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Sensor optimisation viaH ., applied to a MAGLEV suspension system.

Konstantinos Michail, Argyrios Zolotas, Roger Goodall, aluhn Pearson

Abstract—In this paper a systematic method vid., control requirements of the MAGLEV suspension as well as the

design is proposed to select a sensor set that satisfies a numiiective functions to be minimised, the overall problem

of input criteria for a MAGLEV suspension system. The proposeg, myation, and the genetic algorithm parameter adjustme
method recovers a number of optimised controllers for each possi '

sensor set that satisfies the performance and constraint criteria u epver presents hOW, the c;onstramts are merge‘?‘ into the
evolutionary algorithms. algorithm procedure. Simulations and data analysis of the
o o . . overall framework are given in section 4 with a comparison
Keywords—H-infinity, Sensor optimisation, Genetic algorithms, . . . .
MAGLEV vehicles between noisy and noise-free measurements. Conclusidins wi
future work are given in section 5.

I. INTRODUCTION Il. MODEL DESCRIPTION

A sensor optimisation systematic framework is consideredp,o diagram of a one degree-of-freedom, ‘quarter-car
for a MAGnetic LEVitated (MAGLEV) transport vehicle [11]. gjectromagnetic suspension system is shown in Fig.1. The

This work is part of a bigger project investigating optindsesuspension consists of an electromagnet with a ferromiagnet
configurations of sensing elements for control and fauk ©lgre and a coil ofV turns which is attracted to the rail that

erant. The research is focusing upon practical engineerigimade out of ferromagnetic material. The carriage mass is
applications that are dynamically complex, electrome®®in 4itached on the electromagnet, withbeing the rail position

in nature and typified the kinds of systems in aerospace; autg,q ., the electromagnet position. The air gap — z) is to

motive and railway. The model considered is a linearised-€lg)s maintained close to the operating condition requiree Th
tromagnetic suspension system of a quarter car in state spac

form with five possible measurements leadin@to- 1 = 31 — 2
possible sensor combinations. The framework presented aim g@g\@}/ = = R
to find a set of optimised controllers that improve the ridalgu b iy 16 ]
ity while minimizing the control effort and the performance H !
metric within a range of hard and soft constraints assigned " H coi

\\\ = = //

beforehand for each sensor combination. Both determgnisti Electromagnet

and stochastic track disturbances are considered, witkenoi

and noise-free measurement conditions.

This framework merges th& ., controller design, the Linear .
Matrix Inequalities (LMI) optimisation tool and heuristad-

gorithms that are used to adjust the, weighting filters and Fo 1S , wem for MAGLEV
achieve a Pareto front of optimised controllers solution fo 9- &, Suspension system for

each sensor set. Among the metaheuristic algorithms [B], . . L .
evolutionary algorithmsgare used extensivelygin engimEg;]aritEﬂ state space model is derived by considering the opegatin
oint (nominal) values of the coil currerdt, flux By, force

and are being proved to perform satisfactorily for hard en . . . .
neering optimisation problems [6]. Note that a scheme qﬂog@0 and air gapCy. The following relationships hold

shaping design procedure (LSDP) on a MAGLEYV suspension F = f+ Fy, B=b+ By

application was presented in [2] using genetic algorithmis b 1)
on the control design rather than the optimisation of sensor G=(z—2)+Go, I=i+1I
configurations.

The Non-dominatedsorting GeneticAlgorithms 11 (NSGAII) where, f,b, (z — z) andi are small variations around their

method introduced in [4], proves to be a power optimisatid?lominal values. The fundamental magnetic relationshigs ar
; : ; ; ; F o B? and B « I/G, thus, the linearised expressions for
tool, and is the class of evolutionary algorithms implereent ' '

in the proposed framework. the magnet are [9]

This paper is organised as follows: Section two discuss the b= Kji— K, (2 — 2) (2)
linearised model of a MAGLEV suspension and the possible ‘
input disturbances to the system. Section three preseats th J = Kb 3)

