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Abstract

Genetic algorithms have been applied to solve the 2-page crossing number problem
successfully, but since they work with one global population, the search time and
space are limited. Parallelisation provides an attractive prospect to improve the ef-
ficiency and solution quality of genetic algorithms. This paper investigates the com-
plexity of parallel genetic algorithms (PGAs) based on two evaluation measures:
Computation-time to Communication-time and Population-size to Chromosome-
size. Moreover, the paper unifies the framework of PGA models with the function
PGA(subpopulation size, cluster size, migration period, topology), and explores
the performance of PGAs for the 2-page crossing number problem.

Key words: 2-page crossing number, Parallel genetic algorithms, Evaluation
measures.

1 Introduction

The simplest graph drawing method is that of putting the vertices of a graph
on a line and drawing the edges as half-circles. Such drawings are called book
drawings, and they correspond to the linear VLSI design. Edge crossing min-
imisation is the main goal in the linear VLSI design, since smaller number of
crossings means cheaper design. The minimal number of edge crossings over
all book drawings of a graph is called the book crossing number (29).
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In the 2-page book drawing one places the vertices of a graph G along a line
called spine and every edge is completely drawn in one of two pages. The
smallest number of crossings over all 2-page drawings of G is called the 2-
page crossing number of G, denoted by ν2(G). Figure 1 shows sample 2-page
drawings of K6, for which ν2(G) = 3, with five (Fig. 1 (a)) and three crossings
(Fig. 1 (b)). Equivalently, the vertices can be put on a circle and the edges
can be drawn as straight lines coloured by two colours. The 2-page crossing
number is the same as the minimal number of crossings of edges with the same
colour. The problem is NP-hard (26). In contrast, the book thickness problem
is to minimise the number of pages used so that edges embedded on the same
page do not intersect.

(a) Five crossings (b) Three crossings

Fig. 1. 2-page drawings of K6 with five and three crossings.

Genetic algorithms (GAs) have proved to be good global optimizers for a
broad range of optimisation problems, and they have been used successfully
for drawing graphs (3; 14; 22; 28). Moreover, Kapoor et al. presented a genetic
algorithm for the book thickness problem in (25).
Cimikowski (9) tested eight different heuristic algorithms where the order of
vertices was determined by finding a Hamiltonian cycle. Hence, contrary to our
genetic algorithm, in his tests the order of vertices was always fixed. Recently,
Winterbach (33) proposed heuristics for the 2-page crossing numbers and ap-
plied them to estimating the plane crossing number of some small complete
multipartite graphs. A tabu algorithm was used to produce a good arrange-
ment of vertices, and then either GreedySide algorithm or the neural network
of Cimikowski and Shope (10) was used to find a good distribution of edges.
Our genetic algorithm finds a good vertex order and edge distribution directly,
and we got the same results for the complete multipartite graphs tested by
Winterbach, except for a single graph (22).
Parallelisation can significantly improve the performance of genetic algorithms
(1; 2; 15; 16; 17), and parallel genetic algorithms are easy to implement (5).
One of the most popular tools for parallel computing is Message Passing In-
terface (MPI) (34), which provides flexible Cartesian virtual topologies of pro-
cessors.
In this paper we analyse the complexity of three basic models of parallel ge-
netic algorithms: master-slave, fine-grained, and coarse-grained models. We
also examine the effect of different topologies and parameters on the per-
formance of PGAs by testing them on the benchmark graph library (Rome
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graphs (35)) and on a special kind of graphs (Xtrees), when solving the 2-page
crossing problem.

2 Sequential genetic algorithm solving the 2-page crossing problem

We have described sequential genetic algorithms (SGA) for the 2-page crossing
problem in (22). The first population of solutions is generated randomly. Fit-
ness, as a measure of quality of solutions, is used to select the better solutions
from the current population. The selected solutions undergo the operations of
crossover and mutation in order to create a population of new solutions (the
offspring population). The process is repeated until the termination criteria
given by the user are met.
One of the most important issues is to abstract the characteristics of the
problem to make the problem well-fitted for the genetic approach. According to
the 2-page crossing number problem, we have defined the four most important
aspects of genetic algorithms as described below.

2.1 Chromosome

The crux of 2-page drawing is to find an order of the vertices and a distri-
bution of the edges minimising the number of edge crossings. Thus, for an
n-vertex, m-edge graph, a chromosome should include two parts, a permuta-
tion of all vertices, π = (v0, v1, . . . , vn−1), and a string, S = (b0, b1, . . . , bm−1),
where bi ∈ {1, 2}. Each element of S corresponds to an edge, and bi = 1 in-
dicates that the corresponding edge is in page 1, and bi = 2 indicates that
the corresponding edge is in page 2. As an example, consider a graph with
6 vertices and the sorted list ((v0, v2), (v0, v4), (v0, v5), (v1, v2), (v1, v4), (v2, v3),
(v2, v5), (v3, v5), (v4, v5)) of edges. Now, a random individual is described as π =
(v3, v0, v2, v4, v5, v1), and S = (1, 1, 1, 2, 2, 2, 1, 1, 2). Fig. 2 shows the 2-page
book drawing corresponding to this individual. If we consider κ page drawings,
it is easy to extend our genetic algorithms by setting bi ∈ {1, 2, . . . , κ}. It is
also applicable with small modifications for the book thickness problem.

