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1 Introduction

Solitary water waves are long nonlinear waves that can propagate steadily over
long distances. They were first observed by Russell in 1837 in a now famous
report [26] on his observations of a solitary wave propagating along a Scottish
canal, and on his subsequent experiments. Some forty years later theoretical
work by Boussinesq [8] and Rayleigh [25] established an analytical model.
Then in 1895 Korteweg and de Vries [21] derived the well-known equation
which now bears their names. Significant further developments had to wait
until the second half of the twentieth century, when there were two parallel
developments. On the one hand it became realised that the Korteweg-de Vries
equation was a valid model for solitary waves in a wide variety of physical
contexts. On the other hand came the discovery of the soliton by Kruskal and
Zabusky [27], with the subsequent rapid development of the modern theory
of solitons and integrable systems.

In this chapter, we are mainly concerned with the behaviour of solitary
waves as they propagate through a variable medium, with a particular em-
phasis on water waves over variable topography. But, first, we consider the
well-known situation when the background medium is uniform. Solitary waves
owe their existence to a balance between nonlinearity and wave dispersion.
When both these effects are weak, the leading order model evolution equation
is the Korteweg-de Vries (KdV) equation,

At + cAx + µAAx + δAxxx = 0 . (1)

Here A(x, t) is the amplitude of the relevant wave mode, which is assumed to
be propagating in the x-direction, c is the speed of a linear long wave, µ, δ
are the coefficients of the quadratic nonlinear term, and the third-order linear
dispersive term, respectively, and, like c depend on the particular physical
system being considered. The leading terms here are the first two, which de-
scribe a linear long wave propagating with speed c; relative to these dominant
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terms, the remaining two terms describe a balance between weak nonlinear
steepening and weak linear dispersion. It is precisely this balance which de-
scribes solitary waves. For water waves propagating over a constant depth h
it is well known that [21]

c =
√
gh , µ =

3c
2h

, δ =
c

6h2
. (2)

where A is the surface elevation above the undisturhed depth h. The KdV
equation (1) is integrable (see, for instance, [1], [2], [4]) and many fascinating
properties follow.

However, our main concern here is with the one-phase periodic travelling
wave solutions of the KdV equation (1), the so-called cnoidal waves

A = a{b(m) + cn2(γθ;m)}+ d , (3)
where θ = k(x− V t) , (4)

b(m) =
1−m

m
− E(m)
mK(m)

, µa = 12mδγ2k2 , (5)

and V = c+ µd+
µa

3

{
2−m

m
− 3E(m)
mK(m)

}
. (6)

Here cn(x;m) is the Jacobian elliptic function of modulus m, 0 < m < 1
and K(m), E(m) are the elliptic integrals of the first and second kind. The
amplitude is a, the mean value of A over one period is d, while the spatial
period is 2K(m)/γk. But since we can choose the phase θ so that A is 2π-
periodic in θ we see that γ = K(m)/π. This periodic travelling wave (3)
contains three free parameters; we take these to be the amplitude a, the mean
level d and the modulus m, so that equations (5, 6) then determine k, V
respectively.

As the modulus m → 1, this becomes a solitary wave, since then b → 0
and cn2(x) → sech2(x); in this limit γ →∞, k → 0 with γk = KΓ held fixed.
The outcome is the well-known solitary wave solution

A = a sech2(Γ (x− V t)) , (7)

where V = c+
µa

3
= 4δΓ 2 . (8)

On the other hand, as m → 0, γ → 1/2, and (3) reduces to sinusoidal waves
of small amplitude a ∼ m and wavenumber k.