Authors are with Control Systems Group, Department of Eleatrand Where K; = Bo/lo, K(., .y = Bo/Go and K;, = 2/ B.
Electrical Engineering, Loughborough University, UK. etmai{k.michail, ~The voltagev, applied to the coil is given by:
a.c.zolotas, r.m.goodall, j.t.pearga@@Iboro.ac.uk. This work was supported

in part under the EPSRC (UK) project Grant Ref. EP/D0639651d BAE . di db
Systems (SEIC),UK. v=Rit+ Lo+ NA@ (4)



where N is the number of coil turnsk the coil resistanced

1) Random input: Random behavior of the rail position is

is the pole face area andthe coil inductance. Moreover, thecaused as the vehicle moves along by track-laying inac@gac
force f depends on the magd and the vertical accelerationand steel rail discrepancies. Consider the vertical doect

zZ.

f=MZzZ and f=Kpb
therefore, from (5) and (2) the equation foiis

. KbKii KoKz
M M

(2t — 2)

where (z; — z) is the air gap between the rail and th
electromagnet. Also, from (2) and (6) the current equation

IS

di 1% NAK., . , Ri

G- DINAK, T T NaAR, B A T T NAR,

and from (6) and (7) a state vector can be constructed %{I

follows

X=1[i 2 (z—-2]"

with the relevant state space expression given by
X =A,X +Bw+B.%4, y=CX

where matrices

. R _K(Zt,z)NA 0
L+K;,NA L+K;NA
Ag = Ky K; 0 Ky Ky
M M
0 —1 0
1 K(ztfz)NA
L+K;NA L+NAK;
0 1
1 0 0
K; 0 —Kg,»
C = 0 0 1
0 1 0
KyK; 0 KbK(ztfz)
M M

the velocity variations are quantified by a double-sided grow
(5) Spectrum density (PSD) which in the frequency domain is
expressed by

S:, = TAV (13)

where,V is the vehicle speed (in this work is takenldsn/s)
®) and A, represents the track roughness equalxd 0~ "m (for
a typical high quality track). The corresponding (one-d)de
utocorrelation function is given by

R(1) = 2w A, V(1) (14)

@ 2) Deterministic input: The main deterministic inputs to
a suspension for the vertical direction are transitionsoont
dients. In this work, the deterministic input composent
ised are shown in Fig.2 and represent a gradient%f
at a vehicle speed of5m/s and an allowed acceleration of
©) 0.5m/s%.
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Fig. 2. Deterministic input to the suspension with a vehigleed ofl 5ms—!
and 5% gradient.

(12) I1l. PROBLEM FORMULATION
A. Design requirements

Fundamentally there is a trade off between the deterministi

Note that the output matrix in (12) refers to all possibland the stochastic response (ride quality) of the suspensio

measurements that can be considdnge- [i b (2, —2) # #]T).

For slow speed vehicles, performance requirements are de-

The parameter values for a one tone suspension system samébed in [7] and [8]. In particular, the practical objeetis to
shown in Table I. Note that the maglev system is open-loopinimize both the vertical acceleration (improve ride dyal

unstable.
TABLE |
PARAMETERS OF MAGNETIC SUSPENSION
M = 1000kg R = 109 To = 104
Go=0.015m L=0.1H A=0.01m?2
By =1T N =2000 Fy = 10000N

A. Rail disturbances to the suspension

and the RMS current variations. THé,, performancey:)
measure has also been assigned as an additional objective.
These objectives can be can be formally written as

¢1 = lrms, ¢2 = Zrms, ¢3 = Yopt (15)

with the constraints given in Table Il. All constraints adts
constraints except the steady state error which is requoed
be zero and has been set as a hard constraint.