0

0 v2v3 v4 v1v5

4 52 31

v

Fig. 2. The 2-page drawing of a random graph corresponding to an random individ-
ual.
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2.2 The fitness function

The quality of solutions is evaluated by fitness functions. Our goal is to
minimise the 2-page crossing number. Therefore, we directly define the fit-
ness as the 2-page crossing number ν2. The fitness function, f(π, S), depends
on the vertex order, π, and the edge distribution, S. We use a table, adj,
as an adjacent matrix in the current drawing D(π, S) of G. If an element
of S, which corresponds to an edge e(u, v), has the value x (i.e., the edge
e(u, v) is drawn in page x, with x ∈ {1, . . . , κ}), the vertex u is in position
i, and the vertex v in position j in the current permutation π, then we set
adj[i][j] = adj[j][i] = x. If there is no edge between the vertices in positions
i and j, we set adj[i][j] = adj[j][i] = 0. We can calculate in time O(n2) the
number of crossings in a κ-page drawing of G with the following formula (24):

νκ(G) =
n−4∑

i=0

n−2∑

j=i+2

j−1∑

k=i+1

n−1∑

l=j+1

adj[i][j]
⊙

adj[k][l], (1)

where

adj[i][j]
⊙

adj[k][l] =





1 if adj[i][k] = adj[j][l] 6= 0;

0 if otherwise.
(2)

For the 2-page drawing in Fig. 2, we have the adjacency matrix

adj =




0 0 2 0 1 0

0 0 1 1 1 0

2 1 0 0 1 2

0 1 0 0 2 2

1 1 1 2 0 0

0 0 2 2 0 0




,

and the 2-page crossing number is 1.

2.3 The genetic operators

2.3.1 Selection
Various selection schemes can be used so that sufficiently good individuals are
picked for mating (and subsequent crossover). One of the simplest scheme is
to select the best individual in each generation. All individuals will crossover
with the best solution, and the better one of the two children generated will
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be kept. We call this the best-select criterion. The running time is O(%), where
% is the size of population.
Another common selection scheme is roulette-wheel. A probability, prob, is
used to decide the selection operator, and the probability of each individual
in the current population is inversely proportional to the square of the fitness
value. The smaller the crossing number is, the larger the probability. The
probability can be calculated by the following formula, where Di is the drawing
corresponding to the i-th individual in the population:

prob(Di) =

1
ν2
2 (Di)+1∑%−1

k=0
1

ν2
2 (Dk)+1

× 100%. (3)

When a random number is located in the probability range of a chromosome,
the chromosome will be selected. The select operator is similar with the one
used by He et al. (21) for the outerplanar drawing problem. The running time
is O(%).

2.3.2 Crossover
The purpose of crossover is to create new solutions by combining current so-
lutions that have shown to be good temporary solutions. Depending on the
presentation of chromosomes, different crossover operators are used. For the
2-page crossing number problem, the chromosome includes two parts, per-
mutation of vertices and distribution of edges, and the crossover will act on
both parts. In the implementation, we use two circular queues to maintain
the permutation and edge distribution, respectively, so that the variation of
permutation and edge distribution by crossover operators is double compared
to the case of using normal queues.
For the crossover on permutation we use Order Crossover (OX) (27) (Fig. 3):
two parental permutations, π1 and π2, are chosen randomly depending on the
probability of being chosen. A continuous interval of the permutation π1 is
chosen, and also an interval starting at the same position and of the same
length from π2. Two new permutations, π′1 and π′2, are created such that π′1
contains the interval from π2 with the rest being the other elements of π1 in
the same order as they were in π1. π′2 contains the interval from π1 with the
rest being the other elements of π2 in the same order as they were in π2. (21).
The running time of crossover(π1,π2) is O(n).
For the crossover on page distribution of edges we use Multi-Point Crossover
(MPX) (27) on two parental strings, s1 and s2. A continuous interval of the
string s1 and an interval starting at the same position and length from s2 are
chosen. Two parents, s1 and s2, swap the two selected intervals to get two new
distributions of edges, s1’ and s2’. The running time is O(m).
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π

π

π

’

’

2 6 5 1 7 3 4 0

1 5 7 0 4 2 3 6

6 5 7 0 4 2 1 3

0

2

5 1 7 3 2 6

start=2
length=4

4

1

1

2

Fig. 3. An example of the crossover operation

2.3.3 Mutation
After crossover operation, the step of mutation is executed. The mutation is
done randomly with some probability on each child in the population. Good
results are achieved when the probability of mutation is 40%. The mutation
operator acts on both parts of the chromosome, π and S. On π, the mutation
is the swap of two randomly picked elements in a permutation. On S, the mu-
tation is the change of a randomly picked element in a string, which indicates
that the corresponding edge is changed to the opposite page from its current
page. The running time is O(1). Finally, the so far best individual found will
replace the worst one in the new generation.

