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Abstract. The minimisation of edge crossings in a book drawing of a graph G is one of the
important goals for a linear VLSI design, and the two-page crossing number of a graph G provides
an upper bound for the standard planar crossing number. We propose several new heuristics for
the two-page drawing problem, and test them on benchmark test suites, Rome graphs and Random
Connected Graphs. We also test some typical graphs, and get some exact results. The results for
some circulant graphs are better than the one presented by Cimikowski. We have a conjecture for
cartesian graphs, supported by our experimental results, and provide direct methods to get optimal
solutions for 3- or 4-row meshes and Halin graphs.
Keywords: book drawings, one-page crossing number, two-page crossing number, Hamiltonian
cycle, strategies of edge distribution, optimal solutions

1 Introduction

The simplest graph drawing method is that of putting the vertices of a graph on a line and
drawing the edges as half-circles in κ half planes (κ pages). Such drawings are called κ-page
book drawings, and they correspond to the linear VLSI design. Edge crossing minimisation is
the most important goal in linear VLSI design, since smaller number of crossings means cheaper
design. The minimal number of edge crossings over all κ-page book drawings of a graph is called
the κ-page book crossing number [18].
The one-page [18] crossing number corresponds to outerplanar [11] (also called convex [19], or
circular [21]) crossing number, which is the minimal possible number of pairs of crossing edges
in a drawing where one places vertices of a graph G along a circle, and the edges are drawn as
straight lines. Therefore the one-page drawing problem is equivalent to finding an order of the
vertices on the circle which minimises the number of edge crossings. We denote the one-page
crossing number as ν1(G), following the notation in [18]. The problem has been proved to be
NP-hard [13].
The two-page drawing problem can be reformulated similarly: one places the vertices of a graph
G along a circle and every edge is completely drawn in one of two colours. The two-page crossing
number of G is the smallest possible number of crossings of edges with the same colour, and we
denote it as ν2(G). The problem is also NP-hard [14]. Similarly, a κ-page drawing of a graph is
equivalent to a κ-colour circular drawing of the graph.
? This research was supported by the EPSRC grant GR/S76694/01 and by VEGA grant No. 2/3164/23
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For a graph G with n vertices and m edges we denote by g adj the usual adjacency matrix. A
vector order will be defined such that order[u] denotes the position of vertex u on the circle
in the current drawing (positions being denoted 0, 1, . . . n− 1). The distribution of edges to the
2 (or κ) pages is stored in a matrix d adj so that for any two positions i and j on the circle,
d adj[i][j] equals the number (between 1 and κ) of the page the edge is on, with 0 indicating that
no edge exists between the corresponding positions. Given the positions of the two ends of an
edge, i and j, and the positions of the two ends of the other edge, k and l, in the current layout,
if i < k < j < l and the two edges are in the same page, then they will produce a crossing. So
we can calculate the number of crossings in a κ-page drawing of G with the following formula:

νκ(G) =
n−4∑

i=0

n−2∑

j=i+2

j−1∑

k=i+1

n−1∑

l=j+1

d adj[i][j]
⊙

d adj[k][l]. (1)

where

d adj[i][j]
⊙

d adj[k][l] =
{

1 if d adj[i][k] = d adj[j][l] 6= 0;
0 if otherwise.

(2)

A lot of heuristic algorithms were designed for the one-page drawing problem, e.g., the algorithm
of Mäkinen [15], the CIRCULAR algorithm [21], the algorithm of Baur and Brandes [2], and
AVSDF [10]. The two-page crossing number as an approximation to the planar crossing number
was first studied in [16, 17] but no thorough testing was done there. The most important paper
in this area is [5], where first an order of vertices for some structural graphs is given by a
Hamiltonian cycle , and then eight different heuristic algorithms to find a good distribution of
edges between the two pages were designed and tested. The two-page crossing number of a graph
G provides an upper bound for the standard planar crossing number of G. Recently, Winterbach
[22] proposed heuristics for the two-page crossing numbers and applied them to estimating the
planar crossing number of some small complete multipartite graphs.
In this paper we design new two-page drawing heuristic algorithms based on the latest one-
page drawing algorithms [2] and [10], and compare different edge distribution strategies. For
some structural graphs, we apply the strategy of edge distribution based on an optimal order of
vertices [5]. For our experiments we used the following benchmark test suites:
Random Connected Graphs (RCGs) with different densities and sizes, which were used in
[10].
Rome Graphs, which are taken from the test suite of GDToolkit [24] and were utilized in [2,
10]. We use two subsets of undirected graphs from this suite:

-RND BUP: this graph set contains about 200 graphs generated randomly. Each graph in the
set is biconnected, undirected and planar.
-ALF CU: this graph set contains about 10,000 connected and undirected graphs.
Special Graphs: including random 3-regular graphs, Halin graphs, meshes, complete p-partite
graphs, complete graphs, circulant graphs, and Cartesian Graphs.
The paper will follow the order: in Section 2 and 3, we mention two latest one-page algorithms
and present four two-page strategies; in Section 4, we compare two-page algorithms in different
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ways, compare the results of some circulant graphs with Cimikowski’s [5], and provide exact
results for some structural graphs; in Section 5, we present the direct methods to get optimal
solutions for 3- or 4-row meshes and Halin graphs.

2 One-page drawing algorithms

2.1 The algorithm of Baur and Brandes (BB+)

The best algorithm of Baur and Brandes [2] consists of two phases: greedy and sifting.

Greedy phase: at each step a vertex v with the largest number of already placed neighbours is
selected, where ties are broken in favour of vertices with fewer unplaced neighbours, and then
appended to the end that yields fewer crossings between the open edges and the edges that
become closed by placing v, where an open edge is one containing an endpoint that has not been
placed. Crossings with closed edges not incident to the currently inserted vertex do not need to
be considered because they are the same for both sides. In Fig. 1, there are eight such crossings
for the left end and only five for the right end. The running time is O((n + m) log n).
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Fig. 1. Incident edges of v cross with open edges.