Many studies of weakly nonlinear long waves have used the KdV equation
(1) or similar model equations with constant coefficents. However, particularly
in the case of water waves in the coastal oceans, or for internal solitary waves
propagating over the continental slope and shelf (see, for instance, [5]), [6], [16],
[7]), there is a need to take account of the variation of the background medium
in the wave propagation direction. In that case, the constant-coefficient equa-
tion (1) may be replaced by a variable-coefficient Korteweg-de Vries (vKdV)
equation
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At + cAx +
cQx
2Q

A+ µAAx + δAxxx = 0 , (9)

Here A(x, t) is again the amplitude of the wave, but now the speed c and the
coefficients µ, δ depend on x. The coefficient c is the relevant linear long wave
speed, and Q is the linear magnification factor, defined so that QA2 is the
wave action flux. The vKdV equation was derived by Johnson [19] for water
waves, where Q = c, and by Grimshaw [13] for internal waves (for recent
reviews, see [5], [6]). The derivation assumes the usual KdV balance that the
amplitude A has the same order as the dispersion, measured by ∂2/∂x2, and in
addition assumes that the waveguide properties (i.e. the coefficients c,Q, µ, λ)
vary slowly so that Qx/Q for instance is of the same order as the dispersion.
In section 2 we shall give a brief description of the derivation of (9) for water
waves.

As the first two terms in (9) are again the dominant terms, it is useful to
make the transformation

η =
√
QA , τ =

∫ x dx

c
, ξ = τ − t . (10)

Substitution into (9) yields, to the same order of approximation as in the
derivation of (9),

ητ + αηηξ + βηξξξ = 0 (11)

α =
µ

c
√
Q
, β =

δ

c3
. (12)

Here the coefficients α, β are functions of τ alone. Note that although τ is
a variable along the spatial path of the wave, we shall subsequently refer to
it as the “time”. Similarly, although ξ is a temporal variable, in a reference
frame moving with speed c, we shall subsequently refer to it as a “space”
variable. The following sections are concerned with the derivation and with
the solutions of equation (11)

2 Derivation of a variable coefficient Korteweg-de Vries
equation

For simplicity, we shall describe the derivation of the variable coefficient KdV
equation (9) for the main case of interest here, namely water waves propa-
gating over variable topography. We consider a one-dimensional wave field so
that the free-surface is represented by z = ζ(x, t) for an incompressible, invis-
cid fluid with constant density ρ, occupying the region −h(x) < z < ζ where
the undisturbed depth h(x) varies with x. The velocity field is u = (u,w) and
can be assumed to be irrotational, so that u = ∇φ, where φ(x, z, t) satisfies
Laplace’s equation

φxx + φzz = 0 . (13)
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At the rigid bottom,

w + uhx = 0 at z = −h. (14)

At the free surface, the flow must satisfy two conditions

ζt + uζx = w at z = ζ , (15)

φt +
|u|2

2
+ gζ = 0 at z = ζ . (16)

The first of these is the kinematic condition, and the second is the condition
for constant pressure, where the Bernoulli relation has been used.

In order to obtain the vKdV equation (9) we shall use a multi-scale asymp-
totic expansion. This is a versatile approach and can be adapted to many
other situations. Thus we introduce a small parameter, ε << 1 measuring lin-
ear wave dispersion, and assume the usual KdV balance where the amplitude
scales with ε2. We then rescale the horizontal coordinate and the time, so that

X = εx , T = εt , (17)

and seek an asymptotic expansion of the form

ζ = ε2ζ(1)(X,T ) + ε4ζ(2)(X,T ) + · · · . (18)

There is a similar expansion for the other fluid variables. At the same time,
we assume that the depth varies slowly on a spatial scale of ε−3, so that we
may formally write h = h(χ) where χ = ε2X.

It is convenient to define the depth-averaged mean flow

U(X,T ) =
1

h+ ζ

∫ ζ

−h
u(X,T, z) dz . (19)

Then it is readily shown that conservation of mass implies that

ζT + (U(h+ ζ))X = 0 . (20)

At the leading order we get

ζ
(1)
T + hU

(1)
X = 0 , (21)

U
(1)
T + gζ

(1)
X = 0 . (22)

The general solution of this system is the sum of a wave propagating in the
positive X-direction with speed c, and a wave propagating in the negative X-
direction also with speed c, where we recall that c =

√
gh, which here depends

on the slow variable χ, c = c(χ). We choose a wave propagating to the right,
so that to leading order we get
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ζ(1) =
h

c
U (1) = A(σ, θ) , (23)

where T ∗ =
∫ X dX

c
, θ = T ∗ − T , σ = ε2T ∗ . (24)

Here we have anticipated that as the wave propagates to the right with speed
c, it also evolves on the long spatial scale of ε−3, and so we have introduced
the slow variable σ. Note that the either of the slow variables σ or χ could be
used here, but we have preferred the former as it has the dimensions of time.