2.4 The termination criteria

The termination criteria are important parameters, which greatly affect the
running time and the final crossing number of the algorithm. For the 2-page
crossing number problem, they are usually related to the number of edges or
the number of vertices. There are two termination criteria.
One is that the GA process will be terminated when the chance of improvement
is close to 0 (22). The evolution procedure will be repeated until the best
solution shows no further improvement up to a before-hand defined number
due of generations or the minimal crossing number is 0. If due is large, the
evolution will run for a long time, but might get better solutions. The due
parameter is fixed for a graph, but the exact number of generations is not
only related to evolution procedure, but also to the randomness of evolution
in each run. Our preliminary tests showed that a suitable definition for due is
due = min{3n + 3m + 100, 300}.
The other termination criterion is to define a maximal number of evolution
generations. For our problem, the problem size is considered as a factor to
affect the maximal number of generations maxgn. Based on our preliminary
tests, we define maxgn = min{20(n + m) + 100, 3000}. In this way, the ter-
mination criterion is only related to the problem size, not to the randomness
of solutions in each run.
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3 Parallelisation of genetic algorithms

Genetic algorithms are good candidates for effective parallelisation, given their
inspiring principle of evolving in parallel a population of individuals (13).
There are three basic types of parallel genetic algorithms (4; 5; 6; 8; 13): (1)
global single-population master-slave GAs, (2) single-population fine-grained,
and (3) multi-population coarse-grained GAs (also known as "island" PGAs).

3.1 Master-slave model

Usually in the master-slave (MS) model, the master takes charge of select,
crossover, and mutation operations, while the slaves do the evaluation for the
individuals. In our implementation, the MS model has changed so that the
master only performs the select operation. All other operations, including the
fitness calculation, are done on slaves. The procedure is repeated until the
termination criterion is met. Independently from machine architecture, the
main problem for the MS model is that all processors work synchronously in
each generation. Each slave processor holds one individual of the population.
Thus, a large number of processors is needed and required to be synchronised
with the master processor.

Slave

n−121

Master

Crossover

Mutation

Fitness

Selection

Slave Slave Slave 

0

Fig. 4. Master-Slave Model

3.2 Fine-grained model

Fine-grained (FG) PGAs have only one population, but it has a special struc-
ture that limits the interactions between individuals. As in the master-slave
model, also the FG model has the property that each processor holds one in-
dividual of the population. An individual can only compete and mate with its
neighbours. If we describe the computation on each cell with an automaton,
each cell has three states. The states of all cells are updated according to a
local rule, called a transition function, which replaces the selection operator
in the sequential genetic algorithm (Fig. 5):
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• State 1: Randomly generate a chromosome, permutation (ordering of ver-
tices) and string (distribution of edges), and calculate the fitness value of
each individual.

• State 2: Get the best neighbour after the transition function is run.
• State 3: Get two offsprings after applying crossover between the current

chromosome and the best neighbour. Then the mutation operator, with
probability pm, is applied to the two offsprings, of which, the fitter one is
used to update the current chromosome (state 1 is updated).

Initial
21

3

function
transition

crossover
mutation

40%

60%

Fig. 5. Automaton of each cell

The state of the entire automaton is evolved step by step. The global behaviour
of the system is determined by the evolution of the states of all the cells as a
result of multiple interactions. Since the neighbours overlap, a good individual
can flow and spread like a migration to neighbours of the cell (4). So a good
solution can diffuse rapidly through the whole population. This approach has
the advantage of fast convergence, and reducing the number of iterations and
the execution time. However, a large population size indicates that there is a
need of more hardware resources, as the cluster size is given by M = %.
In the implementation of the FG model, we use a local hill-climbing strategy
as in ASPARAGOS (19; 20): after the chromosome has not been improved for
N generations, a new random chromosome takes effect at the beginning of the
next iteration.

