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ABSTRACT 

Flexible polyurethane foam is often molded directly into preheated tools for foaming reaction which 

expands to fill the mold cavity. The foam that is directly in contact with the mold surface cures as the foam 

skin. Parts frequently have surface defects ranging from shrink marks, to voids, to mottling and knit lines. 

There are many possible causes such as applying too much or too little release agent, or mold surface not 

cleaned and conditioned as required before the foaming process. Uneven mold temperatures are also 

suspected to be a cause of surface defects, especially in high-resilience (HR) cold cure polyurethane foam 

systems. A specially designed mold capable of maintaining tight temperature tolerance was built to produce 

foam samples at varying temperatures. The effects of mold surface temperature on the foam surface texture 

are studied and analyzed.  The effect of processing temperature on the macro and micro surface texture is 

examined. It is shown that the processing temperature has a significant effect on the foam surface texture. 

3D topographical analysis of foam surface texture discovered a trend from samples produced at varying 

temperature from 300C to 800C.  This research is funded by EPSRC and assisted by Collins and Aikman UK 

and Rojac Tooling Technologies Ltd. 
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INTRODUCTION 

Flexible polyurethane (PU) foam captures the major foam market for upholstery, mattresses, 

automotive seats and interiors, carpet backing, packaging and padding [1].  PU foam molded products are 

manufactured by mixing raw materials, a polyol and an isocyanate, in a preheated tool. The heat from the 

tool promotes urethane polymerization and foaming which expands to fill the mold cavity.  

PU foam molding tools are typically manufactured from aluminum by machining with straight heating 

channels drilled to take the heating fluid. In the flexible foam molding process, particularly cold-cure flexible 

foam molding, temperature control is a very important factor.  The process requires uniform surface 

temperature throughout the mold. Temperature variation leads to variable foam flow and encourages foam 

collapse, scaling of the foam surface, cavities left void and varying foam densities [2, 3]. 

Proper thermal management of PU foam molding tooling is critical for increasing overall part quality 

and thereby reducing scrap rates [4, 5].  The objective of this research is to understand the effects of mold 

temperature on the surface texture of HR cold-cure flexible foam parts. The effect of processing temperature 

on surface roughness is presented. 

Much of the work previously undertaken to reduce flexible foam molding scrap and improve quality 

has focused on chemical compositions, chemical reactions and materials development [6]. No detailed 

published work focusing on the effect of mold temperature on high-resilience cold-cure polyurethane foam 

molded parts has been found. 

Current and past research on mold temperature control has largely focused on plastic injection 

molding tools rather than polyurethane foam molding tools mainly due to the larger market share attributed to 

the injection molding process [7]. Furthermore, most of this research has been biased towards mold cooling 

rather than heating due to the intrinsic problem of heat build-up in injection molds [8].  

The aim of this research is to assess the effect of mold temperature on the surface texture of 

polyurethane foam parts in the HR cold-cure polyurethane foam molding process. 

 

EXPERIMENTAL METHODOLOGY  

Polyurethane foam specimens of standard size, complying with the Standard Test Methods for 

Flexible Cellular – Slab, Bonded, and Molded Urethane Foams ASTM D 3574 –95, were produced for testing 

the effect of mold temperature on the foam surface texture. The ASTM D 3574 – 95 stipulates that a 

representative specimen of regular shape measuring at least 0.1m2 in area by full-part thickness of 25 mm is 

used. A specially designed mold capable of maintaining tight temperature tolerance was built to produce 



   

    

foam samples at varying temperatures.  A non-contact 3D laser scanning gauge was used to measure and 

quantify the foam surface roughness.   

 

Tool Design 

A mold capable of holding tight temperature tolerance was built to produce the polyurethane foam 

specimens. Perstorp Components Soft Foam Tool Design Guideline and Specifications was used to design, 

fabricate and test the mold. The important guidelines and specifications are listed below: 

• Tool must be airtight while foaming. 

• Foam shut off face width = 20 ± 2 mm. 

• Vertical shut off faces must be avoided at all times. Maximum angle 100 from vertical.  

• Internal venting must be avoided. 

