

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Calculating the Failure Intensity of a Non-coherent Fault Tree Using

the BDD Technique

Sally Beeson and John Andrews

Department of Systems Engineering

Loughborough University

Abstract

This paper considers a technique for calculating the unconditional failure intensity of

any given non-coherent fault tree. Conventional Fault Tree Analysis (FTA)

techniques involve the evaluation of lengthy series expansions and approximations are

unavoidable even for moderate sized fault trees. The Binary Decision Diagram (BDD)

technique overcomes some of the shortfalls of conventional FTA techniques enabling

efficient and exact quantitative analysis of both coherent and non-coherent fault trees.

Keywords: Non-coherent, Binary Decision Diagrams, Unconditional Failure

Intensity, and Birnbaum’s Measure of Reliability Importance.

1. Introduction

The Binary Decision Diagram (BDD) technique developed by Rauzy in the early

1990’s has been shown to significantly improve the accuracy and efficiency of

conventional fault tree analysis for coherent systems [1]. More recently attention has

focused on the analysis of non-coherent systems using the BDD method. The top

event probability can be calculated directly from the SFBDD, which encodes the

structure function for a non-coherent fault tree. Quantification of the failure

frequency of non-coherent systems could be accomplished by conventional fault tree

methods [5]. In 2001 an extension of Birnbaum’s measure of importance for the

analysis of non-coherent systems was developed [4]. This extension can be used to

calculate the unconditional failure intensity of a non-coherent fault tree directly from

the SFBDD. This provides an exact and efficient means of calculating this parameter

and is described in this paper.

2. Non-coherent Systems

Fault Tree structures can be categorised as either coherent or non-coherent according

to their underlying logic. If during fault tree construction the failure logic is restricted

to the use of the AND gate and the OR gate, the resulting fault tree is said to be

coherent. If however, the NOT gate is used or directly implied, the resulting fault tree

can be non-coherent. A more precise definition of coherency can be obtained by

considering the structure function of the fault tree [2].

A fault tree is coherent if its structure function φ(x) complies with the definition of

coherency given by the properties of relevance and monotonicity. The first condition

requires that each component is relevant; this means that each component contributes

to the system state.

φ(1i,x)≠φ(0i,x) for some x

The second condition requires the structure function of the fault tree to be

monotonically increasing, i.e. non-decreasing.

φ(1i,x)≥ φ(0i,x) ∀ i

Where:

φ(1i,x)= φ(x1,…,xi-1,1,xi+1,…,xn)

φ(0i,x)= φ(x1,…,xi-1,0,xi+1,…,xn)

The structure function of a fault tree is monotonically increasing (non-decreasing) if

as the state of a component deteriorates the system state either remains the same or

also deteriorates. The three possibilities, depending on the state of the remaining

components, are shown in figure 1. So the system either remains in the same state

(working or failed) when component i fails.

Φ
1

10

0

x i

Φ
1

10

0

x i

Φ
1

10

0

x i

Figure 1: Non-Decreasing Structure Functions

For a structure function of a non-coherent system the remaining possibility, shown in

figure 2, can also occur. This system is non-coherent for component i, hence, for some

state of the remaining components, the system is in a failed state when component i

works and a working state when component i fails.

Φ
1

10

0

x i

Figure 2: Non-coherent Structure Function

3. Calculating the SFBDD of a Non-coherent Fault Tree

Rauzy [1] developed the If-Then-Else (ite) method for computing a SFBDD for a

coherent fault tree in 1993. This method has the advantage of producing a SFBDD,

which encodes Shannon’s formula, i.e., if f(x) is the Boolean function for the top

event of the fault tree, then by pivoting about variable xi, Shannon’s theorem states:

21)(fxfxf ii +=x

Where f1 and f2 are Boolean functions:

),....,0,,........,,(

),....,1,,........,,(

11212

11211

nii

nii

xxxxxff

xxxxxff

+−

+−

=
=

This is represented by the ite structure given in equation (1).

ite(xi,f1,f2) (1)

Where xi represents a variable and f1 and f2 represent logic functions. This ite

structure is interpreted as follows:

If xi fails then consider the logic function f1

else consider the logic function f2.

