

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288392619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

29

Beardon

IDATER 99 Loughborough University

The design of software to support creative practice

Colin Beardon
Exeter School of Arts and Design, University of Plymouth

Abstract
There is general acceptance of the need to include 'the user' in the process of design. The
design of software for creative practice involves software designers treating product designers
as 'users' and it is argued that neither party has a clear understanding of this relationship. It
is also argued that software for creative practice is better seen as a language, rather than as a
task-oriented product. As such it should establish a code and allow users to make interesting
statements within that code.

The 'Visual Assistant' is new applications software that has been developed over the past three
years to support performance education. Fundamentally, it involves the manipulation of 2D
images within a 3D space. A set of design objectives for the product are described. The design
method used in development is also described. The process of evaluation is not clearly defined
in relation to such applications and the general procedure whereby users' experience is fed
into evolving design is discussed in the light of the experience at three teaching workshops.

Keywords: creativity, language, software design, theatre, users

Designers and users

Few designers, be they software designers or
product designers, would disagree with the
maxim that the design process should involve
'the user'. Better products will emerge if the
needs of users are discovered and if the user
is involved in the testing and evaluation of an
emerging product. So far, so good: but the
method whereby the experience of users is
included in the design and development of a
product has been the subject of much debate
and is in need of updating in the context of
contemporary multimedia computing
(Bjerknes and Bratteteig, 1995).

As a software designer now working in the
field of Art & Design I am acutely aware that
the word 'design' covers many disparate
activities. Software design and product design
(I will use this latter term loosely to cover
many areas of creative practice as taught in
our colleges) may seem formally similar, but
they diverge widely in their concerns and
methods. For the past three years I have been
involved in the design and implementation of
software to support creative practices and, as
such, have been involved in the interesting
juxtaposition of (software) designers

developing technology for (product)
designers to use. The product designers are
thereby put into the role of 'users', while the
software designers need to enter into dialogue
with these other designers. What emerges
from such involvement is not only greater
understanding of the two design traditions,
but also new software design methods
relevant to the domain of creative practice.

Software design methods can often seem very
formal and in areas such as safety-critical
systems they need to be. Many computer-
based systems are not of this kind, however,
and there is now a long tradition of more user-
centred approaches to software and systems
design. Enid Mumford was an early champion
of user participation through the socio-
technical approach (Mumford and Henshall
1979). Mike Cooley and others argued for a
human-centred approach to design with
increased recognition of the role of tacit
knowledge (Cooley, 1980; Rosenbrock, 1989).
Pelle Ehn and others have pursued a more
theoretical and, at times, more political agenda
(Ehn, 1980; 1999). Many of these approaches
blur the boundaries between the software
product and the wider context of use.

30

Beardon

IDATER 99 Loughborough University

Usability testing is a more product-oriented
procedure within software design that
addresses the viewpoint of the user (Dumas
& Redish, 1994). Essentially, it involves a group
of typical users testing a design at each stage
through the performance of real tasks.

The problem, from our perspective, of
usability testing so described is that it applies
primarily to a field of work very different from
the experience of creative practitioners. There
are two underlying assumptions behind
Dumas' and Redish' work which may be true
for a large number of software applications,
but which do not hold in Art & Design. The
first is that computers are only used to
perform clearly defined tasks; typically to
transfer information unambiguously from
sender to recipient with the minimum of
information loss. There is no recognition that
the computer might be used in conjunction
with imagination or in play. The second is that
computers are used primarily to convey
information encoded as letters and numbers
within a limited two-dimensional plane. There
is no recognition that multimedia computing
generates subtleties of meaning which can be
harnessed to great effect.

If software designers are not good at paying
attention to the needs of creative practitioners,
it also the case that artists and designers do
not make very good 'users'. Typically they
engage with pre-packaged software, proud of
the fact that they use it as "only a tool" — by
which they seem to mean that they accept no
responsibility to understand or improve upon
it (a strange connotation of the concept of
"tool" within creative practice!) This
phenomenon — the refusal to accept the role
of critical tool-user — is further complicated
by the way in which many creative
practitioners actually benefit from software.
During preliminary investigations undertaken
in 1995 (Beardon et al, 1997) we discovered
that many artists and designers are particularly
contrary users of software. They will often say
that they only got interesting results from
software once something went wrong. Some
elevate this to a technique, forcing the
software to misbehave or deliberately
subverting the intentions of the software
designer in order to get an interesting

response. Though this is anecdotal, I am
surprised just how many times I have heard
the chance remark that progress was only
made when software did something
unexpected.

With software developers locked into an
isolated world, with designers-as-users
refusing to engage in constructive criticism of
the tools and with creative users deliberately
trying to subvert the intentions of software
designers, is there any hope for a more
considered and genuinely useful generation
of software for those involved in creative
practices?

