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The Bogoliubov–de Gennes equations and the Ginzburg-Landau-Abrikosov-Gor’kov-type theory are for-
mulated for the charged Bose gas~CBG!. The theory of the Bose-Einstein condensation of the CBG in a
magnetic field is extended to ultralow temperatures and ultrahigh magnetic fields. A low-temperature depen-
dence of the upper critical fieldHc2(T) is obtained both for the particle-impurity and particle-particle scatter-
ing. The normal-state collective plasmon mode in ultrahigh magnetic fields is studied.
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I. INTRODUCTION

A charged Coulomb Bose gas~CBG! recently became of
particular interest motivated by the bipolaron theory of high-
temperature superconductivity.1 A long time ago Schafroth2

demonstrated that an ideal gas of charged bosons exhibits the
Meissner-Ochsenfeld effect below the ideal Bose-gas con-
densation temperature. Later on, the one-particle excitation
spectrum atT50 was calculated by Foldy,3 who worked at
zero temperature using the Bogoliubov4 approach. The Bo-
goliubov method leads to the result that the ground state of
the system has a negative correlation energy, whose magni-
tude increases with the density of bosons. Perhaps more in-
teresting is the fact that the elementary excitations of the
system have, for small momenta, energies characteristic of
plasma oscillations which pass over smoothly for large mo-
menta to the energies characteristic of single-particle excita-
tions. Further investigations have been carried out at or near
Tc , the transition temperature for the gas. These works have
been concerned with the critical exponents5 and the change
in the transition temperature from that of the ideal gas.5,6 The
random phase approximation~RPA! dielectric response
function and screening in the CBG have been studied in the
high-density limit,7 including a low-dimensional@two-
dimensional~2D!# CBG.8,9 The theory of the CBG beyond
the lowest-order Bogoliubov approximation was discussed
by Lee and Feenberg10 and by Brueckner.11 They obtained
the next-order correction to the ground-state energy. Woo
and Ma12 calculated numerically the correction to the Bogo-
liubov excitation spectrum. Alexandrov13 found the critical
magnetic fieldHc2(T), at which the CBG is condensed. The
predicted temperature dependence ofHc2(T) was observed
both in low-Tc and high-Tc cuprates,

14 where the coherence
volume estimated from the heat capacity measurements is

comparable with or even less than the unit cell volume. This
favors a charged 2e Bose liquid as a plausible microscopic
scenario for the ground state.1

Our objective is the theory of the CBG in a magnetic
field. In this paper we first extend to finite temperatures the
BdG-type equations derived earlier15 for T50. Then we ana-
lyze the linearized Ginzburg-Landau-type equation for the
order parameter and formulate the condition of the Bose-
Einstein condensation in a homogeneous magnetic field. By
the use of the sum rule we calculate the upper critical field
Hc2(T) both for a short-range particle-impurity and long-
range particle-particle Coulomb interactions at low tempera-
tures. The plasmon dispersion of CBG in the ultrahigh mag-
netic field is analyzed as well.

II. BOGOLIUBOV –de GENNES EQUATIONS
FOR THE CBG AT FINITE TEMPERATURES

The superfluid properties of charged bosons as well as
their excitation spectrum and the response function can be
studied by the use of the Bogoliubov–de Gennes-~BdG-!
type equations, fully taking into account the interaction of
quasiparticles with the condensate.15 The Hamiltonian of
charged bosons on an oppositely charged background~to en-
sure charge neutrality! in an external field with the vector
potentialA(r ,t) is given by

H5E drc†~r !F2
~¹2 ie*A!2

2m
2m Gc~r !

1
1

2E drE dr 8V~r2r 8!c†~r !c~r !c†~r 8!c~r 8!. ~1!