3.3 Coarse-grained model

In the coarse-grained model, several isolated subpopulations (of size k > 1)
evolve in parallel and an SGA works on each processor. Periodically, the best
individuals of each subpopulation migrate to the neighbouring subpopulations
(Fig. 6). If the best neighbour received by an island is better than the best
local solution, then the island will replace the best local solution with the best
neighbour. Otherwise, if the best neighbour is better than the worst individual
in the subpopulation, then the island will replace the worst individual with
the best neighbour. We denote the coarse-grained model as ISLAND.
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Island C

Processor 3

Subpopulation

Communication

Island B

Subpopulation

Processor 2

Processor 4

Subpopulation

Island D

Island A

Subpopulation

Processor1

Fig. 6. ISLAND Model

4 Time complexity of PGAs

There are two major factors that determine the performance of PGAs, the
chromosome size (ς) and the population size (%). In the 2-page crossing number
problem the chromosome size depends on the size of the input graph, and
it directly affects the running time of genetic operators, such as crossover,
mutation, and fitness calculation.
In SGAs, a small population size indicates that the variation of chromosomes is
small in each generation, and search time is short, but it may lead to premature
convergence of solutions. A large population size indicates that the variation
of chromosomes is large, and the search time is longer, but it may get better
solutions. Therefore, the population size directly affects the final solution and
running time.
The Population size-to-Chromosome size ratio (PTC = %

ς
) is an important

factor that affects the quality of solution. Usually, a small PTC indicates that
each generation explores a small space relative to the whole space. Conversely
a large PTC indicates that each generation explores a large space related to
the whole space, so there is a large chance to get a better solution.
The running time of each generation in PGAs can be divided into computation
time tcomp and communication tcomm. For evaluating performance of PGAs, the
Computation-to-Communication ratio CTC = tcomp

tcomm
plays an important role

(12).

4.1 MS model

Since each slave processor holds a single individual, the number of processors
needed is one more than the size of the population. The population size af-
fects the running time significantly, as the master must work with the slaves
synchronously, and all the slaves will communicate with the master in each
generation. We denote the number of processors (the cluster size) as M , and
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the time for one cycle of receiving and sending a chromosome as tcycle.
The communication time tcycle for each generation is the time needed for send-
ing a chromosome to a slave and, after processing it, back to the master. Of
course, the processing time is excluded from tcycle. The communication time
is affected not only by the chromosome size, but also by the network traf-
fic and speed. However, we assume that the local network speed is constant.
Then tcycle is directly proportional to the size of data transmitted, i.e., the
chromosome size, and we have tcomm = O(M(n + m)).
The computation time in each generation is tcomp = tcrossover + tmutation +
tfitness + tselect. The first three items are related to the chromosome size, while
the last item is related to the population size.

4.2 FG model

For the FG model, the communication time of each generation on each cell is
given by tcomm = l× tcycle, where l is the number of neighbours and and tcycle

is the time for one cycle of receiving and sending a chromosome. The number
of neighbours depends on the topology of the cluster, while tcycle depends on
the chromosome size and the network speed. Again, the computation time is
given by tcomp = tcrossover + tmutation + tfitness + tselect, where the first three
items depend on the chromosome size, and the last item tselect is related to the
number of neighbours. The difference of running time of the FG model with
different topologies results mainly from tcomm, which is O(l(m + n)), where l
is the number of neighbours of current cell in the cluster topology.

4.3 ISLAND model

For the ISLAND model, the migration of individuals from one island (also
called a deme) to another is controlled by several parameters: (a) the topology
that defines the connections between the subpopulations, (b) the migration
rate that controls how many individuals migrate, and (c) the migration interval
that affects the frequency of migrations (4). We investigate the effect of the
(migration period) L on the performance of the ISLAND model with different
topologies on fixed migration rate (100%). The migration period, after which
each island transfers the best local solution to its neighbours, defines the speed
at which a good solution will spread through the whole population. Therefore
it affects the convergence of PGAs.
The computation time is given by tcomp = tcrossover + tmutation + tselect + tfitness,
where tcrossover and tmutation are related to the chromosome size, while tselect
is related to the size of subpopulation, k. The communication time of each
generation tcomm is O(l(n + m)/L). As in the FG model, a good solution can
cross through the whole population.
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4.4 Comparison of the three models

Table 1 shows the components of computation time in each generation for
each model. The computation time is the sum of the evaluation time and the
genetic operation time. The numbers of edges and vertices in a graph always
fulfill the condition m < n2. For the FG model, the number of neighbours is
less than the cluster size M , and usually l < n. Therefore, we can write tcomp

and tcomm for each model as shown in Table 2.
Table 1
Computation time of each generation on each processor for SGA and PGAs

fitness crossover mutate select

SGA O(%n2) O(%(n + m)) O(%) O(%)

MS O(n2) O(n + m) O(1) O(M)

FG O(n2) O(n + m) O(1) O(l)

ISLAND O(kn2) O(k(n + m)) O(k) O(k)

