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Abstract

This paper considers a technique for calculatirguihconditional failure intensity of
any given non-coherent fault tree. Conventional ItFalree Analysis (FTA)
techniques involve the evaluation of lengthy seeigsansions and approximations are
unavoidable even for moderate sized fault treee.Bihary Decision Diagram (BDD)
technique overcomes some of the shortfalls of cotweal FTA techniques enabling
efficient and exact quantitative analysis of batherent and non-coherent fault trees.

Keywords:  Non-coherent, Binary Decision Diagrams, Uncowdiél Failure

Intensity, and Birnbaum’s Measure of Reliabilitydartance.

1. Introduction

The Binary Decision Diagram (BDD) technique develdby Rauzy in the early
1990’s has been shown to significantly improve #eeuracy and efficiency of
conventional fault tree analysis for coherent syst¢l]. More recently attention has
focused on the analysis of non-coherent systemygusie BDD method. The top
event probability can be calculated directly frohe tSFBDD, which encodes the
structure function for a non-coherent fault treeQuantification of the failure
frequency of non-coherent systems could be accshwgai by conventional fault tree
methods [5]. In 2001 an extension of Birnbaum’s sumea of importance for the
analysis of non-coherent systems was developedT$ extension can be used to
calculate the unconditional failure intensity oh@n-coherent fault tree directly from
the SFBDD. This provides an exact and efficient mseaf calculating this parameter
and is described in this paper.



2. Non-coherent Systems
Fault Tree structures can be categorised as att@rent or non-coherent according
to their underlying logic. If during fault tree cstruction the failure logic is restricted
to the use of the AND gate and the OR gate, theltreg fault tree is said to be
coherent. If however, the NOT gate is used or tyemplied, the resulting fault tree
can be non-coherent. A more precise definition afiezency can be obtained by
considering the structure function of the fauletf2].
A fault tree is coherent if its structure functig(x) complies with the definition of
coherency given by the properties of relevancerandotonicity. The first condition
requires that each component is relevant; this i@t each component contributes
to the system state.
@1, X)2@(0;,X) for somex

The second condition requires the structure functad the fault tree to be
monotonically increasing, i.e. non-decreasing.

@O, x)= @0;,x) Oi
Where:
O, X)= X1, .-, %i-1,1, %41, - %n)
@0, X)= @X1,...,%i-1,0,%+1,-..,Xn)

The structure function of a fault tree is monotatiicincreasing (non-decreasing) if
as the state of a component deteriorates the sysm either remains the same or
also deteriorates. The three possibilities, depwndin the state of the remaining
components, are shown in figure 1. So the sysi#her remains in the same state

(working or failed) when component i fails.
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Figure 1: Non-Decreasing Structure Functions

For a structure function of a non-coherent systeenrémaining possibility, shown in

figure 2, can also occur. This system is non-cattdite component i, hence, for some



state of the remaining components, the system &failed state when component i

works and a working state when component i fails.
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Figure 2: Non-coherent Structure Function

3. Calculating the SFBDD of a Non-coherent Fault Tee

Rauzy [1] developed the If-Then-Elsge] method for computing a SFBDD for a
coherent fault tree in 1993. This method has theamiége of producing a SFBDD,
which encodes Shannon’s formula, i.e., X)f{s the Boolean function for the top
event of the fault tree, then by pivoting aboutatale %, Shannon’s theorem states:

f(x) = x;f, +Xif,

Where { and $ are Boolean functions:

fp = T(X0, X0, Xicg L Xisqsee-Xp)
fo = F(X1, Xppmmeeenn. Xiz1 0 Xigg,--- X))

This is represented by tlite structure given in equation (1).
ite(x,f1,f2) (D)

Where x represents a variable ang dnd § represent logic functions. Thisge
structure is interpreted as follows:
If x; fails then consider the logic function f

elseconsider the logic function.f

Thus in the BDD, { forms the logic function for the one branch pard $ forms the
logic function for the zero branch of. ¥igure 3 shows the diagram that represents

thisite structure.
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Figure 3: ite structure for ite(k,f2)

The process to convert a fault tree structure ®F8DD first requires a variable
ordering scheme to be chosen for the variablesdleagnts) in the fault tree. Once
the variables have been ordered the following o is employed to compute the
SFBDD.
1. Assign each basic eventir the fault tree arte structure,
2. Modify the fault tree structure so that each gate ¢nly two inputs
3. Apply De Morgan'’s rules to push the Not logic doterthe basic events:
AB=A+B
A+B=AB

where AND is represented by " And OR by ‘+'.
4. Consider each gate in a bottom-up fashion
5. If two gate inputs are J and H such that:
J=ite(x, F1, F2) H=ite(y, G1, G2)

Then the following rules are applied:
- If x<y, J<op>H=ite(x, F1<op>H, F2<op>H)
- If x=y, J<op>H=ite(x, F1<op>G1, F2<op>G2)

These rules are used in conjunction with the folhgadentities:

1<op>H=H, 0<op>H=0 if <op>is an AND gate

1<op>H=1, O<op>H=H if <op> is an OR gate

Where <op> describes the Boolean operation of dlgec Igates (AND, OR) of the
fault tree.