For 3D charged bosons of massm the Fourier component of
the interaction potentialV(r ) is V(k)54pe* 2/k2 with
bosonic chargee* . For a 2D system with a three-
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dimensional interactionV(k)52pe* 2/k. Respecting elec-
troneutrality one takesV(k[0)50, which is a consequence
of the compensation of the boson-boson repulsion by the
attraction due to a spatially homogeneous charged back-
ground. In this paper we will treat the purely academic prob-
lem of the charged Bose gas; however, we state that the
results obtained are also applicable to the case of preformed
electron pairs, which we postulate to exist in the high-Tc
cuprates. In the more realistic case of preformed pairs their
hard core nature needs to be considered. This introduces an
additional term missing from the equations given in this pa-
per as we no longer haveV(k[0)50 and instead have
V(k[0)5const. When considering the self-energy, as we
shall do later in the paper, it can be seen that this zero-
momenta interaction term will give a constant contribution to
the self-energy, which amounts to a renormalization of the
chemical potential. The hard core nature of the pairs also
gives a constant contribution to the Fourier component of the
interaction potential at all momenta. The most significant
part of the interaction is Coulomb interaction as can be seen
from Eq. ~15!, where, if we include the hard core interaction
as well as the Coulomb interaction, the main result—that the
excitation spectrum contains a plasma gap—is unchanged.
The consequences of including only the hard core interaction
have been discussed earlier by Alexandrovet al.16 One final
point worth mentioning on the choice of the interaction po-
tential deals with the screening within the system. Simply
taking a screened Coulomb potential as our starting potential
can lead to an erroneous double-counting result as discussed
by Alexandrov and Beere.15 In this paper we start with the
bare interaction potential and derive a self-consistent form of
the self-energies, carefully taking into account the self-
screening of the interaction by the bosons in the high-density
limit, r s!1 ~see below!. If we have in mind a metal with
preformed pairs, to avoid their overlap, the density is also
restricted in the upper limit. Here and further\5c51.

The equation of motion for the field operatorc is derived
using this Hamiltonian,

i
]

]t
c~r ,t !5@H,c~r ,t !#5F2

~¹2 ie*A!2

2m
2mGc~r ,t !

1E dr 8V~r2r 8!c†~r 8,t !c~r 8,t !c~r ,t !. ~2!

If the interaction is weak, one can expect that the occupation
numbers of one-particle states are not very much different
from those in the ideal Bose gas. In particular the state with
zero momentumk50 remains macroscopically occupied and
the corresponding Fourier component of the field operator
c(r ) has an anomalously large matrix element between the
ground states of the system containingN11 andN bosons.
It is convenient to consider a grand canonical ensemble, in-
troducing a chemical potentialm. In this case the quantum
state is a superposition of statesuN& with slightly different
total numbers of bosons. The weight of each state is a
smooth function ofN which is practically constant near the
average numberN̄ on the scale6AN̄. Becausec changes
the number of particles only by 1 itsdiagonalmatrix ele-
ment coincides with the off diagonal, calculated for the states
with fixedN5N̄11 andN5N̄. Following Bogoliubov4 one
can separate the large diagonal matrix elementc0 from c by
treating the restc̃ as a small fluctuation:

c~r ,t !5c0~r ,t !1c̃~r ,t !. ~3!

The anomalous averagec0(r ,t)5^c(r ,t)& is equal to
An0 in a homogeneous system, wheren0 is the condensate
density.

Substituting the Bogoliubov displacement transformation,
Eq. ~3!, into the equation of motion and collecting
c-number terms ofc0 andsupracondensateboson opera-
tors c̃, we obtain a set of the BdG-type equations. The mac-
roscopic condensate wave function, which plays the role of
the order parameter, obeys the equation

i
]

]t
c0~r ,t !5F2

~¹2 ie*A!2

2m
2mGc0~r ,t !1E dr 8V~r2r 8!n~r 8,t !c0~r ,t !1E dr 8V~r2r 8!@^c̃†~r 8,t !c̃~r ,t !&c0~r 8,t !

1^c̃~r 8,t !c̃~r ,t !&c0* ~r 8,t !#. ~4!

Taking explicitly into account the interaction of supracondensate bosons with the condensate and applying the Hartree-Fock
approximation for the interaction between supracondensate particles one obtains

i
]

]t
c̃~r ,t !5F2

~¹2 ie*A!2

2m
2mG c̃~r ,t !1E dr 8V~r2r 8!n~r 8,t !c̃~r ,t !1E dr 8V~r2r 8!@c0* ~r 8,t8!c0~r ,t !

1^c̃†~r 8,t !c̃~r ,t !&#c̃~r 8,t !1E dr 8V~r2r 8!@c0~r 8,t !c0~r ,t !1^c̃~r 8,t !c̃~r ,t !&#c̃†~r 8,t !1E dr 8V~r2r 8!

3@c̃†~r 8,t !c̃~r 8,t !2^c̃†~r 8,t !c̃~r 8,t !&#c0~r ,t !1E dr 8V~r2r 8!@c̃†~r 8,t !c̃~r ,t !2^c̃†~r 8,t !c̃~r ,t !&#c0~r 8,t !