Thus in the BDD, f1 forms the logic function for the one branch of xi and f2 forms the

logic function for the zero branch of xi. Figure 3 shows the diagram that represents

this ite structure.

xi

f2f1

01

Figure 3: ite structure for ite(xi,f1,f2)

The process to convert a fault tree structure to a SFBDD first requires a variable

ordering scheme to be chosen for the variables (basic events) in the fault tree. Once

the variables have been ordered the following procedure is employed to compute the

SFBDD.

1. Assign each basic event xi in the fault tree an ite structure,

2. Modify the fault tree structure so that each gate has only two inputs

3. Apply De Morgan’s rules to push the Not logic down to the basic events:

BABA

BABA

.

.

=+

+=

where AND is represented by ‘.’ And OR by ‘+’.

4. Consider each gate in a bottom-up fashion

5. If two gate inputs are J and H such that:

J=ite(x, F1, F2) H=ite(y, G1, G2)

Then the following rules are applied:

- If x<y, J<op>H=ite(x, F1<op>H, F2<op>H)

- If x=y, J<op>H=ite(x, F1<op>G1, F2<op>G2)

These rules are used in conjunction with the following identities:

1<op>H=H, 0<op>H=0 if <op> is an AND gate

1<op>H=1, 0<op>H=H if <op> is an OR gate

Where <op> describes the Boolean operation of the logic gates (AND, OR) of the

fault tree.

To illustrate this procedure, consider the fault tree shown in figure 4.

Top

G1 G2

a b a c

Figure 4: Non-coherent Fault Tree Diagram

Assuming a variable ordering a<b<c:

Assigning each basic event an ite structure:

a=ite(a,1,0)

a =ite(a,0,1)

b=ite(b,1,0)

c=ite(c,1,0)

Considering the gates in a bottom-up fashion according to the rules and identities

introduced above, beginning with gate G1:

G1=a.b

G1=ite(a,1,0).ite(b,1,0)

G1=ite(a,[1.ite(b,1,0)], [0.ite(b,1,0)])

G1=ite(a,ite(b,1,0),0)

Now dealing with gate G2:

G2=a .c

G2=ite(a,0,1).ite(c,1,0)

G2=ite(a,[0.ite(c,1,0)], [1.ite(c,1,0)])

G2=ite(a,0,ite(c,1,0)

Finally dealing with the top gate, Top:

Top=G1+G2

Top=ite(a,ite(b,1,0),0)+ite(a,0,ite(c,1,0))

Top=ite(a,[ite(b,1,0)+0],[0+ite(c,1,0)])

Top=ite(a,ite(b,1,0),ite(c,1,0))

The ite structure computed for the fault tree shown in figure 4, is given in equation 2

and the SFBDD is shown in figure 5.

ite(a,ite(b,1,0),ite(c,1,0)) (2)

a

01

0
1

b c

1 0

1 10 0

F3F2

F1

Figure 5: SFBDD Obtained for the Non-coherent Fault Tree in Figure 4

4. The Unconditional Failure Intensity of a Coherent System

The unconditional failure intensity is denoted by wsys(t) and defined as the probability

that a system fails per unit time at t given that it was working at t=0. This is an

important system parameter to calculate during quantification since, having

determined wsys(t) the expected number of system failures in a given interval,

Wsys(0,t) can be calculated:

∫=
t

o
SYSSYS duuwtW)(),0(

The unconditional failure intensity of a coherent system can be expressed in terms of

the criticality function, Gi(q).

wsys(t)=∑
=

cn

i
ii twG

1

)()(q (3)

Where, wi(t) is the failure intensity of component i, and nc is the total number of

components.

The criticality function, also known as Birnbaum’s measure of component reliability

importance, denoted by, Gi(q), is defined as the probability that the system is in a

working but critical state for component i such that the failure of component i would

cause system failure. This can be calculated from:

Gi(q)=Qsys(1i, q)-Qsys(0i, q) (4)

Where:

Qsys(1i, q) = Qsys(x1, x2,….., xi-1,1,xi+1,….., xn) is the probability that the system has

failed and component i is failed.

Qsys(0i, q)= Qsys(x1, x2,….., xi-1,0,xi+1,….., xn) is the probability that the system has

failed and component i is working.

qi is the probability that component I fails.

