

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 379

Qualitative Analysis of Complex, Modularised Fault Trees Using Binary
Decision Diagrams

Rasa Remenyte, John D. Andrews

Aeronautical and Automotive Engineering , Loughborough University,
Loughborough, UK

Abstract

Fault Tree Analysis is commonly used in the reliability assessment of industrial
systems. However, when complex systems are studied conventional methods can
become computationally intensive and require the use of approximations. This leads
to inaccuracies in evaluating system reliability. To overcome such disadvantages, the
Binary Decision Diagram (BDD) method has been developed. This method improves
accuracy and efficiency, because the exact solutions can be calculated without the
requirement to calculate minimal cut sets as an intermediate phase. Minimal cut sets
can be obtained if needed.

BDDs are already proving to be of considerable use in system reliability analysis.
However, the difficulty is with the conversion process of the fault tree to the BDD.
The ordering of the basic events can have a crucial effect on the size of the final
BDD, and previous research has failed to identify an optimum scheme for producing
BDDs for all fault trees. This paper presents an extended strategy for the analysis of
complex fault trees. The method utilises simplification rules, which are applied to the
fault tree to reduce it to a series of smaller subtrees, whose solution is equivalent to
the original fault tree. The smaller subtree units are less sensitive to the basic event
ordering during BDD conversion. BDDs are constructed for every subtree. Qualitative
analysis is performed on the set of BDDs to obtain the minimal cut sets for the
original top event. It is shown how to extract the minimal cut sets from complex and
modular events in order to obtain the minimal cut sets of the original fault tree in
terms of basic events.

Introduction

The binary decision diagram (BDD) method [1] has been developed as an alternative
to conventional methods for performing qualitative and quantitative analysis of fault
trees. This method appears to be more efficient for analysing a system without the
need for the approximations used in the traditional approach of kinetic tree theory [2].

Rather than analysing the fault tree directly the BDD method first converts the fault
tree to a binary decision diagram, which represents the Boolean equation for the top
event. However, problems may occur with the conversion process of the fault tree to
the BDD. If the ordering of the basic events is not chosen suitably, the size of the final
BDD can grow exponentially. Previous research has failed to identify an optimum
scheme for producing BDDs for all fault trees. Attention in the research has now
turned to applying alternative techniques that will facilitate the use of BDDs to solve
large fault tree structures.

In this paper an analysis approach is presented which satisfies this requirement. Two
simplification strategies that have been shown to be effective in reducing the

 380

complexity of the problem are applied: reduction [3] and modularisation [4]. The
reduction technique simplifies the fault tree to its minimal logic form, whilst
modularisation breaks down the fault tree to independent subtrees that can be
analysed separately.

BDDs are obtained for each module in separate computations, culminating in a set of
BDDs, which together represent the original system failure diagram. This strategy is
described in reference 5, where quantitative analysis is performed on the set of BDDs
to obtain the top event probability, the system unconditional failure intensity and the
criticality of the basic events.

A qualitative analysis of a fault tree produces a list of minimal cut sets. These are lists
of component failures which are necessary and sufficient to cause the top event. A
method of obtaining minimal cut sets is not presented in the original treatment and is
the subject of this paper. Before the calculation of minimal cut sets all BDDs need to
be minimised, using Rauzy’s minimisation procedure [1]. Then qualitative analysis
for every module can be carried out and minimal cut sets for the whole system
extracted. Each of these stages is described in detail in the following sections and
demonstrated throughout with the use of an example.

Simplification of the fault tree structure

For complex industrial systems fault trees can be very large and their qualitative and
quantitative analyses are time-consuming. Therefore two pre-processing techniques
can be applied to the fault tree in order to obtain the smallest possible subtrees and
reduce the size of the problem. The first stage of pre-processing is a reduction,
technique used in the Faunet code, this restructures the fault tree to its most concise
form. Once this has been applied it is possible to simplify the failure logic diagram
further by identifying independent subtrees (modules) within the fault tree that can be
treated separately. The linear-time algorithm is an extremely efficient method of
modularisation and forms the second stage of fault tree pre-processing. This results in
a set of independent fault trees, each with the simplest possible structure, which
together describe the original system failure causes.

