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Abstract: This paper presents an existence theory for small-amplitude
solitary-wave solutions to the classical water-wave problem in the absence
of surface tension and with an arbitrary distribution of vorticity. The hy-
drodynamic problem is formulated as an infinite-dimensional Hamiltonian
system in which the horizontal spatial direction is the time-like variable.
A centre-manifold reduction technique is employed to reduce the system
to a locally equivalent Hamiltonian system with one degree of freedom.
The phase portrait of the reduced system contains a homoclinic orbit, and
the corresponding solution of the water-wave problem is a solitary wave
of elevation.

1 Introduction

The water-wave problem concerns the gravity-driven flow of a perfect fluid of
unit density; the fluid is bounded below by a rigid horizontal bottom {y = 0}
and above by a free surface {y = η(x, t)}, where η depends upon the horizontal
spatial coordinate x and time t. Travelling waves are waves which propagate
from left to right with constant speed c and without change of shape, so that
η(x, t) = η(x − ct). The two principal classes of travelling waves are Stokes
waves, which are periodic in a frame of reference moving with the wave, and
solitary waves, which have the property that η(x− ct)→ 0 as x− ct→ ±∞.
In this paper we construct a rigorous existence theory for solitary waves on
flows with an arbitrary distribution of vorticity.

Working in a frame of reference moving with the wave, let us describe the
velocity field (u(x, y), v(x, y)) within the fluid domain Dη = {(x, y) : x ∈
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R, 0 < y < η(x)} in terms of a stream function ψ(x, y) which satisfies ψx =
−v, ψy = u − c and suppose that u < c, so that ψy < 0. The vorticity
ω(x, y) = vx(x, y)− uy(x, y) is known under this condition to be a function of
the stream function ψ, and we specify its distribution by prescribing a vorticity
function γ such that ω = γ(ψ). The hydrodynamic problem is to solve the
nonlinear elliptic equation

∆ψ = −γ(ψ), 0 < y < η(x) (1)

subject to the boundary conditions

ψ(x, 0) = 0, (2)

ψ(x, η(x)) = m0,
1

2
|∇ψ(x, η(x))|2 + g(η(x)− d) =

λ

2
(3)

and the asymptotic conditions

η(x)→ d as x→ ±∞. (4)

Here g and d are respectively the acceleration due to gravity and the asymp-
totic depth of the water, and λ is a constant called the Bernoulli constant (e.g.
see Constantin & Strauss [9]).

The mathematical study of irrotational solitary water waves began with small-
amplitude bifurcation theories. Lavrentiev [22] constructed a solitary wave as
the limit of a sequence of Stokes waves of increasing period, while Friedrichs
& Hyers [14] gave an existence proof based upon a series expansion and
Beale [3] used a Nash-Moser implicit-function theorem. A global branch of
large-amplitude solutions was obtained by Amick & Toland [1,2] using a for-
mulation of the problem as an integral equation, and Plotnikov [24] used a
variational formulation of the problem to demonstrate the non-uniqueness of
large-amplitude solitary waves.

Until recently the mathematical theory of solitary waves on flows with vorticity
was restricted to approximate theories and numerical results. The Korteweg-
de Vries approximation of solitary waves on shallow water with an arbitrary
distribution of vorticity was studied by Benjamin [4] and Freeman & Johnson
[13], while large-amplitude solitary waves with constant vorticity were com-
puted numerically by Teles da Silva & Peregrine [10], Vanden-Broeck [26] and
Sha & Vanden-Broeck [25].

Hur [20] has recently generalised Beale’s application of Nash-Moser theory to
obtain small-amplitude solitary waves on flows with an arbitrary distribution
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of vorticity; her solutions are solitary waves of elevation which decay exponen-
tially far up- and downstream. In the present paper we present an alternative,
more elementary construction of these waves using spatial dynamics methods.
We formulate the physical problem as an ill-posed evolutionary equation

ux = F (u), (5)

in which the unbounded spatial coordinate x plays the role of ‘time’, and study
it in an infinite-dimensional phase space consisting of functions of y. Notice
that the hydrodynamic problem is conservative and isotropic in x, and these
symmetries manifest themselves in the fact that its spatial dynamics formula-
tion is Hamiltonian and reversible. In Section 2 we derive a formulation of the
water-wave problem with an arbitrary choice of γ ∈ L2(m0, 0) as a reversible
Hamiltonian system and place it in a secure functional-analytic framework.