Equation 3 enables efficient and accurate calculation of the unconditional failure

intensity using the BDD technique.

5. The Concept of Component Relevancy / Irrelevancy

When analysing non-coherent fault trees, both component failed states and component

working states can contribute to system failure. A component can be either relevant to

the system state or irrelevant to the system state. If a component is relevant to the

system state, it can be either failure relevant or repair relevant. Component i is said to

be failure relevant if the system is in a critical state such that the failure of component

i would cause the system to fail. Similarly component i is said to be repair relevant if

the system is in a critical state such that the repair of component i would cause system

failure. Finally component i is said to be irrelevant if its state has no bearing on the

state of the system.

Expressions for the failure relevance and irrelevance of a component can be obtained

from the Boolean expression for the top event. Consider the Boolean expression for

the top even, Top, given in equation 5.

Top=ab+a d+ce+bd (5)

An expression for the failure relevance or irrelevance of component a denoted by,

Topa=1, can be obtained by substituting the value 1 for component a into equation 5.

Topa=1=b+ce+bd

 =b+ce

Similarly an expression for the repair relevance or irrelevance of component a

denoted by, Topa=0, can be obtained by substituting the value 0 for component a into

equation 5.

Topa=0=d+ce+bd=d+ce

An expression for the irrelevance of component a, denoted by, Topa=’_’ is obtained by

taking the product of Topa=1 and Topa=0.

 Topa=’_’=Topa=1.Topa=0

=(b+ce)(d+ce)

 =bd+ce

6. An Extension of Birnbaum’s Measure of Importance for Non-coherent

Fault Trees

Birnbaum’s measure of component reliability is a fundamental probabilistic measure

of importance [3]. However, Birnbaum developed this measure strictly for the

analysis of coherent systems. In 2001 an extension of Birnbaum’s measure of

importance for the analysis of non-coherent structures was developed [4].

When dealing with a coherent system, system failure can only be caused by

component failure. Hence a component in a coherent system can only be failure

critical. However, when dealing with a non-coherent system, system failure can be

caused not only by the failure of component i, (i) but also by the repair of component

I, (i). Thus a component in a non-coherent system can be failure critical or repair

critical. These two criticalities must be considered separately since component i can

exist in only one state at any time.

The probability that component i is critical to system failure, can be expressed as the

probability that component i is repair critical, Gi
R(q), or the probability that

component i is failure critical, Gi
F(q).

Gi(q)= Gi
R(q)+ Gi

F(q) (6)

This can be obtained from the system unavailability function Qsys(t) that can be

determined from Henley and Inagaki’s calculation procedure outlined in [5].

Component i is failure critical if the system is working, but will fail if component i

fails. Thus the probability that component i is failure critical is the probability that the

system is in a working state such that the failure of component i causes at least one

prime implicant set containing event i to occur. This probability is calculated by

obtaining the probability that at least one prime implicant set containing event i exists

at time t and then dividing this probability by the unavailability of component i.

To calculate this probability it is first helpful to re-express the system unavailability

as three distinct terms having expressed it in the form used by Inagaki and Henley

.

Qsys(t)=qiPr[A]+piPr[B]+Pr[C] (7)

The three terms of this equation are grouped so that Pr[A] represents the probability

terms which appear together with the failure probability of component i, Pr[B]

represents the probability terms which appear together with the functioning

probability of component i (pi =1− qi), and Pr[C] represents the probability terms

which do not contain qi or pi , i.e. for which component i is irrelevant respectively.

Now the probability that component i is failure critical is calculated as follows:

]Pr[)(A
q

Q
G

i

SYSF
i =

∂
∂

=q (8)

Similarly the probability that component i is repair critical is the probability that the

system is in a working state such that the repair of component i causes at least one

prime implicant set containing event i to occur. This is calculated as follows:

]Pr[)(B
p

Q
G

i

SYSR
i =

∂
∂

=q (9)

The top event can only exist at time t if at least one prime implicant set exists at time

t. Hence the failure and repair criticality can be calculated separately by

differentiating the system unavailability function, Qsys(t), with respect to qi and pi

respectively.