B. Sensor optimisation

Two track input characteristics are considered, i.e. deter The problem set up is shown in Fig. 3. The aim is to tune the
ministic changes such as gradients or curves and stochast&ghts(WW,,, W,,) so that a set of optimised controll§(s))
(random) changes in the track position due to misalignmentse recovered that satisfy all of the constraints showed in



TABLE Il . . .
CONSTRAINTS FOR THE MAGNETIC SUSPENSION PERFORMANCE the weights for theH., design of a plant are suggested in

[12].
Constraints Value s np "
RMS accelerationt 5% g"),(2rms) < 0.5ms—2 M +wp TS+ A}/"” “
RMS air gap variation((z¢ — 2)rms) < 5mm W, =  iUm, Wy=|—F"— (19)
Maximum air gap deviatiofi(z: — z)p) < 7.5mm s+wpAy S +1
Control effort(V},) < 300V (3IoRo) “
Settling time, (¢ < 3s . N .
Air gap Steady s?ate err(oa)Zt —2)e.)) -0 In particular, for the performance weightin@V,) M, is the

high frequency gainA, the low frequency gain and the
crossover frequency. For the control effort weigti,,)
determines the crossover frequengy, is the low frequency
ain and M, is the high frequency gain. Both, and n,
ontrol the roll-off rates of the filters taken as 1 in thiseas
LI'he shape of the filters is shown in Fig. 4 which is typical in
the H,, framework. Note that the controller output is fixed, as
it is only the applied voltage to the MAGLEV system, however
%he controllers inputs vary based upon the sensors utilised

section IlI-A for each sensor séy) that is available for mea-
surement. Note that the sensor combinations are seledtegl ug
the output matrix ;) as shown in equation (16). The tota
measurements available aréi5b, (z: —z), 2, Z;) as described
in section Il resulting to 31 sensor sdisc i,b,i2,b%...etc).

The MAGLEV state equation in (9) is imposed into th

SISO controller for 1 sensor, MISO controller for more senso
w Z) combinations. In fact, the order of the controller is fixed to
_w .
the order of the plant and the order of the filters (currently
P(s) 3+ 2 = 5'" order in a state space description - note that
u further controller reduction could be followed if requijed
A N tM
. P \ u
K(s) h \
Fig. 3. Multi-objective generalised plant configuration. g \‘\
R - [P
) ® P

generalised form of (16). "

T = Az + B,w + B,u
LA, T L ar WM
Zoo = Coo® + Dogr1w + Dogots ol - -
Frequency (rad/sec)
y=Cyx + Dyyw+ Dyu (16)

w is exogenous inputs (as described in Section ll-Athe Fig. 4. Weights shape fof . controller design.
controller outputz, is the regulated output, i.e control effort

and air gap(z; — z) andy is the corresponding sensor set.

The infinity norm of the closed loop transfer function from

the exogenous inputs to the regulated outputs is minimized NSGAII implementation

subject to the constraints mentioned in IlI-A. ) i ) o
In this section only the necessary information is given and

| Tow o<y (17) for more details refer to [3], [4]. The parameters used are

This problem is solved for each sensor set, and for ea%ﬂown in table ll. The crossover probability is generally

random pair of weighting functions produced by the genetﬁ:e'ect(ad fo be large in order to have a good mixing of genetic

algorithm, via LMI formulation (18). This can be easily set\/ mat.enal. The mutation p_robablhty IS dgfmed Bﬁm’ w_here
in MATLAB using function 'hinfmix of the robust control n, Is the number of variables. This is appropriate in order
toolbox to give a mutation probability that mutates an average of

one parameter from each individual. For the simulated inar
- pt crossover parameter (SBX) and the mutations parametessit wa
B —1 Dc12,1 <0 (18)  decided to use the default value of 10 and 50 since they peovid

Cen1Too Do =71 good distribution of solutions for the algorithm operagoio

subject tox, > 0. achieve the required constraints, different ways exiseinegic

The weighting filtersW,, and W,, are appropriate low passalgorithms [1]. The penalty function approach [3] is used to

and high pass filters respectively (see 19), to adjust the paghieve the constraint within limits. The constraint viwa

formance of the controller by varying their parameters.réhefor each constraint’, defined in Table II, is given as

is no general approach to select weighting functions as this : . :

depends on the application but some guidelines on selecting w;(k7) = (LIl of 95 (k)< (20)

otherwise

T T
AuToo +TocAl,  Ba  20Clpy



TABLE Il

NSGA-Il PARAMETERS USED FOR THE EVOLUTION PROCEDURE the first sensor set is selected and the evolutionary altgorit
tunes the weights to recover the Pareto front of optimised

Parameter Seting controllers (which is equal to the number of population)teAf

Crossover probability] 0.9 that, the controllers that satisfy all constraints aretettbase

Mlg%t;?” PfOba?"'W 1/17)“ on the overall constraint violation function (24). Moregve

parameter .. . .