• No porosity on tool surface. 

• Nominal wall thickness = 20 mm (tolerance = 18 mm – 25 mm). 

• Tools must be water tested to 100 PSI (6.5 bar) for a minimum of 1 hour. 

• Water channels to be 15 mm diameter where possible (10 mm minimum diameter where it is not 

possible to use 15 mm). 

• Pipe joints to be away from injection head. 

• For all joints and fittings, each must be straight for minimum of 30 mm after any bend. 

• Position of Water Inlet and Outlet connection at mold side or rear. 

• Nominal thickness around water channel = 5 mm – 10 mm. 

 

Conforming to the above guidelines and specifications, the following is a list of the mold design. 

 

Mold cavity : 32 cm x 32 cm  

Cavity depth : 2.5 cm 

Surface area : 32 cm x 32 cm  = 1024 cm2          (0.1024 m2) 

Volume  : 32 cm x 32 cm x 2.5 cm = 2560 cm3  (0.00256 m3) 

 

 

 

 



   

    

Layout of Mold Heating Channels 

Conventional gun-drilled holes for mold heating channels (Figure 1) were found to be unsuitable due 

to the tendency of water to flow the shortest and easiest route. Milled-grooves were found to ensure better 

water flow as compared to gun-drilled holes.  

The dimension of the heating channel was 15 mm wide and 17 mm deep, thereby achieving a close 

8 mm distance to mold surface. Hot water from a heater was passed through the back of the mold via the 

channel of flat-milled grooves (Figure 2) to achieve a uniform heat distribution throughout the mold surface. 

A plate was used to cover and prevent leakage from the heating channels.  

 

Clamping Unit and Flash 

During the polyurethane foam molding process, it is critical to avoid flashing of foam between the 

molds halves that will produce parts with a thin layer of foam material around its fringes (Figure 3).  Flash 

occurs when the pressure inside the mold arising from polyurethane foaming reaction is greater than the 

clamping force holding down the mold lid. Flash will results in loss of foam mass and density. 

 A good clamping system was required in order to avoid foam from flashing between the lids. A 

rotational wedge-web was designed to quickly and firmly clamp down the mold lid (Figure 4). The angle of 

the wedge slope required to get the maximum clamping force is calculated from the coefficient of friction 

between steel wedge and steel which was between 0.1 – 0.12 (Figure 5). 

 

Calculation for maximum clamping force: 

The coefficient of friction for steel on steel = 0.1 

Therefore,          tan-1 0.1 = 5.70 

5.70 angle used to machine slope the wedge. 

 

Thermocouple 

Thermocouples were inserted at various locations to track the mold surface temperature throughout 

the experiment. The thermocouples were inserted through small holes drilled up to 0.5 mm to the mold 

surface.  The thermocouples were inserted at various locations as shown in Figure 6 to record the mold 

surface temperature throughout the experiment.  

 



   

    

Finite element analysis, as shown in Figure 7, was conducted to ensure that the drilled holes do not 

cause mold rupture during the foaming process, which generates close to 2 bar pressure inside the mold.  

The selection of a particular thermocouple type ideal for the mold multi-point temperature 

measurement required in this experiment is based on the following criteria: sensing application; physical 

conditions; accuracy; sensitivity and compatibility with the existing data-logging equipment, CR10X data-

logger. 

T-type thermocouples, Copper-Constantan (BS EN 60584.1 Part 5), were used since the mold 

temperature range for this experiment is limited between 300C to 800C. At low temperature range, the T-type 

thermocouple has a very close tolerance of ± 30 µV (± 0.500C) and can perform even when moisture may be 

present. Repeatability is in the range up to 2000C (±0.10C). To ensure correct temperature readings were 

recorded, two thermocouples were calibrated at UKAS certified facilities. The calibrated thermocouples were 

used as benchmarks to gauge the accuracy of the rest of the thermocouples. Tests were performed using 

steam and freezing water, and the output for all thermocouple were confirmed to be within ±0.30C range. The 

thermocouples were linked to the data-logger and a laptop computer to record the mold temperature across 

the mold (Figure 8). 

