

and T = "
�
2k[1="3=2]� + �

�
with k 2 N, k � k0, � 2 [�=4; 3�=4] [ [5�=4; 7�=4],

system (1:3) has a 2T -periodic solution near (�(t); 0), �T � t � T . Here [1="3=2]

is the integer part of 1="3=2.

Proof. First of all, we show the existence of a solution of (3.1-2). We take the

Banach spaceX" = C
1([0; T ];R)2 with the norm jjj(v; u)jjj = jjujj+jj _ujj+jjvjj+jj" _vjj.

By using Lemmata 2.1 and 2.2, we rewrite (3.1-2) in the form

v = L";T

p
"g(�+ "

1=4
u; _�+ "

1=4 _u;
p
"v; "

3=2 _v; ")

u = LT

�
�

1

"1=4

n
h(�+ "

1=4
u)� h(�)� h

0(�)"1=4u
o

(3.3)

+
1

"1=4
f(�+ "

1=4
u; _�+ "

1=4 _u;
p
"v; "

3=2 _v; ");� _�(T )="1=4
�
:
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We consider (3.3) as a �xed point problem in X". Now we �x k0 2 N and take

T = "
�
2k[1="3=2]� + �

�
with k 2 N, k � k0, � 2 [�=4; 3�=4] [ [5�=4; 7�=4] and

[1="3=2] is the integer part of 1="3=2. We take a suÆciently large ball BK =
�
(v; u) 2

X" j jjj(v; u)jjj � K
	
in X". Since T � 1=

p
" and _�(T ) � e�aT , we get _�(T )="1=4 �

e�a=
p
"
="

1=4 = O("). From the C1-smoothness of f; g; h, it follows the existence of

a constant M > 0 such that for any K > 0 there is an "0 > 0 such that for any

0 < " � "0, (v; u) 2 BK , it holds that

��g(�+ "
1=4

u; _�+ "
1=4 _u;

p
"v; "

3=2 _v; ")
�� �M ;��� 1

"1=4

n
h(�+ "

1=4
u)� h(�) � h

0(�)"1=4u
o��� � 1 ;

��� 1

"1=4
f(�+ "

1=4
u; _�+ "

1=4 _u;
p
"v; "

3=2 _v; ")
��� � 1 :

For any (u; v) 2 BK , 0 < " � "0, we put

u1 = LT

�
�

1

"1=4

n
h(�+ "

1=4
u)� h(�)� h

0(�)"1=4u
o

+
1

"1=4
f(�+ "

1=4
u; _�+ "

1=4 _u;
p
"v; "

3=2 _v; ");� _�(T )="1=4
�
;

v1 = L";T

p
"g(�+ "

1=4
u; _�+ "

1=4 _u;
p
"v; "

3=2 _v; ") :

Then estimate (2.4) implies

jju1jj+ jj _u1jj � c
�
2 +O(")

�
;

and estimates (2.6-7) imply

jjv1jj+ jj" _v1jj � 2
p
"TM(1 +

p
2) � 2M(

p
2 + 1)

�
2�k0 +

7�

4
"
3=2
�
:

By choosingK such that 2c+4M(
p
2+1)�k0 < K and "0 > 0 suÆciently small, we

see that BK is mapped to itself by the compact operator generated by the right-hand

side of (3.3). We apply the Schauder �xed point theorem to get a solution of (3.2-3)

in X", i.e. there is a solution of (1.3) satisfying _x(0) = _x(T ) = 0, _y(0) = _y(T ) = 0.

Since h; f; g areC1, we get the uniqueness of the Cauchy problem for (1.3). Then the

evenness of f; g in x2; y2 and the conditions _x(0) = 0, _y(0) = 0 imply that x; y are

even functions. This implies x(�T ) = x(T ), _x(�T ) = � _x(T ) = 0, y(�T ) = x(T ),

_y(�T ) = � _y(T ) = 0. Consequently, the uniqueness of the Cauchy problem for (1.3)

implies that x and y are 2T -periodic. This completes the proof of Theorem. �

Remark 3.2. We note that the derived T -periodic solutions xT;" and yT;" in Theorem

3.1 of equation (1.3) are near to (�(t); 0) in the sense that xT;"(t)��(t) = O("1=4),

_xT;"(t) � _�(t) = O("1=4), yT;"(t) = O(
p
"), " _yT;"(t) = O(

p
") uniformly for �T �

t � T and T satisfying the assumption of Theorem 3.1 for a �xed k0. This estimates

are consistent with the form of (1.3).

