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We have found that in a system consisting of small magnetic particles a phenomenon related to the formation
of fractal structures may arise. The fractal features may arise not only in the distribution of magnetic moments
but also in their energy spectrum. The magnetization and the susceptibility of the system also display fractal
characteristics. The multiple structures are associated with exponentially many locally stable minima in a
highly complex energy landscape. The signature of these fractal structures can be experimentally detected by
various methods.
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I. INTRODUCTION

Modern technologies, such as molecular beam epitaxy
and laser ablation, open the way to grow physical systems
with properties of technological interest and an enormous
scope of useful applications.1 Functionalizing of the indi-
vidual nanoclusters is part of the next big push in nanotech-
nology. Therefore magnetic nanoparticles and different struc-
tures made of these nanoparticles have been the focus of
intense research for the last decade.2 There is also a growing
realization of the enormous potential of cluster assembled
films and other nanostructures in the production of high per-
formance materials.3 Transmission electron microscopy
�TEM� allows one to investigate and control the magnetic
properties of artificial structures, films, and multilayers made
of such small particles. These magnetic microstructures
evolve with magnetic field and temperature and display
many unusual features.4 The control and understanding of
these structures will give advances in applications especially
related to formation of spintronic circuits operating in the
gigahertz �GHz� and terahertz �THz� range as well as many
other properties related to the formation of magnetic memory
used in hard disks. Among the most extensively studied sys-
tems are arrays formed from small magnetic particles.1,5–7

For example, the control of magnetization reversal involving
well-defined domain states in nanomagnet arrays is a key to
future applications for magnetic recording and magnetoelec-
tronic devices.8–10 Arrays formed from nanoparticles may
also have very complex behavior of magnetization which
could be associated with complex magnetic domain struc-
tures. A simple scheme to extract the magnetization reversal
of characteristic domains on nanoparticle arrays from soft
X-ray has been recently demonstrated.11 A control of the
magnetization reversal is based on the knowledge about the
reproducible domain structures.

For a macroscopic sample the formation of domains is not
controllable. The situation changes when the size of the
sample decreases. A very small ferromagnetic nanoparticle
of a few nanometers size is typically domain free. When the
size increases a few controllable domains may appear inside
the nanoparticle. For this purpose, in order to control the
formation of domains in small microscopic systems such as
nanometers disks12 and other complicated rings13 small me-

soscopic systems have been thoroughly investigated.
However, there is another way to get controllable domain

structures by assembly of similar or different mesoscopic
samples from domain-free small nanoparticles. In this case
any interaction between nanoparticles is much smaller than
the exchange interaction between microscopic moments
within each single small nanoparticle. Due to this fact the
energy cost for domain creation within each single nanopar-
ticle is much larger than the energy cost for the domain for-
mation between the nanoparticles. Therefore for a system
consisting of very small magnetic nanoparticles domains are
formed mostly in the boundary areas between nanoparticles.

For example, a typical such system consists of nanopar-
ticles with size smaller than 100 nm made of “supermalloy”
Ni80Fe14Mo5. Each of the particles is a single domain
object.14 These particles also have an unique property related
to a configurational anisotropy, which, in turn, is strongly
related to the shape of the particles.15 For example, for the
particles having an ellipsoidal shape the magnetic moment
will be directed along the axes of the prolongation.

Recently Cowburn and Welland have proposed using one
such system, namely, to use a chain of such magnetic nano-
particles deposited on a nonmagnetic substrate as a room
temperature magnetic quantum cellular automaton
�MQCA�.16 They have produced such a chain where all par-
ticles were ferromagnetically coupled and oriented along the
chain. The orientation of the ferromagnetic moments has
been controlled by a deposition of a first particle of the chain
which was larger than the other particles and had a distin-
guished ellipsoidal shape. In that paper16 it was shown that
by slightly biased, pulsed magnetic field the magnetic mo-
ments associated with these individual particles are flipped
coherently, comparable to a “domino” effect. Therefore it
was concluded that such a chain has all the properties needed
to form a quantum cellular automaton.

II. THE MODEL

In order to describe the formation of domains and other
magnetic structures in microscopic systems made of small
magnetic nanoparticles we propose here a theoretical model.
In particular, using this model we investigate the formation
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of domain structures in a linear chain and in other small
multiparticle clusters. We investigate this model in detail
considering arrays of a few and many nanoparticles, and
shown that they have a strong potential for sensor applica-
tions and data storage. In particular we have shown that such
systems have a very complex nontrivial magnetic behavior
and therewith different nontrivial structures displaying frac-
tal features may be formed. Specifically the system behavior
�with increasing particle number�, the values of magnetic
moments, the energy spectrum, coercive forces, hysteresis
loops, and all such properties may display the features of a
fractal. The formation of these fractal structures is mostly
related to the discrete nature of the systems made of small
particles and does not depend on the specific models which
we have been considering. Therefore the phenomenon of the
fractal creation has a very general character and must be
taken into account in the design of any system made of small
particles and having a potential for applications.

For an illustration of the fractal formation in the present
work we consider one of these systems made of small par-
ticles, namely, a linear chain. Such system can be and has
already been produced from small ferromagnetic particles
made, for example, of Fe �see, also, Ref. 16�. If all spins
within a single particle are ferromagnetically ordered, then
each particle may be considered as having a single classical

spin S� . The value of S� may be well described by a Ginzburg-
Landau model applied to the single particle