Under the hypothesis that

1∫
0

1√
2Γ(s)− 2Γmin

ds > 1,

where

Γ(s) =
d2

m0

1∫
s

γ(m0t) dt, Γmin = min
s∈[0,1]

Γ(s),

we show that (5) admits an equilibrium (that is x independent) solution u?

corresponding to a horizontal laminar flow (which is in general not uniform),
and we seek solutions of the form u = u? +w, so that our solitary waves ‘ride’
a horizontal laminar flow. Writing the equation for w as

wx = Lw +N(w), (6)

where L and N are the linear and nonlinear parts of the vector field for w,
and assuming that γ ∈ H1(m0, 0), we show that the spectrum of L consists
of a countable number of simple, real eigenvalues which accumulate at ±∞,
together with a pair of simple, purely imaginary eigenvalues whenever the
physical parameter α = gd3/m2

0 is greater than a critical value α?. The purely
imaginary eigenvalues are created in a Hamiltonian 02 resonance at α = α?:
two real eigenvalues collide at the origin and become purely imaginary as α is
varied through α? from below. In Section 3 we show that, for α ≥ α?, equation
(6) admits a two-dimensional invariant manifold called the centre manifold
which contains all its small, bounded solutions. The flow on the centre manifold
is controlled by a reduced system which inherits the Hamiltonian structure and
reversibility of (6).
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Fig. 1. A symmetric solitary wave of elevation is found for α = α? − δ, 0 < δ � 1;
it decays exponentially and monotonically to a horizontal laminar flow far up- and
downstream.

In Section 4 we introduce a bifurcation parameter by writing α = α? + ε. The
reduction procedure delivers an ε dependent two-dimensional centre manifold
which captures the small-amplitude dynamics for small values of ε, and the
flow on this manifold is controlled by the reversible Hamiltonian system

QX =P +O(|ε|1/2),

PX =−sgn(ε)Q− 3

2
Q2 +O(|ε|1/2),

where X ∼ |ε|1/2x. For small, negative values of ε, the phase portrait con-
tains a reversible homoclinic orbit in the right half-plane; the corresponding
hydrodynamic flow is a symmetric solitary wave of elevation which decays ex-
ponentially and monotonically to a horizontal laminar flow as x → ±∞ and
is sketched in Figure 1.

Of course one can also study the phase portrait of the above Hamiltonian
system for ε > 0. In this case the zero equilibrium is a centre surrounded by
periodic orbits; the corresponding hydrodynamic flows are small-amplitude
symmetric Stokes waves. Rotational Stokes waves of this kind have recently
been extensively studied by Constantin & Strauss [9], who in particular ob-
tained a global branch of large-amplitude waves (see also Hur [21] for the
corresponding theory for deep-water Stokes waves).

The above results represent a complete analysis of the local bifurcation picture
for α near α? (solitary waves for α < α? and Stokes waves for α > α?). This
‘unfolding’ has previously been recorded for irrotational waves by Dias &
Iooss [11, §4.1] in a review of spatial dynamics and centre-manifold methods
for water waves. Spatial dynamics and centre-manifold reduction techniques
have indeed been used in a variety of existence proofs for other types of water
waves, in particular for three-dimensional irrotational gravity-capillary water
waves (Groves & Haragus [16]) and two-dimensional gravity-capillary water
waves with arbitrary distributions of vorticity (Groves & Wahlén [19]). Some
of the technical results in the present paper are similar to those in the latter
reference, to which we defer for their proofs.
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2 Formulation as a Hamiltonian system

We begin by writing the hydrodynamic problem (1)–(4) in terms of the di-
mensionless variables

(x′, y′) =
1

d
(x, y), η′(x′) =

1

d
η(x), ψ′(x′, y′) = − 1

m0

ψ(x, y)

and dimensionless vorticity function

γ′(ψ′) = − d2

m0

γ(ψ).

One finds that

∆ψ = −γ(ψ), 0 < y < η(x), (7)

with boundary conditions

ψ(x, 0) = 0, (8)

ψ(x, η(x)) = −1,
1

2
|∇ψ(x, η(x)|2 + α(η(x)− 1) =

µ

2
(9)

and asymptotic conditions

η(x)→ 1 as x→ ±∞, (10)

in which

α =
gd3

m2
0

, µ =
λd2

m2
0

are dimensionless parameters and the primes have been dropped for notational
simplicity.

The next step is to map the unknown fluid domain Dη into a fixed strip
R × (0, 1) using a transformation devised by Dubreil-Jacotin [12]. We define
s = −ψ(x, y), h = y and treat (x, s) ∈ R× (0, 1) as independent variables and
h(x, s) as the dependent variable. A straightforward calculation shows that
equations (7)–(9) are transformed into

[
hx
hs

]
x

−
[

1 + h2
x

2h2
s

]
s

+ γ(−s) = 0, 0 < s < 1, (11)

h(x, 0) = 0, (12)

1 + h2
x(x, 1)

2h2
s(x, 1)

+ α(h(x, 1)− 1) =
µ

2
, (13)
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and we seek solutions with hs > 0, a condition which is implied by the assump-
tion ψy < 0 (Constantin & Strauss [9]), and h(x, 1) → 1 as x → ±∞. The
variable η is recovered from the formula η(x) = h(x, 1); note that η(x) > 0
because h(x, 0) = 0 and hs(x, s) > 0 for s ∈ [0, 1]. The following proposi-
tion, which is proved by straightforward arguments from the theory of elliptic
boundary-value problems, relates solutions of the transformed equations to
those of (7)–(9).

Proposition 2.1 Define I = (x1, x2), I ′ = (x′1, x
′
2) with x1 < x′1 < x′2 < x2

and let Dη,I = {(x, y) : x ∈ I, 0 < y < η(x)}.