Remark 3.3. If h 2 C
2 then, we can apply the uniform contraction mapping

principle to (3.3) for getting a unique 2T -periodic and even solution of (1.3) near

(�(t); 0) for �T � t � T .
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4. Travelling Waves in Spatially Discretized P.D.E.

In order to demonstarte how our general theory can be applied to a particular

physical problem we consider a chain of coupled particles subjected to an external

on-site potential with two or more degenerate minima. It is known that in some

limiting cases, this chain supports moving topological solitons as monotonically

increasing (kink) or decreasing (antikink) travelling wave solutions. By travelling

waves, we mean waves of stationary pro�le moving with constant velocity. In gen-

eral, while propagating along the chain, the kink radiates small{amplitude waves

and �nally stops because of the existence of the so{called Peierls-Nabarro poten-

tial barrier. The topological soliton solutions appear to be well{de�ned travelling

waves of stationary pro�le while they are moving on an appropriate oscillating

background.

The dimensionless Hamiltonian H of such system can be written as:

(4.1) H =
X
n2Z

� 1

2
p
2
n +

1

2�2
(un+1 � un)

2 �F(un)
�
;

where pn = _un is the conjugate momentum of the n-th particle in the chain, un is the

displacement of the n{th particle from its equilibrium position. The Hamiltonian

H gives the discrete nonlinear Klein-Gordon eqn:

(4.2) �un �
1

"2
(un+1 � 2un + un�1)� h(un) = 0 ;

where h(un) = F 0(un); n 2 Z.

Equation (4.2) can be considered as a spatial discretization of the p.d.e.

(4.3) utt � uxx � h(u) = 0 ;

where h 2 C
1 has the property (A3) (cf. section 1) and admits travelling waves

solutions

u(x; t) = �

�
x� �t
p
1� �2

�
; 0 < � < 1

We consider for equation (4.2) travelling wave solutions of stationary pro�le moving

with constant velocity �=". For this type of solutions, one can write

un(t) = V

�
n�

�

"
t

�
� V (z); z = n�

�

"
t; 0 < � < 1

The equation (4.2) is reduced to the following functional di�erential equation:

(4.4) �
2
V
00(z)� V (z + 1) + 2V (z)� V (z � 1)� "

2
h(V (z)) = 0 :

By using the method of center manifolds like in [7] and Theorem 3.1, we study the

existence of solutions of (4.4) near � and the relationship between travelling wave

solutions of (4.2) and (4.3) for " > 0 small.

We introduce a new variable v 2 [�1; 1] and functions X(t; v) = x(t + v). The

notation U(t)(v) =
�
x(t); �(t); X(t; v)

�
indicates our intention to construct V as
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a map from R into some function space living on the v-interval [�1; 1]. Equation
(4.4) can be written as follows

Ut = LU +
"
2

�2
M(U) ;(4.5)

U(t; v) =
�
x(t); �(t); X(t; v)

�
; v 2 [�1; 1] ;

where

L =

0
@ 0 1 0

� 2
�2

0 1
�2
Æ
1 + 1

�2
Æ
�1

0 0 @v

1
A

M(u) =
�
0; h(x); 0

�
; Æ

�
X(v) = X(�1) :

We introduce the Banach spaces H and D for U(v) =
�
x; �;X(v)

�

H = R
2 � C[�1; 1] ;

D =
�
U 2 R

2 � C
1[�1; 1] j X(0) = x

	

with the usual maximum norms. Then L 2 L(D ; H ) and M 2 C
1(D ; D ). We

consider (4.5) on D . The spectrum �(L) is given by the resolvent equation

(�I � L)U = F ; F 2 H ; � 2 C ; U 2 D :

The resolvent equation is solvable if and only if N(�) = 0 for

N(�) = �
2 +

2

�2
(1� cosh�) :

Clearly �(L) is invariant under � ! �� and � ! ��. The central part �0(L) =

�(L) \ {R is determined by the equation

(4.6) q
2 +

2

�2
(cos q � 1) = 0 ; q 2 R; :

