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Abstract

The lowest order resonant bifurcations of a periodic orbit of a Hamiltonian sys-
tem with two degrees of freedom have frequency ratio 1 : 1 (saddle-centre) and 1 : 2
(period-doubling). The twist, which is the derivative of the rotation number with
respect to the action, is studied near these bifurcations. When the twist vanishes
the nondegeneracy condition of the (isoenergetic) KAM theorem is not satisfied, with
interesting consequences for the dynamics. We show that near the saddle-centre bi-
furcation the twist always vanishes. At this bifurcation a “twistless” torus is created,
when the resonance is passed. The twistless torus replaces the colliding periodic orbits
in phase space. We explicitly derive the position of the twistless torus depending on
the resonance parameter, and show that the shape of this curve is universal. For the
period doubling bifurcation the situation is different. Here we show that the twist
does not vanish in a neighborhood of the bifurcation.

Keywords: Twist Maps; Hamiltonian Systems; Saddle-Centre Bifurcation; Period-
doubling Bifurcation; KAM; Normal Forms; Elliptic Integrals

1 Introduction

The dynamics near a periodic orbit of a Hamiltonian system can be studied in terms of a
local Poincaré section transversal to the orbit. In two degrees of freedom the first return
map restricted to the surface of constant energy is an area preserving map with a fixed
(or periodic) point. If the multipliers µi, i = 1, 2 of the fixed point have modulus 1 (but
are not equal to ±1) the fixed point is called elliptic. Then µ1 = µ2 ∈ C and we can
write µ = exp(2πiω) with the rotation number 0 < ω < 1/2 of the periodic orbit. If the
periodic orbit is elliptic and the rotation number is irrational the map can (formally) be
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transformed to Birkhoff normal form which in action-angle variables (ϕ, I) reads

(ϕ, I) → (ϕ + 2πΩ(I), I) . (1)

The action I is like the radial coordinate in polar coordinates, hence the map in normal
form maps circles to circles by rotating them Ω(I) times. The rotation number (or winding
number) Ω(I) near the periodic orbit can be expanded as

Ω(I) = ω + τ0I +
1

2
τ1I

2 + ...

The twist (or torsion) τ(I) is the derivative of the rotation number with respect to the
action,

τ(I) =
dΩ

dI
(I) = τ0 + τ1I + ...

When the rotation number is a strictly monotone function of the action in some interval the
map (1) restricted to the corresponding annulus is called a monotone twist map. Moser’s
KAM theorem [11] states that the invariant torus I = I0 of (1) persist under perturbation
when its frequency Ω(I0) is diophantine and its twist τ(I0) does not vanish. Arnold’s
KAM theorem [1] is the same statement for flows where the nonvanishing of the twist
corresponds to the isoeneregetic nondegeneracy conditions. A well known corollary of the
KAM theorem is the stability of an elliptic fixed point in two degrees of freedom when
Ω(0) = ω 6= 1/3, 1/4 and the twist at the origin is non-vanishing, τ(0) = τ0 6= 0.

When the twist vanishes the perturbed dynamics can be more complicated. The sta-
bility of an elliptic point can be lost when its twist vanishes, see [5] for an example of an
unstable elliptic point with ω = 1/5. The effects of vanishing twist away from the origin
was first described by Howard [7], and the resulting effects have been observed in many
examples [13, 10]. The probably most spectacular effect is the appearance of so-called
meandering curves [7, 6, 12]. The properties of non-twist maps also show interesting be-
haviour under renormalisation [2] and recently it has been shown [3] that an extension
of the KAM theorem can also be proved in this context. In [5, 9] it was finally shown
that the vanishing of twist at the fixed point generically occurs in a one parameter family
when the rotation number of a fixed point passes through the interval [1/4, 1/3]. When
the twist vanishes at the fixed point a twistless torus is created in a twistless bifurcation

[5]. After creation the twistless torus passes through resonances and in this way non-twist
maps generically appear in one parameter families of area preserving maps. The truncated
resonant Birkhoff normal form shows that this twistless torus eventually collides with a
saddle-centre bifurcation that gives rise to the period 3 orbits that collide with the fixed
point when ω = 1/3 [5]. Such a connection between resonance and vanishing twist can
also be found in 4 dimensional symplectic maps [4].

The techniques of [5] can also be applied to the higher order resonances, in particular
for ω = 1/4. In this paper we study the two remaining generic bifurcations at even
stronger resonance ω = 0, 1/2. By definition the corresponding fixed point is not elliptic.
The two cases will be denoted as the 1 : 1 and 1 : 2 resonance, or as the saddle-centre and
period doubling bifurcation, respectively. The main result is that near the saddle-centre
bifurcation the twist always vanishes, while it does not vanish near the period doubling
bifurcation.