Fsingle =
A

2
S� i

2 +
B

4
S� i

4 − H� S� i , �1�

where S� = �Sx ,Sy ,Sz�; here A=a�T−Tc� and B are phenom-

enological constants and H� is an external magnetic field. The
relative orientation of the total magnetic moment of each
single particle is determined by anisotropy constants. The
shape of the particles gives rise to the so-called configura-
tional anisotropy, which was not included yet. For small par-
ticles the value of the configurational anisotropy is the larg-
est. This situation with the largest configurational anisotropy
can be readily produced for all magnetic particles having, for
example, a needle shape, so that each individual magnetic
moment associated with each single particles can be oriented
perpendicular to or along the chain of these particles.15,16 Let
us assume that all particles have such a shape which gives
the strongest configurational anisotropy. For example, sup-
pose all particles have ellipsoidal shape prolongated along
the z direction. Then due to the configurational anisotropy all
magnetic moments associated with single individual particles
are oriented along the z direction. Therefore, since the mag-
netic moments of all particles will be collinear, we can intro-

duce the ansatz S� i= �0,0 ,Szi�, where the magnitude zi de-
scribes the value of the magnetic moment in the ith particle.
Below we show that this ansatz arises exactly as a result of
perturbation theory expansion in the limit of a large aniso-
tropy constant K in a comparison with a interparticle inter-
action J. We assume also that the magnetic field is oriented

along the axis of the anisotropy as H� = �0,0 ,H� and the con-
figurational anisotropy constant K is much larger than the

coupling constant J of the exchange or dipolar interaction
between particles, which was probed in experiments by
Cowburn.17

These assumptions are plausible and will strongly sim-
plify the considered model for a system made of these small
particles. This will allow us to find exact analytic nontrivial
solutions describing all states, magnetic properties, and en-
ergy spectra of the system under consideration. The total
distribution of moments between the particles are also deter-
mined by an exchange and dipole-dipole interactions be-
tween the magnetic particles. The chain of magnetic particles
can be described by the Hamiltonian

F = − J�
�i,j�

S� iS� j +
A

2 �
i

S� i
2 +

B

4 �
i

S� i
4 − �

i

H� S� i + K�
i

�Six
2 + Siy

2 � ,

�2�

where we assume that particles are interacting ferromagneti-
cally with the exchange constant J and the value of the con-
figurational anisotropy constant K /J→� and −K /A→�. Let
us make an expansion of the free energy with respect to these
very large parameters. The stationary configurations of the
magnetic moments are determined with the use of equations
obtained by the minimisation of F with respect to the com-
ponents Six ,Siy, and Siz. In zero approximation with respect
to the very large parameters, K /J�1 and −K /A�1 the
equations obtained for the first two components have a very
simple form: Six=0 and Siy =0 and obvious solutions. Taking
into account these solutions, the form of the vectors describ-

ing the magnetic moments, S� i, is simplified to the form S� i

= �0,0 ,Szi�. After the substitution of this form for S� i the
terms with large parameters in the expression for the free
energy F disappear and it is simplified to the form

F =
JS2

2 �
�i,j�

�zi − zj�2 + �A

2
S2 − JS2��

i

zi
2 +

B

4
S4�

i

zi
4

− HS�
i

zi. �3�

Let us make the substitution zi=���J /BS2�xi. After this
substitution the expression for the free energy, Eq. �3� will be
transformed into a new form. Then, after rescaling and using
dimensionless units we obtain a standard model as

F�x1,x2,…,xN� = �
i=1

N 	1

2
�xi − xi−1�2 +

�

4
�xi

2 − 1�2 − h�
i

xi
 ,

�4�

where �=2−A /J and h=H�B /�J3. Here the new energy
scale is F0=�J2 /B, i.e., F=F /F0. The physical variable xi
specifies the value of the the magnetic moment of the i-th
particle oriented in the z direction while the total magnetiza-
tion of the system M =�ixi.

18–20 It is specifically interesting
to investigate the situation when the particles form a ring or
a loop geometry. Similar kind of loops were recently widely
discussed as a candidate for magnetic memory elements.21
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One important issue for the experimental investigation of
artificial magnetic materials is the question about the cre-
ation of magnetic structures. What kind of magnetic struc-
tures can evolve due to temperature and field changes, due to
the competition between the exchange energy and the aniso-
tropy energy, and due to discreteness of the system? Depend-
ing on the number of particles N, how many distinct struc-
tures can be created? First let us consider the case when the
external magnetic field is switched off, i.e., h=0. Stationary
configurations of the Hamiltonian �4� are described by the N
nonlinear coupled equations

− �xi−1 − 2xi + xi+1� + �xi�xi
2 − 1� = 0, i = 1,…,N �5�

with periodic boundary conditions. In the large � limit the
system decouples and reduces to

xi�xi
2 − 1� = 0, i = 1,…,N . �6�

This set of equations has exactly 2N stable solutions consist-
ing of all possible “binary” strings x*= �x1

* ,x2
* ,… ,xN

* � with
xi

*� �−1,1�. Provided that � is sufficiently large, the implicit
function theorem then allows for the existence of solutions of
Eq. �5� in terms of a power series expansion in 1/� about the
asymptotic solution x*

xi = xi
* +

xi−1
* − 2xi

* + xi+1
*

2�
+ ¯ . �7�

The first order correction term is proportional to 1/�. How-
ever, due to internal symmetries within the strings the corre-
sponding energies as well as the total magnetizations M are
highly degenerate. The number of nonequivalent strings can
be determined by the action of the dihedral group DN con-
sisting of N translations �xs→xs+i� and N mirror reflections
�xs+i→xs−i� with respect to all symmetry axes. From the
Redfield-Polya theory22 it can be shown that the number of
nonequivalent strings increases exponentially as �1/N�2N−1

with increasing N. These states are associated with kinks and
antikinks related to the formation of domain walls.

Since two-dimensional maps allow representation of any
stationary configuration of a Hamiltonian of the form �2� by
a trajectory of a dynamical system, the solutions of our
coupled set Eq. �5�� are periodic orbits of the corresponding
map equation.18,23 Due to our periodic boundary conditions
there is neither chaotic behavior nor incommensurability in-
volved.

