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The Bogoliubov—de Gennes equations and the Ginzburg-Landau-Abrikosov-Gor'kov-type theory are for-
mulated for the charged Bose gé&SBG). The theory of the Bose-Einstein condensation of the CBG in a
magnetic field is extended to ultralow temperatures and ultrahigh magnetic fields. A low-temperature depen-
dence of the upper critical field .,(T) is obtained both for the particle-impurity and particle-particle scatter-
ing. The normal-state collective plasmon mode in ultrahigh magnetic fields is studied.
[S0163-182606)08845-5

I. INTRODUCTION comparable with or even less than the unit cell volume. This

favors a charged € Bose liguid as a plausible microscopic
A charged Coulomb Bose g&€BG) recently became of sc\(/anario for tﬁe ground stl :I' plaus| I i

particular interest motivated by the bipolaron theory of high- o, objective is the theory of the CBG in a magnetic
temperature superconductivityh long time ago Schafroth  fie|d. In this paper we first extend to finite temperatures the
demonstrated that an ideal gas of charged bosons exhibits tRgiG-type equations derived earfigfor T=0. Then we ana-
Meissner-Ochsenfeld effect below the ideal Bose-gas conyze the linearized Ginzburg-Landau-type equation for the
densation temperature. Later on, the one-particle excitatiogrder parameter and formulate the condition of the Bose-
spectrum aff =0 was calculated by Foldywho worked at  Einstein condensation in a homogeneous magnetic field. By
zero temperature using the BogoliuBapproach. The Bo- the use of the sum rule we calculate the upper critical field
goliubov method leads to the result that the ground state dfi .,(T) both for a short-range particle-impurity and long-
the system has a negative correlation energy, whose magniange patrticle-particle Coulomb interactions at low tempera-
tude increases with the density of bosons. Perhaps more iitdres. The plasmon dispersion of CBG in the ultrahigh mag-
teresting is the fact that the elementary excitations of thenetic field is analyzed as well.

system have, for small momenta, energies characteristic of

plasma oscillations which pass over smoothly for large mo- Il. BOGOLIUBOV —de GENNES EQUATIONS

menta to the energies characteristic of single-particle excita- FOR THE CBG AT FINITE TEMPERATURES

tions. Further investigations have been carried out at or near The Superﬂuid properties of Charged bosons as well as
T, the transition temperature for the gas. These works havgheir excitation spectrum and the response function can be
been concerned with the critical exponérasid the change studied by the use of the Bogoliubov—de Genn@dG-)

in the transition temperature from that of the ideal §8%he  type equations, fully taking into account the interaction of
random phase approximatiofRPA) dielectric response quasiparticles with the condensateThe Hamiltonian of
function and screening in the CBG have been studied in theharged bosons on an oppositely charged backgr@oneh-
high-density limit’ including a low-dimensional[two-  sure charge neutralityin an external field with the vector
dimensional(2D)] CBG2® The theory of the CBG beyond potentialA(r,t) is given by

the lowest-order Bogoliubov approximation was discussed (V—ie*A)?
by Lee and Feenbelyand by Bruecknet' They obtained H:f drz/ﬁ(r)[— T alwn
the next-order correction to the ground-state energy. Woo 2m

and Ma? calculated numerically the correction to the Bogo- 1

liubov excitation spectrum. Alexandrbifound the critical +—f er dr'V(r—=r) g (D) g(r) gt (e u(r). @)
magnetic fieldH;,(T), at which the CBG is condensed. The 2

predicted temperature dependenceHqb(T) was observed For 3D charged bosons of massthe Fourier component of
both in low-T, and highT, cuprates* where the coherence the interaction potentiaM(r) is V(k)=4me*?/k? with
volume estimated from the heat capacity measurements tssonic chargee*. For a 2D system with a three-
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dimensional interactiorV(k) =2me*2/k. Respecting elec- 9 (V—ie*A)?