At the next order we obtain the system of equations

ζ
(2)
T + hU

(2)
X = F (2) , (25)

U
(2)
T + gζ

(2)
X = G(2) , (26)

where F (2) = −ζ(1)
σ − 1

c
(U (1)ζ(1))θ −

cσ
c
ζ(1) (27)

G(2) = − c
h
ζ(1)
σ − 1

c
U (1)U

(1)
θ − h

3c
ζ
(1)
θθθ . (28)

Note that here, to leading order, ζ(1)
X = ζ

(1)
θ /c. From (23) the inhomogeneous

terms are function of σ, θ, and so, to leading order this system of equations
reduces to

−cζ(2)
θ + hU

(2)
θ = F (2) , (29)

−cU (2)
θ + gζ

(2)
θ = G(2) . (30)

The homogeneous version of the system (29, 30) has a non-trivial solution,
namely the right-propagating wave ζ(1), U (1) given by (23). Hence the inho-
mogeneous system (29, 30) can have a solution only if the inhomogeneous
terms on the left-hand side are orthogonal to the non-trivial solution of the
homogeneous adjoint system. This is readily found to be (c, h) and so the
required compatibility condition is

cF (2) + hG(2) = 0 . (31)

Next we substitute the expressions (23) into (31) and after some simplification
get

Aσ +
cσ
2c
A+

3
2h
AAθ +

h2

6c2
Aθθθ = 0 . (32)

Using the transformations (17, 24) and replacing ε2A with A this becomes

At + cAx +
cx
2
A+

3c
2h
AAx +

hc2

6
Axxx = 0 , (33)

This is just the vKdV equation (9) for the case of water waves. Finally, using
the transformation (10) with Q = c equation (33) becomes
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ητ + α∗ηηξ + β∗Aξξξ = 0 (34)

where here η =
√
cA α∗ =

3
2h
√
c
, β∗ =

h2

6c2
. (35)

The same type of multiscale asymptotic expansion can be used to derive
a vKdV equation in many other physical systems. The key is the existence
of a waveguide supporting a linear wave mode, whose dispersion relation for
unidirectional sinusoidal waves, propagating along the waveguide (in the x-
direction) with frequency ω and wavenumber k, has a long-wave expansion of
the form.

ω = ck − δk3 +O(k5) . (36)

A typical fluid variable, say u(x, t, z) can then be represented in the form

u = ε2A(σ, θ)φ(z) + εu(2) + · · · . (37)

Here the scaled variables σ, θ are again defined by (24), and φ(z, σ) is a known
modal function in the z-direction, where z is a coordinate across the waveg-
uide. For instance, for water waves and when u is the amplitude of the free
surface elevation, φ(z) = z/h (c =

√
gh in this case). But in most physical

systems, the dependence on z is not so simple, and is determined by an associ-
ated eigenvalue problem, which also determines the linear long-wave speed c.
For instance, this is the situation for internal waves [5]. Note that in a slowly
varying inhomogeneous medium, the modal function also depends paramet-
rically on σ (for water waves, through h(χ)). It is immediately clear that for
linearized waves in a homogeneous medium, the amplitude A will satisfy the
linearization of the KdV equation (1). The next task is to find the magnifica-
tion factor Q in (9) when the medium is inhomogeneous. This is most easily
accomplished by finding the equation for conservation of wave action flux QA2

in the linear long wave regime, Thus the main task of the multiscale aysmp-
totic expansion is the determination of the nonlinear coefficient µ. This is
accomplished by constructing the equation for the second-order term in (37).
This inevitably, as for water waves, takes the form of a linear inhomogeneous
system, whose homogeneous part is just the defining equation for the linear
long-wave mode being considered. Hence, the inhomogeneous system requires
a compatibility condition, which yields the required KdV equation (9).

