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Abstract

The fire-diffuse-fire model provides an idealised model of Ca2+ release
within living cells. The effect of calcium pumps, which drive Ca2+ back
into internal stores, is often neglected for mathematical simplicity. Here
we show how to explicitly analyse such effects by extending the work of
Keizer et al. (J. E. Keizer, G. D. Smith, S. Ponce Dawson and J. Pearson,
1998, Saltatory propagation of Ca2+ waves by Ca2+ sparks, Biophysical
Journal, 75, 595–600). For travelling waves, in which release events occur
sequentially, we construct the speed of waves in terms of the time-scale
at which pumps operate. An immediate consequence of this analysis is
that the inclusion of calcium pumps leads to multiple solutions. A linear
stability analysis determines those solution branches in parameter space
which are stable. Numerical continuation is used to provide explicit ex-
amples of the bifurcation diagrams of the speed of waves as a function of
physiologically significant system parameters.

1. Introduction

The fire-diffuse-fire (FDF) model of Keizer et al. [1998] (see also [Pearson and
Ponce Dawson, 1998, Ponce Dawson et al., 1999]) is relevant to the study of
travelling wave behaviour observed when Ca2+ is released from internal stores
in living cells. Ca2+ is stored intracellularly in the endoplasmic or sarcoplas-
mic reticulum at 2–3 orders of magnitude greater than its concentration in the
cytosol and is released by a nonlinear feedback process referred to as calcium-
induced calcium release (CICR). CICR involves Ca2+ release through Ca2+ chan-
nels that are receptors for IP3 (inositol (1,4,5)-trisphosphate). These channels
are activated at slightly elevated levels of cytosolic Ca2+ and then inactivated
as the level of Ca2+ rises further. This mechanism for generating oscillations in

∗S.Coombes@Lboro.ac.uk

1



S. Coombes: Travelling waves in the FDF model 2

the concentration of cytosolic free Ca2+ is believed to underlie the waves that
propagate as intra and intercellular waves over distance as large as 1mm with
speeds of between 5 and 20 µms−1 (for a review see Rooney and Thomas [1993]).
When coupled to the kinetics of Ca2+ reuptake into stores (by Ca2+ ATPases),
the CICR mechanism can lead to excitability and oscillations. Initiation sites
or hot spots have been found to spontaneously release Ca2+ and can trigger
a wave that spreads via the CICR process [Parker and Yao, 1991]. Burst-like
wave behaviour is commonly seen in immature Xenopus oocytes and in cardiac
myocytes where saltatory waves propagate with a non-constant shape (see for
example Callamaras et al. [1998]). Importantly, long ranged Ca2+ waves are ca-
pable of synchronising the activities of different cytoplasmic regions of a single
cell, such as cortical granule exocytosis after egg fertilisation. In contrast to a
saltatory wave, these waves have a continuous nature. Both types of wave are
thought to be supported by the same mechanism, namely CICR. The existence
of such long range spatial and temporal signalling by Ca2+ is one of the most sig-
nificant findings of the last decade in the field of intracellular signalling and has
stimulated many experiments for the elucidation of the role of Ca2+ waves in cell
regulation (see for example Berridge and Dupont [1994], Berridge [1997, 1998],
Bootman et al. [1997]). Theoretical and numerical studies of detailed biophysical
models (see for example Sneyd et al. [1993], DuPont and Goldbeter [1994], Jafri
and Keizer [1995], Goldbeter [1996]) have also been performed and motivate the
FDF model discussed in this paper. A major success of the FDF model is the
natural description of both saltatory and continuous travelling waves.

The FDF model incorporates descriptions of the two major fluxes between
the endoplasmic reticulum and the cytosol. The first is due to a pump which
drives the Ca2+ up the gradient from the cytosol back into the endoplasmic
reticulum and the second arises when the IP3 receptor/calcium channel opens
and causes a large flux from the endoplasmic reticulum into the cytosol. After
an open channel closes via inactivation, it cannot reopen for some time during
which it is in a refractory state. Thus the release of Ca2+ by intracellular stores
is self-regulating. Such events are commonly referred to as Ca2+ puffs or sparks
and are the elementary events underlying Ca2+ waves. There are a variety of
kinetic schemes that have been proposed to explain the detailed mechanism by
which Ca2+ oscillations occur. Some assume that IP3 is necessarily oscillatory (for
a discussion of both oscillatory and non-oscillatory IP3 models see [De Young
and Keizer, 1992]), whilst others assume the existence of two pools for Ca2+

and emphasize the effect of CICR (e.g. [DuPont and Goldbeter, 1994]). For a
discussion of IP3 induced Ca2+ oscillations and an anology with the Hodgkin-
Huxley theory for electrical excitability in neurons see the review paper by Li
et al. [1995]. The FDF model provides a caricature of Ca2+ release events that
allows one to study an array of Ca2+ release sites that can interact via diffusion
of Ca2+ and the triggering of a CICR like mechanism.