Sifting phase: every vertex is moved along the circle, while the other vertices stay in their
current order. In our implementation, at every step, a vertex will clockwise move from its current
position to the next position. The vertex is then placed in its (locally) optimal position. The
phase can be run in O(nm) time.
We use BB to denote the greedy phase, and BB+ to denote the combination of the two phases.

2.2 Algorithm AVSDF+

Algorithm AVSDF+ [10] consists of two phases too: greedy and adjusting.

Greedy Algorithm: AVSDF is a variation of the Depth First Search (DFS) algorithm. At first
one places the vertex with the smallest degree, and then visits the adjacencies of the current
vertex, which have not been visited yet, such that the smallest degree vertex has the highest
priority for visiting. The vertices are placed on the circle in the order they are visited. The
running time of the AVSDF algorithm is O(m).
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Postprocessing phase(adjusting): in this phase a vertex with the largest number of cross-
ings caused by its incident edges is selected first, and then the best position among the current
one and the ones immediately after each of its adjacent vertices is found. The procedure is re-
peated until no vertex can be adjusted. The running time is O(mn). We denote AVSDF plus
adjusting as AVSDF+.

3 Two-page drawing algorithms

Usually the smaller the one-page crossing number is, the smaller is the two-page crossing number.
So we try to find an optimal distribution of edges in two pages based on the order given by
one-page algorithms. We use the algorithms described above as the first phase to minimise the
one-page crossings, and then use the following strategies of edge distribution in the second phase
respectively.

3.1 Slope strategy (SLOPE)

In a circular drawing, each edge has a slope to the horizontal line. The SLOPE two-page strategy
distributes the edges between pages according to their slopes. If an edge has a negative slope
(the angle between the edge and the horizontal axis is larger than 90̊), the edge is put on page
2 (solid edges in Fig.2 (a)), otherwise the edge is put on page 1 (broken edges in Fig. 2 (a)).

(a) Edge distribution with slope strategy

3

4 1

2

(b) Dividing a circle into 4 sections

Fig. 2. Slope strategy and four sections in a circle

We can divide a circle into four sections as in Fig. 2 (b). The vertex positions are numbered
clockwise around the circle, with 0 being at the top. Table 1 describes how the position i of a
vertex is related to the four sections.
Considering an edge e(u, v) with u in position i and v in position j, if i and j are both located in

the section 1, then 0 < i+j <
1
2
n. If i and j are both located in the section 3, then n ≤ i+j <

3
2
n.

If i and j are located in section 2 and section 4, respectively, then n ≤ i+j <
3
2
n. In these cases,

we can say the angle between the edge and horizontal axis is larger than 90̊. Considering all the
other cases, including those where i and j are in the same section or in adjacent sections, we
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Table 1. Vertex positions on each section of a circle

Section Positions

1 0 ≤ i <
n

4
2

n

4
≤ i <

n

2

3
n

2
≤ i <

3

4
n

4
3

4
n ≤ i < n

obtain the relationship between the slope value and the positions of the two ends of the edge: if

(0 < i+ j <
1
2
n or n ≤ i+ j <

3
2
n) the edge e(i, j) has a negative slope, otherwise it has positive

slope. The vertical edges are considered to have positive slope and the horizontal ones negative
slope. Note that the slope strategy is not invariant to rotations of the drawing. We can compute
the matrix of a drawing, d adj, according to slope strategy (see Algorithm 1) in O(n2) time.

Algorithm 1 Slope(g adj, order)
1: define an array, d adj;
2: for (i= 0 to |V|) do
3: for (j=0 to |V|) do
4: u = order[i]; v = order[j];
5: if (g adj[u][v]=0) then
6: d adj[i][j] = d adj[j][i] = 0;
7: else
8: if (i + j < 1

2
|V | or (i + j ≥ |V | and i + j < 3

2
|V |)) then

9: d adj[i][j] = d adj[j][i] = 2;
10: else
11: d adj[i][j] = d adj[j][i] = 1;
12: end if
13: end if
14: end for
15: end for
16: return d adj;

3.2 Place edges according to their length (LEN)

The length of an edge between positions i and j in a circular drawing is defined as min{|i−j|, n−
|i − j|}. Intuitively, the longer the length of an edge, the larger the probability of its crossing
with other edges. Whether the edges with length 1 are on page 1 or page 2, they do not create
any crossing. Therefore we create a sorted edge list without the edges with length 1 on non-
increasing length, where ties are broken by ordering (i, j) lexicographically. Initially all edges are
placed in page 1, and then route each edge in the list in turn to the page where smaller crossings
will be produced. The process is iterated until either there is no improvement or there have
been 5 traversals of the list of edges (the number 5 was found to be sufficient experimentally).



6

We denote this strategy as LEN. It is similar with the algorithm E-len by Cimikowski [5]. The
difference of LEN and E-len is that LEN starts with a one-page drawing and routes some of the
edges to the other page, while E-len is based on a fixed linear order of vertices and adds edges
one by one to one of the two pages. The running time is O(m).

3.3 Adjust edges according to descending crossings(CRS)

The strategy of routing edges according to descending crossings is based on an initial one-page
drawing with a fixed order and all edges in page 1. We start with the edge which creates most
crossings and put it to the other page, then recalculate the crossings created by the routed
edge. If the crossing number is larger than that before, the edge is restored to the original page,
and next edge will be routed. Otherwise, we modify the numbers of crossings created by other
edges, sort edges according to the number of crossings created by each edge, and repeat the
whole process until no edge can be adjusted. We denote this strategy CRS. In the worst case
the running time is O(m2), but the running time is often O(m). In the implementation, we keep
two lists, eplist and crlist. The eplist stores each edge and its page assignment. In the list crlist
each element consists of two components, post and cr, which are the index number of each edge
in the eplist and the crossing number created by each edge, respectively. During the routing
procedure, after every modification of the edge assignment, crlist will be sorted on order of
descending crossing numbers (see Algorithm 2).

