

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Analysis Strategy for Large Fault Trees

Prof. J.D. Andrews, PhD; Loughborough University; England

Keywords: fault tree analysis, binary decision diagrams

Abstract

In recent years considerable progress has been made on improving the efficiency and accuracy of
the fault tree methodology. The majority of fault trees produced to model industrial systems can
now be analysed very quickly on PC computers. However there can still be problems with very
large fault tree structures such as those developed to model nuclear and aerospace systems. If the
fault tree consists of a large number of basic events and gates and many of the events are
repeated, possibly several times within the structure, then the processing of the full problem may
not be possible. In such circumstances the problem has to be reduced to a manageable size by
discarding the less significant failure modes in the qualitative evaluation to produce only the most
relevant minimal cut sets and approximations used to obtain the top event probability or
frequency.

The method proposed uses a combination of analysis options each of which reduces the
complexity of the problem. A factorisation technique is first applied which is designed to reduce
the ‘noise’ from the tree structure. Wherever possible, events which always appear together in
the tree are combined together to create more complex, higher level events. A solution of the
now reduced problem can always be expanded back out in terms of the original events. The
second stage is to identify independent sections of the fault tree which can be analysed separately.
Finally the Binary Decision Diagram (BDD) technique is used to perform the quantification.
Careful selection of the ordering applied to the basic events (variables) will again aid the
efficiency of the process.

Introduction

For systems with many components and a high degree of complexity, fault trees (ref. 1) generated
to represent the causes of specified system failure modes may be too large to solve efficiently.
Converting the fault tree logic structure to the alternative form of the binary decision diagram
(BDD) (ref. 2) can enable an efficient and accurate solution to be obtained (refs. 3-4). However,
the conversion process requires the basic events to be placed in an ordering. If the ordering is a
good one the conversion process will result in a concise form of the BDD. With a poor ordering
selection the size of the BDD may explode exponentially with the number of variables. Despite
much work carried out to date (refs. 5-8) on methods to order the basic events there is no
universally accepted approach to the ordering and the structure of some fault trees means that
efficient orderings may not exist.

Generally it is true that the smaller the fault tree structure the less sensitive it is to the ordering
selected with reasonable orderings producing a manageable BDD. Two methods exist which can
be used to reduce the analysis of large fault trees to that of solving smaller structures. The first
method is that of combining basic events together to form ‘complex’ events. The fault tree
structure is then reduced in size by expressing the system failure mode in terms of the ‘complex’
events. This method was used in the FAUNET computer code developed in the 1970s (ref. 9).
Reduction in this way removes the ‘noise’ from the fault tree but retains the relevant structure -
this effectively forms very small modules of the fault tree. The second method identifies larger
modules in the fault tree. Modules are independent sections of the failure logic diagram which

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

375
Originally published by the System Safety Society, in the Proceedings of the 21st International System Safety Conference,
held at Ottawa, Canada, 2003

can be analysed separately and the results combined together to make predictions for the top
event. Modularisation can provide very efficient solutions reducing large problems to the
analysis of small manageable units. The most efficient means of identifying the modules is a
method produced by Rauzy and Dutuit (ref. 10).

When analysing the modules a binary decision diagram method is used. This paper shows how
the above approach is used to predict the system failure probability and system failure frequency
when the failure mode is represented by a large, complex fault tree.

Binary Decision Diagrams

A binary decision diagram (BDD) is illustrated in figure 1.

A

B

C

1

1

0

0

1

1

1

0

0

0

Root Vertex

Intermediate
Vertex

Terminal Vertex

Figure 1- Binary Decision Diagram Structure

The diagram is entered at the root vertex. Each vertex or node represents a basic event from the
fault tree and has two exit branches below it. If the event occurs then the node is left on the 1
branch. For the non-occurrence of the basic event the node is left on the 0 branch. When the set
of component conditions is such that the top event is determined then a terminal-one node or a
terminal-zero node occurs. A terminal-one vertex indicates top event occurrence and a terminal-
zero vertex is the top event non-occurrence. This encodes the structure function of the fault tree.
Each node in the BDD can be written as an ite format. This stands for if-then-else and is an
ordered triple with a variable, a pointer to the one-branch and a pointer to the zero-branch, so
ite(A,f1,f2) can be interpreted as:
if A
then consider function f1
else consider function f2.