The one dimensional FDF model consists of a regular array of point-source
release sites with lattice spacing d, embedded in a continuum in which calcium
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ions diffuse. Denoting the concentration of Ca2+ ions by u(x, t) the FDF model
is given by the following partial differential equation

∂u

∂t
= − u

τd

+ D
∂2u

∂x2
+

∞∑
n=−∞

δ(x − xn)f(t − tn), x ∈ R, t > 0. (1)

Note that xn = nd is the location of the nth Ca2+ release site and the first time
that u(xn, t) crosses a threshold uc from below is denoted by tn. Hence, the FDF
model assumes that the site at xn releases only one Ca2+ puff at a time, tn,
determined by

tn = inf{ t | u(xn, t) > uc,
∂u(xn, t)

∂t
> 0}. (2)

The function f(t) describes the shape of the Ca2+ puff and is considered as a
rectangular pulse-shape given by

f(t) =
σ

τR

Θ(t)Θ(τR − t) (3)

where Θ(x) is a step function (Θ(x) = 0 for x < 0, Θ(x) = 1 for x ≥ 0), σ
is the strength of the calcium puff and τR is the duration of Ca2+ release. The
extension of the model to higher dimensions will not be considered here.

The inclusion of the decay time τd in (1) models the time-scale associated with
the action of the pumps that resequester the Ca2+ back into the stores. Under
normal physiological conditions pumps that are embedded in the membrane
consume nucleotide trisphosphates and pump the Ca2+ up the gradient from
the cytosol back into the stores. The effect of this term has been neglected in
previous studies and can only be justified if the pumps operate on some very
slow timescale. In this paper we focus on the effects of the decay term in (1) and
show that it leads to the co-existence of travelling wave states with the same
speed but differing stability. Moreover, the effect of such pumps on the speed,
and indeed existence, of stable travelling waves can be significant.

In the absence of any sources (σ = 0) equation (1) is equivalent to the cable
equation that is often used to model the spread of voltage in a passive unbranched
dendritic cable. In fact, in the limit of zero lattice spacing, the FDF model has
certain similarities with a recent model of dendritic cable with active spines
due to Coombes and Bressloff [2000]. In this continuum model voltage spikes
in compartments (spine-heads) electrically connected by an ohmic resistance to
a dendritic cable can induce currents in neighboring spines via the spread of
voltage along the cable. If the induced current is sufficiently large a spike or
action potential may be generated. A sequence of such events at neighbouring
spines generates a travelling wave. This model might indeed be considered as a
spike-diffuse-spike model (SDS). Both FDF and SDS type systems are capable
of composing global signals (travelling waves) from elementary events (puffs or
spikes).
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In §2 we introduce the ansatz for constructing travelling wave solutions in the
FDF model in terms of the release times of the first Ca2+ puffs at the sites occu-
pied by calcium stores. We show that the travelling waves do not propagate with
a constant profile. All quantities of interest can be related to the convolution of
the Green’s function of the well known cable equation with the shape of the Ca2+

puff generated by the CICR process. We explicitly evaluate this convolution and
show how to generalise previous studies of the FDF model. The speed of travel-
ling waves is constructed as a function of system parameters and it is seen that
a finite decay term τ−1

d �= 0 can lead to co-existence of solutions. Another con-
sequence of the decay term is the possibility of propagation failure (of the single
release saltatory wave) for small τd. Furthermore, we present a linear stability
analysis that can be used to ascertain that the faster of the travelling waves is
physiologically relevant. In §3 we discuss the continuum limit of the FDF model
in which travelling pulses can propagate with constant profile. Similar observa-
tions regarding stability are made. Finally in §4 we discuss possible extensions
of this work as well as a generalisation of the FDF model that incorporates the
effects of multiple release events.

2. Travelling waves

The solution of (1) can be expressed in terms of the Green’s function of the cable
equation as

u(x, t) =
σ

τR

∞∑
n=−∞

∫ tn+τR

tn

dt′G(x − xn, t − t′) (4)

where

G(x, t) =
e−t/τd

√
4πDt

e−x2/(4Dt)Θ(t) (5)

We consider travelling waves which satisfy tn = n∆ so that the speed of threshold
crossing events is given by v = d/∆. Moreover, we restrict attention to the case
where ∆ > τR so that only one site is releasing Ca2+ at any one time. The, as
yet, undetermined parameter ∆ will be referred to as the period of a wave as it
measures the time between successive release events that make up a saltatory
travelling pulse. The saltatory wave is not periodic. Assuming that only the sites
with index up to N have crossed threshold we have that

u(x, t) =
σ

τR

N∑
n=−∞

∫ min(t−n∆,τR)

0

dt′G(x − nd, t − t′ − n∆), t > tN . (6)

Since we are only interested in long time solutions that cause sites with increasing
n to cross threshold we consider the large N limit and neglect all terms in the
above sum with n ≤ 0. It is convenient to introduce the following Laplace and
Fourier transforms (which we distinguish from the untransformed functions by
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the use of their arguments):

u(k, t) =

∫ ∞

−∞
dxe−ikxu(x, t) (7)

u(x, E) =

∫ ∞

0

dte−Etu(x, t). (8)