Algorithm 2 Adjusting edges on crossings
1: Create an edge list with page attribute, eplist;
2: Create a sorted crossing list with edge index, crlist;
3: Calculate current crossings, currCr;
4: i=0; lastCr=currCr;
5: while (i < m or lastCr > currCr) do
6: lastCr = currCr;
7: s = crlist[i].post; u = eplist[s].u; v = eplist[s].v;
8: if (crlist[i].cr=0) then
9: i=i+1; // to next edge.

10: else
11: eplist[s].page = eplist[s].page mod 2+1; // set the edge to the other page.
12: cr = calEdgeCr(eplist);

//calculate the crossing number created by the adjusted edge.
13: if (cr ≥ crlist[i].cr) then
14: eplist[s].page = eplist[s].page mod 2+1; i = i+1;

//restore the edge to the original page, and route the next edge
15: else
16: currCr = currCr − crlist[i].cr + cr; crlist[i].cr = cr;
17: modilist(eplist,crlist,i);

//Adjust crlist remains sorted on descending crossings.
18: i = 0;
19: end if
20: end if
21: end while
22: return currCr;
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3.4 Hybrid of one-page algorithm and edge pre-assignment (AVSDF EP)

In addition to the methods based on a fixed linear vertex order or on a one-page drawing of the
graph, we can synthetically consider vertex order and edge distribution directly for a two-page
drawing. A hybrid heuristic algorithm of AVSDF and the edge distribution is presented here,
which places an edge incident to the currently placed vertex based on the smallest crossings
produced by the edge and already placed edges. We denote it as AVSDF EP (see Algorithm 3).

Algorithm 3 A hybrid algorithm of AVSDF with distribution of edges
1: Create an adjacency list, each vertex with a linked list sorted in descending degree order
2: Define an array order[n], and a stack, S;
3: Get the vertex with the smallest degree from the given graph, and push it into S;
4: while (S is not empty) do
5: Pop a vertex v, from S;
6: if (v is not in order) then
7: Append the vertex v into order;
8: for (each vertex u adjacent to v, in decreasing order of degree(u)) do
9: if ( u is not in order) then

10: push u into S;
11: else
12: place the edge e(u, v) to the page where fewer new crossings are created by adding the edge;
13: end if
14: end for
15: end if
16: end while

4 Experiments

The experiments of Cimikowski [5] were done based on a fixed Hamiltonian cycle for some special
structural graphs. However, not every Hamiltonian cycle corresponds to an optimal vertex order
for a two-page drawing, and an optimal two-page drawing might not correspond to a Hamiltonian
cycle. Moreover, for an arbitrary graph, a Hamiltonian cycle might not exist, or even if it exists,
we might not be able to find it efficiently. Our experiments aim at finding the relationship
between one-page drawing and two-page drawing, and what is the most important factor to
affect the crossings. So experiments are done on a variety of graphs described previously.

4.1 Test of two page drawing algorithms

Test two-page strategies based on one-page algorithms

We compare pairs of algorithm combinations formed by 2 heuristics for one-page drawings
(namely AVSDF+ and BB+) and 3 strategies of edge distribution (namely SLOPE, LEN and
CRS), as well as the hybrid algorithm AVSDF EP, and explore the relationship between one-
page and two-page drawings on ALF CU, RND BUP, RCGs, 3-regular graphs, etc. In Table 2,
the number of times an algorithm gets the best results in all test data is listed, with the highest
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values shown in bold. The BB+ CRS performs best on all graphs except for cartesian products
and Halin graphs, where AVSDF+ CRS performs best, and circulant graphs Ckn(1, n), where
AVSDF EP performs best. We use X ≺ Y to express that algorithm Y obtains the best results
more times than algorithm X. From Table 2, for most types graphs there exists the relationship:
SLOPE ≺ LEN ≺ CRS both when combined with AVSDF+ or BB+, while AVSDF EP is better
than AVSDF+ SLOPE and BB+ SLOPE.

Table 2. The number of times best results are obtained on each type of graphs with all strategies based on
one-page algorithms

Graphs
(number)

avsdf+
slope

avsdf+
len

avsdf+
crs

avsdf ep bb+
slope

bb+
len

bb+
crs

ALF CU(268) 52 128 148 92 47 149 170

RND BUP(168) 19 61 82 40 17 84 85

RCGs(360) 37 94 141 50 17 115 170

3-d RCGs(45) 3 14 12 3 2 17 25

CmxCn(49) 2 16 21 0 2 10 11

Mesh(49) 0 17 17 1 2 23 31

Halin(400) 7 166 274 28 8 116 211

Cn(34) 0 10 15 9 1 8 19

Ckn(1, n)(68) 17 21 18 39 7 38 34

Test two-page strategies based on a fixed order of vertices

We also test some structural graphs, such as circulant graphs, cartesian graphs, complete
graphs and complete p-partite graphs with the method used in [5] – first find an optimal order
of vertices for a one-page drawing of a structural graph, and then apply a strategy of edge
distribution. Table 3 shows the statistical results for the numbers of times when each strategy
gets best results in all tests on each type of graphs. The results indicate that an algorithm has
different performance for different structural graphs. For example, SLOPE strategy is the best
for Complete graphs and Complete p-partite graphs. In Section 4.3, we will present some exact
results.

