
 
 
 

This item was submitted to Loughborough’s Institutional Repository by the 
author and is made available under the following Creative Commons Licence 

conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Calculating the Failure Intensity of a Non-coherent Fault Tree Using 

the BDD Technique 
 

Sally Beeson and John Andrews 

Department of Systems Engineering 

Loughborough University 

 

 

Abstract 

This paper considers a technique for calculating the unconditional failure intensity of 

any given non-coherent fault tree. Conventional Fault Tree Analysis (FTA) 

techniques involve the evaluation of lengthy series expansions and approximations are 

unavoidable even for moderate sized fault trees. The Binary Decision Diagram (BDD) 

technique overcomes some of the shortfalls of conventional FTA techniques enabling 

efficient and exact quantitative analysis of both coherent and non-coherent fault trees.   
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1. Introduction 

The Binary Decision Diagram (BDD) technique developed by Rauzy in the early 

1990’s has been shown to significantly improve the accuracy and efficiency of 

conventional fault tree analysis for coherent systems [1]. More recently attention has 

focused on the analysis of non-coherent systems using the BDD method. The top 

event probability can be calculated directly from the SFBDD, which encodes the 

structure function for a non-coherent fault tree.  Quantification of the failure 

frequency of non-coherent systems could be accomplished by conventional fault tree 

methods [5]. In 2001 an extension of Birnbaum’s measure of importance for the 

analysis of non-coherent systems was developed [4]. This extension can be used to 

calculate the unconditional failure intensity of a non-coherent fault tree directly from 

the SFBDD. This provides an exact and efficient means of calculating this parameter 

and is described in this paper.  

 



2. Non-coherent Systems 

Fault Tree structures can be categorised as either coherent or non-coherent according 

to their underlying logic. If during fault tree construction the failure logic is restricted 

to the use of the AND gate and the OR gate, the resulting fault tree is said to be 

coherent. If however, the NOT gate is used or directly implied, the resulting fault tree 

can be non-coherent. A more precise definition of coherency can be obtained by 

considering the structure function of the fault tree [2].  

A fault tree is coherent if its structure function φ(x) complies with the definition of 

coherency given by the properties of relevance and monotonicity. The first condition 

requires that each component is relevant; this means that each component contributes 

to the system state. 

φ(1i,x)≠φ(0i,x)      for some x    

The second condition requires the structure function of the fault tree to be 

monotonically increasing, i.e. non-decreasing.  

φ(1i,x)≥ φ(0i,x)    ∀ i 

Where: 

φ(1i,x)= φ(x1,…,xi-1,1,xi+1,…,xn) 

φ(0i,x)= φ(x1,…,xi-1,0,xi+1,…,xn) 

 

The structure function of a fault tree is monotonically increasing (non-decreasing) if 

as the state of a component deteriorates the system state either remains the same or 

also deteriorates. The three possibilities, depending on the state of the remaining 

components, are shown in figure 1.   So the system either remains in the same state 

(working or failed) when component i fails. 
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Figure 1: Non-Decreasing Structure Functions 

 

For a structure function of a non-coherent system the remaining possibility, shown in 

figure 2, can also occur. This system is non-coherent for component i, hence, for some 



state of the remaining components, the system is in a failed state when component i 

works and a working state when component i fails.  
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Figure 2: Non-coherent Structure Function 

 

3. Calculating the SFBDD of a Non-coherent Fault Tree 

Rauzy [1] developed the If-Then-Else (ite) method for computing a SFBDD for a 

coherent fault tree in 1993. This method has the advantage of producing a SFBDD, 

which encodes Shannon’s formula, i.e., if f(x) is the Boolean function for the top 

event of the fault tree, then by pivoting about variable xi, Shannon’s theorem states: 
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This is represented by the ite structure given in equation (1).  

ite(xi,f1,f2)       (1) 

 

Where xi represents a variable and f1 and f2 represent logic functions. This ite 

structure is interpreted as follows: 

If  xi fails then consider the logic function f1 

else consider the logic function f2. 