After Fourier and Laplace transforming (6) and performing the sum over sites
we have that

u(k, E) = σ
G(k, E)η(E)

eikd+E∆ − 1
(9)

where

η(E) =
1

σ

∫ ∞

0

dte−Etf(t) =
[1 − e−EτR ]

EτR

. (10)

Upon inverse transforming (9), we have the relation

u(x + d, t + ∆) − u(x, t) = σH(x, t) (11)

where the inverse Laplace transform for calculating H(x, t) may be taken ei-
ther using a Bromwich integral or by using the convolution theorem for Laplace
transforms. In either case one has that

H(x, t) =
1

2πi

∫ c+i∞

c−i∞
G(x, E)η(E)eEtdE, c > 0 (12)

=
1

τR

∫ τR

0

G(x, t − t′)dt′. (13)

The integral representation (12) for H(x, t) is particularly useful since it applies
for any function f(t) so that Ca2+ puff shapes other than the rectangular pulse
shape (3) may be analysed. Throughout the rest of this paper we shall, however,
focus upon the case where f(t) is given by (3). Using (11) and initial data such
that u(0, 0) = 0 it is simple to show that

u(Nd, N∆) = σ
N∑

n=1

H(nd, n∆). (14)

Hence, one may determine the speed of the travelling wave in a self-consistent
manner by demanding

lim
N→∞

u(Nd, N∆) = uc. (15)

Note from (11) that waves do not propagate with an invariant shape even though
the threshold crossing times occur on a regularly spaced temporal lattice. A
saltatory travelling wave solution to the FDF model with an ionic pump (τ−1

d �=
0), as analytically determined by equation (6), is illustrated in figure 1. Note the
large increase in the concentration of Ca2+ ions just after a release event. The
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saltatory nature of the wave may be directly attributed to the fact that release
sites are not spread continuously throughout the system. Continuum models
that neglect the discreteness of release sites are more appropriate for the study
of travelling waves with constant profiles. For a recent study of the speed and
stability of constant profile travelling waves in spatially extended continuum
models of calcium release see the paper by Chopra et al. [1999].

0.5

1.0

1.5
σ

u d

0 5d 10d

t = 5 ∆

t = 6 ∆

t = 5 ∆ + τR
t = (5+3/4) ∆

û

Figure 1: An example of a stable saltatory travelling wave analytically determined by equation
(6) with N = 5. The period ∆ of the wave is determined self-consistently using the analysis
presented in §2 as ∆ = 0.17 for the choice of parameters td = 1, τD = d2/D = 1, τR = 0.1 and
û = ucd/σ = 0.1

As an example of this method for determining the speed of travelling waves
let us explore the limit as τR → 0. From (12) or (13) H(x, t) → G(x, t) so that
the speed of the wave can be found by solving

û = d
∞∑

n=1

G(nd, n∆) =
∞∑

n=1

√
τD

4πn∆
exp

(
−n

[
τD

4∆
+

∆

τd

])
≡ g(∆) (16)

where we have introduced the intersite diffusion time scale τD = d2/D and the
dimensionless threshold parameter û = ucd/σ. In the limit τd → ∞ we recover
the result presented by Pearson and Ponce Dawson [1998] . In this case g(∆)
is monotone in ∆ and the speed of the travelling wave scales linearly as D/d.
For finite τd the non-invertibility of g(∆) allows the possibility of more than one
solution. This then begs the question of stability. We deal with this issue in the
next section. Suffice to say that, in general, for two co-existing solutions (with
τd finite) it is always the faster of the two which is stable, whilst the slower is
unstable.

In general the form of H(x, t) is most easily calculated using the result that
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the Laplace transformed Green’s function of the cable equation is given by

G(x, E) =
e−ν(E)|x|

2Dν(E)
, ν2(E) = D−1(τ−1

d + E). (17)

Introducing the function A(x, t):

A(x, t) =
1

2DτR

1

2πi

∫ c+i∞

c−i∞

e−ν(E)|x|eEt

Eν(E)
dE. (18)

We may then write

H(x, t) = A(x, t) − A(x, t − τR). (19)

One may evaluate A(x, t) by closing the contour in the left hand complex plane
and using a keyhole contour to cope with the branch cut of the function ν(E).
The contour encloses the pole at 0. It is then clear that A(x, t) = R(x) −
Q(t)B(x, t) where

R(x) =

√
τdD

2DτR

exp

(
− |x|√

τdD

)
, Q(t) =

e−t/τd

DτR

(20)

and

B(x, t) =
1

2π

∫ ∞

−∞

eiu|x|e−u2Dt

Du2 + τ−1
d

du. (21)

After recognising (21) as an inverse Fourier transform with respect to the pseudo-
parameter |x|, one may use the convolution theorem for Fourier integrals to show
that

B(x, t) =

∫ |x|

−∞
G(x′, t)h(|x| − x′, t)dx′ +

∫ ∞

|x|
G(x′, t)h(x′ − |x|, t)dx′ (22)

where

h(x, t) =
R(x)

Q(t)
. (23)