III. CLASSIFICATION OF POSSIBLE STRUCTURES

Inserting the first order expansion of Eq. �7� into Eq. �4�
yields the series expansion in 1/� for the free energy

F = �
i=1

N �1 − xi−1
* xi

* +
xi

*�4xi−1
* − xi−2

* � − 3

2�
+ ¯� . �8�

Introducing the quantities l and l� by N−2l : =�i=1
N xixi−1 and

N−2l� : =�i=1
N xixi−2, respectively, the total free energy per

particle can be approximated by the simple expression

F�l, l�� = 2l −
4l − l�

�
. �9�

Here, the quantity l counts the sign changes between all near-
est neighbors and l� those involving only next-nearest neigh-
bors of the magnetic moments, respectively. The quantity l
specifies the number of kinks at the formation of domain
walls which only appear in pairs. Note that this approxima-
tion is exact for the homogeneous ground states as well as
for the two antiferromagnetic states. Moreover, in this ap-
proximation all configurations with the same number of do-
mains have the same value of the energy. Within this ap-
proximation, when the magnetic field is nonzero the
expansion, Eq. �7�, is slightly modified to the form

xi = xi
* +

xi−1
* − 2xi

* + xi+1
*

2�
+

h

2�
+ ¯ . �10�

Inserting this equation into the expression for a total magne-
tization we obtained very simple formula

m�h� =
1

N
�

i

xi
* +

h

2�
. �11�

The homogeneous configurations xG
*= ± �1,1 ,… ,1 ,1�

with l= l�=0 define the two degenerate ground states with
FG=0. The first excited state is specified by the simplest
“magnetic one-soliton structure” generated by the symmetric
configuration xS

*= �−1,… ,−1 , +1 ,−1,… ,−1� with l=2 and
l�=2 and having the energy FS=4−6/�+¯. Such a soliton
is similar to a stationary breather observed in many physical
systems.24 The next excited state is represented by the pair
kinks forming the domain wall structure generated by the
asymptotic configuration xD

*= �−1,…−1,−1, +1, +1,… ,
+1 ,−1 ,−1,−1,…� with l=2 and l�=4.

With an increasing number of particles the energy per
particle of these specific structures including many sign re-
versals ±1 become arbitrarily close to the ground state and
vanish in the large N limit. Note that these configurations are
locally stable. The total number of such locally stable con-
figurations is equal to 2N. They are separated by a large
barrier from the ground state. To illustrate the formation of
such complicated energy landscape let us consider the case
of two particles in detail. The dependence of the total energy
on the values of magnetic moments �x1 ,x2� for this system is
presented in Fig. 1. From this figure we may see that there
are four local minima which are well separated by four bar-
riers. Each of these barriers is associated with a saddle point
of the energy landscape. Two of these minima correspond to
the ground state. The corresponding values of moments are
equal to ±�1,1�. The other two minima are metastable. The
corresponding values of moments for these metastable
minima are equal to ±��1−4/� ,−�1−4/��. Although all
four minima are well separated in the space of individual
magnetic moments, their separation in the energy space is
very small, ie significantly smaller than the barrier heights
associated with the saddle points �see, Fig. 1�. Thus due to
such an energy landscape the system could be locked in one
of these minima with decreasing temperature, even if this
minimum does not correspond to the ground state.25
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Therefore, the formation of a particular structure will de-
pend strongly on the history of the system, for example at
which rate and from which temperatures and at which mag-
netic field the material was cooled or heated. The pair of
domain walls created and described by the configuration xD

*

has a higher energy than the soliton xS
*. This indicates that

there is a decoupling energy which is needed to decouple
domains having different topological charges �kink from an-
tikink�. That is there is the energy cost in decoupling of the
domain walls forming the soliton. In general domain walls
are always created in pairs. One always needs the energy to
perform a transition from the state with l domain walls to the
state with l+2 domain walls. Note that the highest energy
F=2�1−2/��N is achieved for the antiferromagnetic con-
figuration xi= �−1�i�1−4/� with l=N and l�=0 or in other
words for maximal number of domains. This structure exists
only for ��4 and is physically stable only for ��6. Simi-
larly, if the magnetization of one particle is zero �xi=0� the
energy cost due to this “node” would be of the order of �
�1. The configurations with nodes are physically unstable
saddle points and correspond to barriers separating the states
with domain walls and solitons. With increasing and decreas-
ing magnetic fields there arises multiple instability. At each
such instability the saddle point associated with one of the
barriers will coincide with the local minimum, and the lo-
cally stable configuration, which was associated with that
minimum, ceases to exist. These metastable states and mul-
tiple instability created with increasing and decreasing mag-
netic field lead to a formation of multiple hysteresis loops,
see below.

The classification of the metastable states is simple. The
first is the two domain walls �bound state of kink + antikink�.
The next one consists of four domain walls �two kinks and
two antikinks�, etc. At zero magnetic field the energy differ-
ence between successive minima is of the order of 1 while
the height of the barrier is always of the order of ��1.
When the coupling constant ��1 we may expect that the
system has some kind of glassy behavior where an ideal
ferromagnetic ordering of the ferromagnetic particles is bro-

ken. The different 2N /N locally stable distinct configurations
of the domains may be analytically described up to arbitrary
order with the parameter ��1. The distribution of magnetic
moments and the energy spectrum will be presented below.

IV. DISTRIBUTION OF MAGNETIC MOMENTS

The calculated values of the magnetic moments are shown
in Fig. 2. Pronounced discrete structures appear marking for-
bidden regions. It is reminiscent of band chaos often found in
nonlinear dynamical system theory. A physical origin of
these bands and gaps may be related to a bound state of the
stable topological excitations like kinks and antikinks. An
example is the formation of a soliton. The fine structure is
due to the kink-antikink interaction. This interaction modifies
the value of the magnetic moment xi associated with each
single ith particle �see, Fig. 2�.

The fine structures reveal some self-similarity reminiscent
of those for the standard logistic map xn+1→rxn�1−xn� with
growth parameter r. When it is close to the critical constant
rc=3.5699… it is specifying the onset of chaos, where the
attractor is a Cantor set. In both cases the origin of the fractal
structures is in the discreetness of the system and in the
nonlinearity. In our system the latter is related to the interac-
tion between domain walls. A crude estimate for the fractal
dimension with the aid of a box counting algorithm gives the
value D=0.555 compared to D=0.538 for the logistic map.26

In order to get an insight into the evolution of the fractal
set, we calculate systematically all values of magnetic mo-
ments for all possible configurations. We consider small clus-
ters �rings� with N=1,3,5,7,… and impose periodic boundary
conditions �x0=xN ,xN+1=x1�. For a single particle, N=1, we
only have the two degenerate ground states. These two states
correspond to the two values magnetic moments, �x= ±1�.
For N=3 we find the two ground states and six soliton struc-

FIG. 1. �Color online� The energy landscape for the system
consisting of two particles, i.e., the dependence of the total energy
on the values of magnetic moments �x1 , x2�. The picture illustrates
that the difference between energy related to absolute minima aris-
ing at the values of moments ±�1,1� and the energy related to
metastable minima arising at the points ±��1−4/� ,−�1−4/�� is
much smaller than the barrier height defined by the saddle points
presented on this figure.

