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Three-body scattering problem and two-electron tunneling in molecular wires
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We solve the Lippmann-Schwinger equation describing elastic scattering of preformed pairs (e.g.
bipolarons) off a short-range scattering center and find the two-particle transmission through a thin
potential barrier. While the pair transmission is smaller than the single-electron transmission in the
strong-coupling limit, it is remarkably larger in the weak coupling limit. We also calculate current-
voltage characteristics of a molecule - barrier - molecule junction. They show unusual temperature
and voltage behavior which are experimentally verifiable at low temperatures.

PACS: 21.45.+v, 71.38.Mx, 72.10.Fk,73.63.Nm, 85.65.+h

Molecular-scale electronics is currently a very active
area of research [1]. It is envisaged that linear conju-
gated molecules would be used as the “transmission lines”
in molecular circuitry [2,3] in addition to active molec-
ular elements discussed in the literature [1,4]. When a
so-called “molecular wire” is short, the dominant mech-
anism of transport is most likely a resonant tunneling
through electronic molecular states (see [5,6] and refer-
ences therein). With increasing size of the wires one has
to take into account strong interaction between carriers
and vibronic excitations of the molecule, leading to self-
trapping of electrons in polaronic states. The formation
of polarons (and charged solitons) in polyacetylene (PA)
was discussed theoretically in Refs. [7] and formation of
bipolarons (bound states of two polarons) in Ref. [8]. Po-
larons in PA were detected optically in Ref. [9] and since
then studied in great detail. There is also an exceed-
ing amount of evidence of the polaron and bipolaron
formation in conjugated polymers such as polypheny-
lene, polypyrrole, polythiophene, polyphenylene sulfide
[10], Cs-doped biphenyl [11], n-doped bithiophene [12],
polyphenylenevinylene(PPV)-based light emitting diodes
[13], and other molecular systems. In many cases the
doped polymers have bipolaron-like charge states to
yield, in particular, the enhanced nonlinear optical prop-
erties [14].

Many experimental data provide evidence for hopping
transport of (bi)polaronic carriers. However, at suffi-
ciently low temperatures there should be a crossover
to the band motion of polarons, as suggested long ago
[15,16], and bipolarons [17,18]. Indeed, due to recent
extraordinary improvements in preparation of “plastic”
molecular conductors, it became possible to measure
their conductivity in a wide interval of temperatures and
observe the crossover in two-dimensional films of organic
conjugated molecules [19]. In one-dimensional (1D) wires
the band motion is expected to be strongly hindered by
imperfections, and those imperfections are likely to be
intentionally introduced in the system as functionalizing
units [20]. Moreover, the polarons in extended molecu-

lar wires/units are expected to be bound into real space
bipolarons with lowering temperature. As it is known in
the context of oxide semiconductors the bipolaron forma-
tion may strongly affect transport properties [17,21].

In this Letter we study elastic scattering of carriers
bound into real-space pairs in one-dimensional organic
and other conductors. We present an exact analytical
solution in the limit of slow pairs. We also find an un-
usual temperature and voltage dependence of the tunnel-
ing conductance which may be experimentally verified at
low temperatures.

In mathematical terms, the scattering of pairs is a
three-body problem with the mass of the third particle
taken to infinity. Let Û(x1 − x2) be an attractive po-
tential between the two moving particles and V̂ (x1, x2)
the repulsive external potential representing the barrier.
The starting point is the Lippmann-Schwinger equation
[22,23] for the two-particle wave function Ψ(k1, k2) in mo-
mentum representation, which explicitly takes into ac-
count a boundary condition of the three-body scattering
problem. It can be written as

Ψ = −iγĜ(E + iγ)Φ, (1)

where Ĝ(E+iγ) is the exact two-particle Green’s function
(GF) in the external potential, Φ(k1, k2) is the wave func-
tion of a free (V̂ = 0) real-space pair in momentum repre-
sentation, Φ(k1, k2) = 2πδ(q − Q)φ(k). Here q = k1 + k2

is the center-of-mass momentum, k = (k1 − k2)/2 is the
relative momentum, E = −ǫ + Q2/4 < 0 is the pair to-
tal energy in the absence of the external potential, and ǫ
is its binding energy. The wave function φ(k) describes
the internal structure of the pair. Hereafter we choose
h̄ = kB = m1 = m2 = 1, γ = +0, and define Ĝ(E + iγ)Φ
as