1E dr 8V~r2r 8!@c̃~r 8,t !c̃~r ,t !2^c̃~r 8,t !c̃~r ,t !&#c0* ~r 8,t !. ~5!
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Here

n~r ,t !5uc0~r ,t !u21^c̃†~r ,t !c̃~r ,t !& ~6!

is the boson density, and so the general sum rule

E drn~r ,t !5nB ~7!

is satisfied. HerenB is the number of bosons in the normal-
ized volume, which is taken to be unity.

In the high-density limitr s5me* 2/(4pnB/3)
1/3!1 and

for the temperature close to zero the number of bosons
pushed up from the condensate by the repulsion is small.
Therefore the contribution of terms nonlinear inc̃ is negli-
gible. Applying a linear Bogoliubov transformation forc̃,

c̃~r ,t !5(
n

un~r ,t !an1vn* ~r ,t !an
† , ~8!

wherean andan
† are bosonic quasiparticle operators for the

one-particle quantum staten, and omitting nonlinear terms,
we obtain two coupled Schro¨dinger equations for the wave
functionsu(r ,t) andv(r ,t):15

i
]

]t
u~r ,t !5F2

~¹2 ie*A!2

2m
2m Gu~r ,t !

1E dr 8V~r2r 8!@ uc0~r 8,t !u2u~r ,t !

1c0* ~r 8,t !c0~r ,t !u~r 8,t !#

1E dr 8V~r2r 8!c0~r 8,t !c0~r ,t !v~r 8,t !

~9!

and

2 i
]

]t
v~r ,t !5F2

~¹1 ie*A!2

2m
2mGv~r ,t !

1E dr 8V~r2r 8!@ uc0~r 8,t !u2v~r ,t !

1c0~r 8,t !c0* ~r ,t !#v~r 8,t !

1E dr 8V~r2r 8!c0* ~r 8,t !c0* ~r ,t !u~r 8,t !.

~10!

There is also another sum rule

(
n

@un~r ,t !un* ~r 8,t !2vn~r ,t !vn* ~r 8,t !#5d~r2r 8!, ~11!

which retains the Bose commutation relations for all opera-
tors.

Unfortunately, the last set of BdG equations~9!–~11! is
applied only for low temperatures and small magnetic fields,
when the depletion of the condensate is small. As an ex-
ample for the homogeneous case andA50 the excitation
wave functions are plane waves

uk~r ,t !5uke
ik•r2 i ekt, ~12!

vk~r ,t !5vke
ik•r2 i ekt, ~13!

and the condensate wave function is (r ,t) independent,
c05An0. Thus the solution to Eq.~4! is

m5V~k[0!50 ~14!

in the leading order inr s , when the last term in Eq.~4! can
be neglected. The excitation spectrum is that obtained by
Foldy,3

ek5A k4

4m2 1
k2V~k!n0

m
, ~15!

with a gapvp05A4pe2n0 /m, which is the classical plasma
frequency for a plasma of densityn0.

At finite temperatures and~or! in a strong magnetic field
we are left with the extremely complicated integro-
differential nonlinear equations~4!–~7!.

III. UPPER CRITICAL FIELD OF CBG:
GENERAL FORMULATION

The situation, however, is not hopeless in the region of
the second-order phase transition near the upper critical field
Hc2(T). In this region one can apply the expansion in pow-
ers of the order parameterc0(r ,t) to obtain the equation
similar to that of the Ginzburg-Landau-Abrikosov-Gor’kov
~GLAG! theory.19,20 In particular, the linearized equation~4!
takes the form

i
]

]t
c0~r ,t !5F2

~¹2 ie*A!2

2m
2m Gc0~r ,t !

1E dr 8V~r2r 8!n~r 8,t !c0~r ,t !

1E dr 8V~r2r 8!^c̃†~r 8,t !c̃~r ,t !&c0~r 8,t !.

~16!

The last two terms are the Hartree-Fock corrections to the
normal-state single-boson energy, respectively. This can be
reduced to the renormalization of the normal-state single-
boson energy spectrum (m) and of the chemical potential, as
discussed in the last section. One of the solutions to Eq.~16!
is a trivialc050. If this solution is compatible with the sum
rule, Eq.~7!, we have the normal state. On the other hand, if
c0Þ0, the linearized equation~16! can be satisfied with the
appropriate choice of the chemical potential~in a stationary
homogeneous magnetic field!. Therefore, the linearized
equation for the order parameter does not determine the up-
per critical field at all. The upper critical field is determined
by the sum rule, Eq.~7!, as the lowest field at which this rule
cannot be satisfied withc050,13 rather than by the linear-
ized GL equation of the GLAG theory, wherem;Tc2T is
fixed.