 

Manufacture of Test Specimens 

The foam-molded specimens were manufactured by mixing polyol and diisocyanate 

diphenylmethane (MDI) using micro cell mixing and metering equipment. The mold was preheated to the 

required test temperature. The heat from the tool helped to initiate the reaction and cure the material, which 

expanded to fill the mold cavity. 

The mixed material was dispensed into the open mold through the mixing head, and the lid was 

quickly closed to avoid foam from flashing. It was important to ensure that the tool was airtight to avoid 

decompression faults on foam parts.  

The initial experiment was conducted at a mold temperature of 700C then followed by 800C, 600C, 

500C, 400C and finally at 300C, with the same procedure repeated for each molding cycle. Five specimens 

were molded at each mold temperature with the same amount of shot injected at the exact location in the 

mold, while release agent was sprayed after every three shots. The molding time was 90 seconds, after 

which specimens were demolded (Figure 9), rolled, weighed and labeled. A cast iron bar was used to roll 

over the specimen to break the closed-cell structure. Immediately after the foam specimen was demolded 

and rolled, each sample was weighed on a precision balance (Figure 10), and the length, width and 



   

    

thickness were measured to calculate the initial densities. The samples were again weighed after 14 days, 

and the length, width and thickness were measured again to calculate the densities. 

 

SURFACE TEXTURE INSPECTION 

Every surface has some form of texture whether it is smooth or otherwise. The easiest and most 

common method for assessing a surface texture is through visual inspection or sensual touch (Figure 11). 

Both these techniques are limited to qualitative assessment and very subjective to evaluator preferences.  

As recommended by the ASTM D 3574, all tests were performed more than 14 days after the foam 

had been manufactured. The foam specimens were kept undeflected and undistorted at the temperature and 

humidity of test for more than 12 hours before tested at a temperature of 23 ± 2oC and in an atmosphere of 

50 ± 5% relative humidity.  

 Considering that the foam surface is very soft and porous, the method adopted for surface 

measurements was a non-contact gauging technique provided by the Talysurf CLI system. This system uses 

a 10 mm laser triangulation gauge to deduce the height of a surface point by sensing the position of a laser 

spot on the surface using a CCD detector placed at an angle away from the incoming laser beam (Figure 

12).  

The main requirement was to measure the surface texture produced at varying mold temperatures. 

The two main elements of surface texture are roughness and waviness. Micro surface analysis was 

conducted to quantify the surface roughness and macro surface analysis to quantify the surface waviness. 

Micro and macro analyses were conducted for top and bottom surfaces of the foam specimens. 

 

Micro Surface Roughness Inspection 

A spacing of 50 x 50 microns (X and Y-axis) was used to scan a 10 mm x 10 mm area in the middle 

section of the specimen (Figure 13). A grid of 201 x 201 points or scan traces in both X-axis and Y-axis was 

used to measure the micro surface data.  

 

Macro Surface Roughness Inspection 

The specimens were next measured over an area of 150 mm x 150 mm in the middle section (Figure 

14) with a spacing of 5000 x 5000 microns for macro surface texture analysis. A grid of 31 x 31 scan traces 

in X and Y-axis was used to measure the macro surface data. Both the macro and micro surface data were 

then post-processed for 3D topography and 3D surface roughness (Sa) using Talymap Universal software. 



   

    

The recorded Sa values for micro and macro for both top and bottom foam surfaces are tabulated for 

comparative analysis between different mold temperatures.  

                           

RESULTS AND DISCUSSIONS 

Surface roughness average, Sa, as defined in EUR 15178EN is the average absolute deviation of 

the measured surface. Surface roughness average, Sa, is very much similar to Roughness average, Ra. In 

measuring the Ra value, sampling length and assessment length is used, while in measuring Sa, sampling 

area and assessment area is used instead. Ra and Sa are the most commonly used parameters in surface 

texture analysis [9]. Sa units are length, typically microns. 

 Using the Talysurf 3D laser scanner, each foam sample surface roughness was measured, and the 

average surface roughness at each mold temperature was calculated and tabulated. Table 1 tabulates the 

macro surface roughness of the top surface.  