ĜΦ ≡
∫ ∫

dk′

1dk′

2

(2π)2
G(k1, k2|k′

1, k
′

2; E)Φ(k′

1, k
′

2), (2)

for any Ĝ and Φ. Using the two identities, Ĝ =
Ĝ3 − Ĝ3Û Ĝ and Ĝ = Ĝ12 − Ĝ12V̂ Ĝ and the Lippmann-
Schwinger equation one readily derives the equation for
the Fourier component T (k1, k2) of the product ÛΨ [23]
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T (k1, k2) = (E − k2 − q2/4)Φ− T̂12∆Ĝ3T, (3)

where ∆Ĝ3 = Ĝ3 − Ĝ0, Ĝ0 is the two-particle GF in
the absence of any interaction (Û = V̂ = 0), Ĝ3 is the
GF of noninteracting particles in the external field V̂ (for
Û = 0), and Ĝ12 is GF of two interacting particles with
no external field, V̂ = 0. Here the scattering operator
T̂12,defined by the relation T̂12Ĝ0 ≡ Û Ĝ12, is expressed
via the particle-particle scattering t-matrix as

T12(k1, k2|k′

1, k
′

2; E) = 2πt(k, k′; E − q2/4)δ(q − q′). (4)

The t-matrix satisfies the equation

t(k, k′; E) = u(k − k′) −
∫

dp

2π

u(k − p)t(p, k′; E)

p2 − E − iγ
, (5)

where u(p) is the Fourier component of the attractive
potential Û(x1 − x2).

In many (in)organic semiconductors, the long-range
Coulomb repulsion is usually significantly reduced by the
strong Fröhlich interaction with optical phonons [24], so
that a net (attractive) potential between carriers is a
short-range one, Û(x1 − x2) = −αδ(x1 − x2), α > 0.
Then Eq.(5) is readily solved resulting in the momenta-
independent t-matrix

t(k, k′, E) = − α
√
−E√

−E − α/2
, (6)

which is valid for all energies provided that the square
root is understood as its principal value. The binding
energy is ǫ = α2/4, and the normalized ground state wave
function is φ(k) = 2−1/2α3/2/(k2+ǫ). It is known that for
a short-range inter-particle interaction T (k1, k2), Eq.(3),
is proportional to the Fourier component of the center-of-
mass wave function Ω(q), T (k1, k2) = −2−1/2α3/2Ω(q).
Then the problem of elastic pair scattering is reduced to a
single integral equation for the center-of-mass scattering
amplitude Υ(q). Substituting Φ and T̂12 in Eq. (3) one
obtains

Ω(q) = 2πδ(q − Q) − Υ(q)

q2/4 − Q2/4 − iγ
, (7)

where Υ(q) satisfies

Υ(q) = W (q, Q) −
∫

dq′

2π

W (q, q′)Υ(q′)

q′2/4 − Q2/4 − iγ
. (8)

The effective center-of-mass scattering potential W (q, q′)
is determined using GF of two noninteracting particles
in the external potential (Û = 0 but V̂ 6= 0) as

W (q, q′) = αχ(q)

∫ ∫

dk2dk′

2

(2π)2
∆G3(q − k2, k2|q′ − k′

2, k
′

2; E),

(9)

where χ(q) = E − q2/4 + (α/4)(q2 − 4E)1/2. In the fol-
lowing we restrict our consideration to the scattering of
slow pairs with Q2 ≪ 4ǫ. This condition allows us to re-
place W (q, q′) with W (0, 0) ≡ W in all equations because
the characteristic momenta q, q′ ≃ Q are much smaller
than

√
−E. Then the solution of Eq. (8) is given by

Υ(q) = WQ/(Q + 2iW ) so that the pair transmission
probability is

T2(Q) = 1 −
∣

∣

∣

∣

2Υ(−Q)

Q

∣

∣

∣

∣

2

=
Q2

Q2 + 4W 2
. (10)

In general, G3, W , and T2 can be found only numerically.
However, in many applications the scattering potential is
also a short-range one, V̂ (x1, x2) = β[δ(x1) + δ(x2)], so
that the full Hamiltonian takes the form

H = −1

2

∂2

∂x2
1

− 1

2

∂2

∂x2
2

− αδ(x1 − x2) + β [δ(x1) + δ(x2)] .