troneutrality one take¥(k=0)=0, which is a consequence |7y ¥(NO=[H.¥(r.0)]=| = ——F———p¥(r.1)

of the compensation of the boson-boson repulsion by the

attraction due to a spatially homogeneous charged back- , Nt ,

ground. In this paper we will treat the purely academic prob- + ] drVIr =)y De(r D g y. )
lem of the charged Bose gas; however, we state that the

results obtained are also applicable to the case of preformegine interaction is weak, one can expect that the occupation
electron pairs, which we postulate to exist in the high- nympers of one-particle states are not very much different
cuprates. In the more realistic case of preformed pairs theifom those in the ideal Bose gas. In particular the state with
hard core nature needs to be considered. This introduces 38,5 momentunk=0 remains macroscopically occupied and
additional term missing from the equations given in this paype corresponding Fourier component of the field operator
per as we no longer haveé(k=0)=0 and instead have (1) has an anomalously large matrix element between the
V(k=0)=const. When considering the self-energy, as weground states of the system containiig-1 andN bosons.
shall do later in the paper, it can be seen that this zerop 5 convenient to consider a grand canonical ensemble, in-
momenta interaction term will give a constant contribution totroducing a chemical potential. In this case the quantum
the sc_elf-energy, _whlch amounts to a renormahzauon_ of thesiate is a superposition of statgé) with slightly different
chemical potential. The hard core nature of the pairs als@yia| numbers of bosons. The weight of each state is a
gives a constant contribution to the Fourier component of the 1, ooth function ofN which is practically constant near the

interaction potential at all momenta. The most significant e
part of the interaction is Coulomb interaction as can be see verage numbeN on the scale* N Becauseys changes
e number of particles only by 1 idiagonal matrix ele-

ZSTV eﬁlqééli)évggirli,rr:fb\,\iﬁt g:glcut?oenfr;ﬁ ehzrarl:gir? ?(reilljrl]tte—r%?tot?] nent coincides with the off diagonal, calculated for the states
excitation spectrum contains a plasma gap—is unchanged/ith fixed N=N+1 andN=N. Following Bogoliubo? one
The consequences of including only the hard core interactiof@" Separate the large diagonal matrix elemjgyfrom ¢ by
have been discussed earlier by Alexandedal® One final ~ treating the rest/ as a small fluctuation:

point worth mentioning on the choice of the interaction po-
tential deals with the screening within the system. Simply
taking a screened Coulomb potential as our starting potential
can lead to an erroneous double-counting result as discussed
by Alexandrov and Beer®. In this paper we start with the The anomalous average yo(r,t)=((r.t)) is equal to
bare interaction potential and derive a self-consistent form of/No in @ homogeneous system, whergis the condensate
the self-energies, carefully taking into account the self-density.

screening of the interaction by the bosons in the high-density Substituting the Bogoliubov displacement transformation,
limit, r¢<1 (see below. If we have in mind a metal with EQ. (3), into the equation of motion and collecting
preformed pairs, to avoid their overlap, the density is alsoc-number terms off, andsupracondensatboson opera-

YTt = dho(r,0) + (1 ). &)

restricted in the upper limit. Here and furthier=c=1. tors ¢, we obtain a set of the BdG-type equations. The mac-
The equation of motion for the field operatgris derived  roscopic condensate wave function, which plays the role of
using this Hamiltonian, the order parameter, obeys the equation
(9 (V_ie*A)z ’ ’ ’ ’ ’ Ttoer i\ T ’
i Yo(h)=|——— ———u dfo(r,t)+f dr'V(r—r’)n(r ,t)wo(r,t)+f dr'V(r=r")[{¢"(r" O %(r,t) o(r',1)
+ (D PrL D) (D], (@)

Taking explicitly into account the interaction of supracondensate bosons with the condensate and applying the Hartree-Fock
approximation for the interaction between supracondensate particles one obtains

(V—ie*A)?