FIG. 2. A representative series of absolute values of magnetic
moments of the individual particles are presented on the horizontal
axes. The scale of the vertical axes is meaningless. Top: The distri-
bution of magnetic moments for a chain consisting of N=50 000
particles for the parameter �=8. Bottom: The zoomed fine structure
of the distribution of magnetic moments in the range of moment
values from 0.6705 to 0.6745. This distribution displays all features
of the Cantor set. The total set of real values for magnetic moments
is obtained from the set of absolute values presented in the figure
with the use of the symmetry of Eq. �5�, by simple substitution xi

→−xi.
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tures. Two ground states correspond to the homogeneous
states: �111�, �−1−1−1� and other six—to degenerate soliton
states: �1,−1,1� ; �−1,1 ,1� ; �1,1 ,−1� ; �−1,1 ,−1� ; �−1,−1,
1� ; �1,−1,−1�. In Fig. 3 we present the different absolute
values of magnetic moments, �xi�, corresponding to all these
different states. In particular, for N=3 and finite �, the values
of the magnetic moments for the asymptotic soliton state
�1,−1,1� are not equal to 1 ,−1 ,1, respectively. The values
of these magnetic moments can be calculated numerically
and analytically from Eq. �5� provided that the parameter �
is sufficiently large. For �=8 the exact result for the
asymptotic soliton state �1,−1,1� is

x1 = 0.886, x2 = − 0.632, x3 = 0.886. �12�

The absolute values of these numbers are presented and
clearly seen in Fig. 3. These numbers together with the num-
ber 1.0 associated with homogeneous state are giving rise to
three distinct values of moments depicted as three “spectral
lines” in Fig. 3 �see the first box from the top�. Thus, the two
left of these three lines correspond to the single soliton struc-
ture associated with six soliton states while the right line
corresponds to a homogeneous �1,1,1� and �−1,−1,−1�
states. Let us denote this set of three lines as T, i.e., S3=T3
and call it a triplet. The index indicates the number of par-
ticles at which this triplet cluster arises. Then, when the num-
ber of particles N increases by 2 and becomes equal to N
=5, each line from the set T3 is split. Then there arise new

clusters of spectral lines. There, each of two outer lines from
the T3 cluster will be split into a new T5 cluster �see, top of
Fig. 3�. Therefore, the number of T-type clusters will be
increased by a factor of 2,

T5 = 2T3. �13�

On the other hand, the central line from the T3 cluster will
be split into a new set consisting of four lines. Let us denote
this set of four lines as Q and call it as quadruplet. Here each
quadruplet Q is surrounded by two triplets. The total number
of quadruplet clusters arising for the number of particles N
=3 is equal to Q3=0, �see, top of Fig. 3�. The number of the
quadruplet clusters arising in the case of N=5 is equal to

Q5 = T3 + 4Q3. �14�

Obviously, Q5=1 �see, the second figure from the top of Fig.
3�. The total set of spectral lines for N=5 particles S5 will
consist of two triplet sets T5 and one quadruplet set Q5

S5 = 2T5 + Q5. �15�

Thus, with increasing number of particles from N=3 to N
=5 particles the number of spectral lines will be increased
and, according to Eq. �10�, it will be equal to 10 �see, the
second box from the top of Fig. 3�.

At the next step of increasing number of particles from
N=5 to N=7 particles, the number of spectral lines will be
further increased. All these lines will be grouped into triplet
and quadruplet clusters. Again, here each triplet cluster will
give rise to two new triplet clusters T7=2T5 and to one qua-
druplet cluster. Also each quadruplet cluster will give rise to
four quadruplet clusters. In total there will arise Q7=4Q5
+T5 quadruplet clusters �see, the third figure from the top of
Fig. 3�. In general in each case when the number of particles
will be increased by 2, the number of triplet clusters will be
doubled

T2n+1 = 2T2n−1. �16�

Equation �16� allows us to calculate explicitly the number of
lines grouped into triplet clusters NT2n+1

=2n. On the other
hand, the number of quadruplet clusters will be described by
the recursion relation

Q2n+1 = T2n−1 + 4Q2n−1. �17�

One can easily calculate the total number of lines NQ
grouped into quadruplet clusters, i.e.,

NQ2n+1
= 1

2 �22n − 2n� . �18�

Applying successively these rules one can reproduce the set
of values of magnetic moments for a system, having any
number of particles. The splitting of spectral lines and their
grouping into the triplet and quadruplet clusters may be
nicely illustrated with the diagram presented in Fig. 4.

Each triangle corresponds to a triplet cluster or to three
spectral lines. Each square corresponds to a quadruplet clus-
ter or to four values of magnetic moments �to four spectral
lines�. With increasing number of particles a quadruplet clus-
ter �a square� is split into four quadruplet clusters �four
squares� and a triplet cluster �a triangle� is split into one

FIG. 3. The different absolute values of magnetic moments for
all possible states �we call this set of lines as a distribution of
magnetic moments� for a chain consisting of N=3, N=5, N=7,
and N=9 particles, where the value of parameter �=8. The total
number of all possible locally stable states is equal to 2N. Already
for the comparison of two cases of nine particles and seven particles
we can see here the development of the first features of fractal
formation: the fractal arises by appropriate triplication and quadru-
plication of spectral lines.
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quadruplet �one square� and two triplet states �two triangles�.
The total number of distinct values of the magnetic moments
increases according to the exponential law S2n+1=T2n+1
+Q2n+1 equal to