Reduction

The reduction technique reduces the fault tree to its minimal form so eliminating any
“noise” from the system without altering the underlying logic. Its effectiveness has
been demonstrated with its application to a large set of fault trees, where it decreased
the size of the resulting BDDs by approximately 50% [5]. This reduction approach is
applied in three stages: contraction, factorisation and extraction. Firstly, subsequent
gates of the same type are contracted to form a single gate. Secondly, pairs of events
that always occur together in the same gate type are identified and they are combined
to form a single complex event. Finally, the following two structures from Figure 1
are identified and replaced in order to reduce the repeated occurrence of events to a
single occurrence and facilitate further reduction.

 381

 Figure 1. Reduction, the extraction procedure

The above three steps are repeated until no further changes are possible in the system,
which would result in a more compact representation of the fault tree. Consider the
fault tree shown in Figure 2.

Figure 2. Example fault tree

Using the reduction technique a smaller tree is obtained, as shown in Figure 3. At
first, two subsequent gates of the same type (G2 and G3) were contracted forming a
single gate. Then the factorisation procedure was performed three times: for a pair of
basic events a OR b, for a pair of basic events c AND d and for a pair of basic events
e OR h, creating complex events 2000, 2001 and 2002 respectively. In this example
there were no structures of the type presented in Figure 1, therefore the extraction

b a c a

a

c b

restructure

b a c a

a

c b

restructure

e f

g f i

G4

Top

a b

c G2 d

G1

G3

h g

 382

procedure was not applied. The corresponding complex event data are shown in Table
1.

 Table 1. The complex event data

Figure 3. Fault tree after reduction

Reduction has simplified the example fault tree. In the original fault tree there were
five gates; in the reduced fault tree there are four. In the original tree there were
eleven events, nine of them different; in the reduced tree there are eight events, and
six of them are different. For large systems the degree of simplification is far more
significant.

Having reduced the fault tree to a more concise form, the second pre-processing
technique of modularisation is considered.

Modularisation

The modularisation procedure identifies subtrees within the fault tree, known as
modules. A module of a fault tree is a subtree that is completely independent from the
rest of the tree. It contains no basic events that appear elsewhere in the fault tree. The
advantage of identifying these modules is that each one can be analysed separately
from the rest of the tree. The results from subtrees identified as modules are
substituted into the higher-level fault trees where the modules occur.

Using the linear-time algorithm the modules can be identified after just two depth-first
traversals of the fault tree. The first of these performs a step-by-step traversal

Complex
event

Gate value Event 1 Event 2

2000 OR a b
2001 AND c d
2002 OR e h

2002 f

2000

2001

g f i

g

Top

G2

G1

G4

 383

recording, for each gate and event, the step number at the first, second and final visits
to that node. Each gate is visited at least twice. After the first traversal the maximum
(Max) of the last visits and the minimum (Min) of the first visits of the descendants
(any gates or events appearing below that gate) of each gate are calculated. Step
numbers for every node in the example fault tree, Max and Min of the gates and
events for the reduced tree in Figure 3 are presented in Tables 2, 3 and 4 respectively.

Step number 1 2 3 4 5 6 7 8

Node Top 2000 G1 2001 G2 f g 2002

Table 2. Step numbers for every node in the fault tree

Table 3. Data for gates in the fault tree

Table 4. Data for events in the fault tree

The principle of the algorithm is that if any descendant of a gate has a first visit step
number smaller than the first visit step number of the gate, then it must also occur
beneath another gate. Also, if any descendant has a last visit step number greater than
the second visit step number of the gate, then again it must occur elsewhere in the
tree. Therefore, the rules for identifying a gate as heading a module are:

• The first visit to each descendant is after the first visit to the gate and
• The last visit to each descendant is before the second visit to the gate.

The following gates can be identified as heading modules:

Top, G1, G2.

G4 can not be a module because some of its descendants (events f and g) are visited
before gate G4.