Table 2
Computation time and communication time in each generation on each processor
for SGA and PGAs

tcomp tcomm

SGA O(%n2) 0

MS O(n2 + M) O(Mn2)

FG O(n2) O(ln2)

ISLAND O(kn2) O(ln2/L)

From Table 2 we get the parameters CTC and PTC as shown in Table 3.
Usually the MS model retains the behavior of SGA (4), while the ISLAND
and FG models do not. If the FG and ISLAND models use the same topology,
then tcomp(ISLAND) = ktcomp(FG), while tcomm(ISLAND) = tcomm(FG)/L.
Since each deme of the ISLAND model communicates with other demes in
the period of L generations, we have tcomm(ISLAND) ≤ tcomm(MS)/L, and
tcomp(ISLAND) = ktcomp(MS). Actually, the FG model can be viewed as a
special case of the ISLAND model with subpopulation size k = 1 and migra-
tion period L = 1.
As Table 3 shows, the ISLAND model has bigger PTC than the other models.
Theoretically, this should mean that the ISLAND model explores a larger
portion if the search space than the other models. For any reasonable choose
of the topology, the ISLAND model has also bigger CTC than the other
models.

5 Different topologies for the implementation of PGAs

The topology is an important factor affecting the performance of the PGAs
because it determines how fast a good solution disseminates to other demes
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Table 3
CTC and PTC for SGA and PGAs

CTC PTC

SGA - %
ς

MS O(n2+M
Mn2 ) M

ς

FG O( 1
l
) M

ς

ISLAND O( kL
l

) kM
ς

(4). If the topology has a dense connectivity (or a short diameter, or both)
good solutions will spread rapidly to all the demes and may quickly take over
the population. On the other hand, if the topology is sparsely connected (or
has a large diameter), solutions will spread slower and the demes will be more
isolated from each other, permitting the appearance of different solutions.
Different solutions may come together at a later time and recombine to form
better individuals. The communication topology is also a major factor in the
cost of migration. A densely connected topology may promote a better mixing
of individuals, but it also entails higher communication costs.

5.1 Linear topology

The simplest topology is the one-dimensional linear (ring) topology, which is
the default topology in MPI, abbreviated as Linear. Gordon and Whitley (18)
implemented a multi-deme PGA with ring topology. In this topology, each
processor receives information from its left neighbour and sends information
to its right neighbour. We use the rank of a processor to denote the current
processor.

5.2 Grid topology

MPI provides two types of Cartesian topologies: Cartesian grid and random
graph. It is common to use a 2-dimensional grid topology in fine-grained PGAs,
because in many massive parallel computers the processing elements are con-
nected with this topology (4). Cantú-Paz and Mejía-Olver considered the 4×4
toroidal mesh in (7). In the 4x4 toroidal mesh topology (7), each processor can
communicate with all its neighbours. For example, if the grid is z×z, the neigh-
bours of processor Γ(i, j) are nebup = Γ(i, (j−1) mod z), nebdown = Γ(i, (j+1)
mod z), nebleft = Γ((i− 1) mod z, j), and nebright = Γ((i+1) mod z, j). Each
processor receives information from its neighbours, and gets the best individ-
ual from four neighbours. We denote the 2D toroidal mesh as Grid.

5.3 Graph topology

The other Cartesian topology supported by MPI is the random connected
graph topology abbreviated as Graph. Each island is mapped to a vertex of
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the virtual graph Gtop. All neighbours of a processor are the virtual vertices
which are connected to the virtual vertex mapped to the island. If the degree
of a virtual vertex in Gtop is d, then the island mapped to the virtual vertex
will communicate with d neighbours. There has been a lot of research on PGAs
with dense structural topologies, such as hypercubes (11; 31; 32), 4×4 toroidal
mesh (7), and bidirectional rings. However, we use a random biconnected
graph.

5.4 A novel ISLAND model

A novel implementation of the ISLAND model was presented in (23): each
island runs a sequential genetic algorithm, and periodically, island 0 will collect
the best local solutions of all islands, find out the best global solution, and
send it to all islands. Each island replaces the best local solution with the best
global solution. We denote the new model as ISLAND-PS. Two MPI functions,
MPI_Gather and MPI_Bcast make the implementation quite easy. Actually,
the novel ISLAND model is a special case of the ISLAND model with the
equivalent complete graph topology with M vertices, but we do not really
set the topology with the virtual complete graph. Algorithm 1 sketches the
implementation of the ISLAND-PS model, where L is the migration period,
k is the size of subpopulation, subpop is used to store a subpopulation, G is
the graph to be tested, and lBests is an array on island 0 of M chromosomes,
which is used for storing the best local solution from each island periodically.