By performing the integrations in (22) B(x, t) may be expressed in terms of the
complementary error function:

erfc(x) =
2√
π

∫ ∞

x

e−u2

du (24)

as

B(x, t) =

√
τdD

4
et/τd

{
exp

( −|x|√
τdD

)
erfc

(
− |x|√

4Dt
+

√
t

τd

)
+ exp

( |x|√
τdD

)
erfc

( |x|√
4Dt

+

√
t

τd

)}
. (25)
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In the limit τd → ∞ we have simply that

A(x, t) =
1

2DτR

[√
4Dt

π
exp

(
− x2

4Dt

)
− |x|erfc

( |x|√
4Dt

)]
. (26)

In conjunction with (19), (14) and (15) this result forms the basis for the analysis
presented by Ponce Dawson et al. [1999]. The more general analysis presented
here allows one to go further and systematically analyse the effect of Ca2+ pumps
and the shape of Ca2+ puffs on the speed of travelling waves. Furthermore, in
the next section, we show how to analyse the stability of these travelling waves.

2.1. Stability

By regarding (2) as a map that generates the times of release events it has been
demonstrated numerically [Pearson and Ponce Dawson, 1998, Pearson et al.,
1998, Keizer et al., 1998]) that in the limit τd → ∞, τR → 0 travelling wave states
may lose stability via a sequence of period doubling bifurcations, ultimately
leading to chaos. Such a numerical scheme is also possible within the generalised
framework presented here (although we do not pursue this approach). However,
the stability of solution branches to the speed equation (15) is readily obtained by
perturbing the threshold crossing times according to tn → tn +δn and examining
the linearised evolution of the perturbations. Equivalently we could demand that

uc

σ
=

∞∑
n=1

H(nd, n∆ + δn). (27)

After expanding to first order and considering perturbations of the form δn = enλ,
λ ≡ α + iβ ∈ C, (α, β ∈ R), we have simply that

Ψ(α, β) ≡
∞∑

n=1

enαeinβH ′(nd, n∆) = 0 (28)

where H ′(x, t) = ∂H(x, t)/∂t. Differentiation of (12) shows that H ′(x, t) =
[G(x, t)−G(x, t−τR)]/τR. To find the stability of a wave as a function of system
parameters one must solve ReΨ(α, β) = 0 and ImΨ(α, β) = 0 simultaneously for
α and β along the solution branch defined by (15). For Re(λ) = α < 0 the wave
is considered to be linearly stable. The two possible types of bifurcation point
where the system may lose stability are defined by the conditions α = 0, β = 0
and α = 0, β �= 0. For the first case (λ ∈ R) a change in stability occurs when
Ψ(0, 0) = 0. Moreover the stability of a branch on either side of the bifurcation
point in the (uc, ∆) plane is dependent upon the sign of d∆/duc. To establish
this we implicitly differentiate the speed equation (15) with respect to uc to
obtain

σ
∞∑

n=1

∂H(nd, n∆)

∂∆
=

(
d∆

duc

)−1

(29)



S. Coombes: Travelling waves in the FDF model 9

where
∂H(x, n∆)

∂∆
= nH ′(x, n∆). (30)

Expanding (28) for β = 0 and |α| � 1 and using the above two results we have
that

α = −
∑∞

n=1 H ′(nd, n∆)∑∞
n=1 nH ′(nd, n∆)

= −σ

(
d∆

duc

)
Ψ(0, 0). (31)

It is possible to show by explicit construction that for τR = 0

Ψ(0, 0) =
∞∑

n=1

G′(nd, n∆) =
∞∑

n=1

G(nd, n∆)

[
− 1

τd

+
τD

4∆2
− 1

2n∆

]
. (32)

We see that in the limit τD � τ , where τ = 2∆(1 − 2∆/τd), Ψ(0, 0) > 0 so that
α < 0 when d∆/duc > 0. As one moves into the opposite regime defined by
τD � τ we see from (32) that a solution may lose stability if d∆/duc does not
change sign.

The second type of instability arises when a complex eigenvalue crosses the
imaginary axis. In this case Ψ(0, β) = 0 has a solution for β = π so that a change
of stability occurs at the point in parameter space where

∑∞
n=1(−1)nH ′(nd, n∆) =

0.
The stability of a solution branch is thus dependent upon whether or not either

of the above two instabilities occurs.

2.2. Bifurcation and stability diagrams

In figure 2 we plot the period of a travelling wave as a function of the dimen-
sionless threshold parameter û = ucd/σ for the special case that τ−1

d = τR = 0.
As expected from (16) ∆ is single-valued (since g(∆) is monotone in ∆) and
increases with increasing û. No solutions are found beyond û ∼ 0.89 (for τD = 1)
in agreement with the original results of Pearson and Ponce Dawson [1998].
As discussed in §2.1 the solution can lose stability whenever Ψ(0, π) = 0 or
Ψ(0, 0) = 0. A plot of these two functions in figure 3 (along the solution branch
for figure 2) shows that for increasing û it is the former condition which is met
first. A full numerical solution of Ψ(α, β) = 0 reveals that α < 0 for small û so
that the system first loses stability at around û ∼ 0.41 (increasing û). In figure
4 we show how the period of the travelling wave changes as one introduces a
non-zero value for τ−1

d , assuming instantaneous Ca2+ release (τR = 0). For small
τ−1
d we recover the results described by figures 2 and 3, namely that there is a

single stable travelling wave (for a value of û = 0.1). However, as τ−1
d increases

from zero one sees the appearance of another very slow unstable solution. The
two solutions eventually coalesce at around τd ∼ 1/3, such that for smaller τd no
solutions are possible, i.e. there is propagation failure for the type of saltatory
travelling wave considered. It is precisely at this point in the bifurcation diagram
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Ψ(0,π) = 0 Ψ(0,0) = 0