Mutation parameter | 50 the optimised controllers that actually satisfy the sedect
Rigid bounds 1(yes) criteria are saved and the procedure continues with the next

Population 50 sensors set (if exists). The overall algorithm was testéaigus

Generations 100

a Pentium 4, Dual core processor running at 2GHz with 4GB
DDR memory and without the Java tool of MATLAB 7.2.
The average simulation time per sensor set was about one
Each soft constraint is normalised as in (21) for values lebsur and the procedure for all possible sensor sets takeg abo

than the predefined level. 37hours with noise-free measurements. From the simukation
i it can be seen that the proposed systematic framework is able

gj=—5-+120 (21) to find controllers that satisfy the constraints for 29 out of

des 31 sensor set combinations. No controllers where found to

Where, k), is the predefined constraint va_lue _a]abl_ is the nifaliss algoriim and
measured value. The hard constraint violation is given as assign controller selection

criteria
i _ (0, if  hi(fH=0
¢Z(fl) - {\h,;(f")\ otherwise (22)
This is transformed into a soft constraint, allowing a small

toIergncg value. Therefpre, the steady state error for the air Recover Pareto front
gap is given as shown in (23). of optimised controllers

using NSGAII
hi = f' ] —e<0 (23)

Select a sensor set.  |«—

Select optimised )
Where f? is the steady state error of the control effort that Comurorers that satsfy all
eventually controls the steady state error for the air gap. _

The overall constraint violation is given in (24). The oukra fj‘r‘]'ﬁo?,‘;‘r';”t'ﬁgfsaﬂsfy
constraint violation is going to be used as a metric for the selection criteria.
controllers that either satisfy or not satisfy the aforetizered

constraints.

J i
QR fO) = wi () + 3 _vi(f) (@24
j=1 i=1
This constraint violation is then added to each of the object
functions values

By = b + R QKD fO) (25)

where R,, is the penalty parameter and,, the objective "9 5 Sensor selection flow chart.

function value. In this case, a dynamically updated penalty

parameter is required. This is useful, in order to avoidaste meet some of the constrainté {; (z; — z)...,) for two single
ble solutions and the penalty parameter is set to be a functigansor setsi ((current) and(z, — z) (air g;p)). In particular,
of the generation number [10]. The penalty parameters g 4 population of 50 the final result is about 1550 optimised
finalised as follows: controllers assuming none of them violates the constrédmts
R, =Cx1, R.. =C=%05 R, —=Cx1 (26) all sensor sets. However, about 1440 optimised controllers
satisfy the constraints for the 31 sensor sets.
With, C being the generation number for the current sensphe next step is to analyse the results based on the controlle
set. selection criteria in (27). There are no optimised congrsl|
to satisfy the criteria with 12 out of 31 sensor sets inclgdin
IV. SIMULATIONS AND DATA ANALYSIS the full sensor set. Table IV presents the results obtairigd w

The flow chart for the sensor optimisation framework, i§0Me randomly selected sensor sets.
shown in Fig. 5. The flowchart shows how t_h_e NSGAIl is v<1 and 3 <0.4m/s? 27)
merged to the sensor selection framework efficiently, pcedu
ing the Pareto front of optimised controllers for each gassi ©2 and ©2,,,;sc columns indicates if there are optimised con-
sensor set with the required criteria. Initially, the NSGAItrollers that satisfy the contraints for the correspondiegsor
parameters and controller selection criteria are giverenThset based on overall constraint violation in (2@),,;s. is for

Trms Zrms Yopt



noise and? for noise-free measurements. 'x’ symbol is shownonstraints allowing a zer@:; — z).,., @ maximum of7.5mm
when there is no controller that satisfy the contraints apitd * deflection and settling time less that the requifsd Using

is shown when there exist a number of controllers that gatighe id:1 sensor set (see Fig.7(b)) some constraints aratewl
the constraintsn[K (s)] and n[K (s)neise] IS the number of (Z.,,s,ts and(z: —z)...) therefore, all controllers are rejected

