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Sensor optimisation viaH∞ applied to a MAGLEV suspension system.

Konstantinos Michail, Argyrios Zolotas, Roger Goodall, andJohn Pearson

Abstract—In this paper a systematic method viaH∞ control
design is proposed to select a sensor set that satisfies a number
of input criteria for a MAGLEV suspension system. The proposed
method recovers a number of optimised controllers for each possible
sensor set that satisfies the performance and constraint criteria using
evolutionary algorithms.

Keywords—H-infinity, Sensor optimisation, Genetic algorithms,
MAGLEV vehicles

I. INTRODUCTION

A sensor optimisation systematic framework is considered
for a MAGnetic LEVitated (MAGLEV) transport vehicle [11].
This work is part of a bigger project investigating optimised
configurations of sensing elements for control and fault tol-
erant. The research is focusing upon practical engineering
applications that are dynamically complex, electromechanical
in nature and typified the kinds of systems in aerospace, auto-
motive and railway. The model considered is a linearised elec-
tromagnetic suspension system of a quarter car in state space
form with five possible measurements leading to25 − 1 = 31
possible sensor combinations. The framework presented aims
to find a set of optimised controllers that improve the ride qual-
ity while minimizing the control effort and the performance
metric within a range of hard and soft constraints assigned
beforehand for each sensor combination. Both deterministic
and stochastic track disturbances are considered, with noise
and noise-free measurement conditions.
This framework merges theH∞ controller design, the Linear
Matrix Inequalities (LMI) optimisation tool and heuristical-
gorithms that are used to adjust theH∞ weighting filters and
achieve a Pareto front of optimised controllers solution for
each sensor set. Among the metaheuristic algorithms [5], the
evolutionary algorithms are used extensively in engineering
and are being proved to perform satisfactorily for hard engi-
neering optimisation problems [6]. Note that a scheme of loop-
shaping design procedure (LSDP) on a MAGLEV suspension
application was presented in [2] using genetic algorithms but
on the control design rather than the optimisation of sensor
configurations.
TheNon-dominatedSorting GeneticAlgorithms II (NSGAII )
method introduced in [4], proves to be a power optimisation
tool, and is the class of evolutionary algorithms implemented
in the proposed framework.
This paper is organised as follows: Section two discuss the
linearised model of a MAGLEV suspension and the possible
input disturbances to the system. Section three presents the
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requirements of the MAGLEV suspension as well as the
objective functions to be minimised, the overall problem
formulation, and the genetic algorithm parameter adjustment.
Moreover presents how the constraints are merged into the
algorithm procedure. Simulations and data analysis of the
overall framework are given in section 4 with a comparison
between noisy and noise-free measurements. Conclusions with
future work are given in section 5.

II. M ODEL DESCRIPTION

The diagram of a one degree-of-freedom, ‘quarter-car’
electromagnetic suspension system is shown in Fig.1. The
suspension consists of an electromagnet with a ferromagnetic
core and a coil ofN turns which is attracted to the rail that
is made out of ferromagnetic material. The carriage mass is
attached on the electromagnet, withzt being the rail position
and z the electromagnet position. The air gap(zt − z) is to
be maintained close to the operating condition required. The
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Fig. 1. Suspension system for MAGLEV

LTI state space model is derived by considering the operating
point (nominal) values of the coil currentI0, flux B0, force
F0 and air gapG0. The following relationships hold

F = f + F0, B = b+B0

G = (zt − z) +G0, I = i+ I0

(1)

where,f, b, (zt − z) and i are small variations around their
nominal values. The fundamental magnetic relationships are
F ∝ B2 andB ∝ I/G, thus, the linearised expressions for
the magnet are [9]

b = Kii−K(zt−z)(zt − z) (2)

f = Kbb (3)

whereKi = B0/I0, K(zt−z) = B0/G0 andKb = 2F0/B0.
The voltagev, applied to the coil is given by:

v = Ri+ L
di

dt
+NA

db

dt
(4)



whereN is the number of coil turns,R the coil resistance,A
is the pole face area andL the coil inductance. Moreover, the
force f depends on the massM and the vertical acceleration
z̈.