(11)

This three-body problem was considered before in [25,26]
but no general analytical solution was found. Here we
present the analytical solution in the limit of slow pairs.
Consider the equation for the two-particle G3

(k2
1/2 + k2

2/2 − E)G3(k1, k2|k′

1, k
′

2; E) +

β

∫

dp1

2π
G3(p1, k2|k′

1, k
′

2; E) + β

∫

dp2

2π
G3(k1, p2|k′

1, k
′

2; E)

= (2π)2δ(k1 − k′

1)δ(k2 − k′

2), (12)

which has a formal solution

G3(k1, k2|k′

1, k
′

2; E) = G0(k1, k2|k′

1, k
′

2; E)

−D(k2|k′

1, k
′

2; E) + D(k1|k′

2, k
′

1; E)

k2
1/2 + k2

2/2 − E
. (13)

Here G0(k1, k2|k′

1, k
′

2; E) = (2π)2δ(k1 − k′

1)δ(k2 −
k′

2)(k
2
1/2 + k2

2/2 − E)−1, and D(k1|k′

2, k
′

1; E) ≡
(2π)−1β

∫

dk2G3(k1, k2|k′

1, k
′

2; E) satisfies the integral
equation

D(k1|k′

2, k
′

1; E)

[

1 +
β

(k2
1 − 2E)1/2

]

=

2πβδ(k1 − k′

1)

k2
1/2 + k′2

2 /2 − E
− β

∫

dk2

2π

D(k2|k′

1, k
′

2; E)

k2
1/2 + k2

2/2 − E
. (14)

We are interested in W = α3(2π)−2
∫ ∫

dkdpD(k| −
p, p; E)(k2 − E)−1. Integrating Eq. (14) with respect
to k′

2 = −k′

1 ≡ −p one obtains for B(k; E) ≡
(2π)−1

∫

dpD(k| − p, p; E) the following equation:

B(k; E )

[

1 +
β

(k2 − 2E)1/2

]

+ β

∫

dk′

2π

B(k′; E)

k2/2 + k′2/2 − E
=

β

k2 − E
. (15)
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It has the solution

B(k; E) =
β

(k2 − E)
(

1 + β/
√
−E

) , (16)

which is verified by direct substitution into Eq. (15). Fi-
nally we obtain

W = α3

∫

dk

2π

B(k; E)

k2 − E
=

2αβ

α + 2β
. (17)

This result together with Eq. (10) solves the problem
of the elastic scattering of slow bound pairs for any
strength of the short-range attractive and scattering po-
tentials. It is instructive to compare the pair trans-
mission T2(Q), Eq. (10), with the single electron trans-
mission T1(p) = p2/(p2 + β2) for equal kinetic energies
p2/2 = Q2/4 ≡ K. If the binding potential is strong
compared with the scattering potential (α ≫ 2β) the pair
transmission is just the single-particle transmission of a
particle with a double mass and double barrier strength,
T2(Q) = Q2/(Q2 + 16β2), in accordance with a naive
expectation. In the general case the ratio is

T2(Q)

T1(p)
=

K + β2

K + 4β2(1 + 2β/α)−2
. (18)

When the binding potential is weaker than the scattering
potential (α ≪ β) the ratio is

T2(Q)

T1(p)
=

(

β

α

)2

≫ 1. (19)

Quite remarkably, a weak attraction between carriers
helps the first transmitted particle to “pull” its partner
through a strong potential barrier.

Another important difference between pair and single-
electron tunnelling occurs due to their different statis-
tics. While electrons are fermions, preformed pairs are
bosons, so that their center-of-mass motion obeys the
Bose-Einstein statistics Hence, tunnelling conductance
should be temperature dependent even at low temper-
atures T as has been already established in the bipo-
laron tunnelling to a normal metal with a decay of the
bound state [27]. Here we calculate the current-voltage
characteristics of a molecular junction (MBM), i.e. the
current through a thin potential barrier between two
molecular wires. For simplicity, we restrict our calcu-
lations to the strong-coupling regime, α ≫ β, T 1/2. In
this regime single carriers are frozen out, and the trans-
mission is due to the pairs alone, which are scattered
off a double-strength barrier, W ≈ 2β, Eq.(17), analo-
gously to single particles with the double carrier mass.
Then, in the presence of a voltage drop at the junction,
2eV (for a pair), the conductance can be readily found
by matching the center-of-mass wave function and its
derivative on the left, Ωl and on the right side, Ωr of
the δ-function barrier. In the coordinate representation

0.0 0.2 0.4 0.6 0.8 1.0
T/TF

0.0

1.0

2.0

3.0

4.0

5.0

6.0

G
/G

0

0.01
0.05
0.1
0.2
0.4
1.0

FIG. 1. Zero-voltage conductance of MBM as a function
of temperature (in units of TF ) for different relative strength
of the barrier 4β2/TF . G0 = (2e2)/h.

one has Ωl(X < 0) = eiQX +R e−iQX , and Ωr(X > 0) =
CeiP+X with 1 + R = C, CP+ − (1−R)Q = 8iβ(1 + R),
and P+ = (Q2 + 8eV )1/2. The transmission is given by