3 Slowly-varying waves

3.1 Cnoidal waves

Although our main concern will be with the behaviour of solitary waves, it is
instructive to first review the asymptotic theory for slowly varying periodic
waves, namely here the cnoidal waves defined by (3). In this case the theory
is analogous to the well-known WKB procedure for linear waves. One can
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either use a multi-scale asymptotic expansion, or make use of appropriate
conservation laws (see [4] for instance). Here we shall use the former approach,
and so we now suppose that the coefficients α, β in (11) are slowly varying,
and write

α = α(S) , β = β(S) , S = ντ , Y = νξ , ν << 1 . (38)

Here the slow temporal variable S is introduced to provide an explicit de-
scription of the separation of scales between the variation of the coefficients
and the more rapidly oscillating waves, while Y is an analogous slow spatial
variable. Next we seek a multi-scale expansion for a modulated periodic wave,
namely

η = η0(ψ, S, Y ) + εη1(ψ, S, Y ) + · · · , (39)

where ψ =
1
ν
Ψ(S, Y ) . (40)

and k = ΨY , kV = −ΨS . (41)

It is assumed that η is periodic in ψ with a fixed period of 2π. Equation (41)
defines the local wavenumber k, the local frequency kV , and the local phase
speed V . Cross-differentiation yields the equation for conservation of waves

kS + (kV )Y = 0 . (42)

We should recall here, that although we have called k a wavenumber and
kV a frequency, they are not the actual phsyical wavenumber and frequency,
because of the transformation of variables defined in (10). Indeed the physical
wavenumber is k(1−W )/c, the physical frequency is k, and the physical phase
speed is c/(1 −W ) ≈ c(1 + W ), since W << 1 due to the scaling used to
derive the KdV equation (11)

Substitution of ( 39) into (11) yields, at the leading orders

−V η0ψ + αη0η0ψ + βk2η0ψψψ = 0 , (43)

−V η1ψ + α(η0η1)ψ + βk2η1ψψψ =
1
k
F1 , (44)

where F1 = −η0S − αη0η0Y − 3βk2η0ψψY − 3βkkY η0ψψ . (45)

Each of these is essentially an ordinary differential equation with ψ as the
independent variable, and with S, Y as parameters. The solution of (43) is
the cnoidal wave (see (3))

η0 = a{b(m) + cn2(γψ;m)}+ d , (46)

where b(m) =
1−m

m
− E(m)
mK(m)

, αa = 12mβγ2k2 , (47)

and V = αd+
αa

3

{
2−m

m
− 3E(m)
mK(m)

}
. (48)
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As before γ = K(m)/π, since η0 is 2π-periodic in the phase ψ. In this solution
the parameters a,m, γ, V, d each depend on the slow variables S, Y and now
the task is to determine how they vary as functions of these slow variables.
Note that there are three independent parameters, and hence three equations
are needed. However, one of these is the conservation of waves equation (42).
There are two main methods used to find the remaining two equations. One
is the so-called Whitham averaging method, where one seeks two appropriate
conservation laws for the vKdV equation (11), inserts the cnoidal wave (3) into
these laws, and then averages over the phase ψ (see [3], [4]). Here we shall first
describe the second approach which is to continue the asymptotic expansion
to the next order, and then invoke the condition that A1 is a periodic function
of ψ. It is implicit in the Whitham averaging procedure that the higher-order
terms in the expansion have this property. Although it can be shown that the
presence of a suitable underlying Lagrangian usually ensures that this is so
(see [4]), we shall nevertheless verify it directly here for the first-order term.
This is given by (44) in which the right-hand side is now a known periodic
function of ψ, given by (45). A necessary and sufficient condition for η1 to be
periodic in ψ is that the right-hand side of (44) should be orthogonal to the
periodic solutions of the adjoint to the homogeneous operator on the left-hand
side. This adjoint is