To illustrate this procedure, consider the fadetshown in figure 4.
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Figure 4. Non-coherent Fault Tree Diagram

Assuming a variable ordering a<b<c:

Assigning each basic event iém structure:
a=ite(a,1,0)
a=ite(a,0,1)
b=ite(b,1,0)
c=ite(c,1,0)

Considering the gates in a bottom-up fashion adegrtb the rules and identities
introduced above, beginning with gate G1:

Gl=a.b

Gl=ite(a,1,0).ite(b,1,0)

Gl=ite(a,[1.ite(b,1,0)], [0.ite(b,1,0)])

G1l=ite(a,ite(b,1,0),0)

Now dealing with gate G2:

G2=a.c

G2=ite(a,0,1).ite(c,1,0)
G2=ite(a,[0.ite(c,1,0)], [1.ite(c,1,0)])
G2=ite(a,0,ite(c,1,0)

Finally dealing with the top gate, Top:
Top=G1+G2



Top=ite(a,ite(b,1,0),0)+ite(a,0,ite(c,1,0))
Top=ite(a,[ite(b,1,0)+0],[0+ite(c,1,0)])
Top=ite(a,ite(b,1,0),ite(c,1,0))

Theite structure computed for the fault tree shown imfegg4, is given in equation 2
and the SFBDD is shown in figure 5.
ite(a,ite(b,1,0),ite(c,1,0)) (2)

1 0 1 0

Figure 5: SFBDD Obtained for the Non-coherent Fatge in Figure 4

4, The Unconditional Failure Intensity of a Cohereh System

The unconditional failure intensity is denoted by{t) and defined as the probability
that a system fails per unit time at t given thatvas working at t=0. This is an
important system parameter to calculate during tfication since, having

determined w{t) the expected number of system failures in aemgivunterval,

Wsy{0,t) can be calculated:
t
Wasys (0.1) = [ wsys (U)du

The unconditional failure intensity of a cohereygtem can be expressed in terms of

the criticality function, &Q).

Weyd®)=>" G (@w; (1) (3)
i=1

Where, w(t) is the failure intensity of component i, angdiga the total number of

components.



The criticality function, also known as Birnbaunmsasure of component reliability
importance, denoted by,i@), is defined as the probability that the systennis
working but critical state for component i suchtttiee failure of component i would

cause system failure. This can be calculated from:

Gi(9)=Qsyd1Li, 9)-Qsyd01, ) (4)

Where:

QsydLi, ) = QsydX1, X2,e--y Xi1,1,%41,....., Xn) IS the probability that the system has
failed and component i is failed.

Qsyd0i, 04)= QsydX1, X2,... 11y Xi-1,0,%41,....., Xn) IS the probability that the system has
failed and component i is working.

g is the probability that component | fails.

Equation 3 enables efficient and accurate calarabf the unconditional failure

intensity using the BDD technique.

5. The Concept of Component Relevancy / Irrelevancy

When analysing non-coherent fault trees, both corapbfailed states and component
working states can contribute to system failureafponent can be either relevant to
the system state or irrelevant to the system state.component is relevant to the
system state, it can be either failure relevanepair relevant. Component i is said to
be failure relevant if the system is in a critisdte such that the failure of component
i would cause the system to fail. Similarly compainieis said to be repair relevant if
the system is in a critical state such that thairegd component i would cause system
failure. Finally component i is said to be irrelavé its state has no bearing on the

state of the system.
Expressions for the failure relevance and irreleeaof a component can be obtained
from the Boolean expression for the top event. @amghe Boolean expression for

the top even, Top, given in equation 5.

Top=ab+ad+ce+bd (5)



An expression for the failure relevance or irrele& of component a denoted by,
Tops=1, can be obtained by substituting the value 1 éongonent a into equation 5.
Top,==b+ce+bd
=b+ce

Similarly an expression for the repair relevanceiroelevance of component a
denoted by, Topg can be obtained by substituting the value 0 &ongonent a into
equation 5.