Table 3. The number of times when best results are obtained for each two-page strategy based on a fixed order
for some structural graphs

Graphs Cn[5] Ckn(1, n) Kn(p) Kn Cm × Cn

slope 0 34 11 28 11

len 23 36 6 14 24

crs 25 42 8 21 43



9

Test of two-page strategies based on different two-page preprocessings

We also investigated the effect of different two-page preprocessings, AVSDF EP and AVSDF+ SLOPE
on the two-page crossing number. Fig. 3 (a) and (b) show the two-page crossing numbers of 20
different graphs with 60 vertices in RND BUP after using a preprocessing step and then after
using a two-page strategy such as LEN or CRS. From Fig. 3 (a), based on AVSDF EP pre-

(a) AVSEDF EP as a preprocessing step (b) AVSDF+ SLOPE as a preprocessing step

(c) Comparison between
AVSDF+ SLOPE CRS and AVSDF EP LEN

Fig. 3. Two-page strategies based on different preprocessing steps (I)

processing, algorithm LEN achieved a much greater improvement to the results of AVSDF EP
than algorithm CRS. In contrast, from Fig. 3 (b), based on AVSDF+ SLOPE, algorithm CRS
achieve greater improvement to results of AVSDF+ SLOPE than algorithm LEN. Furthermore,
from Fig. 3 (c), it can be seen that the results by AVSDF EP LEN are better than that by
AVSDF+ SLOPE CRS in most cases.

From Fig. 4, we can conclude that for two-page strategy LEN, the best preprocessing is AVSDF EP,
while for two-page strategy CRS, the best preprocessing is the one-page algorithm AVSDF+
without two-page preprocessing.
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(a) LEN based on different preprocessing steps (b) CRS based on different preprocessing steps

Fig. 4. Two-page strategies based on different preprocessing steps (II)

4.2 Test on RCGs with different edge densities

We compare all the combinations, AVSDF+ SLOPE, BB+ SLOPE, AVSDF+ LEN, BB+ LEN,
AVSDF+ CRS, and BB+ CRS on RCGs with edge density 1%, 2%, and 5%, where the density
is defined as the ratio of edge number to maximal possible edge number. Furthermore we explore
the effect of density (Tables. 4-6) by statistical results of crossing numbers for each density of
graphs. For each density, 12 groups of graphs with different number of vertices were tested, and
every group includes 10 different graphs, for which the average crossing number is calculated.
Tables. 4-6 show that AVSDF+ SLOPE gets better results than BB+ SLOPE does for all den-
sities, and the results by AVSDF+ SLOPE and BB+ SLOPE become closer with the rise of
density. No matter whether AVSDF+ or BB+ algorithm precedes the two-page algorithms and
what density graphs are tested, CRS gets slightly better results than LEN does, and both are
significantly better than SLOPE.

Table 4. Two-page crossing numbers obtained by each combination of algorithms on the graphs with density=1%

Vertex Number avsdf+ slope avsdf+ len avsdf+ crs bb+ slope bb+ len bb+ crs

200 0 0 0 3 0 0

205 5 1 1 14 3 3

210 14 7 6 23 9 9

215 26 16 15 52 24 25

220 48 36 33 67 33 31

225 76 57 57 96 53 53

230 107 89 87 149 95 90

235 135 111 110 172 112 107

240 192 155 147 203 139 135

245 224 200 195 269 194 187

250 287 246 241 360 265 248

255 337 297 297 387 284 279
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Table 5. Two-page crossing numbers obtained by each combination of algorithms on the graphs with density=2%

Vertex Number avsdf+ slope avsdf+ len avsdf+ crs bb+ slope bb+ len bb+ crs

100 0 0 0 0 0 0

105 2 1 1 6 1 1

110 9 6 5 14 5 4

115 26 18 19 34 15 16

120 41 29 26 53 31 28

125 76 59 58 93 60 57

130 96 77 78 115 75 71

135 140 113 116 158 106 106

140 192 162 155 229 158 159

145 279 227 217 288 217 208

150 351 308 301 374 285 282

155 415 389 361 463 373 359

Table 6. Two-page crossing numbers obtained by each combination of algorithms on the graphs with density=5%

Vertex Number avsdf+ slope avsdf+ len avsdf+ crs bb+ slope bb+ len bb+ crs

40 0 0 0 0 0 0

45 2 0 0 2 0 0

50 10 5 6 14 5 4

55 22 17 17 24 13 13

60 43 39 33 59 38 36

65 94 68 68 100 66 63

70 146 118 116 153 114 108

75 230 193 182 224 179 169

80 333 279 269 337 263 257

85 439 373 363 449 356 346

90 597 534 515 651 546 528

95 833 717 704 838 697 691

4.3 Typical graph test

We tested some circulant graphs used in [5] and some Halin graphs with two-page strategies
based on one-page algorithms. For some typical classes of graphs such as complete p-partite
graphs, 3-row meshes, we know optimal one-page drawings, or for some other graphs such as
4-row meshes, cartesian products, we have a hypothesis of optimal one-page drawings, so we first
find optimal one-page drawings and then apply a strategy of edge distribution. This method of
experimentation was also used in [5].

Circulant graph test

Definition 1. [4] Circulant graphs of the form Cn(a1, a2, ..., ak), where 0 < a1 < a2 < ... <
ak < (n + 1)/2, are regular Hamiltonian graphs with n vertices, and with vertices i ± aj( mod
n), j = 1..k, adjacent to each i.
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Some circulant graphs were tested based on a fixed Hamiltonian cycle, and the exact results were
listed in [5]. We tested these circulant graphs, but first applied a heuristic algorithm to find a
good one-page drawing, and then applied a strategy of edge distribution. In the second rightmost
column of Table 7, there are listed either the optimal values related to the fixed order of vertices
based on a Hamiltonian cycles [5], or theoretical lower and upper bounds (a:b in column Opt.),
if the branch-and-bound algorithm of Cimikowski [5] was not applicable. The rightmost column
contains the best results obtained with 8 heuristic algorithms based on the Hamiltonian cycle of
each circulant graph by Cimikowski [5]. Our results are similar to or better than Cimikowski’s
[5] (Table 7). For some circulant graphs such as C24(1, 3, 5), C38(1, 7), C40(1, 5), C42(1, 4), and
C46(1, 4), our best results (data with star in Table 7) are even better than the optimal values
that can be obtained from branch and bound algorithm based on a fixed order of vertices [5].
This is because our algorithms, unlike [5], are not restricted to the fixed order. For example,
Fig. 5 presents the best solution for C42(1, 4), where ν2(C42(1, 4)) = 38, while the optimal value
based on a fixed order of vertices [5] was 42.