−V η1θ + αη0η1ψ + βk2η1ψψψ = 0 . . (49)

It is readily seen that two solutions of (49) are 1, η0, both of which are periodic.
A third solution can be found by the variation-of-parameters method, but it
is not periodic. Hence there are two orthogonality conditons, given by

M0S + (αP0)Y = 0 , (50)
P0S + (αQ0)Y = 0 , (51)

M0 =
1
2π

∫ 2π

0

η0 dψ = d , P0 =
1
4π

∫ 2π

0

η2
0 dψ , (52)

Q0 =
1
6π

∫ 2π

0

η3
0 dψ −

3βk2

4απ

∫ 2π

0

η2
0ψ dψ . (53)

As we discuss further below the first of these is the equation for conservation
of “mass”, and the second is an equation for conservation of “momentum”.
The final step is the substitution of (46) into (52, 53), which gives

P0 =
d2

2
+
a2

2
{C4 − b2} , (54)

Q0 =
d3

3
+ da2{C4 − b2}+

a3

3
{C6 − 3bC4 − 2b3}

+
3βk2γ2a2

2α
{mC6 − (2m− 1)C4 + (1−m)b} (55)
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C4 =
1
K

∫ K

0

cn4(u;m) du , (56)

C6 =
1
K

∫ K

0

cn6(u;m) du , . (57)

Here we recall that K(m) is the first elliptic integral, while b(m) is defined in
(47), and so C4(m), C6(m) are functions of the modulus m alone, given by

3m2C4(m) = (3m2 − 5m+ 2) + (4m− 2)
E(m)
K(m)

, (58)

15m3C6(m) = (15m3 − 34m2 + 27m− 8) + (23m2 − 23m+ 8)
E(m)
K(m)

.(59)

The alternative approach to the derivation of (50, 51) is to make direct
use of the conservations laws for “mass” and “momentum”,

ητ + {α
2
η2 + βηξξ}ξ = 0 , (60)

(
η2

2
)τ + {α

3
η3 + {β(ηηξ)ξ −

3β
2
η2
ξ}ξ = 0 . (61)

Each of these is readily established from (11) and indeed (60) is just the
vKdV equation (11) itself. Note that although we shall call these the laws
for conservation of mass and momentum, the integrands do not necessarily
correspond to the corresponding physical entities. Indeed, to leading order,
(61) is usually the law for conservation of wave action flux. The conservation
law (60) usually differs slightly from the actual law for conservation of mass.
The issue has been explored by Miles [22] for water waves, where it can be
shown that the difference is smaller than the error incurred in the derivation
of the vKdV equation (33), and is due to reflected waves. The Whitham
averaging procedure now consists of the substitution of (46) into (60, 61), and
then averaging the results over the phase (see [3], [4]). The result is readily
seen to be the derived equations (50, 51).

The equation set (42, 50, 51) are the three desired equations for the three
chosen parameters, (k, d,m) say, and form a nonlinear hyperbolic system, pro-
vided that the underlying periodic wave is stable. They are quite complicated,
and in general it is difficult to find explicit solutions. The issue is present even
when the coefficients α, β are constant. But in that case, due to the integra-
bility of the KdV equation, it can be shown that a subtle change of variables
leads to a set of three nonlinear hyperbolic equations in Riemann form, see
[3], [4] for instance. The resulting equations are also integrable, through a
generalized hodograph tarnsformation. However, in the general case when the
coefficients α = α(S), β = β(S), no such reduction is available. Instead the
system remains coupled, although it can be cast into a more transparent form
using the same Riemann variables available in the integrable case, see [20].