f = Mz̈ and f = Kbb (5)

therefore, from (5) and (2) the equation forz̈ is

z̈ =
KbKi

M
i− KbK(zt−z)

M
(zt − z) (6)

where (zt − z) is the air gap between the rail and the
electromagnet. Also, from (2) and (6) the current equation
is

di

dt
=

V

L+NAKi
+
NAK(zt−z)

L+NAKi
(żt − ż)− Ri

L+NAKi
(7)

and from (6) and (7) a state vector can be constructed as
follows

X =
[

i ż (zt − z)
]T

(8)

with the relevant state space expression given by

Ẋ = AgX +Bvv +Bz żt, y = CX (9)

where matrices

Ag =







− R
L+KiNA −K(zt−z)NA

L+KiNA 0
KbKi

M 0 −KbK(zt−z)

M
0 −1 0






(10)

(Bv Bz) =





1
L+KiNA

K(zt−z)NA

L+NAKi

0 0
0 1



 (11)

C =













1 0 0
Ki 0 −K(zt−z)

0 0 1
0 1 0

KbKi

M 0 −KbK(zt−z)

M













(12)

Note that the output matrix in (12) refers to all possible
measurements that can be considered(y = [i b (zt−z) ż z̈]T ).
The parameter values for a one tone suspension system are
shown in Table I. Note that the maglev system is open-loop
unstable.

TABLE I
PARAMETERS OF MAGNETIC SUSPENSION

M = 1000kg R = 10Ω I0 = 10A
G0 = 0.015m L = 0.1H A = 0.01m2

B0 = 1T N = 2000 F0 = 10000N

A. Rail disturbances to the suspension

Two track input characteristics are considered, i.e. deter-
ministic changes such as gradients or curves and stochastic
(random) changes in the track position due to misalignments.

1) Random input: Random behavior of the rail position is
caused as the vehicle moves along by track-laying inaccuracies
and steel rail discrepancies. Consider the vertical direction,
the velocity variations are quantified by a double-sided power
spectrum density (PSD) which in the frequency domain is
expressed by

Sżt
= πArV (13)

where,V is the vehicle speed (in this work is taken as15m/s)
andAr represents the track roughness equal to1×10−7m (for
a typical high quality track). The corresponding (one-sided)
autocorrelation function is given by

R(τ) = 2π2ArV δ(τ) (14)

2) Deterministic input: The main deterministic inputs to
a suspension for the vertical direction are transitions onto
gradients. In this work, the deterministic input components
utilised are shown in Fig.2 and represent a gradient of5%
at a vehicle speed of15m/s and an allowed acceleration of
0.5m/s2.
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Fig. 2. Deterministic input to the suspension with a vehicle speed of15ms−1

and 5% gradient.

III. PROBLEM FORMULATION

A. Design requirements

Fundamentally there is a trade off between the deterministic
and the stochastic response (ride quality) of the suspension.
For slow speed vehicles, performance requirements are de-
scribed in [7] and [8]. In particular, the practical objective is to
minimize both the vertical acceleration (improve ride quality)
and the RMS current variations. TheH∞ performance(γopt)
measure has also been assigned as an additional objective.
These objectives can be can be formally written as

φ1 = irms, φ2 = z̈rms, φ3 = γopt (15)

with the constraints given in Table II. All constraints are soft
constraints except the steady state error which is requiredto
be zero and has been set as a hard constraint.

B. Sensor optimisation

The problem set up is shown in Fig. 3. The aim is to tune the
weights(Wp,Wu) so that a set of optimised controllers(K(s))
are recovered that satisfy all of the constraints showed in



TABLE II
CONSTRAINTS FOR THE MAGNETIC SUSPENSION PERFORMANCE.