241 3 4 7 9 33 34 1 05 6 8 1110 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 35 36 37 38 39 40

Fig. 5. The best solution for C42(1, 4)
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Table 7. Test results for circulants with two-page strategies based on one-page algorithms (the data with star
are even better than the optimal values that can be obtained from branch and bound algorithm based on a fixed
order of vertices)

Graphs avsdf+
len

avsdf+
crs

avsdf+
slope
len

avsdf+
slope
crs

bb+
len

bb+
crs

bb+
slope
len

bb+
slope
crs

Opt. [5] best[5]

C20(1, 2) 0 0 0 0 0 0 0 0 0 0

C20(1, 2, 3) 22 24 24 24 22 24 24 24 22 22

C20(1, 2, 3, 4) 84 70 84 84 84 70 84 84 26:870 70

C22(1, 2) 0 0 2 2 0 0 2 2 0 0

C22(1, 2, 3) 24 24 30 30 24 24 30 30 24 24

C22(1, 3, 5, 7) 216 203 236 210 244 225 229 229 28:1056 200

C24(1, 3) 14 15 14 13 14 14 14 14 12 12

C24(1, 35) 88 73 74 82 86 70* 74 78 72 76

C24(1, 3, 5, 7) 250 217 242 217 280 237 273 273 30:1260 216

C26(1, 3) 16 17 18 14 18 19 20 17 14 14

C26(1, 3, 5) 96 83 88 90 94 80 82 82 6:650 82

C26(1, 4, 7, 9) 351 365 366 366 344 311 313 313 32:1482 364

C28(1, 3) 18 19 20 18 19 19 19 19 14 16

C28(1, 3, 5) 104 87 94 92 92 88 92 92 6:756 86

C28(1, 2, 3, 4) 126 98 120 116 126 98 120 116 34:1722 98

C28(1, 3, 5, 7, 9) 561 561 670 561 610 586 655 654 62:3080 560

C30(1, 3, 5) 106 97 97 97 107 96 105 98 6:870 96

C30(1, 3, 5, 8) 319 324 324 308 319 324 343 316 36:1980 302

C30(1, 2, 4, 5, 7) 412 392 410 392 434 411 440 420 66:3540 392

C32(1, 2, 4, 6) 160 192 202 208 128 126 126 128 38:2256 160

C34(1, 3, 5) 128 105 107 105 116 110 107 106 6:1122 106

C34(1, 4, 8, 12) 575 620 620 620 309 302 324 326 40:2550 574

C36(1, 2, 4) 36 54 62 68 36 36 36 36 6:1260 36

C36(1, 3, 5, 7) 348 331 360 340 346 336 356 355 42:2862 328

C38(1, 7) 76* 77* 72* 72* 58* 53* 53* 53* 84 86

C38(1, 4, 7) 221 187 205 204 190 176 205 186 6:1406 190

C40(1, 5) 58 61 56 52* 49* 57 57 56 56 58

C42(1, 4) 42 40* 40* 38* 48 51 50 50 42 42

C42(1, 3, 6) 162 164 157 154 118 115 108 115 6:1722 158

C42(1, 2, 4, 6) 228 238 264 266 164 162 158 158 48:3906 210

C44(1, 4, 5) 168 177 184 178 177 123 149 148 6:1892 180

C44(1, 4, 7, 10) 674 629 653 627 631 634 717 698 50:4290 632

C46(1, 4) 46 44* 42* 42* 63 63 64 64 46 46

C46(1, 5, 8) 281 271 281 280 290 267 275 281 6:2070 296

Halin graph test

Definition 2. A Halin graph H is a plane graph H = T ∪ C, where T is a plane tree with no
vertex of degree two and at least one vertex of degree three or more, and C is a cycle connecting
the leaves of T in the cyclic order determined by a plane embedding of T . The edges in T will
be called t-edges and the ones in C will be called c-edges.
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We tested 400 Halin graphs with two-page strategies based on one-page algorithms. We use
X Â Y to express that algorithm X obtains 0 crossings more times than algorithm Y (the
two-page crossing number of Halin graphs is 0, see Section 5.2). Considering the number of
times when each strategy gets 0 crossings, we have: AVSDF+ CRS(214) Â BB+ CRS(162) Â
AVSDF+ LEN(132)Â BB+ LEN(88)ÂAVSDF EP(26)ÂAVSDF+ SLOPE(7) = BB+ SLOPE(7).

Complete p-partite graph and complete graph test

We denote a complete p-partite graph with equal size (n) of the partite sets as:

Kn(p) = Kn, n, ..., n︸ ︷︷ ︸
p

.

In [7] we provided exact results for the one-page crossing number of Kn(p).

Theorem 1. [7] For a complete p-partite graph with n vertices in each partite set,

ν1(Kn(p)) = n4

(
p

4

)
+

1
2
n2(n− 1)(2n− 1)

(
p

3

)
+ n

(
n

3

)(
p

2

)
.