∆

Figure 2: Period of a travelling wave as a function of û for τ−1
d = τR = 0 and τD = 1. No

solutions are found beyond û ∼ 0.89. With increasing û the system first loses stability where
Ψ(0, π) = 0.

Ψ(0,0)

Ψ(0,π)

Figure 3: A plot of the functions Ψ(0, 0) and Ψ(0, π) along the solution branch of figure 2. The
(single) solution loses stability at û ∼ 0.56 via a real eigenvalue passing through zero and at
û ∼ 0.41 via a complex eigenvalue crossing the imaginary axis. A full solution of ReΨ(α, β) = 0
and ImΨ(α, β) = 0 shows that the solution branch is stable for small û so that it first loses
stability with increasing û when Ψ(0, π) = 0.
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that Ψ(0, β) = 0. Hence, a change in stability of solution branches occurs at a
limit point in the (τ−1

d , ∆) bifurcation diagram. One also sees that in this ex-
ample (figure 4) that the period of the wave can almost double over the allowed
range of values of τd for a stable travelling wave. To illustrate the effects of a

τ

∆

Figure 4: Solution branches in the (τ−1
d ,∆) with τR = 0 plane for û = 0.1 and τD = 1.

The limit point (LP) occurs when Ψ(0, π) = 0. Solid (dashed) lines denote stable (unstable)
solutions.

finite width for the calcium puff on the speed of the travelling wave we follow the
limit point of the bifurcation diagram in figure 4 as a function of τR. The results
of this numerical continuation are shown in figure 5. For τR < ∆ it can be seen
that with increasing τR the limit point occurs at increasingly larger values of
τd. Hence, to avoid propagation failure (of the saltatory wave with single release
events) for finite τR one must choose a correspondingly larger value for τd than
one which ensures a stable travelling wave for the case with τR = 0.

3. The continuum limit

Until now we have focused upon saltatory travelling waves although in fact one
of the major successes of the FDF model is to account for both saltatory and
continuous waves. The continuous wave is unlike the saltatory one in that it
travels with constant profile and is found in the limit of zero-lattice spacing. In
common with the spike-diffuse-spike model presented by Coombes and Bressloff
[2000], which also possesses constant profile travelling waves, it is a continuum
model.

An analysis of the continuum FDF model may be obtained by combining the
work of Ponce Dawson et al. [1999] (for the case τd → ∞) with the analysis
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Figure 5: Continuation of the limit point (LP) (see figure 4) where Ψ(0, π) = 0 in the (τ−1
d , τR)

plane. For too small a value of τd and too large a value of τR propagation failure may result.

in this paper and considering the limit d → 0, σ → 0 and σ/d → constant.
Alternatively, and more simply, one may analyse the continuum model directly.
Denoting the first crossing of uc at position x by T (x) the continuum FDF model
takes the form

∂u

∂t
= − u

τd

+ D
∂2u

∂x2
+ ρ(x)f(t − T (x)). (33)

The function ρ(x) describes the density distribution of the calcium sources. We
consider the case of constant ρ(x) and absorb this factor within the parameter
σ. Travelling waves may be described with an ansatz of the form T (x) = x/v,
where v denotes the speed of the wave. In the travelling frame co-ordinate system
ξ ≡ vt − x the wave (with constant profile u(ξ)) is described with the second
order ordinary differential equation:

Duξξ − vuξ −
u

τd

= − σ

τR

Θ(ξ)Θ(vτR − ξ) (34)

where uξ ≡ du/dξ. For travelling pulse solutions which satisfy limξ→±∞ u(ξ) = 0
the solution to (34) takes the form

u(ξ) =


α1 exp(m+ξ) −∞ < ξ < 0

α2 exp(m+ξ) + α3 exp(m−ξ) + τdσ/τR 0 < ξ < vτR

α4 exp(m−ξ) ξ > vτR

(35)

with

m± =
1

2D

[
v ±

√
v2 + 4D/τd

]
. (36)
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By ensuring the continuity of the solution and its first derivative at ξ = 0 and
ξ = cτR one may solve for the unknowns α1 . . . α4 as

α1 = α3
m−
m+

[1 − exp(−m+vτR)] (37)

α2 = −α3
m−
m+

exp(−m+vτR) (38)

α3 =
τdσ

τR

m+

(m− − m+)
(39)

α4 = α3[1 − exp(−m−vτR)]. (40)

The self-consistent speed of the travelling wave may be determined by demanding
that u(x, x/v) = uc. In the travelling frame co-ordinate this reduces to uc = u(0),
so that from (35) the speed of the travelling pulse satisfies

ũ ≡ ucτR

στd

=
m−

m− − m+

[1 − e−m+vτR ]. (41)

It is straight-forward to show from (41) that for ũ < 1 the velocity v scales as√
D/τd

√
1/ũ − 1 for large v. For τ−1

d = 0, v scales as
√

D/τR

√
σ/uc.