Algorithm 1 island_ps(G)
1: MPI_Bcast(G) from rank 0;
2: Initialisation(maxgn, L, k, subpop);
3: gn = 0;
4: while (gn < maxgn) do
5: run operators of SGA;
6: if (gn mod L =0) then
7: MPI_Gather(localbest) to lBests of rank 0;
8: gBest=getGlobalBest(lBests) on rank 0;
9: MPI_Bcast(gBest) to localbest of each island;
10: end if
11: gn = gn + 1;
12: end while

6 A unified formalisation of PGAs

A large number of parameters can affect the performance of PGAs. In this
paper, we consider the following four factors: subpopulation size (k), cluster
size (M), migration period (L), and topology (Gtop), which fix the framework
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of basic PGA models. If we formalise an island model of PGAs with the
function PGA(k,M, L, Gtop), then the models can be viewed as special cases
of the ISLAND model (see Table 4).
ISLAND-PS is synchronized periodically by collecting the best local solution
of each island and broadcasting the best global solution to all islands. So,
ISLAND-PS can be viewed as the ISLAND model with topology KM (the
complete graph with M vertices).
In the FG model, each cell can be viewed as an island in the ISLAND model
with subpopulation size k = 1 and migration period L = 1.
The MS model is synchronized in each generation. If the master runs the best-
select operation described in Section 2.3, the MS model is equivalent to the
FG model with topology KM . However, if the master runs the select operator
"roulette-wheel", the MS model is equivalent to the FG model with a dynamic
topology (Gdyn) depending on the roulette-wheel selection, although all cells
of the MS model are synchronized in each generation. SGA can be viewed as
the ISLAND model on one processor without migration and topology.

Table 4
Formalization of different models of PGAs

Model Formula

ISLAND PGA(k, M, L, Gtop)

ISLAND-PS PGA(k, M, L, KM )

FG PGA(1, M, 1, Gtop)

MS PGA(1, M, 1, KM ) or PGA(1, M, 1, Gdyn)

SGA PGA(k, 1, null, null)

7 Experimental results

Our test platform is a SGI Altix 350 parallel machine, which offers global
shared memory in configurations of 32 Intel Itanium 2 microprocessors with
1.5GHz and 1.6GHz, based on the 64-bit Linux operating system and 384GB
of memory. At startup we broadcast the graph tested to all processors. Then
every processor runs in its own RAM. Therefore, our parallel programs are as
independent as possible from the architecture of the parallel machine. We use
the model of the SGA described in Section 2, which obtains good performance
and the running time does not fluctuate randomly (22). Moreover, we use the
same crossover rate (100%) and mutation rate (40%) as in (22). To observe
the effect of the four basic parameters in the function described in Section 6,
we performed experiments by adjusting these parameters on the following test
suites:
(1) RND_BUP, a subset of Rome graphs (35), is a set of random biconnected

undirected planar graphs. It includes 10 groups of graphs, for which the
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vertex number ranges from 10 to 100, and each group has 20 different
graphs with the same vertex number. The experimental results and run-
ning times are the average values of 20 graphs in each group.

(2) An Xtree consists of a complete binary tree, in which the vertices of
each level are connected in turn. An Xtree with h levels is denoted by
Xt(h). We use Xtrees for testing the effect of different parameters on the
performance of PGAs, as it has a special feature – the graph size will be
doubled when the level is increased by 1. Thus, the effect of parameters
will be distinct. The data are averages of 10 tests for each graph.

7.1 Tests of three models on RND_BUP

To examine the performance of three parallel models, ISLAND, FG, and MS,
our experiments were done on a fixed PTC. Namely, for the same graph, all
models ran on approximately the same population size. We used the second
termination criterion described in Section 2.4, so that the number of evolu-
tion generations was not related to the randomness of solutions in each run of
PGAs, but only related to the chromosome size. This means that the number
of evolution generations of the three PGA models is the same for each graph.
Moreover, for the MS model, all slaves are synchronous with the master. Our
preliminary experiments showed that the MS model reached premature con-
vergence, when we used the best-select criterion described in Section 2.3, and
moreover, that the “roulette-wheel” was better than the “best-select” for the
MS model. Therefore, in the implementation of the MS model, we used the
roulette-wheel select criterion. The FG and ISLANDmodels were implemented
with a linear topology, and the size of subpopulation of the ISLAND model
was four. Table 5 lists the conditions of all tests.

Table 5
Test conditions of the three PGA models

Model M k % L Select Topology

MS 16 1 15 1 roulette-wheel NA

FG 16 1 16 1 best-select Linear

ISLAND 4 4 16 50 best-select Linear

Fig. 7 shows that the ISLAND model achieves the best results, although the
running time is longer than that of the other models. When the chromosome
size is smaller, the MS model gets slightly better results than the FG model.
The MS and FG models have nearly the same running time. The running time
is mainly determined by tcomp rather than tcomm, as we use SGI Altix shared
memory parallel machine. Fig. 7 also indicates that the ISLAND model can
improve the solution when having the same PTC as the MS and FG models.