Introducing the one-particle normal-state Green’s func-
tion
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Gn~ iVn!5
1

iVn2en1m2Sn~ iVn!
, ~17!

we can write the sum rule in the Matsubara representation as

2T(
n,n

eiVn0
1

iVn2en1m2Sn~ iVn!
5nB , ~18!

whereen5vH(N11/2)1kz
2/2m is the free-particle spectrum

in a homogeneous magnetic fieldH, vH5e*H/m, kz is the
z component of the momentum,N50,1,2, . . . ,Vn52pTn,
n50,61,62, . . . , and theself-energySn(Vn) takes into ac-
count the interaction terms. The complete set of the quantum
numbers isn5(N,kz ,kx) with the energy degenerate for the
quantum numberkx . It is convenient to replace the summa-
tion for the contour integral overC1, C2, andC3 as shown in
Fig. 1. Then shifting the contour to the real axis and by the
analytical continuation of the Green’s function to the upper
(GR) and lower (GA) half-planes the sum rule is given by

E
m10

` der~e,H !

exp@~e2m!/T#21
5nB , ~19!

whereGn
A,R(e)5@e2en2Sn

A,R(e)#21, and

r~e,H !5
1

2p i(n
@Gn

A~e!2Gn
R~e!# ~20!

is the one-particle density of states~DOS! in the magnetic
field, with the edge of the spectrum,Ec , determined by the
conditionr(Ec ,H)50. The integral overC2 is compensated
for by the opposite sign contribution ofC̃1 and C̃3 ~Fig. 1!.
This and the conditionm<Ec determine the lower limit in
Eq. ~19! asm10. It is apparent now that the upper critical
field is determined by Eq.~19! with H5Hc2 and m5Ec .
Hence, the problem of the Bose-Einstein condensation in the
magnetic field is reduced to the calculation of the normal-
state DOS, Eq.~20!. In particular, for free particles we have
Sn
A,R(e)56 id,d→10, so that

r~e,H !5
A2m3/2vH

4p2 Re(
N50

`

@e2vH~N11/2!#21/2, ~21!

andEc5vH/2. Substituting this DOS into the sum rule we
obtain the familiar Schafroth result2

Hc2~T!5
4p2nB

e*A2mT*0
`dee23/2[0. ~22!

The condensation of ideal charged bosons in the magnetic
field is impossible which is a consequence of the one-
dimensional motion in the lowest Landau level. To obtain a
finite value ofHc2 one should go beyond the Hartree-Fock
approximation, taking into account the broadening of the
Landau levels. If this broadening is to have an effect on
Hc2, then it must act to make the density of states converge
to zero atEc , ensuring that the integral in Eq.~19! will be
finite.

IV. CONDENSATION OF BOSONS SCATTERED
BY IMPURITIES

Here we extend the earlier study13 of the condensation of
charged bosons scattered by impurities to low temperatures
and ultrahigh magnetic fields, where the Born approximation
for a single-impurity scattering fails.

In the lowest order in impurity concentration the self-
energyS in a magnetic field is expressed in terms of a
single-impurityt matrix17

Sn,n8~e!5@Ĝ~0!~e !#n,n8
21

2@Ĝ~e!#n,n8
21 , ~23!

Sn,n8~e!5nimtn,n8~e!, ~24!

wherenim is the concentration of impurities. This expression
corresponds to the summation of all noncrossing diagrams
~ladder approximation!.18,19,21–23The t matrix in the mag-
netic field is derived by the use of the general formalism17

fully taking into account the multiple scattering:

ta,b5
2p f

m E dr
fa* ~r !fb~r !

11
2p f

m (
n,n8

fn* ~r !fn8~r !Gn,n8~e!

, ~25!

wherefn(r ) is the one-particle wave function in the mag-
netic field. In the Landau representation with the magnetic
field along thez axisfn(r ) is given by

fn~r !5
1

p1/4aH
1/2A2NN!

expF i ~kxx1kzz!

2
1

2 S y2y0
aH

D 2GHNS y2y0
aH

D . ~26!