 

Thus in the BDD, f1 forms the logic function for the one branch of xi and f2 forms the 

logic function for the zero branch of xi. Figure 3 shows the diagram that represents 

this ite structure.  
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Figure 3: ite structure for ite(xi,f1,f2) 

 

The process to convert a fault tree structure to a SFBDD first requires a variable 

ordering scheme to be chosen for the variables (basic events) in the fault tree. Once 

the variables have been ordered the following procedure is employed to compute the 

SFBDD.  

1. Assign each basic event xi in the fault tree an ite structure,  

2. Modify the fault tree structure so that each gate has only two inputs 

3. Apply De Morgan’s rules to push the Not logic down to the basic events: 
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where AND is represented by ‘.’ And OR by ‘+’. 

4. Consider each gate in a bottom-up fashion 

5. If two gate inputs are J and H such that: 

J=ite(x, F1, F2)     H=ite(y, G1, G2) 

  

Then the following rules are applied: 

- If x<y, J<op>H=ite(x, F1<op>H, F2<op>H) 

- If x=y, J<op>H=ite(x, F1<op>G1, F2<op>G2) 

 

These rules are used in conjunction with the following identities: 

1<op>H=H,  0<op>H=0  if <op> is an AND gate 

1<op>H=1,  0<op>H=H  if <op> is an OR gate 

Where <op> describes the Boolean operation of the logic gates (AND, OR) of the 

fault tree.  

 

To illustrate this procedure, consider the fault tree shown in figure 4.  
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Figure 4: Non-coherent Fault Tree Diagram 

 

Assuming a variable ordering a<b<c: 

 

Assigning each basic event an ite structure: 

a=ite(a,1,0) 

a =ite(a,0,1) 

b=ite(b,1,0) 

c=ite(c,1,0) 

 

Considering the gates in a bottom-up fashion according to the rules and identities 

introduced above, beginning with gate G1: 

G1=a.b 

G1=ite(a,1,0).ite(b,1,0) 

G1=ite(a,[1.ite(b,1,0)], [0.ite(b,1,0)]) 

G1=ite(a,ite(b,1,0),0) 

 

Now dealing with gate G2: 

G2=a .c 

G2=ite(a,0,1).ite(c,1,0) 

G2=ite(a,[0.ite(c,1,0)], [1.ite(c,1,0)]) 

G2=ite(a,0,ite(c,1,0) 

 

Finally dealing with the top gate, Top: 

Top=G1+G2 



Top=ite(a,ite(b,1,0),0)+ite(a,0,ite(c,1,0)) 

Top=ite(a,[ite(b,1,0)+0],[0+ite(c,1,0)]) 

Top=ite(a,ite(b,1,0),ite(c,1,0)) 

 

The ite structure computed for the fault tree shown in figure 4, is given in equation 2 

and the SFBDD is shown in figure 5.  

ite(a,ite(b,1,0),ite(c,1,0))      (2) 
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Figure 5: SFBDD Obtained for the Non-coherent Fault Tree in Figure 4 

 

4. The Unconditional Failure Intensity of a Coherent System 

The unconditional failure intensity is denoted by wsys(t) and defined as the probability 

that a system fails per unit time at t given that it was working at t=0. This is an 

important system parameter to calculate during quantification since, having 

determined wsys(t) the expected number of system failures in a given interval, 

Wsys(0,t) can be calculated: 
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The unconditional failure intensity of a coherent system can be expressed in terms of 

the criticality function, Gi(q). 
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Where, wi(t) is the failure intensity of component i, and nc is the total number of 

components.  

 



The criticality function, also known as Birnbaum’s measure of component reliability 

importance, denoted by, Gi(q), is defined as the probability that the system is in a 

working but critical state for component i such that the failure of component i would 

cause system failure.  This can be calculated from: 

 

Gi(q)=Qsys(1i, q)-Qsys(0i, q)       (4) 

 

Where: 

Qsys(1i, q) = Qsys(x1, x2,….., xi-1,1,xi+1,….., xn)  is the probability that the system has 

failed and component i is failed.  