However, one situation of interest can be solved explicitly. Let us suppose
that the solution set for (k, d,m) depends only on S. Then equations (42,
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50) readily show that k,M0 = d are respectively constants. The remaining
variable m is then found from the remaining equation (51), whose solution is
P0 = constant. Then, using (54, 56) and the relation (47), we find that the
amplitude a and m are related by the expression

a2

m2
{3m2 − 5m+ 2) + (4m− 2)

E(m)
K(m)

− 3m2b(m)2} = constant . (62)

Finally, using the relation (47) we can determine the modulus m in terms of
α(S), β(S),

F (m) = constant
α2

β2
, where (63)

F (m) = K(m)2{(4− 2m)E(m)K(m)− 3E(m)2 − (1−m)K(m)2} . (64)

This expression for F (m) was obtained by Ostrovsky and Pelinovsky [23], [24]
and Miles [22] for the special case of water waves, where α/β = 9g3/4/h9/4

(see (35)). F (m) is plotted in Figure 1, which shows that it is a monoton-
ically increasing function of m. It follows that as α/β increases so does m.
Two limiting situations are of interest. First, if the nonlinear coefficient α de-
creases towards zero, then so does the modulus m where it can be shown that
F (m) ∼ m2 as m → 0; it follows that the modulus m ∼ α, but remarkably
the amplitude a is finite in this limit. On the other hand, if the dispersive co-
efficient β → 0, then m → 1 and the waves become more like solitary waves.
For water waves, we see that this situation arises as the waves propagate into
shallow water, that is h → 0. In this limit, the expressions (63, 64) show
that a ∼ K(m) ∼ h−3/4. Recalling the transformation (35), this leads to the
well-known result that a solitary wave propagating in shallow water behaves
as h−1, see [11], [23], [19].

3.2 Solitary waves

The results obtained above for a slowly-varying periodic wave cannot imme-
diately be extrapolated to a slowly-varying solitary wave, as the limits m→ 1
and ν → 0 do not commute. In physical terms, the basis for the validity of the
slowly-varying periodic wave is that the local wavelength (i.e. 2π/k) should be
much less than the slowly-varying scale (i.e. 1/ν). The limit m→ 1 in (46, 47,
48) requires that γ →∞, k → 0 with γk = Γ held constant, and so the wave-
length technically becomes much larger than the slow scale. A new concept of
slowly-varying is needed, which in physical terms is that the half-width (i.e.
width of the solitary wave at the level of one half of the maximum amplitude)
should be much less than 1/ν. We proceed as above and again invoke a multi-
scale asymptotic expansion of the same form (38. 39) and we again obtain the
equations (43, 44, 45) (see, for instance, [12] [14]). Note that k has a different
meaning here, but that nevertheless equation (42) for conservation of waves
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Fig. 1. A plot of F (m) (64) versus m.

still holds. but now we do not require that η is periodic in ψ with a fixed
period. Instead we require that η is bounded in the limits ψ → ±∞ (more
strictly, we require that η grows at infinity as νm+1ψm at each order νm+1 for
m = 0, 1, 2 · · ·). We can suppose without loss of generality that δ > 0, since
the alternative case is recovered by replacing η, ξ with −η,−ξ respectively.
Then, small-amplitude waves will propagate in the negative ξ-direction, and
we can suppose that η → 0 as ψ → ∞. However, it will transpire that we
cannot impose this boundary condition as ψ → −∞. Note that it is possible
to allow η → D+(S, Y ) as ψ → ∞ where D+(S, Y ) is known a priori, and
satisfies the vKdV equation (11), that is

D+
S + αD+D+

Y + ν2βD+
Y Y Y = 0 . (65)

However, we shall not consider this extension here, although note that the
basic procedure outlined below can be used also in this more general case.

Now the solution for η0 is taken to be the solitary wave (see(7))

A = asech2(Γψ) , (66)

where V =
αa

3
= 4βk2Γ 2 . (67)
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Here there is just a single free parameter, one of the set (a(S, Y ), V (S, Y ),
kΓ (S, Y )), which depends on the slow variables. Its behaviour is determined
by examining the next order equation (44), from which we seek a solution
η1 which is bounded as ψ → ±∞: as above we can require that η1 → 0
as ψ → ∞. As before, the adjoint equation to (44) is (49) for which two
solutions are 1, η0; while both are bounded, only the second solution satisfies
the condtion that η1 → 0 as ψ → ∞. A third solution can be constructed
using the variation-of-parameters method, but it is unbounded as ψ → ±∞.
Hence only one othogonality condition can now be imposed, namely that the
right-hand side of (44) is orthogonal to η0, which leads to (51) where now