HN(y) is a Hermite polynomial,y05kxaH
2 is the center of

the cyclotron motion, andaH51/Ae*H is the magnetic
length.Gn,n8(e) is the one-particle Green’s function aver-
aged over the position of the impurities, andf is the scatter-
ing amplitude of a particle with zero energy in zero magnetic
field. This equation is similar to that discussed by Skobov22

and Magarill and Savvinykh.23

It should be pointed out that the self-energySn,n8(e) has
diagonal (n5n8) and nondiagonal (nÞn8) components.
Both diagonal and nondiagonal components contribute to the
density of states,N(e)5Tr ImGn,n(e)/p.

FIG. 1. Contour transformation of the sum rule.
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There are two dimensionless parameters in this problem.
The first is the ratio of the scattering amplitudef to the
magnetic lengthaH . At low temperatures, whereHc2 is
large, this parameter is not small. Therefore, at low tempera-
tures, one has to go beyond the Born approximation for a
single-impurity scattering by the use of Eq.~25!. The second
parameter is the ratio of the mean-free path,l5vt, to the
magnetic length. This is the same asvHt for particles at the
lowest Landau level wherev'(maH)

21. Here 1/t is the
order of the collision broadening of the Landau levels, which
depends on the magnetic field asH2/3 ~see below!. As a
result in the low-temperature limit, whenHc2 is large, the
nondiagonal components of the Green’s functionGn,n8 are
small when compared with the diagonal components as
1/(vHt)!1. It should be pointed out that thet matrix, Eq.
~25!, is essentially nondiagonal, but the contribution of the
nondiagonal elements of thet matrix to the density of states
is small, as 1/(vHt).

The equation for the diagonal part of the self-energy,
Sa(e), has the following form:

Sa~e!5
2p f nim
m E dr

fa* ~r !fa~r !

11~2p f /m!(nfn* ~r !fn~r !Gn~e!
.

~27!

By the use of the fact that in a homogeneous systemGn is
kx independent one can perform the summation overkx in
the denominator. Then integrating overr we obtain the fol-
lowing equation in the ultraquantum limit (N50):

s~ẽ !5g
1

11 i /Aẽ2s~ẽ !
, ~28!

where g52p f nim /e0m, s5S/e0, ẽ5e/e0, and
e05 f 2/2maH

4 .
The density of states is given by

N~e!5
A2m3/2vH

4p2 Re
1

Ae2S~e!
. ~29!

Solving the cubic equation~28! we find the edge, where a
nonzero density of states appears, as

ec[
Ec

e0
5A1/31

1/923g

A1/3 1g22/3, ~30!

with A511(3/2)3$Ax@g1(2/3)3#32(10/272g)2%. Ex-
panding the imaginary part of the self-energy near the edge
we arrive with the following expression forN(e):

N~e!5
A2m3/2vH

4p2e0
Ae2EcA R2~R11!

ec~3R11!2g
, ~31!

whereR52(6ec2226g)/(8ec1g).
One can distinguish two limiting cases. The first one cor-

responds to the collision broadening of the Landau
levels21–24when the multiple scattering by a single impurity
is negligible. This isg@1, and so

ec5g23/~g/2!2/3 ~32!

and

N~e!.Ncol~e!5
m3/2vH

A621/3G0

Ae2Ec, ~33!

where the parameterG05(4p f 2nim /aH
2 )2/3/2m is the colli-

sion broadening of the Landau levels. In this limit tempera-
ture dependence of the upper critical field has been found by
Alexandrov:13,14

Hc2'
F0

2pj2
~Tc0 /T!9/2, ~34!

with F05p/e the flux quantum,Tc0.3.3nB
2/3/m, and the

‘‘coherence’’ lengthj5pA(e* /2e)/33/4f 2nim is proportional
to the mean-free path in zero magnetic field.

When the temperature decreases the low-energy excita-
tions become more important. Then the multiple scattering
gives the leading contribution. In that case (g,,1) broad-
ening of the Landau levels is determined by the parameter
e0, and so

ec5~g/2!2, ~35!

N~e!.Nscat~e!5
m3/2

4p2A2aH6 nim2
Ae2Ec. ~36!

It should be pointed out that the ratioNcol(e)/Nscat(e)
}(G0 /e0)

2. The temperature dependence of the upper criti-
cal field is different in that case and is given by

Hc2'
F0

2pj2
~Tc0 /T!1/2 ~37!

wherej5Ae* /2e(2nim)21/3.
With the temperature lowering the upper critical field di-

verges. Therefore in the ultralow-temperature limit we have
e0@G0. As a result theT24.5 divergence in Eq.~34! trans-
forms into T20.5 in Eq. ~37! when T goes to zero. In this
limit we also expect that the localization of bosons, due to
the high magnetic field, in the random potential might be
important.