(i) Suppose that γ ∈ L2(−1, 0). Any solution h ∈ H2(I×(0, 1))∩C1(I×[0, 1])
and η = h|{s=1} ∈ C1(I) of (11)–(13) defines a solution ψ ∈ H2(Dη,I′) ∩
C1(Dη,I′), η ∈ C1(I) of (7)–(9).

(ii) The additional regularity γ ∈ Ck,α[−1, 0] and η ∈ Ck+2,α(I) for some
α ∈ (0, 1) and some nonnegative integer k implies that ψ ∈ Ck+2,α(Dη,I′).

Equations (11)–(13) follow from the formal variational principle

δJ = 0, J =
∫ 

1∫
0

(
1 + h2

x

2h2
s

− α(h− 1) +
µ

2
+ Γ(s)

)
hs ds

 dx,

where

Γ(s) = −
1∫
s

γ(−u) du, s ∈ [0, 1]

and the variations are taken with respect to h(x, s) such that h(x, 0) = 0 (see
Constantin, Sattinger & Strauss [8]). We exploit this variational principle by
regarding J as an action functional of the form

J =
∫
J(h, hx) dx

and deriving a Hamiltonian formulation of (11)–(13) by means of the Legendre
transform. To this end, let us introduce a new variable

w =
δJ
δhx

=
hx
hs
, (14)

in which the variational derivative is taken in L2(R × (0, 1)), and define the
Hamiltonian function by
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H(h,w)

=

1∫
0

whx ds− J(h, hx)

=

1∫
0

{
1

2

(
hsw

2 − 1

hs

)
− Γ(s)hs

}
ds+

1

2
α(h(1)− 1)2 − 1

2
α− µ

2
h(1). (15)

This procedure suggests that the equations

hx =
δH

δw
, wx = −δH

δh

formally represent Hamilton’s equations for a formulation of the hydrodynamic
problem (11)–(13) as a Hamiltonian system, an irrotational version of which
has previously been recorded by Groves [15] and Benjamin [5, Appendix B].

In order to make the above suggestion rigorous, we define the Hilbert spaces

X = {(h,w) ∈ H1(0, 1)× L2(0, 1) : h(0) = 0},
Y = {(h,w) ∈ H2(0, 1)×H1(0, 1) : h(0) = 0}

and consider the symplectic manifold (X,Ω), where Ω is the position-indepen-
dent 2-form on X given by

Ω|(h,w)((h1, w1), (h2, w2)) =

1∫
0

(w2h1 − w1h2) ds

(the canonical 2-form with respect to the L2(0, 1) × L2(0, 1)-inner product).
Choose γ ∈ L2(−1, 0), so that Γ ∈ H1(−1, 0), and observe that the set

M = {(h,w) ∈ Y : hs(s) > 0 for each s ∈ [0, 1]}

is a manifold domain of X and that the function H given by (15) belongs to
C∞(M,R).The triple (X,Ω, H) is therefore a Hamiltonian system.

Recall that a point m ∈ M belongs to the domain D(vH) of the Hamiltonian
vector field vH corresponding to (M,Ω, H) with vH |m = v̄|m if and only if

Ωm(v̄|m, v1|m) = dH|m(v1|m)

for all tangent vectors v1|m ∈ TM |m ⊂ TX|m. Using this fact and the calcu-
lation
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dH|m(v1|m) =

1∫
0

{
−1

2

(
w2 +

1

h2
s

)
s

+ γ(−s)
}
h1 ds+

1∫
0

hsww1 ds

+
1

2

(
w2(1) +

1

h2
s(1)

+ α(h(1)− 1)− µ

2

)
h1(1)

for m = (h,w) ∈M and v1|m = (h1, w1) ∈ TM |m ∼= Y , one finds that

D(vH) =

{
(h,w) ∈M : w(0) = 0,

1

2

(
w2(1) +

1

h2
s(1)

)
+ α(h(1)− 1) =

µ

2

}

and that Hamilton’s equations are given explicitly by

hx =hsw, (16)

wx =
1

2

(
w2 +

1

h2
s

)
s

− γ(−s). (17)

Observe that Hamilton’s equations are reversible; the reverser S : X → X is
defined by S(h,w) = (h,−w).

Proposition 2.2 Suppose that (h,w) ∈ C(I,D(vH))∩C1(I,X), I = (x1, x2)
solves Hamilton’s equations and let I ′ = (x′1, x

′
2) with x1 < x′1 < x′2 < x2. The

functions h̃, w̃ defined by

h̃(x, s) = h(x)(s), w̃(x, s) = w(x)(s)

belong to respectively H2(Dη,I′) ∩ C1(Dη,I′) and H1(Dη,I′) ∩ C(Dη,I′). These
functions satisfy h̃s(x, s) > 0 in Dη,I′ and the equations

h̃x = h̃sw̃, w̃x =
1

2

(
w̃2 +

1

h̃2
s

)
s

+ γ(−s)

in Dη,I′ with boundary conditions

h̃(x, 0) = w̃(x, 0) = 0,
1

2

(
w̃2(x, 1) +

1

h̃2
s(x, 1)

)
+ α(h̃(x, 1)− 1) =

µ

2
.