The method is based on the analysis of the resonant normal form, in which the Poincaré
map is approximated by the time 1 map of a one degree of freedom system, see e.g. [8]. This
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Figure 1: Lines of constant energy on the phase space (u, v) for the saddle-centre bifurca-
tion (1 : 1 resonance, ω = 0). left: ε = −0.1, middle: ε = 0, right: ε = 0.1.

normal form is an approximation, that is local near the bifurcation in parameter space and
in phase space. At first we will completely ignore this, and just analyse the normal forms
in the following two sections. In section 4 we will address the problem of non-locality in
phase space, and also comment on the effect of higher order perturbations on the twistless
tori. We will talk of invariant tori even though the invariant curves H(u, v) = h of the
normal form may not be compact. This will also be justified in Sec. 4. Finally we treat a
saddle-centre bifurcation in the Hénon map as an example.

2 Saddle-Centre Bifurcation

The normal form of a Hamiltonian system with two degrees of freedom near the 1 : 1
resonance has the form

H(u, v) =
v2

2
+

u3

3
+ εu . (2)

The coefficient of u3 has been scaled so that it equals 1/3. The variables u and v are
canonically conjugate variables on a local transversal Poincaré section and ε is a parameter,
typically the energy of the original system. The Poincaré map is given by the time 1 map
of the flow of H(u, v). If the period T is large, the time 1 map advances little. The rotation
number of the full system is the period 1 divided by the period of the reduced one degree
of freedom flow, Ω = 1/T . The more familiar Ω = 2π/T is obtained when the time 2π
map is taken instead of the time 1 map, but the time 1 map is more natural at least for
the example of the Hénon map we are going to discuss. Since Ω is determined by T , we
now study in detail the period T of the one degree of freedom system given by H.

The critical points and critical values of the energy map H : R
2 → R and their

dependence on ε give the main structure to the bifurcation. Instead of a one degree of
freedom system H(u, v; ε) depending on the parameter ε one may consider H(u, v, ε, θ)
as a Hamiltonian in R

3 × S1, with action ε and conjugate angle θ. The set of critical
values of the energy-momentum map (H, ε) : R

3 × S1 → R
2 is called the bifurcation

diagram. A simple way to compute it is to find the critical values of the energy map
of H(u, v) and consider their parameter dependence on ε. The Hamiltonian has critical
points (u, v) = (±√−ε, 0) and corresponding critical values h = ∓2(−ε)3/2/3. They exist
when ε < 0 and the upper sign corresponds to a local minimum of H, while the lower sign
gives a saddle. The corresponding phase portraits are shown in Fig. 1.

The dynamics is given by Hamiltons equation u̇ = v and eliminating v using the
Hamiltonian gives a first order equation for u. After separation of variables the period of
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motion with energy h is given by the elliptic integral

T (h, ε) =

∮

du
√

2h − 2

3
u3 − 2εu

, (3)

where the integration path is encircling the interval on the real axis where the argument
of the square root is positive. If there are two positive intervals either one can be taken,
the result is the same. By scaling u = z(σε)1/2, where σ = sign(ε) and introducing the
one essential parameter

γ =
3h

2(σε)3/2
, (4)

the period T is an elliptic integral on the curve

E : w2 = P3(z) = 2γ − z3 − 3σz . (5)

The case ε = 0 has to be excluded in this scaling, but it is simple to treat it separately.
We are mostly interested in the case where σ = 1. The essential integral now reads

S(γ) =

∮

1

w
dz (6)

and it is related to the period by

T (h, ε) =

√

3/2

(σε)1/4
S(γ) . (7)

The polynomial P3 has one or three real roots. The collision of two real roots corresponds
to the unstable equilibrium and its separatrix. It occurs when the discriminant

∆ = −108(σ + γ2)

vanishes. ∆ = 0 is only possible for σ = −1 and hence the critical parameters for which a
double root occurs are given by γ = ±1, hence

9h2 = −4ε3 , (8)

which has a cusp at the origin. At the origin h = ε = 0 all three roots collide in the
saddle-centre bifurcation. The discriminant (8) is shown in Fig. 2. In the case of the
saddle-centre bifurcation the bifurcation diagram is given by the discriminant of P3. The
bifurcation diagram divides the parameter plane (ε, h) into two regions: one with 3 real
roots and one with 1 real and two complex roots. The latter has positive ε everywhere,
while the former is the wedge shaped region contained in the negative half-plane. For
ε < 0 the phase portraits contain a pair of stable/unstable fixed points. The critical value
of the energy of the stable fixed point is a local minimum given by the lower branch of the
bifurcation diagram, while that of the unstable fixed point is a saddle given by the branch
with positive h. For this range of energies there are 3 real roots. It will turn out that
the upper branch of the bifurcation diagram corresponding to the unstable fixed point
is crucial for the existence of vanishing twist. For ε > 0 the phase portrait is without
fixed points. Even though the topology is trivial in this case we will now show that the
rotation number has a maximum on a certain invariant torus containing points near the
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Figure 2: Schematic sketch of the bifurcation diagram for the saddle-centre bifurcation.
Graphs of P3 are shown together with a horizontal line indicating the value of h. The bold
lines are the critical values of the saddle.