Constraints Value
RMS acceleration(≃ 5%′g′),(z̈rms) < 0.5ms−2

RMS air gap variation,((zt − z)rms) < 5mm
Maximum air gap deviation,((zt − z)p) < 7.5mm

Control effort,(Vp) < 300V (3I0R0)
Settling time,(ts) < 3s

Air gap Steady state error,((zt − z)ess ) = 0

section III-A for each sensor set(y) that is available for mea-
surement. Note that the sensor combinations are selected using
the output matrix (Cy) as shown in equation (16). The total
measurements available are 5(i, b, (zt−z), żt, z̈t) as described
in section II resulting to 31 sensor sets(i.e i, b, iż, bz̈...etc).
The MAGLEV state equation in (9) is imposed into the
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u
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Fig. 3. Multi-objective generalised plant configuration.

generalised form of (16).

ẋ = Ax+Bzw +Buu

z∞ = C∞x+D∞1w +D∞2u

y = Cyx+Dy1w +Dy2u (16)

w is exogenous inputs (as described in Section II-A),u the
controller output,z∞ is the regulated output, i.e control effort
and air gap(zt − z) and y is the corresponding sensor set.
The infinity norm of the closed loop transfer function from
the exogenous inputs to the regulated outputs is minimized
subject to the constraints mentioned in III-A.

‖ Tzw ‖∞< γ (17)

This problem is solved for each sensor set, and for each
random pair of weighting functions produced by the genetic
algorithm, via LMI formulation (18). This can be easily solved
in MATLAB using function ’hinfmix’ of the robust control
toolbox.





Aclx∞ + x∞A
T
cl Bcl x∞C

T
cl1

BT
cl −I DT

cl1

Ccl1x∞ Dcl1 −γ2I



 < 0 (18)

subject tox∞ > 0.
The weighting filtersWp andWu are appropriate low pass
and high pass filters respectively (see 19), to adjust the per-
formance of the controller by varying their parameters. There
is no general approach to select weighting functions as this
depends on the application but some guidelines on selecting

the weights for theH∞ design of a plant are suggested in
[12].

Wp =





s

M
1/np
p

+ ωb

s+ ωbA
1/np
p





np

Wu =

(

τs+A
1/nu
u

τ

M
1/nu
u

s+ 1

)nu

(19)

In particular, for the performance weighting(Wp) Mp is the
high frequency gain,Ap the low frequency gain andωb the
crossover frequency. For the control effort weight,(Wu) τ
determines the crossover frequency,Au is the low frequency
gain andMu is the high frequency gain. Bothnp and nu

control the roll-off rates of the filters taken as 1 in this case.
The shape of the filters is shown in Fig. 4 which is typical in
theH∞ framework. Note that the controller output is fixed, as
it is only the applied voltage to the MAGLEV system, however
the controllers inputs vary based upon the sensors utilised. i.e.
SISO controller for 1 sensor, MISO controller for more sensor
combinations. In fact, the order of the controller is fixed to
the order of the plant and the order of the filters (currently
3 + 2 = 5th order in a state space description - note that
further controller reduction could be followed if required).
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Fig. 4. Weights shape forH∞ controller design.

C. NSGAII implementation

In this section only the necessary information is given and
for more details refer to [3], [4]. The parameters used are
shown in table III. The crossover probability is generally
selected to be large in order to have a good mixing of genetic
material. The mutation probability is defined as1/nv, where
nv is the number of variables. This is appropriate in order
to give a mutation probability that mutates an average of
one parameter from each individual. For the simulated binary
crossover parameter (SBX) and the mutations parameter it was
decided to use the default value of 10 and 50 since they provide
good distribution of solutions for the algorithm operations. To
achieve the required constraints, different ways exist in genetic
algorithms [1]. The penalty function approach [3] is used to
achieve the constraint within limits. The constraint violation
for each constraint,ki, defined in Table II, is given as

ωj(k
j) = {|gj(k

j)|, if gj(k
j)<0

0 otherwise (20)



TABLE III
NSGA-II PARAMETERS USED FOR THE EVOLUTION PROCEDURE.