The above proposition is proved using the methods given by Groves & Toland
[18]. Eliminating w̃ between the above equations and defining η̃(x) = h̃(x, 1),
we find that h̃ and η̃ satisfy equations (11)–(13) and Proposition 2.1 yields
a solution of the hydrodynamic problem (7)–(9). Note that the additional
regularity γ ∈ Ck,α[0, 1] and (h,w) ∈ Ck+2(I,D(vH)) ∩ Ck+3(I,X) for some
α ∈ (0, 1) and some nonnegative integer k implies that ψ ∈ Ck+2,α(Dη,I′). In
the remainder of this article we take γ ∈ H1(0, 1) rather than γ ∈ L2(0, 1) in
order to simplify the spectral theory presented in Section 3.
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We proceed by seeking solutions (h,w) ∈ C(R,D(vH)) ∩ C1(R, X) of Hamil-
ton’s equations which satisfy h(x, 1) → 1 as x → ±∞. These solutions take
the form of perturbations of equilibrium (that is x independent) solutions
(h0(s), w0(s)), where necessarily h0(1) = 1 and w0 = 0 (see equation (14));
our solitary waves therefore ‘ride’ a horizontal laminar flow (which is in gen-
eral not uniform). The following lemma, whose proof is given by Groves &
Wahlén [19, Lemma 2.3], shows that the value of the Bernoulli constant µ is
determined by the requirement that a horizontal laminar flow exists.

Lemma 2.3 Suppose that

1∫
0

1√
2Γ(s)− 2Γmin

ds > 1, (18)

where
Γmin = min

s∈[0,1]
Γ(s), Γmax = max

s∈[0,1]
Γ(s).

There exists a unique value µ? > −2Γmin of µ for which Hamilton’s equations
(16), (17) admit a solution of the form (h,w) = (θ(s), 0) with θ(1) = 1 for all
α > 0. The function θ(s) is given by the formula

θ(s) =

s∫
0

a−1(t) dt, a(s) =
√
µ? + 2Γ(s).

In accordance with Lemma 2.3 we take µ = µ? and seek solutions of Hamilton’s
equations for (X,Ω, H) of the form h = θ + φ, where φs(s) > −a−1(s) for s ∈
[0, 1]. Let us write α = α0 + ε, where α0 is fixed and ε lies in a neighbourhood
Λ of the origin in R, and consider solutions (φ,w) which lie in a neighbourhood
Z of the origin in Y ; here Λ and Z are chosen small enough so that

φs(s) > −
1

2
(µ? + 2Γmax)−1/2 > −a−1(s)

for each s ∈ [0, 1]. This change of variable transforms (X,Ω, H) into (X,Ω, Hε),
where Hε ∈ C∞(Z,R) is defined by the formula

Hε(φ,w) =

1∫
0

{
1

2

(
(a−1(s) + φs)

2w2 − 1

a−1(s) + φs

)
+

1

2
a(s)− Γ(s)φs

}
ds

+
1

2
(α0 + ε)φ(1)2 − 1

2
µ?φ(1)

(a constant term has also been added to the Hamiltonian to ensure that
Hε(0) = 0). Hamilton’s equations (16), (17) are transformed into
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φx = (a−1(s) + φs)w, (19)

wx =
1

2

(
w2 +

a2(s)

(1 + a(s)φs)2

)
s

− γ(−s), (20)

the domain D(vHε) of the Hamiltonian vector field on the right-hand side of
this system of equations is the set of elements (φ,w) ∈ Z which satisfy

w(0) = 0,

1

2

(
w2(1) +

1

(a−1(1) + φs(1))2

)
+ (α0 + ε)φ(1) =

µ?

2
(21)

and the action of the reverser S : X → X is given by S(φ,w) = (φ,−w). Our
task is to find homoclinic solutions of the above equations, that is solutions
(φ,w) ∈ C(R, Z) ∩ C1(R, X) which satisfy (φ(x), w(x))→ (0, 0) as x→ ±∞.

3 Centre-manifold reduction

We find solutions of equations by applying a reduction principle which asserts
that (X,Ω, Hε) is locally equivalent to a finite-dimensional Hamiltonian sys-
tem. The key result is the following theorem, which is a parametrised, Hamil-
tonian version of a reduction principle for quasilinear evolutionary equations
presented by Mielke [23, Theorem 4.1] (see Buffoni, Groves & Toland [7, The-
orem 4.1]).