The unconditional failure intensity for a coherent fault tree is expressed in terms of

the criticality function, Gi(q):

wsys(t)=∑
=

cn

i
ii twG

1

)()(q (10)

This can be now be extended to non-coherent systems as follows:

wsys(t)= ∑∑
==

+
cc n

i
i

R
i

n

i
i

F
i tvGtwG

11

)()()()(qq (11)

where vi is the unconditional repair intensity for component i.

This can be then be used to calculate the expected number of system failures in a

given interval:

Wsys(0,t)= ∫ ∑∑
==

+
t n

i
i

R
i

n

i
i

F
i

cc

duuvGuwG
0 11

)()()()(qq (12)

The first term on the right hand side of equation (12) calculates the number of

occurrences of system failure due to the failure of component i in a given interval.

The second term calculates the number of occurrences of system failure due to the

repair of component i in a given interval.

7. Calculating the Unconditional Failure Intensity of a Non-coherent Fault

Tree Using the BDD Method

The BDD Method has been extended to enable full and exact analysis of non-coherent

fault trees [6, 7].

The expressions for calculating Birnbaum’s measures of component failure and repair

importance are given in equations 8 and 9 respectively.

From the definition of component relevance / irrelevance given in section 6, it is

possible to define Birnbaum’s measure of component failure importance as the

probability that component i is failure relevant to the system state [6] given by:

Gi
F(q)=E[φi=1]-E[φi=’_’] (13)

Where:

E[φi=1] is the probability that component i is either failure relevant or irrelevant to the

state of the system.

E[φi=’_’] is the probability that component i is irrelevant to the state of the system.

Similarly, Birnbaum’s measure of component repair importance can be defined as the

probability that component i is repair relevant to the system state:

Gi
R(q)=E[φi=0]-E[φi=’_’] (14)

Where:

E[φi=0] is the probability that component i is either repair relevant or irrelevant to the

system state.

φi=1, φi=0, φ i=’_’ are the structure function with xi=1, 0 and ‘-’ respectively.

It is possible to calculate E[φi=1], E[φi=0] directly from the SFBDD, the procedure for

calculating these probabilities is outlined below:

[] ∑==
ix

iE 1φ Prxi(q).Poxi
1(q) (15)

[] ∑==
ix

iE 0φ Prxi(q).Poxi
0(q) (16)

Where:

Prxi(q) is the probability of the path section from the root vertex to node xi.

Poxi
1(q) is the probability of the path section from the one branch of node xi to a

terminal 1 node (excluding the probability of xi).

Poxi
0(q) is the probability of the path section from the zero branch of node xi to a

terminal 1 node (excluding the probability of xi).

Although E[φi=’_’] can be calculated by taking the expectation of the logical product of

Topi=1 and Topi=0. This is an inefficient means of calculating E[φi=’_’]. An alternative

technique can be employed which involves computing an intermediate BDD for each

node from which E[φi=’_’] can be efficiently calculated. The intermediate BDD for

each node is obtained by ANDing the one and zero branches of the node. An

expression for E[φi=’_’] is then calculated by multiplying the probability preceding the

node in the SFBDD by the probability of the sum of all the terminal one paths through

the intermediate BDD. To illustrate this technique consider again the SFBDD

calculated in section 3, figure 5.

The ite table for this BDD shown in table 1.

Node Variable 1 branch 0 branch

F1 a F2 F3

F2 b 1 0

F3 c 1 0

Table 1: ite Table

The next stage is to calculate each of the terms in equations 15 and 16. The first term,

Prxi(q) is the probability of the path from the root vertex to node xi, which is recorded

in Table 2.

Node Prxi(q) Comment

F1 1 Root vertex itself

F2 qa F2 reached via the one branch of node F1

F3 pa F3 reached via the zero branch of node F1

Table 2: Prxi(q) for each node in the SFBDD in figure 5

The Poxi
1(q) term is calculated by summing the probability of all the paths from the

selected node, xi, along the one branch to a terminal 1 vertex, excluding the

probability of the selected node. Table 3 records Poxi
1(q) for each node.

Node Poxi
1(q) Comment

F1 qb
1 branch of F1 passes to F2 and the 1 branch of F2

passes to a terminal 1 node

F2 1 1 branch of F2 passes to a terminal 1 node

F3 1 1 branch of F3 passes to a terminal 1 node

Table 3: Poxi
1(q) each node in the SFBDD in figure 5

Similarly Poxi
0(q) is calculated by summing the probability of all the paths from the

selected node xi, along the zero branch to a terminal 1 vertex, excluding the

probability of the selected node. Table 4 records Poxi
0(q) for each node.