>m —M}Z(r,t)ﬁtj dr'V(r—r’)n(r’,t)E(r,t)+J’ dr'V(r—=r")[ g (r',t")o(r,t)

O~

|E¢/J(r,t)— -
+<E*<r',t>?f(r,t>>ﬂ(r',t>+f dr'V<r—r')[wo(r',wo(r,t)+<E(r',t>7f(r.t>>ﬂ*<r',t>+f drv(r—r’)
X[E*<r',t>'12f<r',t>—<"¢?<r',t>"¢1<r',t>>]«/fo<r,t>+f drV(r=r) [P D%, — B O WD) Tgo(r' 1)

+ [ drvie et 07, 0- G0 W, )
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Here Ui(r,t) =uge'* e, (12

n(r,t)=[4o(r,tH)|>+ (¢ (r,H)%(r,1) (6) oi(r ) =p ek riad, (13)
is the boson density, and so the general sum rule L .
and the condensate wave function ist] independent,
o= /no. Thus the solution to Eq4) is
J’ drn(r,t)=ng (7)
©n=V(k=0)=0 (14
is satisfied. Hereng is the number of bosons in the normal- . ] )
ized volume, which is taken to be unity. in the leading order img, when the last term in E¢4) can
In the high-density limitrs=me*2/(47ng/3)Y3<1 and DPe neglected. The excitation spectrum is that obtained by

3
for the temperature close to zero the number of bosonE0ldy;
pushed up from the condensate by the repulsion is small.

Therefore the contribution of terms nonlinearnis negli- = /k_4+ kV(K)ng (15
gible. Applying a linear Bogoliubov transformation fgt, 4m? m
- ; with a gapwpe= J4me?n,/m, which is the classical plasma
w(r,t)=§ Un(r,antop(r,tay, (8)  frequency for a plasma of density.

At finite temperatures an¢br) in a strong magnetic field
wherea, anda; are bosonic quasiparticle operators for thewe are left with the extremely complicated integro-
one-particle quantum state and omitting nonlinear terms, differential nonlinear equationgh—(7).
we obtain two coupled Schdinger equations for the wave
functionsu(r,t) andv(r,t):lS I1Il. UPPER CRITICAL FIELD OF CBG:

GENERAL FORMULATION

0 (V—ie*A)? o ) ) )
i—u(r,t)=| — ——=———pu|u(r,t) The situation, however, is not hopeless in the region of
ot 2m " . .
the second-order phase transition near the upper critical field
, , o H.(T). In this region one can apply the expansion in pow-
+f dr'V(r=r")[[o(r’,t)[“u(r,1) ers of the order parametefy(r,t) to obtain the equation
similar to that of the Ginzburg-Landau-Abrikosov-Gor’kov
+ g (r D) o(r,Hu(r’ )] (GLAG) theory®?|n particular, the linearized equatig#)

takes the form
+J dr'V(r—r")o(r',t)o(r,tHv(r',t)

9 (V—ie*A)?
© = o(r ) =] = === |iho(r,1)
d
an +f dr'V(r—=r"yn(r',t)go(r,t)
9 ) [ (V+ie*A)? .0
—i—u(rt)=———F———uv(r, ~ ~
A 2m +fdr'V<r—r'><w*<r’,t>w<r,t>>¢o<r',t>.
+j dr'V(r—r")[|o(r',t)|?v(r,t) (16)
+do(r DY (r, Do (r 1) The last two terms are the Hartree-Fock corrections to the

normal-state single-boson energy, respectively. This can be
) e . , reduced to the renormalization of the normal-state single-
+J’ dr'V(r—=r") o (r',) g (r,tyu(r’,t). boson energy spectrunm) and of the chemical potential, as
discussed in the last section. One of the solutions to(H).
(10 is a trivial o= 0. If this solution is compatible with the sum
There is also another sum rule rule, Eq.(7), we have the normal state. On the other hand, if
Yo7 0, the linearized equatiof16) can be satisfied with the
. . , appropriate choice of the chemical potential a stationary
; [un(r,un (r',t) —on(r,op (r',H]=6(r—r’), (1) homogeneous magnetic figld Therefore, the linearized
equation for the order parameter does not determine the up-
which retains the Bose commutation relations for all operaper critical field at all. The upper critical field is determined
tors. by the sum rule, Eq.7), as the lowest field at which this rule
Unfortunately, the last set of BdG equatiof®—(11) is  cannot be satisfied withlo=0,° rather than by the linear-
applied only for low temperatures and small magnetic fieldsjzed GL equation of the GLAG theory, whege~T.—T is
when the depletion of the condensate is small. As an exfixed.
ample for the homogeneous case ahd 0 the excitation Introducing the one-particle normal-state Green’s func-
wave functions are plane waves tion
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and E.= wy/2. Substituting this DOS into the sum rule we
obtain the familiar Schafroth resglt