Figure 3: Lines of constant period T = 1/Ω equidistant with ∆T = 0.3 on the parameter
plane (ε, h) for the saddle-centre bifurcation (1 : 1 resonance, ω = 0). The vanishing twist
is indicated by a curve of vertical tangents ∂Ω/∂h = 0.
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origin in the phase space. At this maximum of the rotation number the twist vanishes.
The vanishing twist occurs at the vertical tangents of the contours of the rotation number
shown in Fig. 3. The fact that the invariant curves are all unbounded for ε > 0 will be dealt
with in section 4. For now observe that the integral (3) is finite, even though the invariant
curves are unbounded in v. The main feature of the level lines of the rotation number
as shown in Fig. 3 is that it diverges when the unstable periodic orbit is approached.
This occurs for the positive critical value of h when ε < 0. Everywhere else the rotation
number is a well defined, smooth and bounded function of h and ε. Accordingly the level
lines “hug” the curve of critical values that correspond to the unstable orbit. Already
from this property one can deduce the existence of a curve with vanishing twist using
topological arguments. Here we proceed along the analytical route, because it will give
us more detailed information. Note that the curve of critical values with negative h, see
Fig. 2, does not appear in Fig. 3. One reason for this is that we chose to plot the rotation
number for the (non-compact) invariant tori with motion between −∞ and the smallest
real zero of P3. These invariant tori do not contain critical points of the energy map,
even though the corresponding energy might be a critical value. Accordingly the rotation
number is smooth across this line of critical values. The critical point corresponding to
the critical values is the stable fixed point at the local minimum of H. But even if we
would plot the rotation number of the bounded invariant tori near the local minimum of
the potential the picture is unchanged. The reason is that for a cubic elliptic curve the
integrals of first kind over either one of the two real intervals (if they exist) are equal.

Since Ω = 1/T and 2πT = ∂J/∂h the derivative of the rotation function is

∂Ω

∂J
=

∂Ω/∂h

∂J/∂h
= −∂T/∂h

2πT 3
.

Hence the twist vanishes when

∂T

∂h
=

(3/2)3/2

ε7/4

∂S

∂γ
= 0

and this is only possible for finite ε when

∂S

∂γ
= −

∮

1

w3
dz = 0 .

This complete elliptic integral can be written as a linear combination of Legendre’s stan-
dard integrals. In this way a condition for the vanishing of the twist is now obtained. The
relevant case for this purpose is that of one real root, for which the phase portrait has no
fixed point. The integrand w is positive for u ∈ (−∞, z0), where z0 is the single root of
P3(z). Let the factorized polynomial be given by

P3(z) = −(z − z0)P2(z), P2(z) = (z − ζ1)
2 + ζ2

2 , (9)

so that the complex roots are ζ1 ± iζ2. Denote the distance between the real and complex
roots by r, hence r2 = P2(z0), so that the discriminant is given by ∆ = −4r4ζ2

2 . Legendre’s
standard integral of the first kind K(k) has differential

ω1 =
1

√

P3(z)
dz (10)
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up to a constant factor, where the modulus k is given by

k2 =
1

2

(

1 +
z0 − ζ1

r

)

=
1

2

(

1 +
sign(γ)√
1 + α2

)

, (11)

and in the last equality the parameter α = ζ2/(z0−ζ1) has been introduced. In the second
equality in addition sign(z0 − ζ1) = sign(γ) is used, which is true because z0 = ζ1 in (9)
together with the vanishing of the quadratic coeffcient in (5) implies z0 = ζ1 = 0, and
therefoe the polynomial has no constant term and h = γ = 0.

A non-standard form of the differential of Legendre’s standard integral of second kind
E(k) is

ω2 =
P2(z)dz

(z − (z0 ± r))2
ω1 ,

up to the same constant factor as in (10). The differential dz/w3 we are interested in is of
the second kind, and can therefore be written as a linear combination of ω1 and ω2 with
constant coefficients, up to a total differential:

dz

w3
= Aω1 + Bω2 + dF

where F = Q2(z)/((z − (z0 ± r))w). Together with the undetermined coefficients of the
quadratic polynomial Q2 this gives a system of 5 linear equations for the 5 unknown
coefficients. Solving these equations gives

A =
2r

∆
((z0 − ζ1)r − r2 + 4ζ2

2 ), B =
4r

∆
(r2 − 4ζ2

2 )

Since the quadratic coefficient of P3 is zero, the roots of P3 add up to zero. Therefore
the real parts satisfy z0 + 2ζ1 = 0, hence

2k2 = 1 − 3ζ1/r and r2 = 9ζ2
1 + ζ2

2 .