Theorem 3.1 Consider the differential equation

ux = Lu+N (u;λ), (22)

which represents Hamilton’s equations for the reversible Hamiltonian system
(X,Ωλ, Hλ). Here u belongs to a Hilbert space X , λ ∈ R` is a parameter and
L : D(L) ⊂ X → X is a densely defined, closed linear operator. Regarding
D(L) as a Hilbert space equipped with the graph norm, suppose that 0 is an
equilibrium point of (22) when λ = 0 and that

(H1) The part of the spectrum σ(L) of L which lies on the imaginary axis
consists of a finite number of eigenvalues of finite multiplicity and is
separated from the rest of σ(L) in the sense of Kato, so that X admits
the decomposition X = X1 ⊕ X2, where X1 = P(X ), X2 = (I − P)(X )
and P is the spectral projection corresponding the purely imaginary part
of σ(L).
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(H2) The operator L2 = L|X2 satisfies the estimate

‖(L2 − iξI)−1‖X2→X2 ≤
C

1 + |ξ|
, ξ ∈ R

for some constant C that is independent of ξ.
(H3) There exists a natural number k and neighbourhoods Λ ⊂ R` of 0 and

U ⊂ D(L) of 0 such that N is (k + 1) times continuously differentiable
on U×Λ, its derivatives are bounded and uniformly continuous on U×Λ
and N (0, 0) = 0, d1N [0, 0] = 0.

Under these hypotheses there exist neighbourhoods Λ̃ ⊂ Λ of 0 and Ũ1 ⊂ U∩X1,
Ũ2 ⊂ U ∩X2 of 0 and a reduction function r : Ũ1× Λ̃→ Ũ2 with the following
properties. The reduction function r is k times continuously differentiable on
Ũ1 × Λ̃, its derivatives are bounded and uniformly continuous on Ũ1 × Λ̃ and
r(0; 0) = 0, d1r[0; 0] = 0. The graph X̃λ = {u1 + r(u1;λ) ∈ Ũ1× Ũ2 : u1 ∈ Ũ1}
is a Hamiltonian centre manifold for (22), so that

(i) X̃λ is a locally invariant manifold of (22): through every point in X̃λ

there passes a unique solution of (22) that remains on X̃λ as long as it
remains in Ũ1 × Ũ2.

(ii) Every small bounded solution u(x), x ∈ R of (22) satisfying (u1(x), u2(x))
∈ Ũ1 × Ũ2 lies completely in X̃λ.

(iii) Every solution u1 : (x1, x2)→ Ũ1 of the reduced equation

u1x = Lu1 + PN (u1 + r(u1;λ);λ) (23)

generates a solution

u(x) = u1(x) + r(u1(x);λ) (24)

of the full equation (22).
(iv) X̃λ is a symplectic submanifold of X and the flow determined by the

Hamiltonian system (X̃λ, Ω̃λ, H̃λ), where the tilde denotes restriction to
X̃λ, coincides with the flow on X̃λ determined by (X,Ωλ, Hλ). The re-
duced equation (23) is reversible and represents Hamilton’s equations for
(X̃λ, Ω̃λ, H̃λ).

Theorem 3.1 cannot be applied directly to equations (19), (20) because of
the nonlinear boundary condition (21). We overcome this difficulty using the
following change of variable, which leads to an equivalent problem in a linear
space. Define F : Z → H1(0, 1) by the formula

F (φ,w) = −1

2

(
w2 +

1

(a−1(s) + φs)2

)
− a3(s)φs +

1

2
a2(s),
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so that the boundary condition (21) is equivalent to

(α0 + ε)φ(1)− a3(1)φs(1) = F (φ,w)|s=1.

Consider the function G1 : Z → H2(0, 1)×H1(0, 1) given by G1(φ,w) = (ζ, w),
where

ζ = φ− a−3(1)s

1∫
s

F (φ,w)(t) dt.

Because it is a near-identity transformation the mapping G1 is a smooth dif-
feomorphism from Z onto a neighbourhood Z̃ of the origin in Y , and moreover

(α0 + ε)ζ(1)− a3(1)ζs(1) = (α0 + ε)φ(1)− a3(1)φs(1)− F (φ,w)|s=1,

so that the boundary condition (21) is transformed into

(α0 + ε)ζ(1)− a3(1)ζs(1) = 0. (25)

The next step is to consider the linear function Gε
2 : Y → Y given by

Gε
2(ζ, w) = (ξ, w), where

ξ = ζ + εa−3(1)s

1∫
s

ζ(t) dt.

A straightforward modification of the proof of Lemma 4(ii) in Groves & Mielke
[17] shows that Gε

1 : Y → Y is an isomorphism for each ε ∈ Λ, and furthermore

α0ξ(1)− a3(1)ξs(1) = (α0 + ε)ζ(1)− a3(1)ζs(1),

so that the boundary condition (25) is transformed into

α0ξ(1)− a3(1)ξs(1) = 0.

The following lemma confirms that Gε = Gε
2 ◦ G1 defines a valid change of

variable; part (ii) is proved using the method explained by Groves & Mielke
[17, Lemma 4(ii)]).

Lemma 3.2

(i) For each ε ∈ Λ, the mapping Gε is a smooth diffeomorphism from Z onto
a neighbourhood Z̃ of the origin in Y . The mappings Gε and (Gε)−1 and
their derivatives depend smoothly upon ε.