4772I’IB -
e*\2mT[sdee 32

The condensation of ideal charged bosons in the magnetic
field is impossible which is a consequence of the one-
dimensional motion in the lowest Landau level. To obtain a
finite value ofH., one should go beyond the Hartree-Fock
approximation, taking into account the broadening of the
Landau levels. If this broadening is to have an effect on
H.o, then it must act to make the density of states converge
to zero atE., ensuring that the integral in E¢L9) will be

Heo(T)=

0. (22

finite.
FIG. 1. Contour transformation of the sum rule. V. CONDENSATION OF BOSONS SCATTERED
BY IMPURITIES
1 . .
G (iQn= (17 Here we extend the earlier stuidyf the condensation of

Qn—e,tp=2,(iQ)" charged bosons scattered by impurities to low temperatures
d ultrahigh magnetic fields, where the Born approximation

we can write the sum rule in the Matsubara representation . . . . ;
or a single-impurity scattering fails.

Qi20" In the lowest order in impurity concentration the self-
—TE i i =ng, (18) energy 3 in a magnetic field is expressed in terms of a
iy, tu—3,3i0, ° single-impurityt matrix’
wheree, = wy(N+1/2)+k2/2m is the free-particle spectrum s, V,(E):[é(O)(E)]*l, _[é(e)]*l,, (23)
in a homogeneous magnetic figh] wy=e*H/m, k, is the ' nr nr
z component of the momenturh=0,1,2 ...,Q,=27Tn, S, (€)=nmt, i (€), (24)

n=0,21,+2,..., and theself-energy,,({2,) takes into ac-

count the interaction terms. The complete set of the quantur¥Yherenin, is the concentration of impurities. This expression
numbers isv=(N,k,,k,) with the energy degenerate for the corresponds to the summation of all noncrossing diagrams
quantum numbek . It is convenient to replace the summa- (ladder approximation'®'®?~**The t matrix in the mag-
tion for the contour integral oveZ,, C,, andC; as shown in  Netic f|e_ld is derived by the use _of the gen_eral formatiSm
Fig. 1. Then shifting the contour to the real axis and by thefully taking into account the multiple scattering:

analytical continuation of the Green’s function to the upper

(GR) and lower G*) half-planes the sum rule is given by 5227Tfj dr GE(r) () o5
“rm 2mf :
m dep(e,H) B 1+ %E &% (D) b (1)G, (&)
JM+OexF1:(6—,u)/T]—1 =Ns, (19 ,

where ¢,(r) is the one-particle wave function in the mag-
whereGﬁ*R(e)=[e— GV_E/?,R(E)]—I, and netic field. In the !_andau .representation with the magnetic
field along thez axis ¢,(r) is given by

pleH)= = [G(e)~GF(e)] (20 1
2w ¢V(r):mexp{l(kxx+kzz)
is the one-particle density of statédB09) in the magnetic )
field, with the edge of the spectrur,, determined by the 1Yo Y~Yo 26)
conditionp(E.,H)=0. The integral oveC, is compensated 2\ ay Nl ay

for by the opposite sign contribution &f; and63 (Fig. 1.
This and the conditioru<E_ determine the lower limit in
Eq. (19) asu+0. It is apparent now that the upper critica

field i termi Eql ith H=H =E,. . : ” :
leld is determined by Eq(19) wi c2 and u=E, gged over the position of the impurities, ahés the scatter-

Hence, the problem of the Bose-Einstein condensation in th litude of ticle with X fi
magnetic field is reduced to the calculation of the normal-N9 amplitude of a particie with Zero energy in Zero magnetic

state DOS, Eq(20). In particular, for free particles we have field. This equation is similar to that discussed by Skdbov
SAR(e)=+i 8,0 +0, so that and Magarill and Savvinykf