V. NORMAL-STATE PLASMON
IN THE ULTRAQUANTUM LIMIT

As discussed above the condensation temperature in a
magnetic field is zero without scattering because the density
of states diverges at low energy. In a clean system the self-
energy arising from the Coulomb scattering is the main
source of the level broadening, resulting in a vanishing den-
sity of states at low energy and thus in a finite condensation
temperatureTc . We can expect that at low temperatures den-
sity fluctuations of the CBG, i.e., plasmons, play the role of
impurities.

Plasmons are defined as poles of the renormalized Cou-
lomb potential. We calculate the renormalized Coulomb po-
tential as a summation series of polarization loops~Fig. 2!,
given by

D~q,iVn!5
V~q!

12V~q!P~q,iVn!
, ~38!

where
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P~q,iVn!5T(
iVm

(
n,n8

uI n
n8~q!u2Gn~ iVm!Gn8~ iVm1 iVn!

~39!

is the polarization loop in the Matsubara representation, and

I n
n8(q) is the matrix element defined as

I n
n8~q!5E dreiq–rfn* ~r !fn8~r !. ~40!

In the Landau representation, Eq.~26!, one obtains

I n
n8~q!5dkx1qx ,kx8dkz1qz ,kz8

SN8!

N! D 1/2

3F ~2qx1 iqy!aH
A2 GN2N8

LN8
N2N8~aH

2 q'
2 !

3expF2
aH
2

4
q'
21 iaH

2 qyS kx1 qx
2 D G ~41!

for N8<N, whereq'5Aqx21qy
2 andLN8

N2N8(x) is a Laguerre
polynomial.

Now considering the case of a high magnetic field and
low temperature,vH@T, all the bosons are in the lowest
Landau level, i.e.,N5N850. Also at the condensation
point, as has been previously noted, the chemical potential
m is at the edge of the spectrum,Ec , which for free bosons
is Ec5vH /2. Taking the free particle Matsubara Green’s
functions, as a first-order approximation for the polarization
loop, we obtain

P~q,iVn!5 (
kz ,kx

n@~kz1qz!
2/2m#2n~kz

2/2m!

iVn2kzqz /m2kz
2/2m

3exp~2aH
2 q'

2 /2!, ~42!

where the Bose distribution function is

n~e!5
1

ee/T21
. ~43!

We note that the sum rule, Eq.~19!, for free particles,
after summation over Matsubara frequencies is

(
kz ,kx

nS kz22mD 5nB . ~44!

For ultralow temperatures we can approximate the Bose dis-
tribution function to ad function of weightnB at zero mo-
mentum,

nS kz22mD'dkz,02paH
2 nB . ~45!

The factor 2paH
2 arises from the summation overkx ,

(
kx

5
1

2paH
2 . ~46!

This summation is finite because it is limited by the condi-
tion that the Landau eigenfunction lies within the normalized
volume ([1) being considered. This condition places a
boundary on allowed values ofkx asy05kxaH

2 is the center
of the orbit.

Using the approximation in Eq.~45!, the single-particle
polarization loop

P~q,iVn!5
nB
m

qz
2exp~2aH

2 q'
2 /2!

~ iVn!
22qz

4/4m2 ~47!

takes on the same form as for zero temperature.15 This gives
the plasmon propagator as

D~q,iVn!

5
4pe* 2

q2

3
~ iVn!

22qz
4/4m2

~ iVn!
22qz

4/4m224pe2nBqz
2exp~2aH

2 q'
2 /2!/mq2

,

~48!

whereq25qz
21q'

2 .
The frequency of plasma excitations is given by the poles

of the retarded plasmon propagator, which is found from the
analytical continuation of the Matsubara plasmon propagator
to the real axis,

DR~q,V!5D~q,iVn→V1 id!. ~49!

The poles of the retarded plasmon propagator, and thus the
plasma excitations, occur at

V[vq5F S qz22mD 21vp
2
qz
2

q2
exp~2 1

2aH
2 q'

2 !G1/2. ~50!

For q'50 this is the same as the nonmagnetic case,
V;vp for qz→0. However, forq'Þ0 the plasmon is now
gapless and sound like for low momenta,~Fig. 3!. The effect
of the magnetic field is to confine the bosons to their Landau
orbitals along thez axis. This allows freedom of movement
along thez axis, but restricts movement perpendicular to the
z axis, making the system stiffer to perturbations in that di-

FIG. 2. Plasmon propagator.