Qsys(0i, q)= Qsys(x1, x2,….., xi-1,0,xi+1,….., xn)   is the probability that the system has 

failed and component i is working.  

qi is the probability that component I fails. 

 

Equation 3 enables efficient and accurate calculation of the unconditional failure 

intensity using the BDD technique.  

 

5. The Concept of Component Relevancy / Irrelevancy 

When analysing non-coherent fault trees, both component failed states and component 

working states can contribute to system failure. A component can be either relevant to 

the system state or irrelevant to the system state. If a component is relevant to the 

system state, it can be either failure relevant or repair relevant. Component i is said to 

be failure relevant if the system is in a critical state such that the failure of component 

i would cause the system to fail. Similarly component i is said to be repair relevant if 

the system is in a critical state such that the repair of component i would cause system 

failure. Finally component i is said to be irrelevant if its state has no bearing on the 

state of the system.  

 

Expressions for the failure relevance and irrelevance of a component can be obtained 

from the Boolean expression for the top event. Consider the Boolean expression for 

the top even, Top, given in equation 5.  

 

Top=ab+a d+ce+bd              (5) 



 

An expression for the failure relevance or irrelevance of component a denoted by, 

Topa=1, can be obtained by substituting the value 1 for component a into equation 5.  

Topa=1=b+ce+bd 

    =b+ce 

 

Similarly an expression for the repair relevance or irrelevance of component a 

denoted by, Topa=0, can be obtained by substituting the value 0 for component a into 

equation 5.  

Topa=0=d+ce+bd=d+ce 

 

An expression for the irrelevance of component a, denoted by, Topa=’_’ is obtained by 

taking the product of Topa=1 and Topa=0.  

   Topa=’_’=Topa=1.Topa=0 

=(b+ce)(d+ce) 

                                       =bd+ce 

 

 

6. An Extension of Birnbaum’s Measure of Importance for Non-coherent 

Fault Trees 

Birnbaum’s measure of component reliability is a fundamental probabilistic measure 

of importance [3]. However, Birnbaum developed this measure strictly for the 

analysis of coherent systems. In 2001 an extension of Birnbaum’s measure of 

importance for the analysis of non-coherent structures was developed [4].  

 

When dealing with a coherent system, system failure can only be caused by 

component failure. Hence a component in a coherent system can only be failure 

critical. However, when dealing with a non-coherent system, system failure can be 

caused not only by the failure of component i, (i) but also by the repair of component 

I,  ( i). Thus a component in a non-coherent system can be failure critical or repair 

critical. These two criticalities must be considered separately since component i can 

exist in only one state at any time.  

 



The probability that component i is critical to system failure, can be expressed as the 

probability that component i is repair critical, Gi
R(q), or the probability that 

component i is failure critical, Gi
F(q).  

Gi(q)= Gi
R(q)+ Gi

F(q)              (6) 

 

This can be obtained from the system unavailability function Qsys(t) that can be 

determined from Henley and Inagaki’s calculation procedure outlined in [5]. 

Component i is failure critical if the system is working, but will fail if component i 

fails. Thus the probability that component i is failure critical is the probability that the 

system is in a working state such that the failure of component i causes at least one 

prime implicant set containing event i to occur. This probability is calculated by 

obtaining the probability that at least one prime implicant set containing event i exists 

at time t and then dividing this probability by the unavailability of component i.  

 

To calculate this probability it is first helpful to re-express the system unavailability 

as three distinct terms having expressed it in the form used by Inagaki and Henley  

.  

Qsys(t)=qiPr[A]+piPr[B]+Pr[C]         (7) 

 

The three terms of this equation are grouped so that Pr[A] represents the probability 

terms which appear together with the failure probability of component i, Pr[B] 

represents the probability terms which appear together with the functioning 

probability of component i (pi =1− qi), and Pr[C] represents the probability terms 

which do not contain qi or pi , i.e. for which component i is irrelevant respectively.  