Parameter setting
Crossover probability 0.9
Mutation probability 1/nu

SBX parameter 10
Mutation parameter 50

Rigid bounds 1(yes)
Population 50
Generations 100

Each soft constraint is normalised as in (21) for values less
than the predefined level.

gj = − kj

kj
des

+ 1 ≥ 0 (21)

Where,kj
des is the predefined constraint value andkj is the

measured value. The hard constraint violation is given as

ψi(f
i) = {0, if hi(f

i)=0
|hi(fi)| otherwise (22)

This is transformed into a soft constraint, allowing a small
tolerance valueǫ. Therefore, the steady state error for the air
gap is given as shown in (23).

hi =| f i | −ǫ < 0 (23)

Where f i is the steady state error of the control effort that
eventually controls the steady state error for the air gap.
The overall constraint violation is given in (24). The overall
constraint violation is going to be used as a metric for the
controllers that either satisfy or not satisfy the aforementioned
constraints.

Ω(k(j), f (i)) =

j
∑

j=1

ωj(k
(i)) +

i
∑

i=1

ψi(f
(i)) (24)

This constraint violation is then added to each of the objective
functions values

Φm = φm +RmΩ(k(i), f (i)) (25)

where Rm is the penalty parameter andΦm the objective
function value. In this case, a dynamically updated penalty
parameter is required. This is useful, in order to avoid infeasi-
ble solutions and the penalty parameter is set to be a function
of the generation number [10]. The penalty parameters are
finalised as follows:

Rirms
= C ∗ 1, Rz̈rms

= C ∗ 0.5, Rγopt
= C ∗ 1 (26)

With, C being the generation number for the current sensor
set.

IV. SIMULATIONS AND DATA ANALYSIS

The flow chart for the sensor optimisation framework, is
shown in Fig. 5. The flowchart shows how the NSGAII is
merged to the sensor selection framework efficiently, produc-
ing the Pareto front of optimised controllers for each possible
sensor set with the required criteria. Initially, the NSGAII
parameters and controller selection criteria are given. Then

the first sensor set is selected and the evolutionary algorithm
tunes the weights to recover the Pareto front of optimised
controllers (which is equal to the number of population). After
that, the controllers that satisfy all constraints are selected base
on the overall constraint violation function (24). Moreover,
the optimised controllers that actually satisfy the selection
criteria are saved and the procedure continues with the next
sensors set (if exists). The overall algorithm was tested using
a Pentium 4, Dual core processor running at 2GHz with 4GB
DDR memory and without the Java tool of MATLAB 7.2.
The average simulation time per sensor set was about one
hour and the procedure for all possible sensor sets takes about
37hours with noise-free measurements. From the simulations
it can be seen that the proposed systematic framework is able
to find controllers that satisfy the constraints for 29 out of
31 sensor set combinations. No controllers where found to
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Select optimised 
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criteria.

Save optimised
controllers that satisfy
selection criteria.

no

Recover Pareto front
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REPORT

Fig. 5. Sensor selection flow chart.

meet some of the constraints ((ts, (zt − z)ess)) for two single
sensor sets (i (current) and(zt − z) (air gap)). In particular,
for a population of 50 the final result is about 1550 optimised
controllers assuming none of them violates the constraintsfor
all sensor sets. However, about 1440 optimised controllers
satisfy the constraints for the 31 sensor sets.
The next step is to analyse the results based on the controller
selection criteria in (27). There are no optimised controllers
to satisfy the criteria with 12 out of 31 sensor sets including
the full sensor set. Table IV presents the results obtained with
some randomly selected sensor sets.