15



0

10

20

30

40

50

60

70

80

90

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

|V|

v 2

MS
FG
ISLAND

(a) Crossing numbers

0

5

10

15

20

25

30

35

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

|V|

T(ms)

MS
FG
ISLAND

(b) Running times

Fig. 7. Test of three basic PGA models on RND_BUP

7.2 Tests with different topologies on RND_BUP

To examine the effects of topologies on the performance of PGAs, we tested
Linear, Grid and Graph topologies. A random biconnected graph with the
same edge density as the grid with the same vertex number was used for the
graph topology in the implementation of PGAs.

7.2.1 Tests of FG models with different topologies

First, we tested the effect of different topologies on the performance of the
FG models. Our experiments were done on a fixed size cluster (M = 16),
which means that the population size was fixed to be 16. Fig. 8 (a) and (b)
show the crossing numbers and running times obtained by the FG-Linear,
FG-Grid and FG-Graph models, respectively. The FG-Linear achieved the
best performance both in results and running times. FG-Graph is slightly
worse than FG-Linear, but the running time of FG-Graph was the worst of
the three topologies. FG-Grid got the worst results, but it had almost the
same running time as FG-Linear.
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Fig. 8. Crossing number and Running time of FG models with different topologies
on RND_BUP

7.2.2 Tests of ISLAND models with different topologies

We tested the ISLAND models, including the ISLAND-PS, on RND_BUP to
examine the effects of topologies. Our experiments were done on a fixed size
cluster (M = 9) and a fixed size subpopulation (k = 8). The migration period
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was fixed to be 50. Fig. 9 shows the results and the running times. Obviously,
this case differs from the FG tests. We cannot say which topology obtains the
best performance. The running times for different topologies are about the
same, because the migration is done once per migration period. Consequently,
the average cost of communication in each generation for different topologies
is nearly the same. The cases for ISLAND-Linear and ISLAND-Graph are
similar with the cases for FG-Linear and FG-Graph. However, ISLAND-Grid
differs from FG-Grid. When the chromosome size was smaller, ISLAND-Grid
obtained almost the same crossing numbers as ISLAND-Graph, but when the
vertex number was larger than 80, the results became much worse than the
one of ISLAND-Graph. ISLAND-PS is the most variable one, some time it got
the best result (e.g. when vertex number is 70), some time it shuttled between
the other three models. When |V | = 100, ISLAND-Graph has results similar
to ISLAND-Linear, and ISLAND-Grid has results similar to ISLAND-PS.
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Fig. 9. Crossing numbers and running times of ISLAND models with different topolo-
gies on RND_BUP

7.3 Tests of ISLAND PGAs with different population size on Xtree

There are two ways to increase the population size. When the cluster size
is limited, we can increase the subpopulation size. However, if we increase
the subpopulation size too much, the running times for large graphs become
intolerable. An alternative way to enlarge the population size is to keep the
subpopulation size fixed while increasing the cluster size.

7.3.1 Different subpopulation sizes on fixed machine size

To examine the effect of subpopulation size, we tested the ISLAND-PS model
with subpopulation sizes k = 4, 8, 16 on 16 processors, for Xt(6) and Xt(7).
Fig. 10 shows the crossing numbers. The results become better with the rise
of subpopulation size for each migration period.

7.3.2 Different cluster size on fixed subpopulation size

To examine the effects of the different cluster sizes, we tested the ISLAND-
Graph and ISLAND-Grid models with fixed subpopulation size (k = 8) on
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Fig. 10. Crossing numbers when testing ISLAND-PS on Xt(6) and Xt(7) for a range
of subpopulation size k and migration period L

different cluster sizes (4, 8, 16) for a group of graphs Xt(6), Xt(7), and Xt(8).
Fig.11 (a) and Fig. 12 (a) show the results become better with the increase
of cluster size. However, the running time of each generation for both the
ISLAND-Graph and ISLAND-Grid models on a fixed graph tested decreases
with the rise of cluster size (Fig.11 (b) and Fig. 12 (b)). The reduction is more
distinct when a larger graph is tested. However, regardless of the architecture
of the parallel machine, the running time should not change, except for some
fluctuation caused by network traffic.
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Fig. 11. Average values of 10 tests with the ISLAND-Graph model on different cluster
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Fig. 12. Average values of 10 tests with the ISLAND-Grid model on different cluster
size
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7.4 Different migration periods