It should be pointed out that the self-enefgy ,/(e) has
22 diagonal ¢=v') and nondiagonal ¥# »') components.
p(e,H)= 2m ZwHReE [e—wpy(N+1/2)]7 Y2 (21) Both _diagonal and nondiagonal components contribute to the

4 N=0 density of statesN(e)=Tr ImG, ,(e)/.

Hy(y) is a Hermite polynomialy0=kxaﬁ is the center of
Ithe cyclotron motion, anday=1/\J/e*H is the magnetic
length.G, ,/(€) is the one-particle Green’s function aver-
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There are two dimensionless parameters in this problem. m* 2wy,
The first is the ratio of the scattering amplitudeto the N(€)=Nco(€) = —=—7-—Ve—E, (33
magnetic lengthay . At low temperatures, wherél., is V62441,

large, this parameter is not small. Therefore, at low temperaghere the parametd?oz(4wf2nim/aﬁ)2’3/2m is the colli-

tures, one has to go beyond the Born approximation for g, broadening of the Landau levels. In this limit tempera-

single-impurity scattering by the use of H@5). The second ;16 gependence of the upper critical field has been found by
parameter is the ratio of the mean-free pdthy 7, to the 13,14

. o ; Alexandrov:
magnetic length. This is the same @g for particles at the
lowest Landau level where~(may) 1. Here 1k is the 0 o2
order of the collision broadening of the Landau levels, which Heo~ ng(Tco/T) : (34)
depends on the magnetic field &% (see below As a
result in the low-temperature limit, whei,, is large, the ~Wwith ®o=r/e the flux quantum,T, =3.303%m, and the
nondiagonal components of the Green’s funct®y,. are  “coherence” lengthé= 7/(e* /29)/33/4f2nim is proportional
small when compared with the diagonal components agp the mean-free path in zero magnetic field.
1/(wy7)<1. It should be pointed out that thematrix, Eq. When the temperature decreases the low-energy excita-
(25), is essentially nondiagonal, but the contribution of thetions become more important. Then the multiple scattering
nondiagonal elements of thematrix to the density of states gives the leading contribution. In that casg<(<1) broad-

is small, as 1/py7). ening of the Landau levels is determined by the parameter
The equation for the diagonal part of the self-energy,e,, and so

3 ,(€), has the following form:

e.=(v/2)?, (35
. (6)_21-rfnimj r G0 bl ,
&)=y 1+2atim)=,e* (1) ,(1)G,(e) N _om? —
(27) N(E)_Nscaﬁe)_élﬂ_z\/iagnﬁnve Ec. (36)

By the use of the fact that in a homogeneous sysBens |t should be pointed out that the ratibley(€)/Necaf €)

ki independent one can perform the summation dyen  «(I',/ey)?. The temperature dependence of the upper criti-
the denominator. Then integrating ovewe obtain the fol-  cal field is different in that case and is given by

lowing equation in the ultraquantum limitNE= 0):

)
1 Heo~ 52 (Te, I T)V? (37)
0@ =y—————, (28 men
1+ile—o(e) whereé= \Je* 12e(2n;,) "3,
where y=2xfn,/egm, o=3le,, €=€le;, and With the temperature lowering the upper crit_ica_il field di-
€o=f22mal, . verges. Therefore in the ultralow-temperature limit we have
forms into T-%% in Eq. (37) when T goes to zero. In this
2m¥2,, 1 limit we also expect that the localization of bosons, due to
N(e)= —Re . (29)  the high magnetic field, in the random potential might be
A Je—Z(e) important.
Solving the cubic equatio28) we find the edge, where a
nonzero density of states appears, as V. NORMAL-STATE PLASMON
IN THE ULTRAQUANTUM LIMIT
€CEE:A1/3+ 1/%2—7+y—2/3, (30) As discussed above the condensation temperature in a
€0 A magnetic field is zero without scattering because the density

with  A=1+ (3123 X[ y+ (2133 — (10/27- y)2. Ex- of states diverges at low energy. In a clean system the self-

panding the imaginary part of the self-energy near the edggnergy arising from the Cpulomb s'catt.ering iS. th'e main
we arrive with the following expression fo¥(e): source of the level broadening, resulting in a vanishing den-

sity of states at low energy and thus in a finite condensation

2m2e,, R’ (R+1) temperatur@ .. We can expect that at low temperatures den-
N(e)= ———Ve—E.\/—5=——— (31 sity fluctuations of the CBG, i.e., plasmons, play the role of
4w €o €(3R+1)—y impurities.
whereR= — (6e,—2—6v)/(8¢.+ 7). Plasmons are defined as poles of the renormalized Cou-