T2(Q, P+) ≡ 1 − |R|2 =
4QP+

(Q + P+)2 + 64β2
, (20)

for real P+, and is zero otherwise. Multiplying the trans-
mission by eQ and integrating with the Bose-Einstein
distribution function f(Q) = [exp(Q2/4T − µ/T ) − 1]−1

yields the current as

I(V ) = e

∫

∞

0

dQ

2π
Qf(Q)[T2(Q, P+) − T2(Q, P−)], (21)

where P− = (Q2 − 8eV )1/2 and µ is the chemical
potential determined by the number of pairs n using
∫

∞

−∞

dQ
2π f(Q) = n. It is easy to calculate the integrals

in the linear voltage classical limit, 2eV, TF ≪ T by ex-
panding the transmission in powers of eV and replacing
the Bose-Einstein distribution with the Boltzmann one,
f(Q) ≈ (2TF /πT )1/2 exp(−Q2/4T ) (TF ≡ π2n2/2 is the
Fermi temperature of single carriers). The result for the
conductance, σ ≡ (dI/dV )V =0

is

σ =
2e2

π

√

2TF

πT

[

1 +
4β2

T
e4β2/T Ei(−4β2/T )

]

, (22)

where Ei(x) is the exponential integral function. The

conductance behaves as σ = e2

πβ2

√

TF T
2π at T ≪ 4β2, and

as σ = 2e2

π

√

2TF

πT at T ≫ 4β2. In the last case it has a

universal magnitude independent of the barrier strength.
Apart from numerical coefficients, conductance of tightly
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FIG. 2. Differential conductance of MBM as a function
of voltage for different temperatures and 4β2/TF = 0.5. The
thin solid lines is the conductance of fermions at T = 0.1 TF .

bound pairs is, of course, the same as conductance of sin-
gle electrons in the classical limit. It is not the case, how-
ever, in a degenerate system, when T ≤ TF . Numerical
integration of Eq.(21) at fixed density n reveals a temper-
ature dependence in this limit, Fig. 1, in comparison with
the temperature independent conductance of fermionic
noninteracting carriers at low temperatures. This re-
markable difference is entirely due to the bosonic nature
of pairs. The conductance is proportional to the mean
velocity of carriers which in the case of bosons grows as√

T (while it is temperature-independent for fermions).
This explains the low-temperature behavior of the con-
ductance. Interpair correlations may reduce the differ-
ence in 1D wires. However, higher-dimension corrections
readily restore it. There is also a breakdown of Ohm’s
law when 2eV ≥ T , as shown in Fig. 2 for low tempera-
tures, again in contrast with the Fermi statistics, where a
non-linearity appears only at eV ≥ TF ≫ T . We suggest
that the most appropriate materials for experimental ob-
servation of the unusual current-voltage characteristics
(Figs.1,2) are doped molecular semiconductors such as
Cs-doped biphenyl [11], where bipolarons were explicitely
detected by photoelectron and electron-energy-loss spec-
troscopies, and single crystals of pentacene, tetracene,
rubrene, quaterthiophene (α-4T), sexithiophene (α-8T),
where the coherent (bi)polaron tunnelling has been re-
cently observed below room temperature [19].

In conclusion, we have solved the Lippmann-Schwinger
equation in the effective mass approximation for single
carriers and pairs in 1D conductors (molecular wires),
which is valid for (bi)polarons if their size is larger
than the lattice constant. While mapping of this prob-
lem onto discrete lattices is straightforward with a neg-
ative Hubbard U model, the model itself can be ap-

plied to bipolarons only in the extreme nonadiabatic
limit when the characteristic phonon frequency is larger
than the binding energy [17]. In this limit a discrete
Lippmann-Schwinger equation also has the analytical so-
lution for slow pairs [28], which shows that the contin-
uous model remains qualitatively correct even for lat-
tice size (small) nonadiabatic bipolarons. In the oppo-
site adiabatic regime bipolaron tunnelling is not a three-
body problem because of the emission and absorption
of (virtual) phonons [17]. We have found the scattering
amplitude of elastic scattering of slow bipolarons, and
conductance of the molecular junction (MBM) with pre-
formed pairs. While the pair transmission is smaller than
the single-electron transmission in the strong-coupling
regime, it is surprisingly larger in the weak coupling
regime. The current-voltage characteristics of MBM
junction show unusual temperature and non-linear volt-
age behavior, Figs.1,2.

We acknowledge interesting discussions with J.P. Keat-
ing, V.V. Osipov, and R.S. Williams.
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