P0 =
1
2

∫ ∞

−∞
η2
0 dψ , (68)

Q0 =
1
3

∫ ∞

−∞
η3
0 dψ −

3βk2

2α

∫ ∞

−∞
η2
0ψ dψ . (69)

Substituting (66, 67) into (68, 69) yields

P0 =
2a2

3Γ
, Q0 =

2a3

9Γ
. (70)

Finally, substitution of these expressions into (51) yields

P0S + (V P0)Y = o . (71)

As the solitary wave (66) has just one free parameter (e.g. the amplitude a),
this equation, together with (42) suffices to determine its variation.

We now recall that the vKdV equation (11) possesses two conservation
laws, namely (60, 61) for mass and momentum respectively. But here we see
that the equation (61), which reduces here to (71) for momentum is sufficient
to determine the slowly-varying solitary wave. Hence we now see that the
slowly-varying solitary wave cannot simultaneously conserve its mass. This
is apparent when one examines the solution of (44) for η1, from which it is
readily shown that although η1 → 0 as ψ →∞, η1 → D1 as ψ → −∞ where

−kV D1 = Ms
0S + (αP0)Y , (72)

Ms
0 =

∫ ∞

−∞
η0 dψ =

2a
Γ
. (73)

Here Ms
0 can be interpreted as the mass of the solitary wave. It is readily

verified that the right-hand side of (72) cannot vanish in general, and so the
slowly-varying solitary wave generates a trailing shelf, whose amplitude at the
rear of the solitary wave is D1. This non-uniformity has been recognized for
some time, see, for instance, [14] and the references therein. The trailing shelf
ηsh has small amplitude O(ν) but a long length-scale O(1/ν), and so carries
O(1) mass, but O(ν) momentum. It resides behind the solitary wave, and to
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leading order has a value independent of S, so that ηsh = νA1(Y ) for Ψ < 0; it
is determined by its value at the location Ψ = 0 of the solitary wave, namely
A1(Ψ = 0) = D1 (72). It may readily be verified that the slowly-varying
solitary wave and the trailing shelf together satisfy conservation of mass. The
asymptotic expansion may be continued to second order [14]. At higher orders
in ν the shelf itself will evolve and may generate secondary solitary waves [10]

The two equations (42, 51) may be uncoupled by defining

P̃0 =
P0

k
=

2a3

3Γk
=

√
βa2

27α
, (74)

so that P̃0S + V P̃0Y = 0 . (75)

Here we have used (67) to show that P̃0, the momentum per unit distance, is
a function of the amplitude a alone. Since V = αa/3 (67) we see that equation
(74) is a single equation for the amplitude. It show that the amplitude deforms
to conserve P̃0, which propagates with the solitary wave speed V .

An important special case arises when there is no Y -dependence. In that
case (42) shows that k, P̃0 are both constants, and so (75) reduces to

a3 = constant
α

β
, or (Γk)3 = constant

α2

β2
. (76)

In this same special case, (72) reduces to

V kΓD1 = 2as . (77)

The expression (76) shows that the amplitude increases (decreases) in
absolute value as α/β increases (decreases). Note that the polarity of the wave
is determined by the sign of α/β. Then, assuming without loss of generality
that β > 0 so that V > 0, we see from (77) that a slowly-varying solitary
wave of increasing (decreasing) amplitude, will generate a trailing shelf of the
same (opposite) polarity. A particular case of interest is when the nonlinear
coefficient α passes through zero, while β stays finite. Suppose this occurs
at S = 0, where, without loss of generality, we may suppose that α passes
from positive to negative values as S increases. Initially the solitary wave is
located in S < 0 and has positive polarity. Then, near the transition point,
the amplitude of the wave decreases to zero as a ∼ α1/3, while Γ ∼ α2/3;
the momentum of the solitary wave is of course conserved (at least to leading
order), the mass of the solitary wave increases as 1/α1/3, its speed decreases as
α4/3, and the amplitude D1 of the trailing shelf just behind the solitary wave
grows as −1/α8/3; the total mass of the trailing shelf grows as −1/α1/3, in
balance with that of the solitary wave, while the total mass remains a positive
constant. Thus the solitary wave itself is destroyed as the wave attempts to
pass through the critical point α = 0. The structure of the solution beyond
this critical point has been examined numerically by Grimshaw et al [15],
who showed that, in essence, the shelf passes through the critical point as a
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negative disturbance, which then being in an environment with α < 0, can
generate a train of solitary waves of negative polarity, riding on a positive
pedestal. Of course, these conclusions may need to be modified when a cubic
nonlinear term in is taken into account near the critical point (see Grimshaw
et al [16]).