With these equations the coefficients A and B can be expressed in terms of k alone, up to
the factor (r2∆)−1. The condition of vanishing twist, ∂S/∂γ = 0, finally reads

(8k4 − 9k2 + 1)K(k) = (16k4 − 16k2 + 1)E(k) ,

where K(k) and E(k) stand for elliptic integrals of the first and the second kind, respec-
tively.

For k = 0 we have equality since both elliptic integrals equal π/2. The first derivatives
of either side vanishes, but the second derivatives are −35π/4 and −65π/4, respectively,
so that the left hand side is larger for small k. For k = 1 the prefactor of K vanishes,
while that of E gives 1 and E(1) = 1. Hence for k → 1 the right hand side dominates.
This proves that there exists a solution of this equation for k ∈ (0, 1). Numerically we
find k2

0 ≈ 0.7097215. In order to calculate the corresponding γ0 we observe that α as
introduced in (11) is related to γ by

α =
ζ2

z0 − ζ1

= − ζ2

3ζ1

=
1√
3

Γ2 + σ

Γ2 − σ
, (12)

where

Γ = (γ +
√

σ + γ2)1/3 . (13)

7



Figure 4: Bifurcation diagram of the position in phase space u versus the bifurcation
parameter ε. For ε < 0 the location of the fixed points at ±

√
−ε are shown, while for

ε > 0 the maximal u of the twistless torus at z0(γ0)
√

ε is shown.

Using (11) and k0 the corresponding value of α is α0 ≈ 2.164255, and from α0 using (12)
we find γ0 ≈ 0.9152203. Therefore the curve of vanishing twist in the parameter plane
occurs for positive ε when

3h = 2γ0ε
3/2 . (14)

Since γ0 < 1 the curve of vanishing twist is bent downward as compared to the bifurcation
curve (8) for ε < 0 and h > 0. See Fig. 3 for a graph of this curve together with the
numerically computed lines of constant rotation number. The lines of constant rotation
number have vertical slope at their intersection with the critical curve, as must be the
case.

The scaling of u reduces the number of parameters to one. The essential parameter γ,
in its dependence on h and ε, organizes the bifurcation. It allows to compute explicitly all
the important characteristics of the twistless torus. Combining (11) and (12) shows that
k is a function of γ. The curves in the parameter plane that have the same value of γ are
given by (4). The most prominent ones are the curve of critical values γ = ±1, as shown
in Fig. 2, and γ = γ0, the curve of twistless tori, see Fig. 3. They all have the same shape
of a semicubical parabola, except when γ = 0, hence h = 0, or γ = ±∞, hence ε = 0 with
±h > 0.

k2 γ α curve

1 +1 0 3h = −2(−ε)3/2

1

4
(2 +

√
3) +∞ 1/

√
3 ε = 0, h > 0

0.709721497 0.91522 2.164255 3h = γ0(−ε)3/2

1

2
0 ∞ ε = 0, h > 0

1

4
(2 −

√
3) −∞ 1/

√
3 ε = 0, h < 0

0 −1 0 3h = 2(−ε)3/2

Approaching the bifurcation point along the curve (4) gives k(γ) in the limit. The function
k(h, ε) is therefore not continuous at the origin. Moving on curves (4) in the parameter
plane for any γ 6= 1 the change in the period T (h, ε) given by (3) is elementary. From (7) it
follows that T is proportional to |ε|−1/4, and the constant of proportionality is determined
from (7) and (6). The divergence of the period upon approaching the bifurcation is
therefore not caused by the elliptic integral, but merely by the algebraic dependence
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|ε|−1/4. In this way the rotation number of the stable periodic orbit is given by

Ω(γ = −1, ε) =
1√
2π

(−ε)1/4 ≈ 0.225079 |ε|1/4 .

The integral S(−1) contained in this expression can be easily calculated using residue
calculus because for γ = −1 the curve has a double root, P3(z) = −(z + 2)(z − 1)2. For
general values of γ and in particular for the twistless torus the elliptic integral S(γ) (6)
needs to be calculated. The single real root is given by

z0 = Γ − σ

Γ
, hence z0(γ0) ≈ 0.5535942 . (15)

Finally S(γ) is obtained as

S(γ) =
4K(k)

√

3z0

√
1 + α2/2

.

In particular when γ = γ0 the rotation number of the twistless torus is

Ω(γ = γ0, ε) =

√

z0(γ0)
√

1 + α2
0

4K(k0)
ε1/4 ≈ 0.1374244 ε1/4 . (16)

The constant of proportionality is close to
√

3/4π. Using the above value of z0 the position
of the rightmost point of the twistless torus in phase space is located at u0 = z0

√
ε. This

means that for ε = ε0 this point is on the same side as the stable periodic orbit was for
ε = −ε0 before the bifurcation, but by a factor of 1/z0(γ0) ≈ 2 closer to the origin. See
Fig. 4 for an illustration in the form of a standard bifurcation diagram showing position
in phase space u versus bifurcation parameter ε.