S2n+1 = 22n−1 + 2n−1. �19�

For an even number one can show that the increase is

S2n = 2S2n−1. �20�

To summarize here, each time with increasing number of
particles the spectral lines appear there in triplets and qua-
druplets. Further on, each triplet splits into one quadruplet
and two triplets. Each quadruplet will split into a new qua-
druplet, i.e., each spectral line from the quadruplet set splits
into four other lines, which in the next round, with an in-
creased number of particles, will create quadruplets. As a
result, this cluster multiplication will lead to formation of
multifractal structures. This multifractal spatial distribution
of the magnetic moments described above is difficult to ac-
cess experimentally, although modern techniques, like scan-
ning tunneling microscopy �STM� and atomic force micros-
copy �AFM� as well as Kerr rotation may be able to fulfil
such a task. With such experiments one can observe the spec-
tral lines from the fractal associated with the one or a few
such states. It will be probably very difficult to see all spetral
lines associated with all different states of this ensemble al-
though some fraction of them can be observed.

V. THE ENERGY SPECTRUM

Due to the Cantor set structure of the distribution of the
values of magnetic moments also the energy spectrum is also
expected to be fractal. Indeed, the different energy values
arise from interaction between topological defects �solitons
and domain walls�. These values also form a Cantor struc-
ture. The appearance of these fractal structures apparently

stems from a fundamental reason related both to the discrete
nature of the system consisting of small magnetic particles
and to the large but finite number of weekly interacting to-
pological excitations. Figure 5 clearly shows that with in-
creasing number of particles more fine energy structure ap-
pears. In this figure the ground state with E=0 corresponds
to the left boundary spectral line. The antiferromagnetic state
with the highest energy per particle E /N=2�1−2/�� located
on the right boundary of the energy spectrum.

We observe that with increasing number of particles the
fractal develops in terms of grouping into clusters whose
number increases with increasing number of particles. Al-
ready at ten particles we may clearly separate each level of
the fractal. The most important novel result is the energy
landscape, which consists of exponentially many locally
stable minima separated by large barriers represented by un-
stable saddle points. Each of these minima corresponds to
the state with some fixed number of sign reversals specifying
the domain structure. Even if such a number is fixed the
states associated with different configurations or rearrange-
ment of these domains will correspond to different or the
same degenerate minima. These energy levels, whose num-
ber is exponentially increasing, do not differ much from each
other; however, the barrier height between the corresponding
minima increases with increasing values of �. Since all these
configurations are locally stable and are separated from each
other by large barriers we may conclude that some kind of a
glassy state should arise here.25,27

The landscape structure will be reflected in the measured
quantities mainly on the magnetization measurements where

FIG. 4. �Color online� The schematic diagram presented for a
description of the clusterization of the values of magnetic moments
into triplet and quadruplet clusters. This clusterization also de-
scribes the evolution of the fractal structure when the number of
particles in the chain increases. Here, one can see how the fractal
magnetic structure evolves when we are moving from above, for
N=3 �the triplet cluster or three spectral lines�, N=5 �two triplets
and one quadruplet clusters corresponding to ten spectral lines in
total�, and N=7 particles �four triplets and six quadruplets corre-
sponding to 36 spectral lines in total�, respectively.

FIG. 5. On the horizontal axes we present the value of the en-
ergy for all possible domain configurations of the chain of magnetic
particles. This distribution of energy values forms the energy spec-
trum. In the figure we present the energy spectrum for a chain
consisting of �from above� N=4, N=6, N=8, and N=10 particles,
where the parameter �=8. Already for ten particles �the bottom
figure� we can see here the first features of the fractal formation in
the energy spectrum.
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only one minimum can be revealed at the time. Each of the
local minima will correspond to a different value of the mag-
netization. Of course to reveal the fractal features one has to
perform high resolution measurements.

VI. TOTAL MAGNETIZATIONS AND HYSTERESIS

It is clear that the external magnetic field will have a
strong influence on the physical properties of a chain made
of these magnetic particles. Let us apply the field along the
main axes of symmetry, i.e., oriented in the z direction. With
increasing magnetic field the complicated energy landscape
associated with domain structure changes. Initially the de-
generacy between different local minima will be lifted. Some
minima become deeper and some minima become shallow
and with further increasing field some minima start to disap-
pear. With next increasing field more and more minima will
disappear.

With such disappearance of some minima the correspond-
ing values of the magnetic moments will disappear and more
and more moments will be completely polarized. That is de-
pending on the direction of the magnetic field, they will take
their maximal possible value. With increasing polarization of
some moments the associated fractal set will have fewer
points. For sufficiently large magnetic field all moments will
be polarized. At the field higher than this critical field the
complicated energy landscape will disappear and will be sub-
stituted by one big absolute minimum associated with the
fully polarized state. The fractal features of the structure will
disappear as well.

Thus the fractal structure �or the fractal dimension� is
field sensitive. Because the total magnetization is a sum of
the magnetic moments of individual particles, the changing
of the fractal structure of the magnetic moments is reflected
in the behavior of the total magnetization in a magnetic field.
First of all because the total set of magnetic moments asso-
ciated with individual particles forms the fractal we expect
that the total magnetization, to which each moment is con-
tributing, will also form some fractal. This has been verified
for the distribution of the values for total magnetization of
the chain at zero field and we have found that this set also
has fractal features.

The total magnetization as a function of the external mag-
netic field are presented in Fig. 6. The figure reveals that
practically at each fixed value of magnetic field this depen-
dence is multivalued and represents some fractal features
very sensitive to magnetic field. From this figure one may
also see that this distribution consists of a few patches or
clusters of points. In fact each of these patches or branches
corresponds to a fixed even number of domains created in
the chain. The uppermost and lowest branches presented in
this figure correspond to fully polarized states and describe
effectively the formation of the conventional hysteresis loop
of a ferromagnet made of these particles �see the dashed lines
on the Fig. 6�. The second uppermost �or the second lowest�
branch corresponds to a single soliton which is formed as a
bound state of the two nearest domain walls. Probably such
soliton branches of the hysteresis are very generic to arbi-
trary linear chains made of small magnetic particles. Other

branches or clusters of the distribution in magnetization have
nontrivial fractal features. From Fig. 6 one also sees that
with increasing or decreasing magnetic field the fractal-like
structure of the total magnetization becomes less and less
dense. This is in complete agreement with the discussion
presented above.