The basic properties of �(L) are given in Lemma 1 of [6] and we refer the reader

to that paper for more details. In this paper, we assume that �1 < � < 1 where

� = �1 is the �rst value from the left of 1 for which the equations

�
2 +

2

�2
(cos�� 1) = 0; ��

1

�2
sin� = 0

have a common nonzero solution � 6= 0. Then equation N({q) = 0 has the double

root 0 and simple roots �q. Hence we have �0(L) = f0;�{qg.
The linear operator on the 4th-dimensional central subspace H c has the form

Lc = L=H c =

0
B@
0 1 0 0

0 0 0 0

0 0 0 q

0 0 �q 0

1
CA :
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in the basis (�1; �2; �3; �4) de�ned by

�1 = (1; 0; 1) ; �2 = (0; 1; v)

�3 = (1; 0; cos qv) ; �4 = (0; q; sin qv) :

and which satis�es L�1 = 0, L�2 = �1, L�3 = �q�4, L�4 = q�3.

The projection Pc : H ! H c is given by

Pc(U) = P1(U)�1 + P2(U)�2 + P3(U)�3 + P4(U)�4 ;

where

P1(U) =
�
2

�2 � 1
x�

1

�2 � 1

1Z

0

(1� s)
�
X(s) +X(�s)

�
ds ;

P2(U) =
�
2

�2 � 1
� +

1

�2 � 1

1Z

0

�
X(�s)�X(s)

�
ds ;

P3(U) =
�
�
2
qx�

1Z

0

sin q(1� s)
�
X(s) +X(�s)

�
ds

�
=
�
q�

2 � sin q
�
;

P4(U) =
�
�
2
� +

1Z

0

cos q(1� s)
�
X(�s)�X(s)

�
ds

�
=
�
q�

2 � sin q
�
:

These projections are derived as the residues of the inverse (�I�L)�1 at � = 0; �{q,
respectively, of the resolvent operator [7].

For any bounded ball 
 of H c centered at 0, we can apply the procedure of a

center manifold method [7] to get for " small the reduced equation of (4.5) over 


given by

_uc = Lcuc +
"
2

�2
PcM

�
uc + "

2�"(uc)
�

(4.7)

= Lcuc +
"
2

�2
Pc(M(uc)) +O("4) ;

where uc = u1�1+u2�2+u3�3+u4�4 and �" is the graph map of the center manifold.

Then (4.7) has the form

_u1 = u2; _u2 =
"
2

�2 � 1
~h(u1; u2; u3; u4)

_u3 = qu4; _u4 = �qu3 +
"
2

q�2 � sin q
~h(u1; u2; u3; u4) ;

for a C1-function ~h. Let us consider

x(t) = x1(t) = u1(t=") ; x2(t) = u2(t=")=" ;

y(t) = y1(t) = u3(t=") ; y2(t) = u4(t=") :
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Then (4.7) has the form

_x1 = x2; _x2 =
1

�2 � 1
~h(x1; "x2; y1; y2)

_y1 =
q

"
y2; _y2 = �

q

"
y1 +

"

q�2 � sin q
~h(x1; "x2; y1; y2) ;

which gives

�x =
1

1� �2
f(x; " _x; y; " _y=q; ") ;(4.8)

"
2�y + q

2
y =

"
2
q

sin q � �2q
f(x; " _x; y; " _y=q; ") ;

where f(x1; x2; y1; y2; ") = �h(x1 + y1) + O("2). For " = 0 and y = 0, the limit

equation of (4.8) has the form (1� �
2)�x+h(x) = 0 which is precisely the travelling

wave equation of (4.3). Equation (1 � �
2)�x + h(x) = 0 has a homoclinic solution

x(t) = �(t=
p
1� �2).