One can distinguish two limiting cases. The first one corlomb potential. We calculate the renormalized Coulomb po-
responds to the collision broadening of the Landautential as a summation series of polarization log. 2),
level$'~2*when the multiple scattering by a single impurity given by
is negligible. This isy>1, and so v(q)

D(q,iQ,)= 1-V(g)Il(qg,iQ,)’

€c=y—3l(y/2)?3 (32 (39)

and where
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FIG. 2. Plasmon propagator.

H(q,mn)ﬂg 2 (@261 G (10 +iQ,)

| (39)
is the polarization loop in the Matsubara representation, and
I7 (g) is the matrix element defined as FIG. 3. Plasma frequency as a function of momentum.
, - The factor 2ra? arises from the summation ovkg,
I (@)= | dre'%" 7 (r)é,(r). (40)
1
In the Landau representation, E6), one obtains . = onal - (46)
NN N1\ 12 This summation is finite because it is limited by the condi-
L (@)= 5kx+qx'k>’(5kz+qz,k; NI tion that the Landau eigenfunction lies within the normalized

volume (=1) being considered. This condition places a
N-N', 2 2 boundary on allowed values &f asyozkxaﬁ is the center
Ly (agat) of the orbit.
Using the approximation in Eq45), the single-particle
polarization loop

N—N’

X{(—qﬁiqy)aH

V2

Ox

ky+ > 47

a2

XEX[{—THQE-Fiaaqy , ,

ng g;exp(—anqi/2)
_N’ [ 4
for N'<N, whereq, = \JgZ+qZ andLy, " (x) is a Laguerre m (iQ,)%—qy/4m?
polynomial. takes on the same form as for zero temperattiféhis gives
Now considering the case of a high magnetic field andhe plasmon propagator as

low temperaturewy>T, all the bosons are in the lowest ]

Landau level, i.e.,N=N'=0. Also at the condensation D(0.i{}y)

point, as has been previously noted, the chemical potential

11(q,i Q)= (47)

* 2
u is at the edge of the spectrumd, , which for free bosons = 4772
is Ec=wy /2. Taking the free particle Matsubara Green’s a
functions, as a first-order approximation for the polarization ; 2 41 pm2
(i) —qgy/4m

loop, we obtain %
P (iQ,)%— qa14m?— Are’ngooexp — a5 q° /2)/mof’
n[ (k,+ q,)2/2m]—n(k2/2m)

(i) =2 — > (48)
Kok,  1Qn—Kk0,/m—k;/2m Whereq2=q§+qf.
xexp(—a2q?/2), (42) The frequency of plasma excitations is given by the poles
of the retarded plasmon propagator, which is found from the
where the Bose distribution function is analytical continuation of the Matsubara plasmon propagator
1 to the real axis,
n(e)= car—7- (43 DR(q,0)=D(q,i 0, —Q+i ). (49)

The poles of the retarded plasmon propagator, and thus the
plasma excitations, occur at

2
a
2m

_ ~ For g, =0 this is the same as the nonmagnetic case,

For ultralow temperatures we can approximate the Bose dlsg-)~wp for g,— 0. However, forq, #0 the plasmon is now

tribution function to as function of weightng at zero mo-  gapless and sound like for low momentgig. 3. The effect

We note that the sum rule, E@19), for free particles,
after summation over Matsubara frequencies is
2 2 1/2

+w§q—§exp(—%aﬁqi) . (50

2 O=w, =
Z n( ke )an. (44 “a

Ky Ky 2m

mentum, of the magnetic field is to confine the bosons to their Landau
2 orbitals along the axis. This allows freedom of movement

nl =2~ s 2m7a2na. (45) along thez axis, but restricts movement perpe_ndlcglar to thg

2m) Tk 0TTEHTB z axis, making the system stiffer to perturbations in that di-
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All terms containing the Bose-distribution factofe) are
removed, leaving the zero-temperature result as this is the
O QQ most significant part.
\y / Ly / \'+‘.. The retarded self-energy is easily derived from the Mat-
subara self-energy,

/

E_.’