 

Now the probability that component i is failure critical is calculated as follows: 
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Similarly the probability that component i is repair critical is the probability that the 

system is in a working state such that the repair of component i causes at least one 

prime implicant set containing event  i  to occur. This is calculated as follows: 
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The top event can only exist at time t if at least one prime implicant set exists at time 

t. Hence the failure and repair criticality can be calculated separately by 

differentiating the system unavailability function, Qsys(t), with respect to qi and pi 

respectively.  

 

The unconditional failure intensity for a coherent fault tree is expressed in terms of 

the criticality function, Gi(q): 
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This can be now be extended to non-coherent systems as follows: 
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where vi is the unconditional repair intensity for component i. 

This can be then be used to calculate the expected number of system failures in a 

given interval: 
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The first term on the right hand side of equation (12) calculates the number of 

occurrences of system failure due to the failure of component i in a given interval. 

The second term calculates the number of occurrences of system failure due to the 

repair of component i in a given interval.  

 

7. Calculating the Unconditional Failure Intensity of a Non-coherent Fault 

Tree Using the BDD Method 

The BDD Method has been extended to enable full and exact analysis of non-coherent 

fault trees [6, 7].  

The expressions for calculating Birnbaum’s measures of component failure and repair 

importance are given in equations 8 and 9 respectively.  

 



From the definition of component relevance / irrelevance given in section 6, it is 

possible to define Birnbaum’s measure of component failure importance as the 

probability that component i is failure relevant to the system state [6] given by: 

Gi
F(q)=E[φi=1]-E[φi=’_’ ]              (13) 

 

Where: 

E[φi=1] is the probability that component i is either failure relevant or irrelevant to the 

state of the system.  

E[φi=’_’ ] is the probability that component i is irrelevant to the state of the system.  

 

Similarly, Birnbaum’s measure of component repair importance can be defined as the 

probability that component i is repair relevant to the system state:  

Gi
R(q)=E[φi=0]-E[φi=’_’ ]            (14) 

 

Where: 

E[φi=0] is the probability that component i is either repair relevant or irrelevant to the 

system state.  

φi=1, φi=0, φ i=’_’  are  the structure function with xi=1, 0 and ‘-’ respectively. 

 

It is possible to calculate E[φi=1], E[φi=0] directly from the SFBDD, the procedure for 

calculating these probabilities is outlined below: 
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Where: 

Prxi(q)  is the probability of the path section from the root vertex to node xi.  

Poxi
1(q) is the probability of the path section from the one branch of node xi to a 

terminal 1 node (excluding the probability of xi). 

Poxi
0(q) is the probability of the path section from the zero branch of node xi to a 

terminal 1 node (excluding the probability of xi).  

 



Although E[φi=’_’ ] can be calculated by taking the expectation of the logical product of 

Topi=1 and Topi=0. This is an inefficient means of calculating E[φi=’_’ ]. An alternative 

technique can be employed which involves computing an intermediate BDD for each 

node from which E[φi=’_’ ] can be efficiently calculated. The intermediate BDD for 

each node is obtained by ANDing the one and zero branches of the node. An 

expression for E[φi=’_’ ] is then calculated by multiplying the probability preceding the 

node in the SFBDD by the probability of the sum of all the terminal one paths through 

the intermediate BDD. To illustrate this technique consider again the SFBDD 

calculated in section 3, figure 5.  

 

The ite table for this BDD shown in table 1.  

Node Variable 1 branch 0 branch 

F1 a F2 F3 

F2 b 1 0 

F3 c 1 0 

Table 1: ite Table 

 

The next stage is to calculate each of the terms in equations 15 and 16. The first term, 

Prxi(q) is the probability of the path from the root vertex to node xi, which is recorded 

in Table 2.  