One may also see from Fig. 6 that the total distribution of
the magnetization is changing in a nonmonotonic way with
the field. At zero magnetic field we know that this distribu-
tion is associated with the maximum number of 2N different
locally stable partially degenerate minima. However, when
we slightly increase or decrease the magnetic field the sym-
metry xi→−xi in Eq. �5� is broken such that the degeneracy
becomes smaller. Then each patch or a cluster in this distri-
bution looks denser and even broader compared with the
case of zero magnetic field. Though for small magnetic fields
all 2N local minima still exist, their number will inevitably
decrease with increasing magnitude of the magnetic field.

There is a one to one correspondence between each mini-
mum of the energy landscape and a specific domain configu-
ration. Such domain configurations are very sensitive to
magnetic field and change with the field by a very nontrivial
way. For example, when the field is equal to h= ±0.5 the
size or the width of each branch of the total distribution of
magnetization set becomes very small �see Fig. 6� �except
two uppermost and two lowest branches which were already

FIG. 6. All possible values of the total magnetizations M �the
vertical axes� as a function of the magnetic field h �the horizontal
axes� in arbitrary units for the value of the parameter �=8. The
magnetic field is changing in steps �h=0.025. The magnetization
�its values are associated with points in the figure� is a multivalued
function of the external magnetic field. The different values of the
magnetization are related to all possible domain structures formed
in the chain consisting of 13 particles. The dashed lines correspond
to fully polarized states and present the form of the conventional
hysteresis loop of a ferromagnet.
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small�. At this fixed value of the field the number of the
clusters remains the same as at zero field. It is exactly equal
to the number of states with different even number of do-
mains. This shrinking of the branch patches at such magnetic
field is related to the effect that some minima associated with
some domain �or precisely speaking, with soliton�domain�
configurations have been disappeared already. But with the
next increasing magnetic field, at h=0.75 and at h=1.0 we
see from the Fig. 6 that the size of the clusters is growing
again. This cluster growth is presumably related to an in-
crease of the distance between local minima and correspond-
ing energies of the complicated energy landscape. With fur-
ther increasing field, some of the minima disappear and the
energy landscape becomes less and less complicated. As the
result the clusters become less and less dense.

Finally at the critical field hc�1.75 the remaining chunks
of the fractal structure �see Fig. 6� vanish. At fields larger
than �hc� all cluster features of the magnetization distribution
have disappeared. There remains only two local minima as-
sociated with fully polarized state oriented along or opposite
to the external field �see, the dashed lines in Fig. 6�.

The existence of such complicated energy landscape indi-
cates that the magnetic properties of the chain of small par-
ticles will be very different from conventional bulk magnets.
In particular, the magnetization hysteresis loop may be very
nontrivial. Indeed, the fractal structure presented on the Fig.
6 also suggests that a large variety of different hysteresis
loops are theoretically possible. In particular, the magnetiza-
tion M as a function of the field h is not necessarily smooth
but can increase in steps. This fundamental mechanism giv-
ing rise to a series of minute jumps in the magnetization is
the so-called Barkhausen effect28,29 which gave first experi-
mental evidence of these magnetic instabilities. Thus the fact
that all possible values of the total magnetization form a
fractal leads to the result that the fractal hysteresis loop can
be constructed from the Cantor set of the values of the total
magnetization.

Note that a specific domain structure corresponds to the
system being trapped in one of these local energy minima.
However, because it is a metastable state a slight change of
the strength of the applied field H can easily destabilize a
specific domain structure. The less stable structures are do-
main wall configurations forming the soliton structure where
two domain and antidomain walls are creating a bound state.
It is sufficient that with increasing field the local minimum of
the energy landscape is transformed into a saddle point and
such domain configuration disappear.

The system then evolves toward to a situation when some
other metastable configuration will disappear and so on.
These rearrangements can be quite localized in space or may
involve even the whole domain structure.

Provided that the magnetic field is not too strong, the
distribution of the total magnetizations M at each fixed value
of the magnetic field are also reminiscent of Cantor-set struc-
tures �see Fig. 6�. Obviously, there will be a critical field
value, where the fractal structure disappears. It is also impor-
tant to note that the set of the hysteresis curves is different
for the case of the chain with even and odd numbers of
particles. For example, the chain consisting of an odd num-
ber of particles will never be demagnetized, i.e., to have the

same number of positively and negatively oriented magnetic
moments. In other words, there are no values of magnetiza-
tion in the vicinity of the origin, see Fig. 6. The situation is
completely different when the chain consists of an even
number of particles. Then the chain can be completely de-
magnetized and there is a subset of the values of magnetiza-
tion distributed in the vicinity of zero, see Fig. 7. Such a
completely demagnetized state of the chain may correspond
to a single domain configuration. Generally speaking, in such
a demagnetized configuration the number of domains may be
different from one. However, the number of positively and
negatively oriented magnetic moments must be always equal
to each other. This can obviously be satisfied for the chain
having an even number of particles but is impossible for the
chain having an odd number of particles �see, for compari-
son, the branches of the hysteresis loop obtained for the
cases of the chain with an even and odd number of particles
presented in Figs. 6 and 7, respectively�.

VII. POSSIBLE EXPERIMENTS FOR A RECOVERING OF
BARKHAUSEN JUMPS

The fractal studies in the distribution of the total magne-
tization presented in Figs. 6 and 7 may be detected in experi-
ments with the use of the fast cooling rates at different field
strengths. At fast cooling the configuration formed at high
temperatures will be associated with one of the metastable
states and therefore at low temperatures it will be frozen and
corresponds to one specific value of the fractal presented in
Fig. 6 and 7. Since at high temperatures ��→0� the energy
landscape is very shallow, the high temperature state does

FIG. 7. The notations are the same as in Fig. 6 but for the chain
consisting of an even number of particles, N=14.
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not correspond to a specific deep minimum. Then all types of
thermal fluctuations exist and all types of configurations will
be created. With fast cooling these configurations could be
frozen into one of the configurations of the multivalley en-
ergy landscape, which will be revealed by the fractal struc-
ture of the measured values of the total magnetization.