Figure 15 shows the surface roughness, Sa, obtained from the macro analysis of the foam top 

surface. Foam samples produced at 500C gave the smoothest surface roughness.  As mold temperature 

deviates away from 500C the Sa values measured were higher.  

Similar results was obtained for the macro analysis of bottom surface, with foam samples produced 

at 500C having the smoothest surface roughness. Surface roughness deteriorates as mold temperature 

deviates away from 500C as shown in Figure 16. Very small Sa standard deviations were recorded at 500C 

and 700C while the largest standard deviation were recorded at 600C. 

The scanned surface data fed to the Talymap Universal software was used to generate 3D 

topographical illustrations of the macro foam surface texture at various mold temperatures as shown in 

Figure 17. The topography indicates a very much smoother surface produced at 500C as compared to those 

at 400C and 600C, with undulating peak and valleys attributed to scaling and shrink marks.  

The micro analysis of the foam surface roughness for both top and bottom surfaces have a similar 

results as in macro analysis with average Sa values lowest at 500C with a slight increase of Sa as the mold 

temperature deviates from 500C. Figure 18 and Figure 19 shows the surface roughness, Sa, obtained from 

the micro analysis of the foam top surface and bottom surface, respectively.  

  The effect of mold temperature on foam micro surface roughness can be qualitatively analyzed by 

inspecting the scan photo simulation shown in Figure 20. It can be seen that the foam produced at 500C had 

the finest surface texture free from scaling and mottling, as compared with specimens produced at other 

temperatures.  



   

    

Micro 

 The micro surface roughness for top and bottom surface is best at 500C at 53 microns and 48 

microns, respectively, with uniform surface texture. As the mold temperature increases above 500C, the 

surface roughness for both top and bottom surface get coarser at almost the same value, with visible 

mottling forming on the surface. Meanwhile, when the mold temperature decreases below 500C, the measure 

of surface roughness for top surface is slightly coarser than the bottom surface with more visible scaling 

marks comparatively. 

 

Macro 

Similarly, results shows that the macro surface roughness for top and bottom surface is best at 500C. 

As the mold temperature decreases below 500C, the surface roughness for both top and bottom surface get 

coarser. The surface texture is rougher at 300C with high Sa value due to void marks. Sa value decreases at 

400C with some scaling marks and is lowest at 500C with fine and uniform texture. The roughness rapidly 

increases, attributed to shrink mark, knit lines and mottling as the mold temperature increases towards 800C.   

The variations in Sa value at 600C is attributed to noise after running a statistical Multiple Range Tests which 

shows that the variation is not significant (Table 2). 

The top and bottom surface roughness at 500C drop to 57 microns and 77 microns, respectively, 

from about 140 microns at 400C. Similarly the top and bottom surface roughness starts getting coarser 

rapidly from 57 microns and 77 microns to 160 microns and 215 microns, respectively, as mold temperature 

increases from 500C to 600C.  

  This indicates that the macro surface texture is greatly affected by mold temperature varying away 

from 500C. High Sa at low temperature is attributed to incomplete curing, and high Sa at high temperature 

was due to evaporation of release agent wax.  

      

CONCLUSIONS 

A study of the effects of processing temperature on the foam surface texture was presented. It was 

shown that the mold temperature had significant and repeatable effect especially on the macro surface 

texture.  Variations in surface roughness were observed at varying mold temperatures due to voids, shrink 

marks, scaling, knit lines and mottling. These variations are large enough to warrant careful considerations of 

mold temperature management when forming foams in the mold. It can be suggested from these findings 

that temperature of a production mold should be held at close tolerance to maintain a uniform surface 



   

    

texture. Temperature variations across the surface of foam tools, especially larger tools, is most likely one of 

the main reasons why foam parts have varying surface texture which often leads to scrap. 
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Caption below Figures 

Figure 1. Gun-drilled holes heating channels. 

Figure 2. Milled grooves heating channels. 

Figure 3. Flash around foam parts. 

Figure 4. Wedge clamping system. 

Figure 5. Wedge slope for maximum clamping.  

Figure 6. Location of thermocouples 0.5 mm below  mold surface. 