The occurrences of these subtrees are replaced by the single modular events, which
are named:

Step number 9 10 11 12 13 14 15 16

Node G4 f g i G4 G2 G1 Top

Gate Top G1 G2 G4

1st visit 1 3 5 9
2nd visit 16 15 14 13

Final visit 16 15 14 13
Min 2 4 6 6
Max 15 14 13 12

Event 2000 2001 f g 2002 i

1st visit 2 4 6 7 8 12
2nd visit 2 4 10 11 8 12

Final visit 2 4 10 11 8 12

 384

G1 – M1, G2 – M2.

Three separate fault trees, shown in Figure 4, now replace the fault tree in Figure 3.

Figure 4. The three modules obtained for the fault tree shown in Figure 3

Having reduced the fault tree to its minimal form and identified all the independent
modules the next stage is to obtain the BDDs.

Obtaining the binary decision diagrams

A BDD must be constructed for each of the modules. In this paper the variable
ordering scheme for every module is set to be left-right top-down. For examples as
small as these the variable ordering is largely irrelevant. Following the chosen scheme
gives the orderings of basic events:

Top: M1 < 2000,

M1: M2 < 2001,

M2: f < g < 2002 < i.

The BDD construction methods are described in reference 1. Applying these results in
the BDDs presented in Figure 5.

Top

M1 2000

M1: G1

M2 2001

g

2002 g f

G2

f i

G4

M2:

 385

Figure 5. The obtained BDDs for the modules presented in Figure 4

Once the complete set of BDDs have been computed, the qualitative and quantitative
analyses can be carried out. This paper concentrates on the calculation of minimal cut
sets using binary decision diagrams obtained from simplified trees.

Computation of minimal cut sets

Qualitative analysis of BDDs [6] produces a list of minimal cut sets of the fault tree.
A minimal cut set is a list of component failure events which are both necessary and
sufficient to cause the system failure mode. Every path through a BDD starts from the
root vertex and proceeds down through the diagram to a terminal vertex. Paths which
terminate at a 1 vertex yield a set of conditions which will result in system failure.
Those components which are encountered on the path in their failure state (node
exited on the 1 branch) will be members of the cut set. The task then is to remove cut
sets which do not represent the minimal conditions.

Figure 6. Example BDD

M1

1

1 0

2000

Top:

1 0

1 0

M2

0

1 0

2001

M1:

1 0

1 0

M2: f

1

1 0

2002

g

1

1 0

1 0

1 0

c

1 0

d

b

1 0

c

0

1

a
1 0

1 0

1 0 1 0

1 0

F1

F2

F3

F5

F4

 386

Consider the example BDD illustrated in Figure 6. This gives three cut sets: {a, b, c},
{ a, b, d} and {a, c}. The BDD is not in its minimal form therefore it does not generate
minimal cut sets. Since cut set {a, c} will fail the system it does not matter if b fails or
not and so the cut set {a, b, c} needs to be removed. The structure needs to undergo
the minimisation procedure, presented in [1], after which the redundant combinations
will be eliminated and the resulting BDD structure will encode the minimal cut sets.
In this example, the minimisation process will result in the terminal 1 vertex of node
F3 being replaced with a terminal 0 vertex, and redundant cut set {a, b, c} will be
removed.

With the analysis strategy presented in this paper causes of the original fault tree top
event are represented by a set of modularised elements. Qualitative analysis therefore
has to consider BDDs encoding complex events and/or modular events. The algorithm
which performs this obtains the minimal cut sets of the system by extracting the
minimal combinations of component failures from every complex and modular event.
This is necessary because when reduction and modularisation are used to construct the
BDDs, it is essential to be able to analyse the system in terms of its original
components.

The minimal cut sets for every BDD and complex event are required to represent the
failure mode of the system determined by the original fault tree. The calculation
process for the system level minimal cut sets then starts with the minimal cut sets
produced for the primary BDD (that which represents the top event of the original
fault tree). These may contain other modules or complex events. The results obtained
for the modules or complex events are substituted into the list. This process continues
as illustrated below until only the original basic events appear.