In [7] we also describe the optimal one-page drawing solution for a complete p-partite graph.
Namely, all vertices of the partite sets are evenly placed around a cycle, i.e., the vertices of
every partite set form a regular n-gon (Fig.6). It is easy to get the optimal order for a complete
p-partite graph in linear time. The test was done based on this optimal order(see Table 8). It is
shown that SLOPE gets the best results for all complete p-partite graphs tested, but the other
two strategies, LEN and CRS, are not far behind.

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Fig. 6. Optimal order of K3(3)

Guy [9] presented an upper bound for the standard planar crossing number for complete graphs.

Theorem 2. [9] The crossing number of the complete graph satisfies the inequality

cr(Kn) ≤ 1
4

⌊n

2

⌋⌊
n− 1

2

⌋ ⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.
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Table 8. Test results on Kn(p) by two-page strategies based on optimal one-page drawings

Graphs Opt.(ν1) SLOPE LEN CRS Graphs Opt.(ν1) SLOPE LEN CRS

K3(2) 3 1 1 1 K3(4) 279 86 90 87

K4(2) 16 4 6 4 K4(4) 1024 336 338 344

K5(2) 50 16 16 16 K5(4) 2725 916 916 916

K6(2) 120 36 36 36 K6(4) 5976 2052 2056 2056

K7(2) 245 81 81 81 K7(4) 11515 4002 4002 4002

K8(2) 448 144 160 144 K8(4) 20224 7104 7110 7108

K9(2) 756 256 256 256 K9(4) 33129 11720 11721 11720

K3(3) 54 16 16 16 K3(5) 885 291 299 291

K4(3) 216 68 80 68 K4(5) 3120 1056 1064 1064

K5(3) 600 196 198 196 K5(5) 8125 2813 2813 2813

K6(3) 1350 450 452 454 K6(5) 17580 6156 6156 6156

K7(3) 2646 900 900 900 K7(5) 33565 11887 11887 11887

K8(3) 4704 1616 1620 1616 K8(5) 58560 20864 20902 20868

K9(3) 7776 2704 2704 2704 K9(5) 95445 34233 34233 34233

The equality has been shown to hold in Theorem 2, for n ≤ 10 [9]. For complete graphs, we
directly apply the strategies of edge distribution on the initial order 0,1,...n-1 (see Table 9).
SLOPE gets optimal or conjectured optimal results every time, while the results of the other
two strategies LEN and CRS are close to or the same as the conjectured optimal ones. The values
for the complete graphs from K5 to K13 were presented by Cimikowski [5] as well. Those with
star are conjectured optimal values, as they are the same as the values from Guy’s conjecture for
standard planar crossing numbers of complete graphs. Therefore, we can conjecture the two-page
crossing number of complete graphs as belows:

Conjecture 1. For any complete graph Kn, ν2(Kn) =
1
4

⌊n

2

⌋ ⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
.

Table 9. Test results on Kn by two-page strategies based on a fixed order

Graphs SLOPE LEN CRS Graphs SLOPE LEN CRS

K4 0 0 0 K17 784* 786 784

K5 1 1 1 K18 1008* 1008 1018

K6 3 3 3 K19 1296* 1296 1296

K7 9 9 9 K20 1620* 1620 1620

K8 18 20 19 K21 2025* 2025 2025

K9 36 38 36 K22 2475* 2475 2475

K10 60 65 62 K23 3025* 3025 3025

K11 100* 100 100 K24 3630* 3630 3630

K12 150* 155 154 K25 4356* 4356 4356

K13 225* 227 225 K26 5148* 5148 5148

K14 315* 315 315 K27 6084* 6084 6084

K15 441* 473 441 K28 7098* 7126 7098

K16 588* 606 588 K29 8281* 8281 8281
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3- or 4-row mesh test

For 3-row meshes, P3 × Pn, we knew the optimal one-page crossing number:

Theorem 3. [7] For any 3-row mesh:
for any odd n ≥ 3: ν1(P3 × Pn) = 2n− 3;
for any even n ≥ 4: ν1(P3 × Pn) = 2n− 4.

Fig. 8(a) and (b) show the Hamiltonian cycles of two 4-row meshes. For all 4-row meshes, we
can get Hamiltonian cycles in this way, and each column added will add 4 crossings, which is
also supported by our experimental results. Therefore, for 4-row meshes, P4 × Pn, we have a
conjecture for the one-page crossing number as below:

Conjecture 2. For any 4-row mesh: ν1(P4 × Pn) = 4n− 8, n ≥ 4.

For a 3- or 4-row mesh, it is easy to construct a Hamiltonian cycle or path to get the optimal
or conjectured optimal one-page drawing in linear time (Fig. 7(a)(b) and Fig. 8(a)(b)).

14

(a) MESH 3*6 (b) MESH 3*5
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Fig. 7. Optimal order for one-page drawing of 3-row meshes
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(a) MESH 4*6 (b) MESH 4*5
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Fig. 8. Conjectured optimal order for one-page drawing of 4-row meshes

We tested 3- or 4-row meshes with the strategies of edge distribution based on these Hamiltonian
Cycles (paths). We also tested a combination of SLOPE followed by either LEN or CRS. Table
10 shows the experimental results. LEN and CRS get 0 crossings for every mesh tested. We show
in Section 5.1 that the two-page crossing number of 3- and 4-row meshes is zero.
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Table 10. two-page crossing number of 3- or 4-row meshes by two-page strategies based on (conjectured) optimal
one-page drawings

Graphs slope len crs slope len slope crs

P3 × P4 1 0 0 0 0

P3 × P5 2 0 0 0 0

P3 × P6 4 0 0 1 0

P3 × P7 7 0 0 2 0

P3 × P8 6 0 0 1 0

P3 × P9 9 0 0 1 0

P4 × P4 2 0 0 0 0

P4 × P5 6 0 0 2 2

P4 × P6 10 0 0 0 0

P4 × P7 12 0 0 4 2

P4 × P8 14 0 0 0 0

P4 × P9 18 0 0 2 2

Cartesian product Cm × Cn test

There is a lot of research about Cartesian product graphs Cm×Cn [1, 8, 20]. There is a natural
drawing of Cm×Cn having (m−2)n crossings, where m ≤ n: draw Pm×Cn with no crossings(the
cycles are taken to be concentric) and then to each path add one edge, crossing m − 2 of the
concentric cycles[1]. Fig. 9 and Fig. 10 present these drawings for C4×C4, C4×C5 and C5×C5.