FIG. 4. Coulomb self-energy. SRe)=3 (i0—e+id). (55

The result is similar to the case of scattering from the impu-
lowered in a magnetic field, resulting in soundlike, ratherities if we take the plasma frequency in the denominator,
than plasmalike, excitations. €— '?' gt 6,.as zero. This is an elastic scattering approxi-
The approximation used in Ed45) produces a result mation, WhICh is reasonable_n‘ the characten_stlp plasma f're—
similar to the zero-temperature superfluid Bogoliui@p) ~ dUency is small compared Wlth the cha_lracterlstlc broadening
spectrun® The validity of this approximation arises from the Of the Landau level. We will show this to be true for the
ultrahigh magnetic field, which lowers the condensation tem€onditionTe <y, .
perature. This ensures that all of the bosons are at very low The spectral function in terms of the retarded self-energy

rection. So the polarization perpendicular to theaxis is

energies even in the normal state, hence validating(45). is
VI. CONDENSATION OF CBG DUE A(e)=—2 Im , 1 - ' (56)
TO THE COULOMB SCATTERING g e—ki2m—3"(€e)+u
The self-energy due to boson-boson scattering in the Mat- we now have a self-consistent equation for the self-
subara representation is energy,
. , . , . 2 _a242 '
3,000=-T > [17(Q)?D(qiQm) G, (iQn+iQp). SR() =223 J‘ de’ gzexp(—ajqf) Axral€’)
v iQ k p 2 2,2 i .
2 z q (az+a7) Wq (e—€"+i0)
(51 (57)

This expression includes all “bubble” diagrams which is a Extending the summation overto an integral
fair approximation for the long-range Coulomb potential

(Fig. 4). 1
As the density of states, EG20), is obtained from the > = Wf dqu da.q, . (58)
retarded Green'’s functions, we will transform this Matsubara q
representation using we can begin to build an approximate solution. For high
1 Ae magBetic fieldng is dsmaII and for lowqg, the integraldq;
; _ = y can be approximated as
G, (iQ,) 277J de ToRep (52
. . . quZe—aﬁQf 1
whereA (¢€) is the spectral function defined as j dq, z —~ . (59
(qz+qi) Wy Wp
A (e)=[GAr—GR=-2 ImGF}. (53 . _ . .
To eliminate the chemical potential from the equation we
Note thatG*=GR". choose thak is zero at the mobility edge, i.eE.=0, and
Summing over the Matsubara frequencies the resultinéhusﬂ is also zero at the condensation temperature. As in the
equation is case of impurity scattering of bosons we expect the self-
energy to be momentum independent. The integration of
- o1 Ae*? Akz+qz(e’) overdgq, gives the density of states, which for a
Ev('Qn):qE, 1 ()] EJ de 92 Ay(€') momentum-independent self-energy is
2.2 2242 A i
. =V T SR\ 12¢
2q2a)q iQn—€'+ o % kz+qz( ) [e' —=3R(e)]" (60
N(wy)+ 1 Then the imaginary part & is obtained by integrating over
ﬁ the energy in Eq(57) as
n a
[(¢' —i0,)>—q¥/am?In(e’) " V2 3 5 |
ImX"(e)=— r2%wl“Im . (6D
(@ =i wg(e 10,y Y 30747s @b T e—3R(e)]1?

where o, is the plasma frequency for momentum  Despite the appearance of the minus sign in &d) the
g={9,,q, } given by Eq.(50). This can be simplified for the imaginary self-energy is positive. This is not obvious from
case of ultralow temperatures when the only remaining sigEq. (61), but comes from the relationship of Bf to the
nificant term is from the spontaneous emission of plasmonslensity of states, to be given later. As an exercise we can use
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- —1/3, —1/2 i
£~0.9Mg5 " 7 (68)

is the coherence length due to the Coulomb scattering.