A key point of the algorithm, which is the same as the MOCUS method [7] for
calculating minimal cut sets from fault trees, is that an AND gate increases the
number of basic events in each minimal cut set and an OR gate increases the number
of minimal cut sets in the system. A two dimensional array is created. Each line in the
array represents a cut set. Each column is an element in the cut set. At the start the top
event gate is located in the first row and the first column of the two-dimensional
array. Then repeatedly the array is scanned replacing:

1) each complex event which is an OR gate by a vertical expansion including the
input events to the gate (duplicating all other events in this row),

2) each complex event which is an AND gate by a horizontal expansion
including the input events to the gate,

3) each modular event by a vertical and/or horizontal expansion including the list
of minimal cut sets obtained from the BDD, which represents the modular
event,

until only basic events appear in the array.

Qualitative analysis using this algorithm will be performed for the example in Figure
5 with complex events defined in Table 1.

 387

Figure 7. Extracting minimal cut sets from modular and complex events

The extraction of minimal cut sets from modular and complex events is presented in
Figure 7. First of all, the top event is modular, the primary BDD produces two
minimal cut sets:

{ M1}, {2000},

which replace the top event in the array, as shown in (ii).

Secondly, performing a qualitative analysis of the BDD of module M1 gives the
minimal cut set:

{ M2, 2001}.

This minimal cut set replaces M1 in a horizontal expansion.

Since complex event 2000 = a OR b, its inputs a and b replace the gate in a vertical
expansion. This gives the representation shown in (iii).

From the array in Figure 7iii, M2 can now be replaced. M2 produces three minimal
cut sets:

{ f}, { g}, {2002}.

They result in another vertical expansion in the array, duplicating the other elements
in the row – in this case 2001, to produce the array shown in Figure 7iv.

Top M1

2000

M2

a

2001

b

f

g

2001

2001

2002 2001

a

b

f

g

c

c

e c

h

a

c

d

d

d

d

b

f

g

2001

2001

e 2001

c

a

2001

b

(i)

(ii)

(iii)

(iv)

(v) (vi)

 388

Finally, the inputs for complex events 2002 and 2001 are expanded to give the arrays
of steps v and vi respectively.

The minimal cut sets in the array contain only basic events, therefore the calculation
is finished. The minimal cut sets of the fault tree, presented in Figure 2, are:

{ a}, { b}, { f, c, d}, { g, c, d}, { e, c, d}, { h, c, d}.

Since each of the modules and complex events (which are mini-modules) are
independent the rows in the array will contain the minimal cut sets. It is recognised
that the two dimensional array is an efficient representation of this information and is
used mainly as a means to demonstrate the process. A practical implementation would
use a single dimensional array with a more complex house keeping routine.

Calculation of minimal cut sets with truncation approximations

The computation of minimal cut sets for very large fault trees can be time-consuming.
At times the computation may be too intensive or the problem too large to solve in
real time. In this case the time taken to perform the analysis can be decreased by
applying truncation approximations. The algorithm for calculating minimal cut sets,
presented in reference 1, may be extended in order to obtain only truncated minimal
cut sets which are the most significant ones. Truncation may be performed such that
only minimal cut sets with less than or equal to a predefined order are retained or that
only minimal cut sets whose probability is greater than a cut off are retained. If the
probability of the minimal cut set, represented by a path through a BDD, is smaller
than the predefined truncation value, the path corresponding to this minimal cut set
does not need to be considered further. The same strategy is followed if the order of
the minimal cut set is bigger than the assigned maximum order.

For example, for the BDD in Figure 8, if we are only interested in first and second
order component failure combinations which cause the system failure mode, the
calculations should be stopped before traversing the 1 branch of node F2, because at
this point there are already two component failures on the path and the system state is
still undetermined. Further failures would be required to cause system failure which
would exceed the cut off level and so a terminal 0 vertex replaces F3 in the minimal
BDD as illustrated in Figure 8. Therefore, the only minimal cut set obtained is {a, c}.