(a) C4xC4 (b) C4xC5

Fig. 9. A drawing of C4 × C4 and C4 × C5

Recall that a graph is subhamiltonian if it is a subgraph of a planar graph that has a hamiltonian
cycle.

Lemma 1. [3, 23] If a graph is a subhamiltonian planar graph, then the two-page crossing
number of the graph is 0.

Obviously, according to the drawings described above, all Pm × Cn are subhamiltonian planar
graphs. According to Lemma 1, we can conclude:

Theorem 4. for a Pm × Cn graph, ν2(Pm × Cn) = 0.
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(a) Another drawing of C4xC5 (b) C5xC5

Fig. 10. A drawing of C4 × C5 and C5 × C5

In Fig. 9 and Fig. 10, the solid edges form a Hamiltonian cycle or path. For a Cartesian graph
Cm × Cn with m ≤ n, when n is even, we can construct a Hamiltonian cycle as in Fig. 9(a);
When n is odd and m is odd, we can construct a Hamiltonian cycle as in Fig. 10(b); When n is
odd but m is even, we can construct the Hamiltonian cycle as in Fig. 10 (a), but it is not optimal
for our purpose of two-page drawing. In this case, we also can construct a Hamiltonian path as
in Fig. 9(b). So we test Cartesian products Cm ×Cn based on these Hamiltonian cycles (paths)
of each graph. Table. 11 shows the test results, and the data with star indicate the results are
equal to the conjectured optimal values (see Conjecture 3).
Adamson and Richter proved the following theorem about cartesian product graphs in [1]:

Theorem 5. For each integer m ≥ 3, there is an integer N(m) ≤ m(m + 1) such that cr(Cm ×
Cn)=(m-2)n, if n ≥ N(m).

For any drawing D of a graph G in a plane, the number of crossings is greater or equal to
cr(G), the standard crossing number of G. So for a graph G, the two-page crossing number,
ν2(G) ≥ cr(G). Therefore the two-page crossing number of Cm × Cn is at least (m − 2)n.
According to our experimental results, we have Conjecture 3.

Conjecture 3. For the Cartesian product Cm×Cn with 3 ≤ m ≤ n < 9, ν2(Cm × Cn) = (m−2)n.

5 Optimal solutions for 3- or 4-row meshes and Halin graphs

5.1 Optimal Solutions for 3- or 4-row meshes

Clearly, 3- or 4-row meshes are subhamiltonian planar graphs. According to Lemma 1, we have
the following theorems.

Theorem 6. For any 3-row mesh: ν2(P3 × Pn)=0.

Theorem 7. For any 4-row mesh: ν2(P4 × Pn)=0.

Two-page drawing with 0 crossings can be obtained as follows. In Fig. 7 and Fig. 8, the solid
edges form a Hamiltonian cycle (path). For a 3-row mesh, obviously, if we put the broken edges
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Table 11. Two-page crossing number of Cm × Cn by two-page strategies based on the fixed Hamiltonian cy-
cles(paths); the data with star indicate the results are equal to the conjectured optimal values

Graphs slope len crs slope len slope crs Conjectured

C3 × C3 4 3* 4 4 4 3

C3 × C4 4* 4* 4* 4* 4* 4

C3 × C5 8 5* 11 5* 5* 5

C3 × C6 14 6* 6* 10 10 6

C3 × C7 27 15 13 7* 11 7

C3 × C8 24 8* 8* 16 16 8

C3 × C9 37 15 15 11 11 NA

C4 × C4 8* 8* 8* 8* 8* 8

C4 × C5 16 15 15 10* 10* 10

C4 × C6 28 12* 12* 20 20 12

C4 × C7 41 23 19 14* 22 14

C4 × C8 48 16* 16* 32 32 16

C4 × C9 66 27 23 24 28 NA

C5 × C5 22 23 23 15* 15* 15

C5 × C6 44 24 18* 32 32 18

C5 × C7 63 31 34 21* 35 21

C5 × C8 76 32 24* 52 52 24

C5 × C9 100 39 40 41 60 NA

C6 × C6 62 36 24* 46 46 24

C6 × C7 86 41 30 28* 52 28

C6 × C8 108 48 32* 76 76 32

C6 × C9 137 53 38 58 58 NA

C7 × C7 112 41 63 35* 70 35

C7 × C8 144 64 40* 104 104 40

C7 × C9 179 51 73 77 115 NA

C8 × C8 184 48* 48* 136 136 48

C8 × C9 224 57 56 98 98 NA

C9 × C9 274 69 63* 121 186 63

on the first row of the mesh(e(3, 6) and e(9, 12) in Fig. 7) to page 2, then we can get 0 crossings.
For a 4-row mesh, in the same way, if we put the broken edges on the border of the mesh to
page 2, we can get 0 crossings. For example, in Fig. 8(a), we can get 0 crossings by putting
e(4, 8), e(12, 16), e(15, 19) and e(7, 11) to page 2, and in Fig. 8(b), by putting e(4, 8), e(17, 18)
and e(7, 11) to page 2.
So we can get optimal solutions for 3- or 4-row meshes using the method above in linear time.