The complicated structure of the hysteresis loop presented
in Figs. 6 and 7 may be observed in a series of the field
cooled and zero field cooled experiments. Let us note that
this structure is a result of the complicated energy landscape
consisting of the many locally stable minima separated by
large barriers. The formation of these minima and the barri-
ers is beginning with decreasing temperature starting from
the critical temperature Tc of the bulk ferromagnetic transi-
tion. With the next decreasing temperature the minima be-
come deeper and deeper while the barrier height increases.
At all temperatures the energy positions of the bottom of the
minima are not very different from each other. Such differ-
ence is determined by the weak dipole-dipole interaction be-
tween particles which is characterized by the coupling con-
stant J. Therefore, with decreasing temperature, when Tc
−T�J, we will have a system where there are many, practi-
cally equivalent, minima separated by large barriers. A
simple estimation gives that for a particle consisting of 103

magnetic atoms the value of J must be significantly smaller
than 10 K. The latter, of course, depends on the distance
between particles r and ceases as 1/r3. Therefore, it is clear
that the condition when Tc−T�J can be easily realized. Ob-
viously that when the temperature decreases very fast the
system may be easily trapped in any one of these minima. In
which of these minima the trapping will occur does depend
on the cooling rate and on initial configuration created by a
thermal fluctuation as well as on the strength of the applied
magnetic field. This property of the system may serve as a
basis of the following experiments.

First, if we cool the system in a strong magnetic field and
then continuously change the field h we will recover the
main features of the bulk hysteresis loop �see the dashed
lines in Fig. 6�. In this case the system will be trapped in a
fully ferromagnetic state associated with the absolute mini-
mum. Moreover, the system will even be trapped in this state
when the minimum becomes not absolute, which happens
with the next continuous change of the field h. However, if
we cool the system in a weak or zero field the resulting
minimum in which the system will be trapped will depend on
the cooling rate and on the initial high temperature state.
With the very slow cooling rate the system will have time to
termalize into the bottom of absolute minimum. However,
due to the barriers of much height that surround these
minima, when the cooling rate is not slow the system will be
trapped in other locally stable minima, which is different
from the absolute mininum and has different values of the
total magnetization. With the very fast cooling rate in a weak
or zero field the system may be trapped in any minima hav-
ing locally stable configurations and characterized by differ-
ent values of magnetization. Such a dramatic difference be-
tween the field cooled and zero field cooled magnetizations
reminds us of the situation that is usually arising in spin
glasses.

Then, when the system is trapped in one of these locally
stable minima, the continuous change of the field h may

induce the transition of the system from this minimum into
another neighboring local minimum that has the closest mag-
netic configuration. Such a transition must occur when a cer-
tain branch of the hysteresis set presented in Figs. 6 and 7 is
terminated and such transition will be reflected in the
Barkhausen jump of the total magnetization M. This will be
seen in the experiment measuring the total magnetization of
the system. With the next continuous change of the field h,
first the magnetization will be changed continuously until
this branch of the hysteresis set will be terminated. Then
another transition into a new minimum and another
Barkhausen jump in the total magnetization will occur. Thus
if the system will be trapped originally in one of these locally
stable �not absolute� minima, due to the fast cooling or some
other way, then with continuous change of the field h we will
recover a series of Barkhausen jumps in the total magnetiza-
tion M. Such a Barkhausen �devil� staircase may be different
from one experiment to another, from one measurement to
another reflecting a very rich and complicated energy land-
scape associated with the system consisting of these small
particles.

VIII. SUMMARY

Thus, our studies led us to amazing results, namely the
spatial structures of domains in a chain made of small mag-
netic particles show fractal self-similarity. Such a spatial dis-
tribution of magnetic moments associated with different
chains or clusters of particles is a difficult task to measure on
experiments, although modern techniques, such as STM and
AFM as well as the Kerr rotation, may allow such a task.
However, from our point of view, the most important result
obtained is the fractal structure of the energy spectrum. The
energy landscape, which gives rise to such a fractal spec-
trum, is associated with the creation of domains and fractal
values of the total magnetization. This landscape energy sur-
face consists of many locally stable minima separated by
large barriers. Each of these minima corresponds to the state
with some fixed number of domains. Even if such a number
is fixed the states associated with different configurations or
rearrangement of these domains will correspond to different
or the same minima. This is precisely the situation arising in
a glassy system. The shape of the energy landscape leads us
to the conclusion that the system formed from magnetic par-
ticles is some kind of magnetic glass associated with the
creation of domains �see also Ref. 27�. We propose to make
a detailed experimental investigation of systems made of
small magnetic particles �chains or clusters� to identify this
glassy character and the fractal features of their domain
structure. In this respect it might be useful to measure the
magnetization at zero field as well as in cooled regimes as
commonly practiced in experiments on spin glasses. Due to
these energy landscapes described above the corresponding
magnetic structures at very low temperatures are very stable
with respect to thermal as well as to quantum fluctuations. To
reveal these fractals the experiments associated with fast
cooling should be setup. The repetition of the fast cooling
from high temperatures may drive the system to settle in a
different valley of the energy landscape. Measurement of the
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total magnetization at each lap of cooling with the same or
different cooling rates may provide a set of numbers remi-
niscent of parts of a fractal. The latter will depend on the
shape and the number of particles of which the nanostructure
is formed. Since different clusters will be associated with
different fractals, then in general these studies may lead to
the development of a type of spectroscopy where, with the
aid of fast cooling magnetization measurements, the struc-
ture of small clusters may be identified. These findings could
also open areas of applications for devices having very con-
trollable and stable giant magnetoresistance properties.28

There is another interesting example of the systems,
where the described fractal structures can arise as well.30

These are one-dimensional chains and two-dimensional ar-
rays of � rings.31,32 A single � ring is a superconducting loop
consisting of Josephson junctions where there is at least one
� junction.33 The phase shift by � in such a junction results
in the formation of an orbital moment on the ring �see for

details Ref. 33�. Such orbital moments give rise to a para-
magnetic Meissner effect33 observed in cuprate
superconductors.34,35 A chain or a planar array of electrically
isolated � rings could be treated as a set of magnetic mo-
ments oriented perpendicular to the plane and interacting via
magnetic dipole forces. This dipole-dipole interaction modi-
fies the values of the orbital magnetic moments and leads to
the formation of the fractal in the way decribed in this paper.