Figure 8. Truncation of minimal cut sets of the order greater than 2

1

c

1 0

d

b

1 0

c

0

0

a
1 0

1 0

1 0 1 0

0

F1

F2

F3

F5

F4 Truncation
1

b 0

0

a
1 0

F1

F2

1 0

c
1 0

F4

 389

When all BDDs representing modules have been considered in this way, the results
now need to be combined to obtain truncated minimal cut sets for the original top
event. In this extraction algorithm the minimal cut sets are deleted from the list as
they are being formed (even if not completely defined) as soon as the maximum order
of the minimal cut set or the minimum probability value of the minimal cut set to
happen are reached. If the minimal cut sets need to be truncated according to the
maximum order, the array of minimal cut sets is scanned repeatedly and:

1) each complex event which is an OR gate is replaced by a vertical expansion
including the input events to the gate,

2) each complex event which is an AND gate is replaced by a horizontal
expansion including the input events to the gate under the condition, that the
number of events in every set does not exceed the assigned maximum order,

3) each modular event is replaced by a vertical and/or horizontal expansion
including the list of truncated minimal cut sets obtained from the BDD, which
represents the modular event, under the condition, applied in case 2,

4) each minimal cut set with unreplaced modular or complex event is deleted.
These steps are applied until only basic events appear in the array.

A similar algorithm is applied for truncation according to the probability of a minimal
cut set occurrence. In this case, the condition in the algorithm is, that the minimal cut
set is deleted if the probability of the basic events currently existing in the minimal
cut set is smaller than the assigned value. As any other event added to the minimal cut
set will reduce the probability further.

In the previous example in Figure 7, if the maximum order is set to be to two,
complex event 2001 in Figure 7v is not replaced, because this would result in four
minimal cut sets of order three. Therefore, the minimal cut sets with complex event
2001 are deleted. Figure 9 represents this truncation.

Figure 9. Truncation of minimal cut sets of the order greater than two; the final step of

the process, presented in Figure 7

a

b

Truncation

f

g

2001

2001

e 2001

c

a

2001

b

 390

Analysis using original and simplified FTs

An analysis has been conducted on the fault tree to BDD conversion process. In this
analysis some example fault trees were converted to BDDs and then qualitative and
quantitative analysis performed. Seven example fault trees were analysed by applying
the BDD method to both the original and the simplified fault trees. Table 6 provides a
summary of the results for each fault tree.

E
xa

m
pl

e

N
um

be
r

of

ga
te

s

N
um

be
r

of

ba
si

c
ev

en
ts

N
um

be
r

of

co
m

pl
ex

 e
ve

nt
s

N
um

be
r

of

m
od

ul
es

N
um

be
r

of

no
de

s
in

 B
D

D

w
ith

si

m
pl

ifi
ca

tio
ns

N

um
be

r
of

no

de
s

in
 B

D
D

w

ith
ou

t
si

m
pl

ifi
ca

tio
ns

N
um

be
r

of

m
in

im
al

 c
ut

se

ts

T
im

e
ta

ke
n

w
ith

si

m
pl

ifi
ca

tio
ns

T
im

e
ta

ke
n

w
ith

ou
t

si
m

pl
ifi

ca
tio

ns

1. 25 60 33 2 116 245 79 0.156 0.172
2. 31 55 15 1 566 891 262 0.156 0.359
3. 32 46 4 2 1467 2056 409 1.375 2.172
4. 28 65 31 1 679 1228 1112 0.484 1.047
5. 40 98 66 2 731 15078 2072 2.859 -
6. 50 152 151 1 1 - 14669 4.170 -
7. 56 146 145 1 1 - 2202755 1221.160 -

Table 6. Calculation results for seven example fault trees

The second and third columns of the table give some indications of the complexity of
the chosen example fault trees with the number of gates and basic events.

The results of the two simplification techniques are shown in the fourth and fifth
columns, which represent the number of complex and modular events respectively.
The reduction technique has reduced the size of the problem remarkably, especially
for examples 2 and 3. The modularisation technique produced two modules for each
of examples 1, 3 and 5, whereas for the other examples it did not extract any modules
except the module for the top event. (This is because the complex factors had already
reduced the tree structure to a very efficient form).

The sixth and seventh columns show the number of nodes in BDDs, which were
obtained using the simplified and the original fault tree data respectively. The
simplification procedure decreased the size of the BDD remarkably. The number of
nodes decreased by approximately one half (example 5 – by a factor of more than 20)
when the simplification rules on the fault trees were applied. Extraction of modules
and complex events had a crucial effect on the biggest trees (examples 6 and 7)
because it enabled the conversion process of fault trees to BDDs, whereas due to the
size of the BDDs, the process failed if the original fault tree structures were used.
(BDDs could not be formed in the memory resources available).