TABLE IV

SENSOR COMBINATIONS WITH CONSTRAINTS

s

(seef? function). However, the suspension still remains stable

X 10_3

id Sensor noise-free with noise . .

set Q TL[K(S)] Qnoise n[K(S)noise] € 6 £
1 i X 0 X 0 O '§
2 b v 6 v 0 ER 5
3 (2t — 2) X 0 Vv 0 3 k5
4 2 Vv 11 X 0 g? g
5 3 v 4 v 0
6 i,z Vv 17 V4 3 % 2 P P
7 b,(zt — Z) \/ 13 \/ 12 Time in seconds Time in seconds
g :gi \\f é \x/ 8 (a) Air gap deflections with id:4 (b) Air gap deflections with id:1
10 bz Y 0 Y 5 sensor set. sensor set.
11| bz —2)2 | V 0 v 3 Fig. 7. Air gap deflection with single measurements.
12 | ib,(zt —2).2.2 | / 0 v 0

with id:1 sensor set and therefore the data could be used to be
part of a fault tolerant control scheme that is able to ptedic

the corresponding sensor set. Optimised controllers \Ritet the behavior of the suspension. In case of faulty sensors, if

(id:2,4,5) out of 5 single measurements are able to meet ﬁl?g system remains with only id:1 sensor set this can lead to

contraints and selection criteria assigned. The measuntem2C" performance until the MAGLEV vehicle stops.

with id:4 results to a Pareto front of optimised controllerg he Pareto front of optimised controllers with full senset s

depicted in Fig. 6. From the graph, it can be seen that tf@mbination (id:12) is shown in Fig.8. As it can be noted, all

vertical acceleration(?) of the suspension is limited to theValues Ofyp are greater than the required criteriangf, < 1

constraint value of.5m/s? as required and also a traole_which explains why all controllers are rejected. The air gap
off between : (ride quality) and the RMS currenti,n.) deflections are not shown here because they look similar to
™ms

exists. On the same figure, it is shown that there exigle corresponding (id:4) as in Fig.7(a). Another usefulagm

two disjoint Pareto fronts of optimised controllers whidte a
successfully recovered from the recommended evolutionarv
algorithm (NSGAII). The corresponding air gap deviation

optimised controllers found to satisfy the controller s&tmn
criteria with noise and noise-free conditions respecyivier

ibgva

V L
504 . ... O
sl X
154 e : % :
* o - N i
R R T R 0] . SR
§ 3 j %
X 10 | % o
5] L %, e
- Y 045 MR
e R 2 O 101 102 103 104
Fm/e) irms (4)
3 (m/s?) &4 0.98 1 . 1054) 1.04 1.06 Fig. 8. Pareto front with full sensor set.
Fig. 6. Disjoint Pareto fronts with id:4 sensor set.

is that the control effort is limited to about 50V for the tare
id:2,4,12. For the id:2 and id:12 the control effort signal i
using id:4 sensor set are shown in Fig.7(a). It can be sesmown in Fig.9 but the control effort for the id:4 is not shown
that all virtually deterministic responses remain withimet because it is similar to id:2.



The graph depicted in Fig. 10 shows the trade-off between
the objectives assigned using id:5 sensor set. Clearlye tise

a conflict between the objectives assigned to the probleme (no

that the coordinate values are normalised to unity).

The air gap deviations for the sensor set id:5 is shown in Fig.
11(a) and is compared with the air gap deviations for the full

40

30

20

Control effort in V
Control effort in V

10

% 2 4 6 0 2 4 6 sensor set (id:12) that appears to be satisfactory in bathsca
Time i seconds Time i seconds The peak values remains less tfigtmm as required and the
(a) Control effort with id:12 sen- (b) Control effort with id:2 sen- settling time less thams. Note here, that the measurement
sorset sorset noise affects the air gap deflections with the full sensor set
Fig. 9. Control effort with id:2 and id:12 sensor sets combores. (id:12). A sample of the control effort is shown in Fig. 12. It

is clear that with the current systematic framework the @ois

o _ ) amplitude which appears on the control effort is limitedhe t
A. Sensor optimisation with noisy measurements constrained for both sensor sets id:5 and id:12.