As was stated earlier, the elastic scattering approximation
is only valid if the plasma frequency associated with the
scattering is less than the width of the Landau level broad-
ening, i.e., RER. This gives the condition

),arb. units
&

wg< RQR%wprélz. (69

We can estimate the plasma frequency, from &§), as

p(e,
=

G/RGER 0q~ %wp , (70
X
FIG. 5. Density of states in a magnetic field with¢atand with ~ With the momenta associated with the scattering process as
(b) the Coulomb interaction. qx~a;l andq,~ \/mwprsm. The estimation fog, comes as
the momentum associated with the broadening, i.e.,
a first-order approximation for the self-energyR=+i4. q§/2m~ ReXR. Thus the condition for using the elastic scat-

Substituting this into Eq(61), tering approximation is
i 1 o> w s P~T, . (71
IM———<r =7 (62) Hee K
[e=27(e)] Ve

In short the effect of including the interaction is to restore
where the minus sign arises from taking the square root cuhe density of states to its 3D form, and it is the energy
line on the positive real axis. dependence of the DOS which determines the temperature
Expanding the cubic equati@f1), and taking the limit of dependence dfi.,. The broadening of the Landau levels is
small Im2R and smalle, we find that for Eq.(61) to be  proportional to the interaction strength, i.es. The lower
satisfied in the lowest order, Bf=€e=0, the interaction, the less the damping of the Landau levels and

thus the loweH ., is.
1/2

R “p's
Res, (6): W’ (63)
The next order in IRR and e gives VII. CONCLUSION
12 112 In contrast to the Fermi liquid, in which the long-range
IMER(e)=| ———=7 wg/ngm\/Z_ (64)  Coulomb interaction is screened and high-energy plasmons
5(2y3) are irrelevant for low-frequency kinetics, allowance for the

The real part ofSR can also be derived from the principal Coulomb interaction at finite temperatures in the CBG is a

part of Eq.(57), which for low € gives a constant of the same more qomplicated matter because pllasmons and one- p{;\rticle
order as Eq(6:3>) excitations are essentially the same in the long-wave limit. In

: - : ; his paper we derived the Bogoliubov—de Gennes-type equa-

pa:t-r:)ef %inzgﬁ_gag:gges Is directly related to the Imaglnarytions for the CBG at finite temperatures and studied the
' Bose-Einstein condensation in an ultrahigh magnetic field. In

1 wy contrast with the canonical GLAG theory the upper critical

p(e,H)=—ng— Im2R(e). (65  field of CBG is determined by the sum rule beyond the

™ @p mean-field approximation. The damping of the Landau levels

For high energies the density of states decreases,&s thie due to the_sca_ttering is a I_<ey_ feature allowing Bose-Einstein
same as the undamped result, E2{)). Using this to plot the condensation in a magnetic field. We have extended the ear-

density of state¢Fig. 5, and remembering the sum rule  lier results>*“on the impurity scattering in CBG to very low
temperatures, when the critical magnetic field is very high,

1 so that the multiple impurity scattering becomes important.
Ng=— WJ szJ deA,(e)n(e), (66)  As a result the crossover from thie *° to the T~ %° expo-

H nent is found in the divergemi.,(T) when the temperature
we can see that the low-energy solution, E#), is applied is lowered. The plasmon dispersion as well as the Bose-
for the temperature rangé<Re>R. The value ofH,, for Einstein condensation due to Coulomb scattering is studied
which the sum rule can no longer be satisfied is then in an ultrahigh magnetic field as well. The plasmon is gap-

less. The Coulomb scattering results in fe' exponent of
0 ao H., at low temperatures. In general, the CBG has an unusual
Heo= ng(Tco/T) : (67)  phase transition from the normal to the condensed phase in
the magnetic field with remarkable positive curvature. At
where now low temperatures we find ,~ T~ ”. Depending on the tem-
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