To examine the effect of the migration period on convergence, we tested the
ISLAND-PS model with different migration periods, L = 50, 100, and 200 on
16 processors for Xt(6) and Xt(7). The best results were obtained when the
migration period L was 50, as shown in Fig. 10. The results become worse
with the rise of the migration period. There exists a value of k for which
the difference of the results caused by the migration period is not significant.
Figure 8(a) shows such a point for Xt(6), when k = 8, and Figure 8(b) for
Xt(7), when k = 16. Fig. 13 shows the effect of migration period by testing
the four island models with a fixed subpopulation size k = 8 on 16 processors
with different topologies for a range of migration periods, L = 50, 100, and 200
on Xt(8). For all models, similarly with the results of ISLAND-PS on Xt(6)
and Xt(7), the results are the best when L = 50. For any L, ISLAND-Graph
gets the best results with ISLAND-PS following close behind. The results of
ISLAND-Linear and ISLAND-Grid are very similar to each other, and worse
than the other two.
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Fig. 13. Crossing numbers of Xt(8) by four ISLAND models with different topologies
for different migration periods

7.5 A test of speedup

The most important goal of parallelising a sequential algorithm is to speed
it up. The speedup can be defined as speedup = T (SGA)

T (PGA)
. However, this may

be unsuitable because of different hardware platforms. So, usually we express
the speedup as the ratio of the expected running time for one processor to
that for M parallel processors (speedup = T (1processor)

T (Mprocessors)
) (30). For a stochastic

algorithm there is an inherent difficulty (30).However, as we use the second
termination criterion described in Section 2.4 to guarantee the same number
of generations for each tested graph. Namely, we fix the PTC for each run,
so that there is the same chance to get a good solution for all tests of a
graph. To examine the speedup, we keep the global population size at 64,
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and compare the results by running GA with population size = 64 on one
processor and by running ISLAND PGAs with subpopulation sizes 16, 8, 4 on
4, 8, 16 processors respectively. Fig. 14 presents the results and the speedup of
the four ISLAND models. It can be seen that the four ISLAND models have
nearly the same speedup for a range of processor numbers, and achieve super
linear speedup (Fig. 14 (b)). From the point of view of the quality of solutions,
for the smaller graphs, e.g., Xt(6) and Xt(7), the solutions produced by each
model of ISLAND PGAs are very close, but for larger graphs, e.g. Xt(8),
the solutions obtained are different (Fig. 14 (a)), and ISLAND_Graph model
achieved the best performance of the four models. It is also shown that all
four models achieved the best results when subpopulation size k is 16, and the
results become worse with the decrease of subpopulation size. This is because
subpopulation size affects the convergence of SGA on each island. For a larger
problem, it is necessary to increase the size of global population to get a larger
search space. Namely, PTC should be large enough to guarantee an increase
of chance of obtaining the best solution. Therefore, it is important to look for
the best combination of parameters. Fig. 14 (a) indicates that ISLAND-Graph
achieves the best results and has similar running time with the other models.
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Fig. 14. The rates of the running times of the GA on one processor and the ISLAND
models with the same global population size 32 as the GA for a range of processor
numbers

8 Conclusions

Sequential genetic algorithms are a powerful search tool, but they work with
one global population, so the search time and space are limited. Parallel genetic
algorithms are a perfect way to improve genetic algorithms both in efficiency
and search space. In this paper we implemented three basic models of paral-
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Fig. 15. Crossing numbers of Xt(6), Xt(7) and Xt(8) tested with the four models on
different sizes of the cluster

lel genetic algorithms: master-slave, fine-grained, and coarse-grained models.
Comparing with other two basic models of PGAs, the ISLAND model achieves
the best results. Especially for a large problem size, the ISLAND model has a
complete superiority over the other models.
MPI provides automatic topology structure for the cluster. We have exam-
ined three topologies, Linear, Grid, and Graph. For the FG model, the Grid
topology is overshadowed by the other two topologies. This might be because
the FG-Grid passes a best solution through the whole population in several
generations rapidly, resulting in a premature convergence. For the ISLAND
model, the difference in the results of the topology is not significant.
There are two evaluating measures, Computation-time to Communication-
time ratio (CTC) and Population-size to Chromosome-size ratio (PTC). The
former can be a measure of efficiency for PGAs, the later links to effectiveness
of PGAs. A large number of parameters of PGAs can affect these two mea-
sures, such as population size, cluster size, size of subpopulation, migration
period and so on. We unified all models of parallel genetic algorithms using a
function PGA(subpopulation size, cluster size, migration period, topology).
The experimental data show that the ISLAND model has more diversity and
it prevents premature convergence. Moreover, ISLAND-Linear achieves the
best performance for smaller graphs, and ISLAND-Graph (with the topology
of processors being a random biconnected graph) is the best for larger graphs,
while ISLAND-PS (with the equivalent complete connected topology) is in the
shade of ISLAND-Graph.
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