Software design objectives

A key principle in re-thinking software design
for creative practice was the idea of language
as the key to understanding work and its
context. In a famous maxim Ludwig
Wittgenstein rejected his earlier, formalist
understanding of language and said, "Don't
look for the meaning, look for the use." His
exploration of 'language-games' was an
attempt to understand language in the context
of practical work in the real world. As a design
methodology, this can be reversed: by
examining uses of language at work we can
better understand working practices and,
thereby, design better products. The problem
in the case of art and design is that language
is not primarily text or speech based.
Following some experiments with developing
iconic languages, the decision was taken to
embark upon the development of a major
piece of software with the intention of
producing not a task-oriented product but a
'language' within which interesting things
could be said.

Earlier work on the 'Virtual Curator' posed the
question, "What does software mean?"
(Beardon & Worden, 1995). There are formal
answers to this question but the meaning we
are concerned with is not determined by the
software designer or the computer or the end
user but is negotiated between them. This is
particularly the case when any element of
creative practice is involved (and, as far as I
am concerned, all significant jobs involve some
creative practice). Creativity is the search for

31

Beardon

IDATER 99 Loughborough University

meaning or for the expression of meaning and
the meaning therefore cannot pre-exist the
practice.

For the past three years I have been working
on software called the 'Visual Assistant'. It is
intended primarily for people working in the
theatre and concerned with performance,
though it may have many other fields of
application. It is an attempt to explore the
boundaries between two-dimensional and
three-dimensional representation. In essence,
it enables users to import or draw 2D graphical
objects and then to manipulate these objects
within a 3D space. The environment has a
certain logic, but it is not based upon
photorealistic geometry. The
uncompromising lack of photo-realism has
been found by educators not to be a weakness
but a strength of the software. It forces
student users to express ideas approximately,
yet in a way that creates what one practitioner
has described as 'atmosphere' (Figure 1).

The software application is written in 'C' for
the Apple Macintosh and the current version
contains about 20,000 lines of source code.
There is a free, downloadable version of the

software at the project web site
<www.esad.plym.ac.uk/va/>. The Visual
Assistant (VA) will run comfortably in 10 Mb
of RAM and output worlds in VRML 2.0 format,
enabling students' work to be accessed over
Internet and seen on different platforms
(Figure 2).

The software was designed for users who are
primarily interested in the theatre and are
probably not at all interested in computers.
Many years' experience of working with such
students led me to some initial design
objectives for the software.

• It must be very simple to learn: you should
be able to see someone else using it and
then confidently use it yourself.

• It must be simple to use: there is little point
in providing 96 options when most users
will only use 12.

• It should give meaningful results quickly:
there is a tightly iterative process of
production and evaluation.

• What happens should be like sketching: it
should not matter if work is irretrievably
transformed or destroyed — you can
always try again.

Figure 1 Using the Visual Assistant to visualise a performance

32

Beardon

IDATER 99 Loughborough University

• It should support 'process' rather than
'product': particularly processes that lead
to clearer understanding and better actions
in the real world.

• It should present a believable 'language-
game': when acting on the computer
screen you should be thinking as a theatre
person.

• It should support person-to-person
dialogue; it should function as a common
sketchpad to support critical discussions.

• It should be able to lead to more detailed
implementation.

The VA also has roots in the 'alternative' or
'appropriate' technology movements, so the
physicality of the product and its accessibility
have always been important. In contrast to
contemporary commercial software, the VA
software is compact (around 500K on disk)
and the ability for it to be passed around on a
floppy disk is symbolic of a more personal,
low-tech solution. It is a statement against the
commodification of software; an important
issue but one beyond the scope of this paper.

Development & Evaluation

If software is not designed around the

performance of a particular task, then much
of the methodology of evaluation proposed
by the HCI community is difficult to apply. A
new field needs to be addressed: techniques
for the evaluation of software designed for
creative practices. What kinds of results do
we expect from users? How can we set up
evaluation tests? Might we find benefits where
we did not expect to find them?

I cannot pretend to have answers to these
questions, but the description of the software
product as a 'language for creativity' gives
some clues. According to Umberto Eco, the
'open work' both establishes a code and then
says something interesting within it (Eco,
1983). A 'language for creativity' should
similarly enable the comprehension of the
code and allow the expression of interesting
ideas.

The development of the software and its
evaluation must go hand in hand. The
meaning of the software product is not
determined in advance, it will only be
determined though use. The development
method therefore involves creating sample
products and seeing how they are used and

Figure 2 Viewing a Visual Assistant VRML file in a web browser

33

Beardon

IDATER 99 Loughborough University

given meaning. We build upon the greatest
areas of success and need, and reduce those
areas which are least successful. Like any living
language, it evolves to match the community's
needs.