Top.=c=d+ce+bd=d+ce

An expression for the irrelevance of componentemoted by, Togp: - is obtained by
taking the product of Tgp; and Top=o
Top= =TOps=1. TOPa=0
=(b+ce)(d+ce)

=bd+ce

6. An Extension of Birnbaum’s Measure of Importancefor Non-coherent
Fault Trees

Birnbaum’s measure of component reliability is adamental probabilistic measure

of importance [3]. However, Birnbaum developed thmeasure strictly for the

analysis of coherent systems. In 2001 an extensioiBirnbaum’s measure of

importance for the analysis of non-coherent stmestuwvas developed [4].

When dealing with a coherent system, system failcae only be caused by
component failure. Hence a component in a cohesgstem can only be failure
critical. However, when dealing with a non-coherepstem, system failure can be
caused not only by the failure of component ip(ij also by the repair of component
I, (i). Thus a component in a non-coherent system cdailoee critical or repair
critical. These two criticalities must be consideseparately since component i can

exist in only one state at any time.



The probability that component i is critical to 8m failure, can be expressed as the
probability that component i is repair critical,"@®), or the probability that

component i is failure critical, &q).
Gi(a)= G"(a)+ G'() (6)

This can be obtained from the system unavailabfiityction Q,{t) that can be
determined from Henley and Inagaki's calculatiorogedure outlined in [5].
Component i is failure critical if the system is nkimg, but will fail if component i
fails. Thus the probability that component i iddee critical is the probability that the
system is in a working state such that the faibfreomponent i causes at least one
prime implicant set containing event i to occur.isTprobability is calculated by
obtaining the probability that at least one primmglicant set containing event i exists

at time t and then dividing this probability by theavailability of component i.

To calculate this probability it is first helpfub re-express the system unavailability

as three distinct terms having expressed it iffdha used by Inagaki and Henley

Qsys(t)=ePr[Al+piPr[B]+Pr[C] (7)

The three terms of this equation are grouped soRHA] represents the probability
terms which appear together with the failure prdigbof component i, Pr[B]
represents the probability terms which appear tegetwith the functioning
probability of component i, =1-q ), and Pr[C] represents the probability terms

which do not contain;@r  , i.e. for which component i is irrelevant respesiy.

Now the probability that component i is failuretiwal is calculated as follows:

oF ()= 222 =prfa (8)

Similarly the probability that component i is repaeritical is the probability that the
system is in a working state such that the reptomponent i causes at least one

prime implicant set containing eventto occur. This is calculated as follows:

F (@)= 5521 =Py 9)



The top event can only exist at time t if at leas® prime implicant set exists at time
t. Hence the failure and repair criticality can lalculated separately by
differentiating the system unavailability functio@sqt), with respect to jgand p

respectively.

The unconditional failure intensity for a coheréatlt tree is expressed in terms of

the criticality function, &Q):

Weyd8)= > G, (@w; (0 (10)

i=1

This can be now be extended to non-coherent sysisrfadlows:

Weyd®)=>"GF @wi©+ G @vi (D) (11)
i=1 i=1

where yis the unconditional repair intensity for compaoien
This can be then be used to calculate the expeutatber of system failures in a

given interval:

t ng ng
W dO,)= [ D6 @w;+) " 6F (@vi(udu (12)
o i=1 i=1

The first term on the right hand side of equatid?)(calculates the number of
occurrences of system failure due to the failureahponent i in a given interval.
The second term calculates the number of occurseatasystem failure due to the

repair of component i in a given interval.

7. Calculating the Unconditional Failure Intensity of a Non-coherent Fault
Tree Using the BDD Method

The BDD Method has been extended to enable fullexiadt analysis of non-coherent

fault trees [6, 7].

The expressions for calculating Birnbaum’s measafeomponent failure and repair

importance are given in equations 8 and 9 respagtiv



From the definition of component relevance / ivelece given in section 6, it is
possible to define Birnbaum’s measure of comporfaittire importance as the

probability that component i is failure relevanthe system state [6] given by:
G (9)=E[@=1]-E[@- -] (13)

Where:
E[@-1] is the probability that component i is eitheddae relevant or irrelevant to the
state of the system.

E[@- ] is the probability that component i is irrelevamtthe state of the system.

Similarly, Birnbaum’s measure of component repaiportance can be defined as the

probability that component i is repair relevanthie system state:
G™(9)=E[@-=0]-E[@="_] (14)

Where:
E[@=q] is the probability that component i is either agpelevant or irrelevant to the
system state.

(@=1, @-0, @i~ > are the structure function with=4, 0 and -’ respectively.