3 Period-Doubling Bifurcation

The normal form of a Hamiltonian system with two degrees of freedom near a periodic
orbit in 1 : 2 resonance is

H(u, v) =
v2

2
+ D

u4

4
+ εu2 , (17)

where D = ±1. As in the case of the saddle-centre bifurcation the variables u and v are
canonically conjugate variables on a local transversal Poincaré section and ε is a param-
eter, typically corresponding to the energy of the original system. Contourplots of this
Hamiltonian show the intersection of invariant tori with the Poincaré section transversal
to the bifurcating orbit. For D = 1 they are shown in Fig. 5, for D = −1 in Fig. 6, for
ε < 0, ε = 0, and ε > 0, respectively.

The critical points and critical values of the energy map H : R
2 → R and their

dependence on the parameter ε describe the structure of the bifurcation. The Hamiltonian
has critical points at (0, 0) and at (u, v) = (±

√
−2εD, 0) with critical values h = 0 and

h = −Dε2. The origin is a local minimum for ε > 0, a saddle otherwise. The second
critical point exists when εD < 0, and is a local minimum for ε < 0, a saddle otherwise.
The set of critical values, see Fig. 7, therefore is the union of the line h = 0 with the half
of the parabola h = −Dε2 for which Dε < 0. For D > 0 the only unstable branch in the
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Figure 5: Lines of the constant energy on the phase space (u, v) for the period-doubling
bifurcation (D = 1) for ε = −0.1, ε = 0, ε = 0.1.

Figure 6: Lines of the constant energy on the phase space (u, v) for the period-doubling
bifurcation (D = −1), for ε = −0.1, ε = 0, ε = 0.1

bifurcation diagram is h = 0 for ε < 0. It divides the two regions of real motion. A third
region {h < −ε2} ∪ {ε > 0,−ε2 < h < 0} is not in the image of H, hence there is no real
motion corresponding to (h, ε) from this region.

For D < 0 the line of critical values h = 0 again has a saddle as critical point when
ε < 0. In addition the half parabola h = ε2, ε > 0 also corresponds to a saddle of H that
is not at the origin. When D < 0 the whole plane (h, ε) is in the image of H considering
all ε. The critical values divide the plane into three regions with 0, 2, and 4 real roots.

The dynamics of the reduced one degree of freedom system is given by u̇ = v and
eliminating v using the Hamiltonian gives a first order equation for u. Separation of
variables then gives the period of motion in the reduced one degree of freedom system as
the elliptic integral

T (h, ε) =

∮

du
√

2h − 1

2
Du4 − 2εu2

.

The number of parameters could be reduced by introducing the ratio h/ε2, but for clarity
we do not introduce this scaling. The period T is an elliptic integral on the curve

E : w2 = P4(z) = P2(z
2) = 2h − 1

2
Dz4 − 2εz2 . (18)

The discriminant of P4 is

∆ = −256Dh(Dh + ε2)2 .

It vanishes for h = 0 and Dh = −ε2, corresponding to the critical values h = 0 and
h = −Dε2 already found above. As usual the set of critical values is contained in the

10



Figure 7: Schematic sketch of the bifurcation diagram for the two cases of the period
doubling bifurcation. Graphs of P4 are shown together with a horizontal line indicating
the value of h. The bold line denote critical values of unstable orbits. The dashed line is
not critical; it indicates a vanishing of the discrimiant.

discriminant, however, the discriminant vanishes on a larger set. Namely the branch of
the parabola with Dε > 0 is not part of the critical values. The three regions already
found correspond to regions with 4, 2, and 0 real roots of P4, respectively, see Fig. 7. The
part of the discriminant that is not part of the critical values is dashed. The polynomial
can be factored as

P4(z) = −1

2
D(ξ− − z2)(ξ+ − z2),

1

2
Dξ± = −ε ±

√

ε2 + Dh .

Comparing coefficients gives ξ−ξ+ = −4hD and ξ− + ξ+ = −4εD. The factorization of P4

has real factors, i.e. ξ± ∈ R, with one exception. It occurs when the quadratic equation
P2(ξ) = 0 has complex roots. The position of the roots in the regions of the parameter
plane is as follows. The two real cases for D = 1 are

+2 : h > 0 ξ− < 0 < ξ+ 2[−
√

ξ+,
√

ξ+]

+4 : ε < 0,−ε2 < h < 0 0 < ξ− < ξ+ 2[
√

ξ−,
√

ξ+]

In the first column a label is given containing the number of real roots. All 4 cases appear
when D = −1 for

−2 : h < 0 ξ+ < 0 < ξ− 2[−∞,−
√

ξ−]

−4 : ε > 0, 0 < h < ε2 0 < ξ+ < ξ− 2[−∞,−
√

ξ−]

−0i : ε < 0, 0 < h < ε2 ξ+ < ξ− < 0 [−∞,∞]

−0c : h > ε2 ξ± complex [−∞,∞]

The last column gives the interval of real motion along which the period integral is taken.
The region without real roots contains two parts separated by the branch of the parabola
h = −Dε2 with Dε > 0. On this branch there occurs a collision of complex roots at
z2 = −2εD, and they move from the imaginary axis into the complex plane.