(ii) For each (φ,w, ε) ∈ Z × Λ the operator dGε[φ,w] : Y → Y extends

to an isomorphism d̂G
ε
[φ,w] : X → X. The operators d̂G

ε
[φ,w] and

d̂G
ε
[φ,w]−1 depend smoothly on (φ,w, ε) ∈ Z × Λ.
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The change of variable Gε transforms (X,Ω, Hε) into (X,Φ, Kε), where Φε

and Kε are defined on the manifold domain Z̃ of X by

Φε|z(v1, v2) = Ω(d̂G
ε
[(Gε)−1(z)]−1(v1), d̂G

ε
[(Gε)−1(z)]−1(v2))

for v1, v2 ∈ TX|z and
Kε(z) = Hε((Gε)−1(z)).

The corresponding Hamiltonian vector field is given by

vKε(u) = d̂G
ε
[(Gε)−1(u)](vHε((Gε)−1(u))),

where

D(vKε) = {(ξ, w) ∈ Z̃ : w(0) = 0, α0ξ(1)− a3(1)ξs(1) = 0}.

The next step is to verify that Hamilton’s equations for (X,Φε, Kε) satisfy
the hypotheses of Theorem 3.1. We write these equations as

ux = Lu+N ε(u),

in which the linear operator L : D(L) ⊂ X → X with

D(L) = {(ξ, w) ∈ Y : w(0) = 0, α0ξ(1)− a3(1)ξs(1) = 0}

is given by

L

 ξ

w

 =

 a−1(s)w

−(a3(s)ξs)s


(the linearisation of the Hamiltonian vector field vKε at ε = 0). It follows from
the following lemma, whose proof is a straightforward modification of those
of Proposition 3.3 and Lemma 3.4 in Groves & Wahlén [19], that L satisfies
hypotheses (H1) and (H2); hypothesis (H3) is clearly satisfied for an arbitrary
value of k.

Lemma 3.3

(i) The spectrum of the operator L : D(L) ⊂ X → X consists of isolated,
geometrically simple eigenvalues of finite algebraic multiplicity.

(ii) There exist real constants C, ξ0 > 0 such that each solution u ∈ Y of the
resolvent equation

(L− iξI)u = f ?, (26)

in which f ? belongs to X and ξ is a real number with |ξ| > ξ0, satisfies
the estimates

‖v‖Y ≤ C‖f ?‖X , ‖v‖X ≤
C

|ξ|
‖f ?‖X .
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Let us now examine the spectrum of L in more detail, in particular the quali-
tative dependence of its eigenvalues upon α0. Eliminating w, we find that the
eigenvalue problem Lu = κu is equivalent to

−a−1(s)(a3(s)ξs)s =κ2ξ, 0 < s < 1,

α0ξ(1)− a3(1)ξs(1) = 0,

ξ(0) = 0.

The change of variable

y =

s∫
0

a−1(t) dt, v(y) = a(s)ξ(s)

transforms the above equations into the equivalent self-adjoint Sturm-Liouville
problem

−vyy +Q(y)v= νv, (27)

vy(1) = α̂v(1), (28)

v(0) = 0, (29)

where ν = κ2, Q(y) = −γ′(−s) and α̂ = a′(1) + a−2(1)α0.

The Sturm-Liouville problem (27)–(29) has a countable number of simple
eigenvalues ν0 < ν1 < ν2 < . . . with νn → ∞ as n → ∞. These eigenval-
ues correspond to the intersections in the (ν, s) plane of the line s = α̂ and
the curve s = B(ν), where B(ν) = vy(1; ν)/v(1; ν) and v(y; ν) solves the
initial-value problem

−vyy +Q(y)v = νv, v(0; ν) = 0.

The function B(ν) has poles exactly at the Dirichlet eigenvalues νD
n (the

positive eigenvalues of the problem in which (28) is replaced by v(1) = 0); it is
strictly decreasing from +∞ to −∞ in each interval (−∞, νD

0 ) and (νD
n−1, ν

D
n ),

n ∈ N. It follows that ν0 lies in the interval (−∞, νD
0 ) while νn lies in the

interval (νD
n−1, ν

D
n ), n ∈ N (see Figure 2).

The eigenvalues κ of L are recovered from the above analysis by the for-
mula ν = κ2, so that in particular they occur in plus-minus pairs. Clearly
L has precisely one simple real eigenvalue in each interval ((νD

n−1)
1/2, (νD

n )1/2)
and (−(νD

n )1/2,−(νD
n−1)

1/2), n ∈ N and there are two additional eigenvalues
(counted according to algebraic multiplicity). Figure 2 shows that the na-
ture of the two additional eigenvalues depends upon the sign of ν0: they are
real (with magnitude less than (νD

0 )1/2) for ν0 > 0 and purely imaginary for
ν0 < 0. The remaining case ν0 = 0 leads to a zero eigenvalue of L, the algebraic