For the special case of water waves, α/β = 9g3/4/h9/4 (see (35)) and so
the amplitude behaves as a ∼ h−3/4, while the speed V behaves as h−2, and
the wavenumber Γ behaves as h−3/2. Recalling the transformation (10 where
Q = c = (gh)1/2 for water waves, we recover the well-known result that the
surface elevation amplitude of a surface solitary wave behaves as h−1 (see
[11], [19], [23]). At the same time we see from (77) that the trailing shelf has
negative polarity and behaves as −h2 at the rear of the solitary wave.

4 Soliton fission

In the previous section we have considered the case when the variable coef-
ficients in (11) vary slowly relative to a solitary wave. Here we consider the
opposite case when the coefficients vary rapidly relative to a solitary wave.
This scenario was considered by Johnson [19] for water waves and by Djord-
jevic and Redekopp [9] for internal waves. Let us suppose therefore that

α = α(Z) , β = β(Z) , τ = ∆Z , ∆ << 1 , (78)

where α(Z) → αa,b , β(Z) → βa,b , as Z → ±∞ , (79)

Thus, effectively the vKdV equation (11) has constant coefficients in τ < 0
and in τ > 0, while there is a small transition region in which τ is O(∆) where
the coefficients change their values from αb, βb in τ < 0 to αa, βa in τ > 0. In
this transition zone, we may write η = η(Z, ξ), and it is then readily shown
that ηZ is O(∆). Hence, to leading order, it follows that η is unchanged in the
transition zone.

We now suppose that there is a single solitary wave in τ < 0 (see (7, 8)),

A = a sech2(Γ (ξ − V τ)) , (80)

where V =
αba

3
= 4βbΓ 2 . (81)

This wave will pass through the transition zone unchanged, but, on arrival
into the region τ > 0 it is no longer a permissible solution of (11), which
now has constant coefficients αa, βb. Instead, with τ = 0+, the expression
(80) forms an effective initial condition for the new constant-coefficient KdV
equation. Using the inverse scattering transform, the solution in τ > 0 can
now be constructed; indeed in this case there is an explicit solution (e.g.
[2]). The outcome is that the initial solitary wave fissions into N solitons,
and some radiation. The number N of solitons produced is determined by
the ratio of coefficients R = αaβb/αbβa. If R > 0 (i.e. there is no change
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in polarity for the solitary waves), then N = 1 + [(
√

8R+ 1 − 1)/2] ([· · ·]
denotes the integral part); as R increases from 0, a new soliton (initially
of zero amplitude) is produced as R successively passes through the values
m(m+ 1)/2) for m = 1, 2, · · ·. But if R < 0 (i.e. there is a change in polarity)
no solitons are produced and the solitary wave decays into radiation.

For instance, for water waves α = 3/(2hc1/2), β = h2/(6c2) (35) where h is
the water depth. It can then be shown that a solitary water wave propagating
from a depth hb to a depth ha will fission into N solitons where N is given
as above with R = (hb/ha)9/4. Here R > 0, and it follows that if hb > ha,
so that the solitary wave moves into shallower water, N ≥ 2 and at least one
more soliton is produced; the initial soliton is said to have fissioned. But if
hb < ha so that the solitary wave moves into deeper water, then N = 1 and
no further solitons are produced [19].
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