The eighth column represents the number of minimal cut sets in the solution. This
again indicates the complexity of the problem. The last two columns respectively give
the time taken to perform the analysis if simplified and original fault trees were used.
The time decreased when simplification rules were applied because smaller BDDs
were obtained. Since the conversion process for example 6 and 7 failed, the entries

 391

for the time are not reported because neither quantitative, nor qualitative analysis was
able to be performed.

The computation of big fault trees can be time-consuming. In order to find out which
part of the analysis utilised the most resources the analysis was performed on a library
of 338 example fault trees. Figure 10 illustrates the results obtained averaged over the
examples.

Analysis for all FTs

1%

0%

13%

14%

71%

1%

Reduction

Modularisation

BDD construction

Minimisation

Obtaining minimal cut sets

Quantif ication

Figure 10. Time distribution for the separate parts of the analysis calculating all the
fault trees

The two phases of the simplification process, construction and minimisation of BDDs,
calculation of minimal cut sets and quantification were investigated. The most time-
consuming parts of the analysis were the calculation of minimal cut sets, the
construction and minimisation of BDDs. The simplification process and quantification
were the least time-consuming parts of the analysis.

The time taken to calculate the minimal cut sets and finish the analysis can be
decreased if the truncation process for minimal cut sets is applied. A bigger decrease
is noticed when investigating big fault trees. If the order to truncate the minimal cut
sets was set to be two, i.e. only the single and dual order failures were investigated,
the average time taken to perform the analysis for fourteen large fault trees chosen
decreased by 18%. The average time distribution for the separate parts of the analysis
is presented in Figure 11.

 392

Analysis for big FTs (cut sets up to order 2)

0%

0%

48%

15%

36%
1%

Reduction

Modularisation

BDD construction

Minimisation

Obtaining minimal cut sets

Quantification

Figure 11. Time distribution for the separate parts of the analysis truncating cut sets of

the order bigger than two

In this case, the truncation of minimal cut sets reduced the resources needed for their
calculation. This truncation decreased the time taken to perform the analysis. These
results are only indicative of the processing effort distribution over the analysis. It
does however indicate areas to concentrate effort to gain further improvement in
efficiency.

Conclusions

This paper presents a procedure by which large fault trees can be simplified prior to
conversion to their Binary Decision Diagram form for analysis. Simplification is
performed in two phases, the first reduces the fault tree to its more concise form
which removes the noise from the failure logic and retains the underlying problem
structure. The second phase identifies independent modules which can be analysed
separately. In doing this the problem can be solved efficiently. Having performed the
simplification the problem is solved in terms of the new modular structure and
complex events. A means of calculating minimal cut sets in terms of the original basic
events is presented. The approach is capable of using truncation methods to yield only
the important minimal cut sets. Finally, an assessment is performed on the analysis to
determine which aspects of the conversion, qualification and quantification utilise the
most resources.

 393

References

1. Rauzy A., New Algorithms for Fault Tree Analysis, Reliab Eng Syst Safety, 40,

pp203-211 (1993).
2. Vesely, W.E., A Time Dependent Methodology for Fault Tree Evaluation, Nuclear

Design and Engineering, 13, pp337-360, (1970).
3. Platz, O. and Olsen, J.V. FAUNET: A program Package for Evaluation of Fault

Trees and Networks, Research Establishment Risk Report, No. 348, DK-4000
Roskilde, Denmark, Sept. (1976)

4. Dutuit, Y. and Rauzy, A., A Linear-Time Algorithm to Find Modules of Fault
Trees, IEEE Trans. Reliability, 45, No.3, pp422-425, (1996)

5. Reay, K.A. and Andrews, J.D. A Fault Tree Analysis Strategy Using Binary
Decision Diagrams, Reliability Engineering and System Safety, 78, pp45-56,
(2002).

6. Sinnamon, R.M. and Andrews, J.D. Improved Efficiency in Qualitative Fault Tree
Analysis, Quality and Reliability Engineering International, 13, pp293-298, (1997)

7. Andrews, J.D. and Moss, T.R. Reliability and Risk Assessment, Professional
Engineering Publishers, (2002)