I refer to this development and evaluation
process as 'Put-it-on-the-table design'. By this
I mean that the software designer considers
design objectives and context and then comes
up with a piece of working software. He or
she then 'puts this on the table', with the
implication that no explanation is given. It is
as if the designer were to say, "There it is, pick
it up and use it and I will watch. It now belongs
to you and all my intentions and desires for it
must be repressed. It is you, the user, who
will determine its meaning". This will happen
only crudely at first, and the designer must
try to see long term possibilities within a few
faltering steps.

Early versions of the Visual Assistant were used
by members of the HaMLET project,
principally educators and professionals
associated with the Theatre Academy, Helsinki
and the University of Paris III. At this stage I,
as software designer, still had a tendency to
think of the software as a device for
prototyping stage designs. I was soon put
right. Unknown to me, the HaMLET project
coordinator used the VA to make a project
progress report to the administrators in
Brussels!

In February 1998 the VA (v.0.3) was used at
the University of Plymouth with a group of 36
first year Theatre and Performance students.
Immediately, a major problem with the 'Put-
it-on-the-table design' method became
apparent. As the software designer, I wished
to say very little about how it should be used
but my colleague, Terry Enright, acting as
tutor, guessed that it would be best used to
design real stage sets. Students came along
with definite ideas about how their chosen
play should look and immediately experienced
frustration at not being able to realise them
photorealistically. Nevertheless, many
interesting observations were made (Beardon
and Enright, 1999). For example, setting
students the task of visualising famous works
(e.g. Hamlet) was less successful — there were

too many preconceptions — whereas
unfamiliar works (e.g. Strindberg's A Dream
Play) proved fertile ground for this kind of
exploration. Providing users with a library of
images was helpful in coping with the poor
level of technical support (making the
software very self-contained) but discouraged
students from going out and finding fresh
images.

In October 1998 I was invited to deliver a
workshop using the VA (v. 1.0) at Malmö
University College in Sweden to a group of 18
students. This was a very different
environment: in Plymouth each student had
6 hours timetabled for this work, in Malmö it
was one week and we were able to use the VA
as a form of communication between six
groups. Many interesting discussions took
place in the theatre where we could project
our VRML models, discuss their implications
and manipulate them in real time. There was
a very positive sense of technology in the
background supporting a higher level of
intellectual discourse about the realisation of
the play.

In February 1999 we ran another workshop
with 40 students in Plymouth,. We were now
much more aware of the true nature of the
product we are creating. The VA is developing
a meaning in the context of performing,
directing and educating. There are two
specific problems that performance-based
courses experience with new students. The
first is that we live in a very televisual culture
in which focus has been reduced to a close-
up shot. In theatre there is no close-up and
there is a need to see performance from
outside and from a distance. The second is
the dominance of words in education. Drama
is often reduced to literature, advice on
performing is given in words. Faced with
these realities, the VA is ironically becoming a
language for helping students re-learn
spatiality, but to do so within the context of
improvisation. As a language game it is
beginning to achieve some purchase.

References

• Beardon, C. and Worden, S. (1995) 'The
virtual curator: multimedia technologies

34

Beardon

IDATER 99 Loughborough University

and the roles of museums'. In Barrett, E.
and Redmond, M. (eds) Contextual media:
multimedia and interpretation, MIT Press,
Camb, Mass, 63-86.

• Beardon, C., Gollifer, S., Rose, C. and
Worden, S. (1997) 'Computer use by artists
and designers: some perspectives on two
design traditions'. In Kyng, M. and
Mathiassen, L. (eds) Computers and design
in context, MIT Press, Camb, Mass, 27-50.

• Beardon, C. and Enright, T. (1999) 'The
visual assistant: designing software to
support creativity'. CADE'99 Conference,
University of Teesside, 5-14.

• Bjerknes, G. and Bratteteig, T. (1995) 'User
participation - a strategy for work life
democracy?'. In Trigg, R., Anderson, S. I.
and Dykstra-Erikson, E. (eds) PDC’94
Proceedings of the participatory design
conference, Chapel Hill, NC, 27-28.

• Cooley, M. (1980), Architect or bee?, Hand
and Brain, Slough.

• Dumas, J.S. and Redish, J.C. (1994), A
practical guide to usability testing, Ablex,
Norwood, NJ.

• Eco, U. (Trans by Cangoni, A.), (1983), The
open work, Harvard University Press,
Camb, MA.

• Ehn, P. (1988), Work-oriented design of
computer artifacts, Arbetslivcentrum,
Stockholm.

• Ehn, P. (1999) 'Manifesto for a digital
Bauhaus'. Digital creativity, 9, 4, 207–216.

• Mumford, E. and Henshall, D. (1979), A
participative approach to computer
system design, Wiley, Chichester.

• Rosenbrock, H. (ed) (1989), Designing
human-centred technology, Springer-
Verlag, London.