γ < 1 and z̈ < 0.4m/s2 (27)

Ω and Ωnoise columns indicates if there are optimised con-
trollers that satisfy the contraints for the correspondingsensor
set based on overall constraint violation in (24).Ωnoise is for



noise andΩ for noise-free measurements. ’x’ symbol is shown
when there is no controller that satisfy the contraints and ’

√
’

is shown when there exist a number of controllers that satisfy
the constraints.n[K(s)] and n[K(s)noise] is the number of

TABLE IV
SENSOR COMBINATIONS WITH CONSTRAINTS.

id Sensor noise-free with noise
set Ω n[K(s)] Ωnoise n[K(s)noise]

1 i x 0 x 0
2 b

√
6

√
0

3 (zt − z) x 0
√

0
4 ż

√
11 x 0

5 z̈
√

4
√

0
6 i,z̈

√
17

√
3

7 b,(zt − z)
√

13
√

12
8 i,ż,z̈

√
1

√
0

9 i,b,ż
√

5 x 0
10 i,b,z̈

√
0

√
5

11 b,(zt − z),z̈
√

0
√

3
12 i,b,(zt − z),ż,z̈

√
0

√
0

optimised controllers found to satisfy the controller selection
criteria with noise and noise-free conditions respectively for
the corresponding sensor set. Optimised controllers with three
(id:2,4,5) out of 5 single measurements are able to meet the
contraints and selection criteria assigned. The measurement
with id:4 results to a Pareto front of optimised controllers
depicted in Fig. 6. From the graph, it can be seen that the
vertical acceleration(z̈) of the suspension is limited to the
constraint value of0.5m/s2 as required and also a trade-
off between z̈ (ride quality) and the RMS current(irms)
exists. On the same figure, it is shown that there exist
two disjoint Pareto fronts of optimised controllers which are
successfully recovered from the recommended evolutionary
algorithm (NSGAII). The corresponding air gap deviations
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Fig. 6. Disjoint Pareto fronts with id:4 sensor set.

using id:4 sensor set are shown in Fig.7(a). It can be seen
that all virtually deterministic responses remain within the

constraints allowing a zero(zt−z)ess
, a maximum of7.5mm

deflection and settling time less that the required3s. Using
the id:1 sensor set (see Fig.7(b)) some constraints are violated
(z̈rms, ts and(zt−z)ess

) therefore, all controllers are rejected
(seeΩ function). However, the suspension still remains stable
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(a) Air gap deflections with id:4
sensor set.
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(b) Air gap deflections with id:1
sensor set.

Fig. 7. Air gap deflection with single measurements.

with id:1 sensor set and therefore the data could be used to be
part of a fault tolerant control scheme that is able to predict
the behavior of the suspension. In case of faulty sensors, if
the system remains with only id:1 sensor set this can lead to
poor performance until the MAGLEV vehicle stops.
The Pareto front of optimised controllers with full sensor set
combination (id:12) is shown in Fig.8. As it can be noted, all
values ofγopt are greater than the required criteria ofγopt < 1
which explains why all controllers are rejected. The air gap
deflections are not shown here because they look similar to
the corresponding (id:4) as in Fig.7(a). Another useful remark
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Fig. 8. Pareto front with full sensor set.

is that the control effort is limited to about 50V for the three,
id:2,4,12. For the id:2 and id:12 the control effort signal is
shown in Fig.9 but the control effort for the id:4 is not shown
because it is similar to id:2.



0 2 4 6
0

10

20

30

40

Time in seconds

C
on

tr
ol

 e
ffo

rt
 in

 V

(a) Control effort with id:12 sen-
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(b) Control effort with id:2 sen-
sor set.

Fig. 9. Control effort with id:2 and id:12 sensor sets combinations.