3.1. Stability

For the purposes of a linear stability analysis it is more convenient to work in
terms of the original variables (x, t) rather than in the moving frame. In this
case the formal solution to (33) can be expressed as

u(x, t) =

∫ t

−∞
ds

∫ ∞

−∞
dyG(x − y, t − s)f(s − y/v)

=
σ

τR

∫ v(t−τR)

−∞
dy

∫ y/v+τR

y/v

dsG(x − y, t − s). (42)

Using the following Fourier integral representation for the Green’s function of
the cable equation:

G(x, t) =

∫ ∞

−∞

dk

2π
eikxe−ε(k)t, ε(k) = − 1

τd

+ Dk2 (43)

the solution u(x, t) takes on the compact form

u(x, t) = σ

∫ ∞

−∞

dk

2π
ei(t−x/v) η(ik)

ε(k/v) + ik
(44)

which may be evaluated using contours in the lower and upper half complex
plane and is equivalent to (35). It is natural to consider local perturbations of
the firing times given by T (x) = x/v + g(x). For convenience we introduce the
difference between perturbed and unperturbed trajectories as δgu(x, T (x)) =
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u(x, T (x) + g(x))− u(x, T (x)). To first order in the perturbations we have from
(42) that

δgu(x, T (x)) =

∫ x/v

−∞
ds

∫ ∞

−∞
dyG(x − y, x/v − s)f ′(s − y/v)[g(x) − g(y)]. (45)

The stability of solutions is determined by demanding that δgu(x, T (x)) = 0 for
all x. For solutions of the form g(x) = eλx this yields the characteristic equation
I(λ) − I(0) = 0, where

I(λ) = σ

∫ ∞

−∞

dk

2π

ikη(ik)

ε(k/v + iλ) + ik
. (46)

Asymptotic stability holds if all non-zero solutions of the characteristic equation
have negative real part. (The existence of a solution λ = 0 reflects the translation
invariance of the underlying dynamical system). Equation (46) can be evaluated
by closing the contour in the lower-half complex k-plane. Since f(t) = 0 for t < 0
it follows that any poles of η(ik) lie in the upper-half complex plane so that we
only have to consider poles arising from the zeros of the function ε(k/v+iλ)+ik.
The latter are given explicitly by k = ik±(λ) where

k±(λ)

v
= −

(
λ +

v

2D

)
±

√
R(λ) (47)

with
R(λ) = v2/(4D2) + cλ/D + 1/(Dτd). (48)

Let us decompose λ into real and imaginary parts according to λ = α+ iβ. Then

k±(λ) = −u±(α, β) − iv±(α, β) (49)

with
u±(α, β)

v
= α +

v

2D
∓ A(α, β),

v±(α, β)

v
= β ∓ B(α, β) (50)

and (for β > 0)

A(α, β) =

√
1

2

[
R(α) +

√
R(α)2 + c2β2/D2

]
(51)

B(α, β) =

√
1

2

[
−R(α) +

√
R(α)2 + c2β2/D2

]
. (52)

In order to check stability of a solitary pulse we need to establish that there are
no solutions for which α > 0. We distinguish two cases according to the sign of
u+(α, β).
Case A: u+(α, β) < 0 so that the only pole in the lower-half complex plane is at
ik−(λ) and I(λ) = I−(λ) where we define

I±(λ) =
σv2

τR

ek±(λ)τR − 1

k+(λ) − k−(λ)
. (53)
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Case B: u+(α, β) > 0 so that both poles contribute and I(λ) = I−(λ) − I+(λ).
One may then determine the stability of solution branches by simultaneously
solving ReI(λ) − ReI(0) = 0 and ImI(λ) − ImI(0) = 0 for α and β where

ReI±(λ) =
σv

2τR

e−u±τR cos(v±τR) − 1

A2 + B2
(54)

ImI±(λ) = − σv

2τR

e−u±τR sin(v±τR)

A2 + B2
. (55)

3.2. Bifurcation and stability diagrams

In figure 6 we plot the speed of the constant profile travelling pulse as a function
of the dimensionless threshold parameter ũ = ucτR/(στd). In common with the
lattice FDF model one sees the co-existence of two travelling waves with speeds
that approach each other as ũ increases. Eventually the two waves coalesce at a
limit point in the (ũ, v) bifurcation diagram such that propagation failure can
result for too large a choice of the threshold parameter. A numerical solution of
the characteristic equation I(α + iβ) − I(0) = 0 for α and β shows that it is
the faster of the two branches that is stable (α < 0). The change in stability at
the limit point in the (ũ, v) plane occurs when a real eigenvalue crosses through
zero (β = 0). In figure 7 we show a numerical continuation of the limit point in