14



ννD
0 νD

1 νD
2

ννD
0 νD

1 νD
2

ννD
0 νD

1 νD
2

Fig. 2. Geometric characterisation of the eigenvalues νn of (27)–(29) as the points of
intersection of the curve s = B(ν) with the straight line s = α̂. The eigenvalues νn,
n ∈ N are positive, while ν0 can be negative (top), zero (centre) or positive (bottom).
The insets show the eigenvalues κ of L which satisfy |Reκ| < (νD

0 )1/2; solid and
hollow dots denote respectively algebraically simple and double eigenvalues.

multiplicity of which is readily determined by studying the equation Lu = 0
directly. A straightforward calculation shows that zero is an eigenvalue of L if
and only if α0 = α?, where

α? =

 1∫
0

a−3(s) ds

−1

.
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The eigenvalue has algebraic multiplicity 2; the generalised eigenvectors u1,
u2, where Lu1 = 0, Lu2 = u1, are given by

u1 =

∫ s0 a−3(t) dt

0

 , u2 =

 0

a(s)
∫ s
0 a
−3(t) dt

 . (30)

Examining Figure 2, we conclude that the three cases ν0 > 0, ν0 = 0 and
ν0 < 0 correspond to respectively α0 > α?, α0 = α? and α0 < α?; Theorem
3.1 therefore yields a two-dimensional centre manifold X̃ε whenever α0 ≥ α?.
The centre manifold is equipped with the single coordinate chart Ũ1 ⊂ X1 and
coordinate map χ : X̃ε → Ũ1 defined by χ−1(u1) = u1 + r(u1; ε). It is however
more convenient to use an alternative coordinate map for calculations.

Define r̂ : Ũ1 × Λ̃→ Z by

û1 + r̂(û1; ε) = (Gε)−1(u1 + r(u1; ε)),

where r̂(0; 0) = 0, d1r̂[0; 0] = 0, and equip X̃ε with the coordinate map χ̂ :
X̃ε → Ũ1 given by χ̂−1(û1) = û1 + r̂(û1; ε). In this coordinate system the
reduced 2-form Ω̃ε is given by the formula

Ω̃ε|û1
(v1, v2) = Ω|û1+r̂(û1;ε)(v

1 + d1r̂[û1; ε](v
1), v2 + d1r̂[û1; ε](v

2))

= Ω(v1, v2) +O(|(û1, ε)||v1||v2|).

According to the parameter-dependent version of Darboux’s theorem pre-
sented by Buffoni & Groves [6, Theorem 4] there exists a near-identity change
of variable û1 = ũ1 +Θ(ũ1; ε) of class Ck−1 which transforms Ω̃ε into Ψ, where

Ψ(v1, v2) = Ω(v1, v2).

We accordingly introduce r̃ : Ũ1 × Λ̃→ Z by the formula

ũ1 + r̃(ũ1; ε) = ũ1 + Θ(ũ1; ε) + r̂(ũ1 + Θ(ũ1; ε); ε),

where r̃(0; 0) = 0, d1r̃[0; 0] = 0, and equip X̃ε with the coordinate map χ̃ :
X̃ε → Ũ1 given by χ̃−1(ũ1) = ũ1+r̃(ũ1; ε). It is always possible to choose a basis
for the two-dimensional central subspace X1 of X so that Ψ is the canonical
symplectic 2-form Υ in this coordinate system (a ‘symplectic basis’). Choosing
χ̃ as coordinate map and identifying Ũ1 with a neighbourhoodM of the origin
in R2, one therefore obtains a two-dimensional reduced Hamiltonian system
(M,Υ, K̃ε) for α0 ≥ α?, in which

K̃ε(ũ1) = Hε(ũ1 + r̃(ũ1; ε)).
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4 Homoclinic bifurcation

In this section we complete our existence theory for solitary waves by showing
that the reduced Hamiltonian system on the centre manifold admits homo-
clinic solutions. A Hamiltonian 02 resonance takes place at α = α?: two real
eigenvalues become purely imaginary by colliding at the origin and forming
a Jordan chain of length 2. This resonance is associated with the bifurcation
of a branch of homoclinic solutions into the parameter region with real eigen-
values; we correspondingly choose α0 = α? and seek homoclinic solutions for
ε < 0.

Formulae for the generalised eigenvectors u1, u2, where Lu1 = 0, Lu2 = u1,
are given in equation (30), and one finds that

Ω(u1, u2) = d2
1, d2

1 =

1∫
0

a(s)

 s∫
0

a−3(t) dt

2

ds.

It follows that {e, f}, where e = d−1
1 u1, f = d−1

1 u2, is a symplectic basis for
X1. The coordinates q, p in the e and f directions are canonical coordinates
for X1 and the action of the reverser S on this space is given by

S(q, p) = (q,−p).

Choosing a coordinate system for X̃ε according to the recipe given at the
end of Section 3 we obtain the two-dimensional canonical Hamiltonian system
(M,Υ, K̃ε), where M is a neighbourhood of the origin in R2,

Υ((q1, p1), (q2, p2)) = q1p2 − p1q2

and

K̃ε(q, p) = Hε(ũ1 + r̃(ũ1; ε)), ũ1 = qe+ pf.