We consider the symmetry S(U) =
�
x;��;X(�v)

�
on H . Then (4.5) is reversible

with respect to S, i.e. S Æ L = �L Æ S, M Æ S = �S ÆM . Moreover, we have

Pc Æ S = S Æ Pc and S�1 = �1, S�2 = ��2, S�3 = �3, S�4 = ��4. Hence

Sc = S=H c =

0
B@
1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

1
CA :

Since Sc is unitary, the map �" can be chosen [6] in such a way that SÆ�" = �"ÆSc.
This implies

LcScuc +
"
2

�2
PcM

�
Scuc + "

2�"(Scuc)
�
= �Sc

�
Lcuc +

"
2

�2
PcM

�
uc + "

2�"(uc)
��

:

Hence (4.7) is reversible with respect to Sc. Moreover, Sc has in the coordinates

(x1; ; x2; y1; y2) on H c the form Sc(x1; x2; y1; y2) = (x1;�x2; y1;�y2). Consequently
we get that assumptions (1)-(3) are satis�ed for (4.8). The results of the papers [2,

3, 5, 8] can not be applied since (4.8) is not analytical even if h is analytical. But

we can apply our result Theorem 3.1.

Hence (4.8) has T -periodic solutions xT;"(t) and yT;"(t) near (�(t=
p
1� �2); 0),

�T � t � T for any T satisfying the assumption of Theorem 3.1. They have the

form

u
T;"

c
(t) = xT;"("t)�1 + " _xT;"("t)�2 + yT;"("t)�3 + "( _yT;"("t)=q)�4

in (4.7). Remark 3.2 gives that uT;"
c

(t) lies in a large ball 
. Furthermore, we

have U(t; �) = uc(t) + "
2�"(uc(t)) = uc(t) +O("2) for (4.5) on the center manifold

considered in (4.7). We also note that the x(t)-coordinate of U(t; v) in (4.5) satis�es

(4.4). Consequently, if xT;"("t) is the x-coordinate of uT;"
c

(t) + "
2�"(u

T;"
c

(t)), then

the travelling wave solution of (4.2) corresponding to xT;"(t), yT;"(t) has the form

u
T;"

n
(t) = x

T;"

�
"

�
n�

�

"
t

��
= x

T;"("n� �t) =

xT;"("n� �t) + yT;"("n� �t) +O("2) :
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u
T;"
n (t) is T=�-periodic in t with the velocity �. Then Remark 3.2 gives

u
T;"

n (t) = �

�
"n� �t
p
1� �2

�
+O("1=4)

uniformly for �T � t � T and T satisfying the assumption of Theorem 3.1 for a

�xed k0.

Finally, we note that we get (4.2) from (4.3) by putting

un(t) = u("n; t) ;

uxx("n; t) �
u("(n+ 1); t)� 2u("n; t) + u("(n� 1); t)

"2
:

Summarizing we get the following result.

Theorem 4.1. If h 2 C
1 satis�es the assumption (A3) then travelling wave solu-

tion u(x; t) = �

�
x��tp
1��2

�
for 0 < � < 1 of (4:3) can be approximated by periodic

travelling wave solutions of (4:2) with very large periods and with the velocity �.

We also note that for a C
1-smooth h, the center manifold graph �" is C

k-

smooth for any �xed k 2 N, and then (4.8) is also Ck-smooth. Hence the bifurcation

function of homoclinics for (4.8) is of order O("k). So it is at at " = 0. Since (4.8)

is not analytical, we do not get further information of this atness. Hence it seems

that the center manifold method is not fruitful for detecting bounded solutions of

(4.8) near (�; 0) on R.

Finally, the discrete sine-Gordon equation for h(u) = � sinu in (4.2) of the form

(4.9) �un = un+1 � 2un + un�1 � �2 sinun

has been numerically investigated by J.C. Eilbeck [4, 9]: As � ! 0, we get the

continuum sine-Gordon equation with the supporting moving kinks of the form

(4.10) 4 arctan
h
exp

�
�

x� �t
p
1� �2

�i
:

Thus it was natural for J.C. Eilbeck to seek numerically solutions of

(4.11) �
2
U
00(z) = U(z + 1)� 2U(z) + U(z � 1)� �2 sinU(z) ;

where U(z) = U(n� �t) = un(t), with the boundary conditions U(z)! 0 mod 2�

as z ! �1. He did not �nd such solutions. His closest result is that the numerical

solution of (4.11) near (4.10) has tails of periodic waves of small amplitude. But

according to the form of (4.8), that result is consistent with our result, since the

y-part of (4.8) is oscillatory with small amplitude. We note that Theorem 3.1 can

not be applied to (4.9) since now the limit reduced equation is a pendulum-like

equation with a heteroclinic connection, while we consider in (1.4) a homoclinic

solution. We intend to study (4.9) in future paper.
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