The intervals of integration and multiplication factors as given in the last column of
the previous table can be read off from the phase diagrams, see Fig. 5, 6. In the case
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Figure 8: Lines of constant period T = 1/Ω equidistant with ∆T = 0.3 on the parameter
plane (ε, h) for the period-doubling bifurcation (1 : 2 resonance, ω = 1/2) with D = 1

D = −1 with 4 real roots there are different orbits for the same (h, ε). One is the compact
orbit near the stable fixed point with extent 2[−

√

ξ+,
√

ξ+]. The interval given above is
for the non-compact orbit, which has half of this period.

In order to calculate the derivative of T with respect to h the integral is first written
in standard form and then differentiated. This more traditional approach (as compared to
the previous section) is preferable in this case because the roots of the quartic are easily
written down.

Denote the ratio of the roots ξ± by

r =
ξ−
ξ+

=
−ε −

√
ε2 + Dh

−ε +
√

ε2 + Dh
.

Then the period T (h, ε) in the 6 cases is given by

+2,−2 : T =

(

8(1 − 2k2)

ε

)1/2

K(k), k2 =
1

1 − r
, (19)

+4,−0i : T =

(

8(k2 − 2)

ε

)1/2

K(k), k2 = 1 − r, (20)

−4 : T =

(

8(1 + k2)

ε

)1/2

K(k), k2 =
1

r
, (21)

−0c : T =

(

8(2k2 − 1)

ε

)1/2

K(k), k2 =
1

2
+

ε

2
√

h
. (22)

The level lines of the period T (and hence the rotation number Ω = 1/T ) are shown in
Fig. 8 for D = 1 and in Fig. 9 for D = −1. These numerically computed pictures show
that there are no vertical tangents, hence the twist does not vanish. This is now proved
by differentiating the period in Legendre normal form.

The twist vanishes when

0 =
∂T

∂h
=

∂T

∂k

∂k

∂h
.

12



Figure 9: Lines of constant period T = 1/Ω equidistant with ∆T = 0.3 on the parameter
plane (ε, h) for the period-doubling bifurcation (1 : 2 resonance, ω = 1/2) with D = −1

The last factor ∂k/∂h does not vanish for k ∈ (0, 1). In the cases +2, −2, and −0c it
seems to vanish when k = 1/2. But this implies that ε = 0 and the singularity cancels.
Therefore it is enough to consider ∂T/∂k = 0. After removing common non-vanishing
factors the conditions for vanishing twist are Vi(k) = 0, i = 1, 2, 3 where

+2,−2,−0c : V1(k) =(1 − 2k2)E(k) − (1 − k2)K(k), (23)

+4,−0i : V2(k) =

(

1 − k2

2

)

E(k) − (1 − k2)K(k), (24)

−4 : V3(k) =(1 + k2)E(k) − (1 − k2)K(k) . (25)

The three equalities Vi(k) = 0, i = 1, 2, 3 are never satisfied on the range k ∈ (0, 1).
Obviously Vi(0) = 0, while Vi(1) = −1, 1/2, 2 for i = 1, 2, 3, respectively. So we need to
show that V1 is negative and V2, V3 are positive for k ∈ (0, 1). Differentiating V1 and V2

gives the simple results

V ′

2(k) = − 3

2
k(K(k) − E(k)) (26)

V ′

3(k) = − 3kE(k) (27)

In the last case V ′
3(k) is obviously non-positive, so that the twist in the case −4 is a

monotone funtion rising from 0, hence it is nonzero. Similarly also V ′
2(k) is non-positive,

which follows from the well known inequality K(k) > E(k). The first function V1(k) is
negative on (0, 1), but not monotone. Rewriting it as

V1(k) = (1 − k2)(E(k) − K(k)) − k2E(k) < 0

the inequality is clear because both terms are negative for k ∈ (0, 1). Therefore the twist
never vanishes in a neighborhood of the period doubling bifurcation.

The relation between the cases D = ±1 is interesting. The main observation is that
changing the sign of D and ε inverts the overall sign of the potential V (x;D, ε) = Dx4/4+
2εx2. Therefore changing the signs of D, ε, and h leaves the roots of P4 invariant. By this

13



mapping the regions in parameter space with the same numbers of real roots are mapped
into each other. The integration path does change in a less trivial way. The integration
needs to be taken over the positive intervals of P4 on the real axis. Changing the sings
of D, ε, and h does change the sign of P4. As a result the periods for D = 1 are the α
cycles of the elliptic curve, while those for D = −1 are the β cycles. Hence the period for
the case −4 can be obtained from that of +4 by replacing K(k) by K ′(k) = K(

√
1 − k2).