A. Sensor optimisation with noisy measurements

In this section, the measurement noise is taken into account,
although a similar procedure is followed as in the previous
case with noise-free measurements. The difference is adding
extra constraint relating to the noise issues. In fact, a simple
control analysis shows that the outputs in the closed loop will
not be affected much by noise. However, the control input
can be quite sensitive to the noise and care should be taken
to limit this. Thus the measurement noise is treated separately
and the effect of the noise on the control effort is limited to
unoise = 2Vrms (an extra constraint is added) andunoise is
introduced in the algorithm as a fourth objective(φ4 = unoise)
as well. The population is set to 50 and the maximum
generations 200. The noise covariance for the simulations is
set as1% of the peak value from each measurement and
this is updated dynamically because the peak value varies for
each simulation. The optimisation for each sensor set takes
about 3.5hours and the overall time taken is 105 hours on the
same computer. The systematic framework presented found
controllers that satisfy the assigned constraints for 24 out of
31 sensor sets.
The results shows that there exist controllers for 8 sensor
sets that satisfy all constraints and the controller selection
criteria shown in (27). Table IV present the results obtained
with these criteria compared with the results with noise-free
measurements. ColumnΩnoise shows the constraint violations
for the corresponding sensor sets andn[K(s)noise] is the
number of controllers found to meet the controller selection
criteria for noisy measurements situation. Compared to the
noise-free results it can be seen that the measured noise has
a significant effect on the optimisation procedure as many of
the controllers for each sensor set are rejected due to noise
amplification by controller.
More details follows to analyse the results. Three out of five
single measurements are able to meet the constraints. The
three measurements are: id:3, id:2 and id:5. It appears that,
without measurement noise, only the id:1 and id:3 do not
satisfy the constraints. The problem here, is that id:3 should
have had solutions for the noise-free situation as well but it
seems that the algorithm wasn’t able to find the solution area.
This could be either not sufficient chromosome population or
not sufficient maximum generation. It indicates how important
is to properly assign parameters for the NSGAII. Probably, for
the measurement noise case the extra objective and constraint
’guide’ the search space to the solution area.

The graph depicted in Fig. 10 shows the trade-off between
the objectives assigned using id:5 sensor set. Clearly, there is
a conflict between the objectives assigned to the problem (note
that the coordinate values are normalised to unity).
The air gap deviations for the sensor set id:5 is shown in Fig.
11(a) and is compared with the air gap deviations for the full
sensor set (id:12) that appears to be satisfactory in both cases.
The peak values remains less that7.5mm as required and the
settling time less than3s. Note here, that the measurement
noise affects the air gap deflections with the full sensor set
(id:12). A sample of the control effort is shown in Fig. 12. It
is clear that with the current systematic framework the noise
amplitude which appears on the control effort is limited to the
constrained for both sensor sets id:5 and id:12.
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Fig. 10. Parallel cord show the trade-off between objectives with single
measurement (id:5).
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(a) With z̈ measurement.
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(b) With full sensor set.

Fig. 11. Air gap deflections for two sensor sets.
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(a) With id:5 sensor set.
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Fig. 12. Limited noise that appears on the control effort withid:5 and id:12.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a systematic framework viaH∞ control
design for selecting the desired sensor set that satisfies a
number of constraints and controller selection criteria for a
MAGLEV suspension is presented. The problem is rather



complicated to solve manually (especially tuning the weights
manually for each sensor set combination), while the powerful
optimisation tool based on evolutionary algorithms NSGAII
is incorporated to offer faster solutions. It was found that
29 out of 31 optimised sensor configurations are tuned and
perform satisfactory. The results show a variety of optimised
controllers (about 1440) which can be used and the choice
depends on the user’s controller selection criteria. A number
of useful outcomes can be seen from using the framework:
The overall control system complexity and cost is reduced, or
a single measurement can be used to control the suspension.
Subsequently, fault probabilities are reduced. This proposed
method could be used as part of a fault tolerant controller
scheme, i.e using a bank of selected optimised controllers
and replacing relevant controllers with other sets depending
on sensor faults.
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