FIG. 3. Plasma frequency as a function of momentum.
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rection. So the polarization perpendicular to thez axis is
lowered in a magnetic field, resulting in soundlike, rather
than plasmalike, excitations.

The approximation used in Eq.~45! produces a result
similar to the zero-temperature superfluid Bogoliubov~3D!
spectrum.3 The validity of this approximation arises from the
ultrahigh magnetic field, which lowers the condensation tem-
perature. This ensures that all of the bosons are at very low
energies even in the normal state, hence validating Eq.~45!.

VI. CONDENSATION OF CBG DUE
TO THE COULOMB SCATTERING

The self-energy due to boson-boson scattering in the Mat-
subara representation is

Sn~ iVn!52T (
q,n8,iVm

uI n
n8~q!u2D~q,iVm!Gn8~ iVn1 iVm!.

~51!

This expression includes all ‘‘bubble’’ diagrams which is a
fair approximation for the long-range Coulomb potential
~Fig. 4!.

As the density of states, Eq.~20!, is obtained from the
retarded Green’s functions, we will transform this Matsubara
representation using

Gn~ iVn!5
1

2pE de8
An~e8!

iVn2e8
, ~52!

whereAn(e) is the spectral function defined as

An~e!5@Gn
A2Gn

R#522 ImGn
R . ~53!

Note thatGn
A5Gn

R* .
Summing over the Matsubara frequencies the resulting

equation is

Sn~ iVn!5(
q,n8

uI n
n8~q!u2

1

2pE de8
4pe* 2

q2
An8~e8!

3Fvp
2qz

2exp~2aH
2 q'

2 /2!

2q2vq
S n~vq!

iVn2e81vq

1
n~vq!11

iVn2e82vq
D

1
@~e82 iVn!

22qz
4/4m2#n~e8!

~e82 iVn2vq!~e82 iVn1vq!
G , ~54!

where vq is the plasma frequency for momentum
q5$qz ,q'% given by Eq.~50!. This can be simplified for the
case of ultralow temperatures when the only remaining sig-
nificant term is from the spontaneous emission of plasmons.

All terms containing the Bose-distribution factorn(e) are
removed, leaving the zero-temperature result as this is the
most significant part.

The retarded self-energy is easily derived from the Mat-
subara self-energy,

Sn
R~e!5Sn~ iV→e1 id!. ~55!

The result is similar to the case of scattering from the impu-
rities if we take the plasma frequency in the denominator,
e2e82vq1 id, as zero. This is an elastic scattering approxi-
mation, which is reasonable if the characteristic plasma fre-
quency is small compared with the characteristic broadening
of the Landau level. We will show this to be true for the
conditionTc0!vH .

The spectral function in terms of the retarded self-energy
is

An~e!522 Im
1

e2kz
2/2m2Sn

R~e!1m
. ~56!

We now have a self-consistent equation for the self-
energy,

Skz
R ~e!5e* 2vp

2(
q
E de8

qz
2exp~2aH

2 q'
2 !

~qz
21q'

2 !2vq

Akz1qz
~e8!

~e2e81 id!
.

~57!

Extending the summation overq to an integral,

(
q

5
1

~2p!2
E dqzE dq'q' , ~58!

we can begin to build an approximate solution. For high
magnetic fieldsaH is small and for lowqz the integraldq'

can be approximated as

E dq'

q'qz
2e2aH

2 q'
2

~qz
21q'

2 !2vq
'

1

vp
. ~59!

To eliminate the chemical potential from the equation we
choose thate is zero at the mobility edge, i.e.,Ec50, and
thusm is also zero at the condensation temperature. As in the
case of impurity scattering of bosons we expect the self-
energy to be momentum independent. The integration of
Akz1qz

(e8) overdqz gives the density of states, which for a
momentum-independent self-energy is

E dqzAkz1qz
~e8!5A2m Im

4p i

@e82SR~e8!#1/2
. ~60!

Then the imaginary part ofS is obtained by integrating over
the energy in Eq.~57! as

ImSR~e!52
A2
31/4

r s
3/4vp

3/2 Im
i

@e2SR~e!#1/2
. ~61!