In this section, the measurement noise is taken into account

although a similar procedure is followed as in the previousg 0.9 N
case with noise-free measurements. The difference is gdd|n§ 0.8 _——
extra constraint relating to the noise issues. In fact, gpEm o 8% =
control analysis shows that the outputs in the closed lodip wi § 05 §
not be affected much by noise. However, the control inputs 0.4

can be quite sensitive to the noise and care should be takeB 8% \
to limit this. Thus the measurement noise is treated segigrat © 51 V 1
and the effect of the noise on the control effort is limited to 5 opt g Unoise

objective "¢

Unoise = 2Virms (@N extra constraint is added) amg,;,. IS
introduced in the algorithm as a fourth objective, = 1u,,0;sc) Fig- 10. Parallel cord show the trade-off between objestivéth single
as well. The population is set to 50 and the maximufjeasurement (id:5)

generations 200. The noise covariance for the simulatisns i

set as1% of the peak value from each measurement and

this is updated dynamically because the peak value varres fo x10°° x10°

each simulation. The optimisation for each sensor set takes .
about 3.5hours and the overall time taken is 105 hours on the £
same computer. The systematic framework presented found
controllers that satisfy the assigned constraints for 24dobu

31 sensor sets.

The results shows that there exist controllers for 8 sensor o

)

IS

4

N

2

Gap deflection i
Gap deflection in mm

=)

. . ; 0 2 4 6 0 2 4 6
sets that satisfy all constraints and the controller select Time in seconds Time in seconds
criteria shown in (27). Table IV present the results obtdine (a) With  measurement. (b) With full sensor set.

with these criteria compared with the results with noisefr
measurements. Colunin,.;s. Shows the constraint violations
for the corresponding sensor sets and<(s),oise] IS the
number of controllers found to meet the controller selectio
criteria for noisy measurements situation. Compared to the
noise-free results it can be seen that the measured noise he -
a significant effect on the optimisation procedure as many of ;.
the controllers for each sensor set are rejected due to nois #*
amplification by controller.

More details follows to analyse the results. Three out of five
single measurements are able to meet the constraints. The
three measurements are: id:3, id:2 and id:5. It appears that (&) Withid:5 sensor set. (b) With full sensor set (id:12).
without measurement noise, only the id:1 and id:3 do ng Fg 12. Limited noise that appears on the control effort wdt® and id:12.
satisfy the constraints. The problem here, is that id:3 khou
have had solutions for the noise-free situation as well but i
seems that the algorithm wasn’t able to find the solution.area
This could be either not sufficient chromosome population or
not sufficient maximum generation. It indicates how impotta In this paper, a systematic framework vid,, control

is to properly assign parameters for the NSGAII. Probaldly, fdesign for selecting the desired sensor set that satisfies a
the measurement noise case the extra objective and constraimber of constraints and controller selection criteria do
'guide’ the search space to the solution area. MAGLEV suspension is presented. The problem is rather

Fig. 11. Air gap deflections for two sensor sets.

3 4
in seconds -5

V. CONCLUSIONS AND FUTURE WORK



complicated to solve manually (especially tuning the wisigh
manually for each sensor set combination), while the paverf
optimisation tool based on evolutionary algorithms NSGAII
is incorporated to offer faster solutions. It was found that
29 out of 31 optimised sensor configurations are tuned and
perform satisfactory. The results show a variety of optadis
controllers (about 1440) which can be used and the choice
depends on the user’s controller selection criteria. A neimb
of useful outcomes can be seen from using the framework:
The overall control system complexity and cost is reduced, o
a single measurement can be used to control the suspension.
Subsequently, fault probabilities are reduced. This psepo
method could be used as part of a fault tolerant controller
scheme, i.e using a bank of selected optimised controllers
and replacing relevant controllers with other sets dependi
on sensor faults
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