The entire BDD in figure 1 can be expressed using this notation as:

ite(A, 1, ite(B, ite(C, 1, 0), 0))

Cut sets are combinations of component failures which cause the top event. On the BDD these
can be tracked as component failure events which lead to a terminal-one vertex. So the BDD in
figure 1 has cut sets A and BC. In this case the cut sets are minimal. However the significant

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

376

advantage to transforming the fault tree to the BDD form is gained when quantifying the top
event probability and failure intensity. These can be obtained directly fro the BDD without need
to produce a list of the minimal cut sets as an intermediate stage or resort to approximations.

The list of events contained on the Np paths , through the BDD to a terminal-one, Ci, taking
account of both success and failure states of the components, are disjoint (contain mutually
exclusive sets of events). For the top event probability, Qsys, then:

)(
1

∑
=

=
pN

i
isys CPQ (1)

The system failure intensity, wsys(t), can be calculated from:

∑
=

=
n

i
iisys twtGtw

1

)())(()(q (2)

where))((tGi q is the criticality function (the probability that the system is in a critical state for
component i such that the failure of i causes the system to pass from the working to the failed
state) and)(twi is the failure intensity for each of the n components.

),0(),1())((qqq isysisysi QQtG −= (3)

where),1(qisysQ is the probability of system failure with qi=1 and),0(qisysQ is the probability
of system failure with qi=0. An efficient method to calculate the criticality function (equation 3)
for each component is given in ref 11 and considers the probabilities of the path sections of the
BDD up to and after the nodes of each variable xi resulting in the following equation.

))](())(())[(())((01 tpotpotprtG
iii xxxi qqqq

ix
nodes

−= ∑ (4)

where))((tpr
ix q is the probability of the path section from the root vertex to the node xi;

))((1 tpo
ix q is the probability of the path section from the ‘1’ branch of the node xi to a terminal-

one node;))((0 tpo
ix q is the probability of the path section from the ‘0’ branch of the node xi to a

terminal-one node. The summation is over all xi nodes in the BDD.

Fault Tree to BDD Conversion Process

Details of the conversion process are well covered in other papers2,3 and so will only be
summarised here. The conversion is carried out pair-wise in a bottom-up procedure. Where a ⊕
gate is encountered, where ⊕ is either AND or OR, with inputs:

G = ite(X, G1, G2) and H = ite(Y, H1, H2)

then if X < Y then G ⊕ H = ite(X, G1 ⊕ H, G2 ⊕ H)
or if X = Y then G ⊕ H = ite(X, G1 ⊕ H1, G2 ⊕ H2)

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

377

Fault Tree Reduction

Stage 1 – Fault Tree Factorisation: The first stage of the fault tree reduction is to represent the
basic logic structure with as little ‘noise’ as possible. This is achieved by a 3-stage process for
which the basic elements of the procedure are given in reference 9. The stages are:
Contraction: Subsequent gates of the same type are contracted into a single gate. This structures
the fault tree as an alternating sequence of AND and OR gates.
Factorisation: Pairs of events which always occur together in the same gate type are replaced
with a ‘complex event’. For identification purposes this is given a numerical label from 2000
upwards.
Extraction: Structures of the type shown in figure 2 are identified and restructured as indicated.

A B A C

A

B C

A B A C

A

B C
Figure 2 - Extraction structures

The three stages are applied repeatedly until no further reduction in the fault tree structure can be
achieved.

B C D R B C E S H F I J K G N M

A A

TOP

G8 G9 G10 G11 G12 G13

G4 G5 G6 G7F G

G1 G2 G3

Figure 3 - Example Fault Tree

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

378

As an example of the methodology presented it will be applied to the fault tree shown in figure 3.
The fault tree has 15 basic events many of which are repeated in the tree structure. This fault tree
is small by real standards but can be used to demonstrate the method for analysis. As an
indication of the size of the problem this fault tree has 54 minimal cut sets. The top down, left to
right ordering of the basic events considers the fault tree one level at a time and passes left to
right placing any events, not previously encountered, in the ordering list. As such the first level at
which basic events are encountered features basic events F and G. Ordering from left to right
places F and G as the first two events in the ordering. Progressing to the next level adds event A
to the list. Finally the bottom row of the fault tree produces an ordering of the basic events:

F<G<A<B<C<D<R<E<S<H<I<J<K<N<M
The BDD for the fault tree produced with this ordering is shown in figure 4.