Node Prxi(q) Comment 

F1 1 Root vertex itself 

F2 qa F2 reached via the one branch of node F1 

F3 pa F3 reached via the zero branch of node F1 

Table 2: Prxi(q) for each node in the SFBDD in figure 5 

 

The Poxi
1(q) term is calculated by summing the probability of all the paths from the 

selected  node, xi, along the one branch to a terminal 1 vertex, excluding the 

probability of the selected node. Table 3 records Poxi
1(q) for each node. 

 

 

 

 



Node Poxi
1(q) Comment 

F1 qb 
1 branch of F1 passes to F2 and the 1 branch of F2 

passes to a terminal 1 node 

F2 1 1 branch of F2 passes to a terminal 1 node 

F3 1 1 branch of F3 passes to a terminal 1 node 

Table 3: Poxi
1(q) each node in the SFBDD in figure 5 

 

Similarly Poxi
0(q) is calculated by summing the probability of all the paths from the 

selected node xi, along the zero branch to a terminal 1 vertex, excluding the 

probability of the selected node. Table 4 records Poxi
0(q) for each node.  

Node poxi
0(q) Comment 

F1 qc 
0 branch of F1 passes to F3 and the 1 branch of F3 

passes to a terminal 1 node 

F2 0 No terminal one paths 

F3 0 No terminal one paths 

Table 4: Poxi
0(q) for each node in the SFBDD in figure 5 

 

Finally E[φi=’_’ ] must be calculated for each of the nodes in the SFBDD. The 

calculation procedure requires some additional work. An intermediate BDD must be 

calculated for each node xi. The probability of the sum of the disjoint paths through 

this intermediate BDD is calculated and multiplied by the probability preceding the 

node xi to give E[φi=’_’ ]. The intermediate BDD is computed by ANDing the one and 

zero branches of a node. Each of the nodes in the SFBDD in figure 5 will be 

considered below: 

Dealing with node F1 

F2.F3=ite(b,1,0).ite(c,1,0) 

         =ite(b,ite(c,1,0),0) 

 

The resulting BDD is shown in figure 6: 
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Figure 6: Intermediate BDD for Node F1 

 

 

There is one terminal path through this BDD, bc, the probability of this path is: qbqc 

 

Dealing with node F2: 

1.0=0   The probability of this is zero.  

 

Dealing with node F3: 

1.0=0   The probability of this is zero.  

 

Table 5 summarises the results obtained for E[φi=1], E[φi=0] and E[φi=’_’ ].  

Node Variable (i) E[φi=1] E[φi=0] E[φi=’_’ ] 

F1 a qb qc qbqc 

F2 b qa 0 0 

F3 c pa 0 0 

Table 5: Summary of results obtained for E[φi=1], E[φi=0] and E[φi=’_’ ] 

 

From the results in table 5 and equations 13 and 14 the failure and repair importance 

of each component is obtained as follows: 

 

Ga
F(q)=qb-qbqc   Ga

R(q)=qc-qbqc 

Gb
F(q)=qa   Gb

R(q)=0 

Gc
F(q)=pa   Gc

R(q)=0 

 



From this it is possible to calculate the unconditional failure intensity and then the 

expected number of system failures in a given interval using equations 11 and 12 

respectively.  

wsys(t)=(qb- qbqc)wa+qawb+pawc+( qc-qbqc)va 

         =(1- qc) qb wa+qawb+pawc+( 1-qb) qc va 

 

8. Conclusion 

The unconditional failure intensity is a key parameter to calculate during fault tree 

quantification.  Once the unconditional failure intensity is known it is possible to 

calculate the expected number of system failures in a given interval. Until now it has 

not been possible to calculate the unconditional failure intensity of a non-coherent 

fault tree using the BDD method. In 2001 an extension of Birnbaum’s measure of 

reliability importance to enable the analysis of non-coherent systems was developed. 

This measure can be used to calculate the unconditional failure intensity of a non-

coherent fault tree efficiently and accurately using the BDD method.  
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