0

1

2

3

4

5

0 0.05 0.1 0.15 0.2 0.25∼

Figure 6: Speed v as a function of the dimensionless threshold parameter ũ in the continuum
FDF model for τd = τR = D = 1. A linear stability analysis shows that it is the faster of the
two branches that is stable.

figure 6 (the point where the two solutions coalesce). We draw the conclusion
that propagation failure of a constant profile travelling pulse is less likely for the
case of temporally extended Ca2+ puffs (large τR).
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-1τ
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Stable travelling
pulse

Figure 7: Continuation of the limit point (LP) shown in figure 6 in the (ũ, τ−1
R ) parameter

plane. For too small a value of τR and too large a value of ũ propagation failure may result.

4. Discussion

In this paper we have used an exact mathematical treatment to focus upon
the effects of pumps that move Ca2+ ions from the cytosol to the endoplasmic
reticulum within the FDF model of Ca2+ release. The presence of such pumps
was shown to lead to the co-existence of a fast and slow travelling wave. By
considering perturbations in the times of release events we were able to formulate
a condition for linear stability which predicts that it is always the faster of the
two that is stable. Using the exact derived form for the wave speed as a function
of system parameters also allowed us to show that pumps operating above some
critical rate (for a given duration and strength of Ca2+ puff) can effectively block
the propagation of single pulse travelling waves. Moreover, we have highlighted
the differences between a discrete and continuous distribution of release sites.
In the former case travelling waves propagate with a non constant profile and
the speed of the wave scales with the diffusion coefficient of the FDF model,
whilst in the latter case waves move with constant profile at a speed that scales
with the square-root of the diffusion coefficient. The detailed dependence of wave
speed upon the pump rate, duration and strength of Ca2+ puffs and the regular
spacing between release sites has also been described. In the limit of infinitely
slow pumps (τ−1

d → 0) we recover results originally discovered in [Keizer et al.,
1998, Pearson and Ponce Dawson, 1998, Ponce Dawson et al., 1999]. We end this
section with a few points regarding how best to extend the work in this paper.

Firstly, the exponential decay discussed by Keizer et al. [1998] and Pearson
and Ponce Dawson [1998] to mimic ionic pumps is at best a crude approximation
of the way real pumps operate. The main difference between the decay term con-
sidered in this paper and biological pumps is that the latter saturate. A common
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model of such a process is to consider a sink of the form un/(K+un) (for a further
discussion of how one might model Ca2+ pumps see [Li et al., 1995] ). A piecewise
linear version of such a function may be studied with the formalism developed
here. It is likely that the stability boundaries would be shifted with propagation
favoured over propagation failure since the pumps have a maximal rate that is
essentially independent of the Ca2+ concentration. Secondly, the FDF model ig-
nores the effects of multiple Ca2+ puffs at release sites. To generalise the model
one might consider the replacement f(t − tn) →

∑
m f(t − tmn ) where tmn is the

mth time that the concentration at site n crosses the threshold uc from below.
Of course in this case one must also be careful to model the refractory period
of a release event. Assuming this is handled properly it would then be possible
to study the class of periodic travelling waves defined by tmn = (n + mk)∆. An
extension of the techniques presented in this paper might be used to determine
a self-consistency condition for the existence of such travelling waves. One may
then construct the dispersion relation for the period ∆ = ∆(k). Moreover, with
an appropriate ansatz for the threshold crossing times, the description of circu-
lar waves, spirals and scrolls in the two and three dimensional generalisations
of the FDF may also be possible. The extension of the FDF model also allows
the possibility of irregular wave trains. To analyse non-periodic waves where
Ca2+ puffs travel as an irregularly spaced train one could formulate a kinematic
theory of wave propagation based upon the analysis of the periodic travelling
waves [Rinzel and Maginu, 1984]. Such a formulation would attempt to follow
the progress of individual release events without regards to the detailed structure
of the calcium puffs. Thirdly, calcium is heavily buffered in all cells with about
99% of the available Ca2+ bound to large proteins. The presence of Ca2+ buffers
changes the nature of the Ca2+ transport equations and hence the properties
of travelling waves. Indeed for buffers with fast kinetics it may be more appro-
priate to model the transport of Ca2+ ions with a nonlinear diffusion-advection
equation where the advection is the result of Ca2+ transport by a mobile buffer
[Wagner and Keizer, 1994, Sneyd et al., 1998]). Interestingly in the two variable
reduction of the De Young-Keizer model (for calcium waves) with Ca2+ buffer-
ing, numerical simulations produce nonlinear wave trains whose speed increases
linearly with time [Jafri and Keizer, 1997]. Finally it is important to acknowledge
that real biological systems have some element of disorder in the spatial distri-
bution of calcium release sites throughout a cell. Recent numerical experiments
by Bugrim et al. [1997] suggest that the propagation of (calcium) waves in a cell
with randomly distributed release sites is reminiscent of that seen in forest fire
models, flame propagation in random materials and epidemic spread. Together
with a numerical study of the solutions that arise when travelling waves cease
to exist or lose stability, all of the above are topics that may be pursued within
the framework of the FDF model.