ACKNOWLEDGMENTS

We are grateful to F. Aliev, J. W. Clark, D. Edwards, G.
Gehring, C. Krattenthaler, and John Samson for useful dis-
cussions. The work has been supported by European Science
Foundation in the framework of the network program: Ar-
rays of Quantum Dots and Josephson Junctions as well as the
EPSRC Grant No. GR/S05052/01.

1 M. A. Howson, Contemp. Phys. 35, �5� 347 �1994�.
2 C. Binns, Surf. Sci. Rep. 44, 1 �2001�.
3 C. Binns, S. Louch, S. H. Baker, K. W. Edmonds, M. J. Maher,

and S. E. Thornton, IEEE Trans. Magn. 38, 141 �2002�.
4 H. Ardhuin, J. N. Chapman, P. R. Aitchison, M. F. Gillies, K. J.

Kirk, and C. D. W. Wilkinson, J. Appl. Phys. 88, 2760, �2000�.
5 W. Schepper, A. Hütten, and G. Reiss, J. Appl. Phys. 88, 993

�2000�.
6 M. V. Gvozdikova and A. S. Kovalev, Low Temp. Phys. 25, 1295

�1999�.
7 F. V. Kusmartsev, H. S. Dhillon, and M. D. Crapper, J. Magn.

Magn. Mater. 198-199, 743 �1999�.
8 A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe,

Y. Ikeda, S. Sun, and E. Fullerton, J. Phys. D 35, R157 �2002�.
9 S. P. Parkin, C. Kaiser, A. Panchula, P. Rice, M. Samant, and

S.-H. Yang, Nat. Mater. 3, 862 �2004�.
10 S. P. Parkin, X. Jiang, C. Kaiser, A. Panchula, K. Roche, and M.

Samant, Proc. IEEE 91, 661 �2003�.
11 D. R. Lee, J. W. Freeland, G. Srajer, V. Metlushko, cond-mat/

0309672 �unpublished�.
12 R. P. Cowburn, J. Phys. D 33, R1 �2000�
13 J. Rothman, M. Klaui, L. Lopez-Diaz, C. A. F. Vaz, A. Bleloch, J.

A. C. Bland, Z. Cui, and R. Speaks, Phys. Rev. Lett. 86, 1098
�2001�.

14 R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland,
and D. M. Tricker, Phys. Rev. Lett. 83, 1042 �1999�.

15 R. P. Cowburn, A. O. Adeyeye, and M. E. Welland, Phys. Rev.
Lett. 81, 5414 �1998�.

16 R. P. Cowburn and M. E. Welland, Science 287, 1466 �2000�.
17 R. P. Cowburn, Phys. Rev. B 65, 092409 �2002�
18 F. V. Kusmartsev and K. E. Kürten, in Lecture Notes in Physics,

edited by J. W. Clark and M. L. Ristig �Springer-Verlag, NY,
1997�, Vol. 284

19 H. S. Dhillon, F. V. Kusmartsev, and K. E. Kürten, J. Nonlinear

Math. Phys. 8, 38 �2001�.
20 K. E. Kürten, in Condensed Matter Theories, �Nova Science,

New York, 2000� Vols. 14 and 15.
21 P. Vavassori, M. Grimsditch, V. Novosad, V. Metlushko, and B.

Illic, Phys. Rev. B 67, 134429 �2003�.
22 K. E. Kürten and C. Krattenthaler, in Condensed Matter Theories,

�Nova Science New York, 2004� Vol. 18.
23 P. Bak and V. L. Pokrovsky, Phys. Rev. Lett. 47, 958 �1981�.
24 D. K. Campbell, S. Flach, and Y. S. Kivshar, Phys. Today 57, 43

�2004�.
25 D. Feinberg and F. V. Kusmartsev, Physics in Local Lattice Dis-

tortions, edited by Oyanagi and A. Bianconi �AIP, New York,
2001�, p. 262.

26 P. Grassberger, J. Stat. Phys. 26, 173 �1981�
27 P. E. Jönsson, S. Felton, P. Svedlindh, P. Nordblad, and M. F.

Hansen, Phys. Rev. B 64, 212402 �2001�.
28 P. Grünberg, Phys. Today 54, 31 �2001�.
29 H. Barkhausen, Z. Phys. 20, 401 �1919�.
30 F. V. Kusmartsev, D. M. Forrester, and M. S. Garelli, in Physics

of Superconducting Phase Shift Devices, edited by A. Barone, E.
Sarnelli, F. Tafuri and G. Testa �Ischia, Napoli 2005�
p. 21.

31 H. Hilgenkamp, H.-J. Ariando, H. Smilde, D. H. A. Blank, G.
Rijnders, H. Rogalla, J. R. Kirtley, and C. C. Tsuei, Nature
�London� 422, 50 �2003�.

32 J. R. Kirtley, C. C. Tsuei, Ariando, H.-J. H. Smilde, and H.
Hilgenkamp, cond-mat/0503236 �unpublished�.

33 F. V. Kusmartsev, Phys. Rev. Lett. 69, 2268, �1992�.
34 P. Svedlindh, K. Niskanen, P. Norling, P. Nordblad, L. Lundgren,

B. Lönnberg, and T. Lundström, Physica C 162–164, 1365
�1989�.

35 W. Braunisch, N. Knauf, V. Kataev, S. Neuhausen, A. Grütz, A.
Kock, B. Roden, D. Khomskii, and D. Wohlleben, Phys. Rev.
Lett. 68, 1908 �1992�.

K. E. KÜRTEN AND F. V. KUSMARTSEV PHYSICAL REVIEW B 72, 014433 �2005�

014433-10