Despite the appearance of the minus sign in Eq.~61! the
imaginary self-energy is positive. This is not obvious from
Eq. ~61!, but comes from the relationship of ImSR to the
density of states, to be given later. As an exercise we can use

FIG. 4. Coulomb self-energy.
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a first-order approximation for the self-energy,SR51 id.
Substituting this into Eq.~61!,

Im
i

@e2SR~e!#1/2
52

1

Ae
, ~62!

where the minus sign arises from taking the square root cut
line on the positive real axis.

Expanding the cubic equation~61!, and taking the limit of
small ImSR and smalle, we find that for Eq.~61! to be
satisfied in the lowest order, ImSR5e50,

ReSR~e!5
vpr s

1/2

~2A3!1/3
. ~63!

The next order in ImSR ande gives

ImSR~e!5F 12

5~2A3!1/3
G1/2vp

1/2r s
1/4Ae. ~64!

The real part ofSR can also be derived from the principal
part of Eq.~57!, which for lowe gives a constant of the same
order as Eq.~63!.

The density of states is directly related to the imaginary
part of the self-energy,

r~e,H !5
1

p2nB
vH

vp
ImSR~e!. ~65!

For high energies the density of states decreases as 1/Ae, the
same as the undamped result, Eq.~21!. Using this to plot the
density of states~Fig. 5!, and remembering the sum rule

nB52
1

~2p!3aH
2 E dqzE deAn~e!n~e!, ~66!

we can see that the low-energy solution, Eq.~64!, is applied
for the temperature rangeT!ReSR. The value ofHc2 for
which the sum rule can no longer be satisfied is then

Hc25
F0

2pj2
~Tc0 /T!3/2, ~67!

where now

j'0.92nB
21/3r s

21/2Ae*

2e
~68!

is the coherence length due to the Coulomb scattering.
As was stated earlier, the elastic scattering approximation

is only valid if the plasma frequency associated with the
scattering is less than the width of the Landau level broad-
ening, i.e., ReSR. This gives the condition

vq!ReSR'vpr s
1/2. ~69!

We can estimate the plasma frequency, from Eq.~50!, as

vq'
qz
qx

vp , ~70!

with the momenta associated with the scattering process as
qx'aH

21 andqz'Amvpr s
1/2. The estimation forqz comes as

the momentum associated with the broadening, i.e.,
qz
2/2m'ReSR. Thus the condition for using the elastic scat-
tering approximation is

vH@vpr s
21/2'Tc0. ~71!

In short the effect of including the interaction is to restore
the density of states to its 3D form, and it is the energy
dependence of the DOS which determines the temperature
dependence ofHc2. The broadening of the Landau levels is
proportional to the interaction strength, i.e.,r s . The lower
the interaction, the less the damping of the Landau levels and
thus the lowerHc2 is.

VII. CONCLUSION

In contrast to the Fermi liquid, in which the long-range
Coulomb interaction is screened and high-energy plasmons
are irrelevant for low-frequency kinetics, allowance for the
Coulomb interaction at finite temperatures in the CBG is a
more complicated matter because plasmons and one-particle
excitations are essentially the same in the long-wave limit. In
this paper we derived the Bogoliubov–de Gennes-type equa-
tions for the CBG at finite temperatures and studied the
Bose-Einstein condensation in an ultrahigh magnetic field. In
contrast with the canonical GLAG theory the upper critical
field of CBG is determined by the sum rule beyond the
mean-field approximation. The damping of the Landau levels
due to the scattering is a key feature allowing Bose-Einstein
condensation in a magnetic field. We have extended the ear-
lier results13,14on the impurity scattering in CBG to very low
temperatures, when the critical magnetic field is very high,
so that the multiple impurity scattering becomes important.
As a result the crossover from theT24.5 to theT20.5 expo-
nent is found in the divergentHc2(T) when the temperature
is lowered. The plasmon dispersion as well as the Bose-
Einstein condensation due to Coulomb scattering is studied
in an ultrahigh magnetic field as well. The plasmon is gap-
less. The Coulomb scattering results in theT21.5 exponent of
Hc2 at low temperatures. In general, the CBG has an unusual
phase transition from the normal to the condensed phase in
the magnetic field with remarkable positive curvature. At
low temperatures we findHc2;T2n. Depending on the tem-

FIG. 5. Density of states in a magnetic field without~a! and with
~b! the Coulomb interaction.
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perature interval and impurity concentration the critical ex-
ponentn varies from 0.5 up to 4.5. We believe that the CBG
is a relevant model of the ground state of high-Tc cuprates
with a very small coherence volume. If it is so, our predic-
tions can be verified by the resistive and magnetic measure-
ments in high magnetic fields.
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