Similarly, the cases +2 and −2 are mapped into each other.
The obvious symmetry in Figures 8 and 9 with respect to changing the sign of h is

related to the fact that changing the sign of D and h leaves the ratio r, and therefore also
the corresponding modulus k2, invariant. This means that the level lines in region +2 and
−2 can be obtained from each other by reflection on the h = 0 axis. In a similar way the
regions +4 and −0i have the same rotation number.

The period doubling could have been treated in a scaled version with only one essential
parameter δ = h/ε2. However, the presentation seems more transparent in the unscaled
version. Similar to the case of the saddle-centre bifurcation the modulus k2 of the elliptic
integral for the period is constant on the parabolas h = δε2. Again dependence on the
parameters on these curves is simply algebraic, as before through |ε|1/4. The value of
the modulus is not defined at the origin, but depends on the parabola on which it is
approached. But in any case, there are no twistless tori near the origin in this bifurcation.

4 Universality

A major problem in our approach seems to be that the invariant twistless tori in the
normal form are not compact. The normal form is obtained from an expansion near
the bifurcation point, and is therefore local in phase space and local in the parameter.
How can the rotation number of a non-local invariant torus be determined from this local
normal form? To answer this question higher order terms need to be considered in the
Hamiltonian. The Poincaré map near the bifurcation can be described by the time 1 map
of the Hamiltonian

H̃(u, v, t; ε) = H(u, v; ε) + G(u; ε) + R(u, v, t; ε) .

The remainder terms R containing the periodic time dependence can be made arbitrarily
small, but they cannot in general be removed while retaining a non-zero radius of conver-
gence of the normal form. The first term H is the normal form analysed in the previous
chapters. We will concentrate on the saddle-centre case (2), but similar remarks apply
to (17). The invariant tori near the origin for ε > 0 of H are not compact. The higher
order terms in G can compactify them. The results about vanishing twist can be applied
when G does compactify these curves. However, the precise form of G does not matter.
Under the compactness assumption KAM theory can be applied to H +G, where R is the
perturbation. Many of the invariant tori of H + G will persist. In particular a twistless
invariant torus of H + G will persist if it is sufficiently irrational. The curve (14) in the
parameter plane therefore does not have invariant twistless tori in its perimage for every
point, instead just for a cantorset of points. This is well understood. The main issue
in this section is to understand the effect of adding G to H. For small ε the essential
contribution to the diverging period comes from the dynamics near the origin, while the
dynamics on the invariant torus away from the origin has finite period. This is why the
local normal form can give a statement about the dynamics on a non-local invariant torus
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near the bifurcation point. In particular we will now show that the curve of vanishing
twist that was found to be emanating from the cusp of the saddle-centre bifurcation has a
universal shape sufficiently close to the cusp singularity. In particular this means that the
constant γ0 that determines the shape of the curve of twistless tori in relation to the curve
of critical values of the unstable orbits has the universal value γ0 ≈ 0.91522. Quantities
derived from γ0, like z0 and the coefficients in (16), are accordingly also universal. Our
calculation will show that the value of γ0 is not influenced by the higher order terms G
in the Hamiltonian. Moreover, the following argument also shows that integrating the
non-compact invariant torus up to v = ±∞ does not introduce and additional error.

Let the high-order truncated normal form Hamiltonian be

H(u, v; ε) =
1

2
v2 +

1

3
u3 + εu + G(u, ε)

where G(0, ε) = 0 and G(u, 0) = 0 is an analytic function. It is not necessary to assume
that the higher order terms in G depend on v also, see e.g. [8], but even with such a
dependence a slightly modified argument would work. As already explained, it is now
assumed that G(u, ε) is such that the invariant curves near the origin for ε > 0 are
compact.

Hamiltons equation for u reads u̇ = v as before. The period is obtained by solving
H(u, v; ε) = h for v = v(u;h, ε) and then by integrating

T (h, ε) =

∮

du

v(u;h, ε)
.

The idea is to split the integral into two parts; one part near the origin, where the main
contribution originates, and the rest, which is called T3. In addition the singular integral
near the origin is split again into two parts, T1 which has the same integrand as in the
previous calculation with G = 0, and a correction T2 which contains the contribution from
G. The integral T1 will be the most singular, T2 is mildly singular, and T3 is regular. For
sufficiently small ε then T1 dominates and the previous result is recovered.