5.2 Optimal solution for Halin graphs

Halin graphs are edge minimal 3-connected, Hamiltonian, and in general have large numbers of
Hamiltonian cycles[6]. We can find a Hamiltonian cycle in a Halin graph in polynomial time. In
Fig. 11, the solid edges form a Hamiltonian cycle.
We have the following theorem about the two-page crossing number of Halin graphs:

Theorem 8. For a Halin graph H, ν2(H) = 0.
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Fig. 11. Optimal order of a Halin graph

Proof. Every Halin graph is planar. Every Halin graph has a hamiltonian cycle[6], thus every
Halin graph is a subhamiltonian planar graph. According to Lemma 1, for a Halin graph H,
ν2(H) = 0.

We will now give an effective construction for two-page drawings of Halin graphs with no cross-
ings. Given a Halin graph H = T

⋃
C, with l leaves on C, we can cut all c-edges of C from H

to get the tree T . We call a vertex that is not a leaf in T as in-vertex. There is only one path
between any pair of vertices in a tree, so we can get paths between any pair of neighboring leaves
on C. We assume the order of leaves on C as {u0, u1, ..., ul−1}, and denote the path between
ui and ui+1 as P (ui, ui+1). Then V = P (u0, u1)

⋃
P (u1, u2)

⋃
...

⋃
P (ul−2, ul−1)

⋃
P (ul−1, u0),

and there exists a set of independent paths above, which cover all in-vertices and some leaves
that are the ends of the paths, where any two independent paths do not have a common vertex.
A point is a central point of a graph if the eccentricity of the point equals the graph radius.
Assuming a central point of a tree is the root of the tree (vertex 4 in Figure 11), we can get an
embedding with no crossings for a Halin graph by the following steps (initially all edges are in
page 1).

– 1. Calculate all paths of neighbouring leaves on C, P (u0, u1), P (u1, u2), ..., P (ul−2, ul−1),
and P (ul−1, u0).

– 2. Find the longest path P (ui, ui+1)=ui, v0, v1, ..., vni−1, ui+1 that passes through the root of
T .

– 3. Remove all vertices on the path from T . This will separate the tree into several subtrees.
The root of each subtree is the vertex that connects to an in-vertex on the removed path. A
subtree includes at least one in-vertex and two or more leaves unless the root of the subtree
is just a leaf.

– 4. For all subtrees that are not a single leaf, repeat step 2, 3.
– 5. For all independent paths found, replace the c-edge (ui, ui+1) with P (ui, ui+1) on C,

namely, insert the v0, v1, ..., vni−1 between ui and ui+1 on C to form a Hamiltonian cycle(see
Fig. 12).



21

– 6. Put the replaced c-edges to page 2.

Proof. There are three possible types of intersecting edge pairs: pair of t-edges, pair of c-edges,
and t-edge with c-edge. However,

– During the procedure above, the order of leaves on C is not changed, so any pair of c-edges
do not intersect.

– According to the construction of the Hamiltonian cycle, each path comes from a separated
subtree, the root of which is connected to a path found previously. In other words, all in-
vertices on an independent path connect with at most one in-vertex on another path i.e. there
is at most one edge to connect two independent paths. Furthermore, the inserted in-vertices
on an independent path are kept in the order of paths, so any pair of t-edges do not intersect.

– the replaced c-edges are put to page 2, so no c-edge intersects with t-edges.

Therefore, we can get an embedding with no crossings for a Halin graph with this method.

i

c−edge t−edge

u u v u u
i+2i+1ni−1

v
1

v
0i−1

Fig. 12. A path on the Hamilton cycle of a Halin graph

6 Conclusion

For an arbitrary graph, two-page algorithms based on a good one-page algorithm are very useful.
From our experiments, the two-page crossing number is not only related to the one-page drawing,
but also related to the edge distribution. We investigated combining two possible one-page
drawing algorithms (AVSDF+ from [10] and BB+ from [2]) with various strategies for edge
assignment according to slope (SLOPE), edge length (LEN) and crossing number (CRS). For
Rome graphs, AVSDF+ CRS and BB+ CRS get best results. For RCGs, BB+ CRS gets best
results. For Halin graphs and Cartesian graphs, Cm × Cn, AVSDF+ CRS gets best results. For
circulant graphs, Ckn(1, n), BB+ LEN and BB+ CRS get best results.
Based on a fixed optimal order of vertices, for circulant graphs LEN and CRS get best results,
and for complete graphs and complete p-partite graph, SLOPE gets best results. AVSDF EP
and SLOPE are overshadowed by the LEN strategy and the CRS strategy for most graphs.
Different two-page preprocessing steps make the two-page strategies have different effects on solu-
tions. Based on AVSDF EP, algorithm LEN achieved much greater improvement to the results of
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AVSDF EP than algorithm CRS for RND BUP graphs. In contrast, based on AVSDF+ SLOPE,
algorithm CRS achieve greater improvement to results of AVSDF+ SLOPE than algorithm
LEN on the same RND BUP graphs. For the two-page strategy LEN, the best preprocessing is
AVSDF EP, while for two-page strategy CRS, the best preprocessing is the one-page algorithm
AVSDF+ without two-page preprocessing.
For RCGs with different densities, AVSDF+ SLOPE achieves better results than BB+ SLOPE,
and the results by them become closer with the rise of density. No matter whether AVSDF+ or
BB+ algorithm precedes the two-page algorithms and what density graphs are tested, CRS gets
slightly better results than LEN does and both are significantly better than SLOPE.
With our two-page strategies based on a one-page algorithm, the best results of some circulant
graphs are even better than the optimal values based on fixed orders of vertices obtained in [5].
We present some test results for complete p-partite graphs, complete graphs, 3-row meshes, 4-
row meshes and cartesian graphs, from which we present some theorems and conjectures. The
conjectures are supported by our experiments. We also present direct methods to get optimal
solutions for 3-row meshes, 4-row meshes and Halin graphs.
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