It is possible to calculate @f:], E[@=c] directly from the SFBDD, the procedure for

calculating these probabilities is outlined below:

Elg.]=>" Pri(a).Pai'(a) (15)
%

Elgo]=> Pri(q).Pai’(q) (16)
X

Where:

Pri(q) is the probability of the path section from tbet vertex to node;x

Paq'(q) is the probability of the path section from theecbranch of node;xo a
terminal 1 node (excluding the probability ¢f.x

Pa%(q) is the probability of the path section from thera branch of node;xo a
terminal 1 node (excluding the probability gf.x



Although Efp- '] can be calculated by taking the expectation efltigical product of
Top=1 and Topyo. This is an inefficient means of calculatingpg[:]. An alternative
technique can be employed which involves compuimgntermediate BDD for each
node from which Ej- -] can be efficiently calculated. The intermediat®B for
each node is obtained by ANDing the one and zeemdbres of the node. An
expression for Ej- -] is then calculated by multiplying the probabilgyeceding the
node in the SFBDD by the probability of the sunalbthe terminal one paths through
the intermediate BDD. To illustrate this technigaoensider again the SFBDD

calculated in section 3, figure 5.

The ite table for this BDD shown in table 1.

Node Variable 1 branch 0 branch
F1 a F2 F3
F2 b 1 0
F3 C 1 0

Table 1: ite Table

The next stage is to calculate each of the ternegjirations 15 and 16. The first term,

Pri(q) is the probability of the path from the root exto node % which is recorded

in Table 2.

Node P%i(Q) Comment
F1 1 Root vertex itself
F2 Gh F2 reached via the one branch of node F1
F3 o8 F3 reached via the zero branch of node F1

The Pg(q) term is calculated by summing the probabilityatifthe paths from the

selected

Table 2: Pg(q) for each node in the SFBDD in figure 5

node,xalong the one branch to a terminal 1 vertex, wioly the

probability of the selected node. Table 3 recoms' (@) for each node.




f F2

Node Pa’(q) Comment
- o 1 branch of F1 passes to F2 and the 1 branch ¢
passes to a terminal 1 node
F2 1 1 branch of F2 passes to a terminal 1 node
F3 1 1 branch of F3 passes to a terminal 1 node

Table 3: PQ*(g) each node in the SFBDD in figure 5

Similarly Pg;%(q) is calculated by summing the probability of &etpaths from the

selected node jx along the zero branch to a terminal 1 vertex,lughog the

probability of the selected node. Table 4 recomlg@) for each node.

nf F3

Node pPQi°(q) Comment
- o 0 branch of F1 passes to F3 and the 1 branch ¢
passes to a terminal 1 node
F2 0 No terminal one paths
F3 0 No terminal one paths

Finally E[@-= '] must be calculated for each of the nodes in t8D. The

Table 4: PQY(q) for each node in the SFBDD in figure 5

calculation procedure requires some additional wérk intermediate BDD must be

calculated for each node. Xhe probability of the sum of the disjoint pathsough

this intermediate BDD is calculated and multiplieg the probability preceding the

node x to give Efp- ]. The intermediate BDD is computed by ANDing theeand

zero branches of a node. Each of the nodes in BBDB in figure 5 will be

considered below:

Dealing with node F1

F2.F3=ite(b,1,0).ite(c,1,0)

=ite(b,ite(c,1,0),0)

The resulting BDD is shown in figure 6:



1 0

Figure 6: Intermediate BDD for Node F1

There is one terminal path through this BDD, be, phobability of this path is:,0c

Dealing with node F2:
1.0=0 The probability of this is zero.

Dealing with node F3:
1.0=0 The probability of this is zero.

Table 5 summarises the results obtained f@-g[ E[@-0] and Efp- ].

Node Variable (i) El@=1] E[@=0] El@- ]
F1 a G O Go0c
F2 b ) 0 0
F3 C R 0 0

Table 5: Summary of results obtained fop&], E[@-0] and Efp- ]

From the results in table 5 and equations 13 anthd4ailure and repair importance

of each component is obtained as follows:

Ga' (0)=0b-Tble
Go ()=

GCF(CI):pa

G () =0c-Olc
G (0)=0
G (a)=0




From this it is possible to calculate the uncowdial failure intensity and then the
expected number of system failures in a given vateusing equations 11 and 12
respectively.
Wsydt)=(0- CoCc) Wart GaWo+HPaWe+( Ge-Golic)Va
=(1- @ G WatGaWp+PaWct( 1-) Gc Va

8. Conclusion

The unconditional failure intensity is a key paréendo calculate during fault tree
guantification. Once the unconditional failureeinsity is known it is possible to
calculate the expected number of system failures given interval. Until now it has
not been possible to calculate the unconditiondlira intensity of a non-coherent
fault tree using the BDD method. In 2001 an extmmsf Birnbaum’s measure of
reliability importance to enable the analysis ohfmmherent systems was developed.
This measure can be used to calculate the unconditfailure intensity of a non-

coherent fault tree efficiently and accurately gdine BDD method.
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