S. Coombes: Travelling waves in the FDF model 18

Acknowledgments

I would like thank Markus Owen for a careful reading of this manuscript as well
as the referees for their helpful comments. This work was supported in part by
a grant from the Nuffield foundation.

References

M J Berridge. Elementary and global aspects of calcium signalling. Journal of
Neurophysiology, 499:291–306, 1997.

M J Berridge. Neuronal calcium signalling. Neuron, 21:13–26, 1998.

M J Berridge and G Dupont. Spatial and temporal signalling by calcium. Current
Opinion in Cell Biology, 6:267–274, 1994.

M D Bootman, M J Berridge, and P Lipp. Cooking with calcium: The recipes
for composing global signals from elemenatry events. Cell, 91:367–373, 1997.

E A Bugrim, Zhabotinsky, and I R Epstein. Calcium waves in a model with
a random spatially discrete distribution of Ca2+ release sites. Biophysical
Journal, 73:2897–2906, 1997.

N Callamaras, J S Marchant, X P Sun, and I Parker. Activation and co-
ordination of InsP(3)-mediated elementary Ca2+ events during global Ca2+

signals in Xenopus oocytes. Journal of Physiology, 509:81–91, 1998.

G C Chopra, B D Sleeman, J Brindley, D G Knapp, and A V Holden. Velocity
and stability of solitary planar travelling wave solutions of intracellular [Ca2+].
Bulletin of Mathematical Biology, 61:273–301, 1999.

S Coombes and P C Bressloff. Solitary waves in a model of dendritic cable with
active spines. SIAM Journal on Applied Mathemaics (to appear), 2000.

G W De Young and J Keizer. A single pool IP3-receptor based model for agonist
stimulated Ca2+ oscillations. Proceedings of the National Academy of Sciences
USA, 89:9895–9899, 1992.

G DuPont and A Goldbeter. Properties of intracellular Ca2+ waves generated
by a model based on Ca2+-induced-Ca2+ release. Biophysical Journal, 67:
2191–2204, 1994.

A Goldbeter. Biochemical Oscillations and Cellular Rhythms. Cambridge Uni-
versity Press, 1996.

M S Jafri and J Keizer. On the roles of Ca2+ diffusion, Ca2+ buffers, and the
endoplasmic reticulum in IP3-induced Ca2+ waves. Biophysical Journal, 69:
2139–2153, 1995.



S. Coombes: Travelling waves in the FDF model 19

M S Jafri and J Keizer. Agonist-induced calcium waves in oscillatory cells: A
biological example of Burgers’ equation. Bulletin of Mathematical Biology, 59:
1125–1144, 1997.

J E Keizer, G D Smith, S Ponce Dawson, and J Pearson. Saltatory propagation
of Ca2+ waves by Ca2+ sparks. Biophysical Journal, 75:595–600, 1998.

Y X Li, J Keizer, S S Stojilkovic, and J Rinzel. Ca2+ excitability of the ER mem-
brane: an explanation for IP3-induced Ca2+ oscillations. American Journal of
Physiology, 269:C1079–92, 1995.

I Parker and Y Yao. Regenerative release of calcium from functionally discrete
subcellular stores by inisitol trisphosphate. Proceedings of the Royal Society
London B, 246:269–274, 1991.

J E Pearson and S Ponce Dawson. Crisis on skid row. Physica A, 257:141–148,
1998.

J E Pearson, S Ponce Dawson, J Keizer, and G Smith. Crisis on skid row.
http://www-xdiv.lanl.gov/XCM/pearson/skid row relay.ps, 1998.

S Ponce Dawson, J Keizer, and J E Pearson. Fire-diffuse-fire model of dynam-
ics of intracellular calcium waves. Proceedings of the National Academy of
Sciences USA, 96:6060–6063, 1999.

J Rinzel and K Maginu. Non-equilibrium Dynamics in Chemical Systems, chap-
ter Kinematic analysis of wave pattern formation in excitable media, pages
107–113. Springer-Verlag, 1984.

T A Rooney and A P Thomas. Intracellular calcium waves generated by
Ins(1,4,5)p3-dependent mechanisms. Cell Calcium, 14:674–690, 1993.

J Sneyd, P D Dale, and A Duffy. Traveling waves in buffered systems: applica-
tions to calcium waves. SIAM Journal on Applied Mathematics, 58:1178–1192,
1998.

J Sneyd, S Girard, and D Clapham. Calcium wave propagation by calcium-
induced-calcium release: an unusual excitable system. Bulletin of Mathemat-
ical Biology, 55:315–344, 1993.

J Wagner and J Keizer. Effects of rapid buffers on Ca2+ diffusion and Ca2+

oscillations. Biophysical Journal, 67:447–456, 1994.

http://www-xdiv.lanl.gov/XCM/pearson/skid_row_relay.ps