To achieve the splitting into T1 and T2 the multiplicative structure of the original
inegrand has to be recovered. Solving H = h for v and inserting into u̇ gives

u̇2 = v(u;h, ε)2 = Q0(u;h, ε)Q̂(u;h, ε)

where Q̂ = 1 + O(u) when |u| ≤ C ≤ 1 for some fixed constant C, and Q0 is a polynomial
of degree 3 in u whose zeroes approach those of the original case with G = 0 when ε → 0.
Denote by γC the part of H(u, v; ε) = h for which |u| < C, and γ̄C the rest of the invariant
torus. Then the period integral can be split as

T (h, ε) =

∫

γC

du
√

Q(u, ε, h)
+

∫

γ̄C

du
√

Q(u, ε, h)
(28)

=

∫

γC

du
√

Q0(u, ε, h)
+

∫

γC

Q̂(u, h, ε)
−1/2 − 1

√

Q0(u, ε, h)
du +

∫

γ̄C

du
√

Q(u, ε, h)
(29)

=T1 + T2 + T3 . (30)

Now T3 is regular, and gives a bounded contribution, so we can ignore it. The integral T1

is singular in the limit h, ε → 0. T2 is less singular, and in particular bounded, because
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ε uε−1/2 Ωε−1/4

0.1 0.027 0.28314
0.01 0.328 0.17278
0.001 0.478 0.14656
0.0001 0.528 0.14008
0.00001 0.545 0.13823
0.000001 0.550 0.13767

Table 1: Numerically measured position u and rotation number Ω of the twistless curve
for the three times iterated Hénon map with parameter k = 1 − ε.

the numerator goes to zero in this limit. So we only need to show that T1 approaches the
complete integral when ε → 0. The integral is

T1(h, ε) =
4
√

3/2

r1/2
F (φ, k), φ = 2arctan

√

u0 + C

r
,

where u0 is the real root, ζ is the complex roots of Q0, and r and k are as before,

r =
√

2u2
0
+ |ζ|2, 2k2 = 1 +

3u0

2r
.

The integral T1 does not diverge because of the modulus k2 → 1, but because in the
prefactor r → 0. In fact, we already observed that the modulus k2 ≤ (

√
3 + 2)/4 < 1

inside the first quadrant ε ≥ 0, h > 0. The behaviour of r for small ε is obtained from

r2 =
3

2
u0

√

1 + α2 = D(γ)ε1/4 .

This shows that φ → π, and the integral approaches the complete integral with the same
modulus k(γ) as before. Therefore even though T1 is an incomplete integral, in the limit
of small ε its value approaches that of the complete integral T (h, ε), which diverges. Since
the other integrals T2 and T3 are finite the analysis obtained from the complete integral
over the non-compact curve of H(u, v; ε) with G = 0 therefore correctly describes the
behaviour of the rotation number of the compact invariant curve obtained when G 6= 0.

5 Example: Hénon Map

The Hénon map in the area preserving case,

(x′, y′) = (y − k + x2,−x) ,

illustrates the above. There are saddle-centre bifurcations in the Hénon map for which the
invariant tori for ε > 0 are not compact, and hence the vanishing twist cannot be observed.
This applies to the initial bifurcation at k = −1 that creates the pair of fixed points, and
also to many saddle-centre bifurcations that occur for k > 4. However for k = 1 a pair of
period 3 orbits is created at the origin in a saddle-centre bifurcation of the third iterate
of the map, and the corresponding invariant tori are compact. One of the period three
points is located on the symmetry line x = −y. In new coordinates (u, v) = (x, y + x) the
third iterate of the map expanded near the origin with parameter k = 1 − ε is

(u′, v′) =
(

(u − v)(1 + 4v), v + ε + (u2 − 2uv + 3v2)
)

+ O(u3, v3,
√

|ε|3) .
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The (exact) location of the fixed points is (u, v) = (±
√
−ε, 0), with trace of the Jacobian

2 ∓ 2
√
−ε + 8ε ∓ 8(−ε)3/2 so that the (approximate) multiplier is µ ≈ 1 + i

√
2(−ε)1/4

and µ̄ for the fixed point at u =
√
−ε. The corresponding rotation number ω of the

elliptic fixed point is obtained from µ = exp(2πiω), so that ω = (−ε)1/4/(
√

2π). For small
positive ε the Hénon map possesses compact invariant curves near the origin. A higher
order normal form would give a G that describes these invariant curves. The Hénon map
is non-integrable, so that only sufficiently irrational invariant curves of the (high order)
normal form will exist in the Hénon map. For the situation under consideration numerical
experiments show that many of these invariant curves do exist.

Considering the third iterate of the Hénon map turns the pair of period three orbits
into three pairs of fixed points with heteroclinic connections. In the normal form there is
only one pair of fixed points, and the unstable fixed point has a homoclinic connection.
To match the prediction in the case of more than one unstable fixed point the period and
hence rotation number must be calculated for the heteroclinic connection. For ε > 0 there
are invariant tori on which the dynamics becomes slow near the three points that are
close to the three bifurcation points of the third iterate of the map. Hence the rotation
number for the third iterate of the map between two successive such points gives the
correct rotation number. The results together with the position of the twistless curve are
shown in table 1. The values shown converge to the predicted values given in (15) and
(16), however, fairly small ε are needed to see this. The convergence to the true value
0.1374244... occurs approximately as 1

2
ε5/4.
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