Node poxi
0(q) Comment

F1 qc
0 branch of F1 passes to F3 and the 1 branch of F3

passes to a terminal 1 node

F2 0 No terminal one paths

F3 0 No terminal one paths

Table 4: Poxi
0(q) for each node in the SFBDD in figure 5

Finally E[φi=’_’] must be calculated for each of the nodes in the SFBDD. The

calculation procedure requires some additional work. An intermediate BDD must be

calculated for each node xi. The probability of the sum of the disjoint paths through

this intermediate BDD is calculated and multiplied by the probability preceding the

node xi to give E[φi=’_’]. The intermediate BDD is computed by ANDing the one and

zero branches of a node. Each of the nodes in the SFBDD in figure 5 will be

considered below:

Dealing with node F1

F2.F3=ite(b,1,0).ite(c,1,0)

 =ite(b,ite(c,1,0),0)

The resulting BDD is shown in figure 6:

b

01

0
1

c 0
1 0

Figure 6: Intermediate BDD for Node F1

There is one terminal path through this BDD, bc, the probability of this path is: qbqc

Dealing with node F2:

1.0=0 The probability of this is zero.

Dealing with node F3:

1.0=0 The probability of this is zero.

Table 5 summarises the results obtained for E[φi=1], E[φi=0] and E[φi=’_’].

Node Variable (i) E[φi=1] E[φi=0] E[φi=’_’]

F1 a qb qc qbqc

F2 b qa 0 0

F3 c pa 0 0

Table 5: Summary of results obtained for E[φi=1], E[φi=0] and E[φi=’_’]

From the results in table 5 and equations 13 and 14 the failure and repair importance

of each component is obtained as follows:

Ga
F(q)=qb-qbqc Ga

R(q)=qc-qbqc

Gb
F(q)=qa Gb

R(q)=0

Gc
F(q)=pa Gc

R(q)=0

From this it is possible to calculate the unconditional failure intensity and then the

expected number of system failures in a given interval using equations 11 and 12

respectively.

wsys(t)=(qb- qbqc)wa+qawb+pawc+(qc-qbqc)va

 =(1- qc) qb wa+qawb+pawc+(1-qb) qc va

8. Conclusion

The unconditional failure intensity is a key parameter to calculate during fault tree

quantification. Once the unconditional failure intensity is known it is possible to

calculate the expected number of system failures in a given interval. Until now it has

not been possible to calculate the unconditional failure intensity of a non-coherent

fault tree using the BDD method. In 2001 an extension of Birnbaum’s measure of

reliability importance to enable the analysis of non-coherent systems was developed.

This measure can be used to calculate the unconditional failure intensity of a non-

coherent fault tree efficiently and accurately using the BDD method.

9. References

1. A. Rauzy, “New Algorithms for Fault Tree Analysis”, Reliability Engineering

and System Safety, vol. 40, 1993, p203-211.

2. A. Bendall and J. Ansell, “The Incoherency of Multistate Coherent Systems”,

Reliability Engineering, Vol. 8, 1984, pp165-178.

3. Z. W. Birnbaum, “On the Importance of Different Components in a Multi-

component System”, Multivariate Analysis II, PR Krishnaiah, ed, Academic

Press, 1969.

4. S. Beeson and J. D. Andrews, “Birnbaum’s Measure of Component

Importance for Non-coherent Systems”, IEEE Transactions on Reliability, in

press.

5. Inagaki and E. J. Henley, “Probabilistic Evaluation of Prime Implicants and

Top Events for Non-coherent Systems”, IEEE Transactions on Reliability, vol.

R-29, No. 5, Dec 1980.

6. S. Beeson, “Non-coherent Fault Tree Analysis”, Doctoral Thesis,

Loughborough University, 2002.

7. Y. Dutuit and A. Rauzy, “Exact and Truncated Computations of Prime

Implicants of Coherent and Non-coherent Fault Trees with Aralia”, Reliability

Engineering and System Safety, vol. 58, 1997, p127-144.