Figure 7. Stress analysis for thermocouple holes.    

Figure 8. Thermocouples inside the mold linked to data logger and laptop to record mold temperature.  

Figure 9. Foam ready to demold. 

Figure 10. Precision balance to weigh foam. 

Figure 11.  Visual inspection of foam specimens. Top row from left: 30oC, 40oC, 50oC.  

        Bottom row from left: 60oC, 70oC and 80oC. 

Figure 12. Illustrations of laser system with CCD sensor. 

Figure 13. Scanning a 10  x 10 mm area in the middle section.  

Figure 14. Scanning area of 150 x 150 mm for macro analysis. 

Figure 15. Macro top surface roughness for specimens produced at varying mold temperature. 

Figure 16. Macro analysis of specimens bottom surface.  

Figure 17. 3D topography of the scanned foam surfaces.  

Figure 18. Micro top surface roughness for specimens produced at varying mold temperature. 

Figure 19. Micro bottom surface roughness for specimens produced at varying mold temperature. 

Figure 20. Scan photo simulation and the Sa values of micro foam surface texture at different mold 

temperatures.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

    

Table 

 

        Table 1        Surface roughness average, Sa, for macro analysis of the foam top surface. 

Temp. ( OC ) 30 40 50 60 70 80 

Sa (microns) Sample #1 296.0 142.0 83.3 118.0 90.5 85.7 

Sa (microns) Sample #2 445.0 203.0 48.9 297.0 74.1 121.0 

Sa (microns) Sample #3 339.0 110.0 64.6 169.0 78.2 119.0 

Sa (microns) Sample #4 378.0 76.2 45.2 98.6 63.3 126.0 

Sa (microns) Sample #5 242.0 164.0 44.2 131.0 86.1 133.0 

Average Sa (microns) 340.1 139.1 57.3 162.8 78.5 117.0 

Std. Dev. 77.5 48.8 16.7 79.4 10.6 18.3 

 

Table 2      Statistical multiple comparison table using Statgraphics Plus 
shows only data at 300C are significant (indicated with an asterisk) ; those 
covering the temperature range from 40 – 800C are the same. The jump in 
Sa value at 600C is attributed to noise.  

 
Method: 95%  Scheffe Count Mean Homogeneous 

Group 
T_50 5 57.24 X 
T_70 5 78.44 X 
T_80 5 116.94 X 
T_40 5 139.04 X 
T_60 5 162.72 X 
T_30 5 340.0     X 

Contrast Difference +/- Limits 
T_30 – T_40 *200.96 116.0 
T_30 – T_50 *282.76 116.0 
T_30 – T_60 *177.28 116.0 
T_30 – T_70 *261.56 116.0 
T_30 – T_80 *223.06 116.0 
T_40 – T_50 81.8 116.0 
T_40 – T_60 -23.68 116.0 
T_40 – T_70 60.6 116.0 
T_40 – T_80 22.1 116.0 
T_50 – T_60 -105.48 116.0 
T_50 – T_70 -21.2 116.0 
T_50 – T_80 -59.7 116.0 
T_60 – T_70 84.28 116.0 
T_60 – T_80 45.78 116.0 
T_70 – T_80 -38.5 116.0 
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Figure 6.  

 

 

Rotational 
wedge-web

Wedge slope 



   

    

              

           Figure 7.    

    

                                                

                  Figure 8.  

 

                 

Open 
mold 

Data 
logger 



   

    

  

             Figure 9.                   Figure 10.  
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   Figure 13.  
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       Figure 15.  
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              Figure 16.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

    

 

 

 

 

 

                          Figure 10: Foam surface texture at different mold temperatures.  

 

   Figure 18.                                                                                                                                     

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.  
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            Figure 18.  

 

0

20

40

60

80

100

120

140

20 30 40 50 60 70 80 90

Mold Temperature (Degree Celsius)

S
a 

(M
ic

ro
ns

)

 

        Figure 19.  
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    T60_3 Micro Top   T70_3 Micro Top   T80_4 Micro Top  
    (62.4 microns)  (70.0 microns)   (104.0 microns) 
 
 
Figure 20.   
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