A direct calculation shows that

K̃0
2(q, p) = H0

2 [ũ1, ũ1] =
1

2
p2,

where εiK̃i
j(ũ1) denotes the part of the Taylor expansion of K̃ε(ũ1) which is

homogeneous of order i in ε and j in ũ1
∼= (q, p) and H i

j denotes the symmetric,
k-linear operator Xk

1 → R which defines the corresponding coefficient in the
Taylor expansion of Hε. Anticipating the scaling q ∼ |ε|Q, p ∼ |ε|3/2P , we
write

K̃ε(q, p) =
1

2
p2 + c1εq

2 + c2q
3 +O(|p||(q, p)||(ε, q, p)|) +O(|(q, p)|2|(ε, q, p)|2),
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so that the first three terms on the right-hand side of the above equation are
O(|ε|3) and the remainder is of higher order.

The coefficients c1 and c2 are obtained from the calculations

c1 = H1
2 [e, e] + 2H0

2 [e, r̃1
10], c2 = H0

3 [e, e, e] + 2H0
2 [e, r̃0

20],

in which r̃ijk denotes the coefficient of εiqjpk in the Taylor expansion of r̃. To
calculate these coefficients we make use of the fact that

dHε[u](v) = Ω(vHε(u), v)− T ε(u)φ̃|s=1,

where u = (φ,w), v = (φ̃, w̃) and T ε : Z → R is defined by

T ε(u) =
1

2

(
w2(1) +

1

(a−1(1) + φs(1))2

)
+ (α? + ε)φ(1)− µ?

2
.

In particular, we find that

2H0
2 [u, v] = Ω(L(u), v)− T 0

1 (u)φ̃|s=1,

where T ij is defined in the same way as H i
j, so that

H0
2 [e, v] = 0.

It follows that

c1 = H1
2 [e, e] =

1

2α2
?d

2
1

, c2 = H0
3 [e, e, e] =

c0
2α3

?d
3
1

,

where

c0 = α3
?

1∫
0

a−5(s) ds.

Hamilton’s equations for (M,Υ, K̃ε) are

qx = p+R1(q, p, ε), (31)

px =− ε

α2
?d

2
1

q − 3c0
2α3

?d
3
1

q2 +R2(q, p, ε), (32)

where R1, R2 are respectively odd and even in their second arguments and

R1 = O(|(q, p)||(ε, q, p)|), R2 = O(|p||(ε, q, p)|) +O(|(q, p)||(ε, q, p)|2).

Introducing the scaled variables

X = |ε|1/2α−1
? d−1

1 x, q(x) = c−1
0 |ε|α?d1Q(X), p(x) = c−1

0 |ε|3/2P (X),
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Q

P

Fig. 3. Phase portrait of the scaled reduced system of equations.

one finds from (31), (32) that

QX =P +R3(Q,P, ε), (33)

PX =−sgn(ε)Q− 3

2
Q2 +R4(Q,P, ε), (34)

where the remainder terms R3 and R4 are O(|ε|1/2) and respectively odd and
even in their second arguments. In the limit ε ↑ 0 equations (33), (34) are
equivalent to

QX =P,

PX =Q− 3

2
Q2,

whose phase portrait is easily calculated by elementary methods and is de-
picted in Figure 3. Notice in particular that it has a nonzero equilibrium
(2/3, 0), surrounded by the symmetric homoclinic orbit

Q(X) = sech2
(
X

2

)
, P (X) = −sech2

(
X

2

)
tanh

(
X

2

)
.

A familiar argument based upon the reversibility of (33), (34) shows that its
phase portrait is qualitatively the same as that shown in Figure 3 for small
negative values of ε (e.g. see Groves & Wahlén [19, Section 4.1]); in particular
its phase portrait has a reversible homoclinic orbit in the right half-plane for
sufficiently small negative values of ε. Tracing back the various changes of
variable, one finds that the surface profile of the water corresponding to this
homoclinic orbit is given by

η(x) = 1 + c−1
0 |ε|sech2

(
|ε|1/2x
2d1α?

)
+O(|ε|3/2).
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We therefore obtain a symmetric solitary wave of elevation which decays ex-
ponentially and monotonically to a horizontal laminar flow as x → ±∞ and
is sketched in Figure 1(b).

Remark 4.1

(i) Similar arguments show that the phase portrait of (33), (34) for small
positive values of ε consists of a family of periodic orbits surrounding
the zero equilibrium. The corresponding free-surface flows are symmetric
Stokes waves with large periods.

(ii) Choosing α0 > α? and ε = 0, one obtains a one-degree-of-freedom reduced
Hamiltonian system with a pair of purely imaginary eigenvalues ±iω(α0),
where ω(α0) is a strictly increasing function of α0 with ω(α0) → ∞ as
α0 → ∞ and ω(α0) ↓ 0 as α0 ↓ α?. It follows from the Lyapunov centre
theorem that the phase portrait of this reduced system consists of a family
of periodic orbits surrounding the zero equilibrium; the corresponding free-
surface flows are symmetric Stokes waves with period near 2π/ω0.
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