F

G

A

G

1

1

1

1

1

1

B

C

D

R

E

S

0

B

C

D

R

E

S

0

B

C

D

R

E

S

0

B

C

D

R

E

S

0

K

N

M

0

1

1 0

0

H

I

J

0

1

1
H

I

J

0

0

0

A

0 0 0

A A

Figure 4 - BDD for example fault tree

The BDD has a total of 40 non-terminal nodes. Each branch leaving an intermediate node on the
left is a one-branch and the right branch is a zero-branch.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

379

Considering the factorisation process for the fault tree in figure 1 requires the stages of
contraction, factorisation and extraction to be repeatedly and sequentially applied. The first
application of contraction does not change the fault tree structure as it is already and alternating
sequence of AND and OR gates. Factorisation produces the following pairs of events which
always occur under the same gate type:

2000=B+C 2002=E+S 2004=N+M
 2001=D+R 2003=I+J

By then applying extraction to gate G1, followed by a contraction stage and then factorisation to
produce:

2005=2000+2001 2006=2005+2002 2007=A.2006

No further reduction is possible and the fault tree shown in figure 5 results.
TOP

2007 G2 G3

F GG6 G7

20042003 G12G10

H F K G

Figure 5 - Reduced Fault Tree Structure

Ordering the variables in a top-down, left-right manner provides an ordering:

2007 < F < G < 2003 < 2004 < H < K
The fault tree – BDD conversion process yields the BDD illustrated in figure 6. A reduction in
the magnitude of the problem has already been produced as the BDD has only 11 intermediate
nodes compared to 40 in the original BDD.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

380

2007

F

G

G

2004

2003
2003

2004

H

K

H

1

1

1 0

0

0

0
0

0

0

0
Figure 6 - BDD for the Factorised Fault Tree

Stage-2 Modularisation: This second stage of the reduction identifies subtrees which are
completely independent of the rest of the structure. The method for identifying the modules was
developed by Rauzy and Dutuit10. Once identified the modules can be analysed separately and
the results substituted back into the remaining structure for the top event to make predictions on
the system performance.

To find modules two depth-first traversals of the fault tree are made. The first performs a step-
by-step visit to each gate and event recording the step number for the first, second and final visits.
The step number for the second visit to each event is always the same as the first visit. To
illustrate the method consider the fault tree shown in figure 5. Starting at the top gate and
progressing through the structure in a depth-first manner means that the gates and events are
encountered in the order shown in table 1. Where a gate has both basic events and other gates as
inputs the basic events are always considered first.

step Gate/event step Gate/event step Gate/event
1 TOP 9 F 17 G12
2 2007 10 G10 18 K
3 G2 11 G6 19 G
4 F 12 G2 20 G12
5 G6 13 G3 21 G7
6 2003 14 G 22 G3
7 G10 15 G7 23 TOP
8 H 16 2004

Table 1 - Steps through the fault tree shown in figure 5

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

381

Each gate is visited at least twice, once on the way down and again on the way back up the tree.
Once a gate has been visited it can be visited again, but the depth first traversal beneath that gate
is not repeated. The step numbers for visits for the gates are shown in table 2 and the events in
table 3.

 TOP G2 G3 G6 G7 G10 G12
First visit 1 3 13 5 15 7 17
Second visit 23 12 22 11 21 10 20
Final visit 23 12 22 11 21 10 20
Min of first visits of inputs 2 4 14 4 14 4 14
Max of final visits of inputs 22 11 21 10 20 9 19
Module Yes Yes Yes No No No No

Table 2 - Gate visit summary

 2007 F 2003 H G 2004 K
First visit 2 4 6 8 14 16 18
Second visit 2 4 6 8 14 16 18
Final visit 2 9 6 8 19 16 18

Table 3 - Basic Event visit summary

The second pass of the fault tree finds the maximum of the final visits and the minimum of the
first visits of any gates or basic events which appear at any level below the gate (see table 2).

The principal of the algorithm is that if any descendent of a gate has a first visit step number
smaller than the first visit step number of the gate then it must have appeared before it in the tree
structure. Conversely if any descendent of a gate has a final visit number larger than the final
visit number of the gate then it must have appeared after the gate in the traversal. Therefore a
gate can be identified as heading a module only if:

♦ the first visit to each of its descendents is after the first visit to the gate and
♦ the last visit to each of its descendents is before the last visit to the gate.

From table 2 it can be seen that the modules are headed by the events: TOP, G2 and G3.

The fault tree in figure 5 then reduces to solving the fault tree modules shown in figure 7. The
BDDs for these modules, when the basic events are ordered in a top-down, left-right manner, are
illustrated in figure 8.

TOP

2007 M1 M2

M1

F G6

2003

F

G10

H

M2

G G7

2004

G

G12

K

Figure 7 - Modularised fault trees

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

382

2007

1 0

0

0

F

2003

H

1

1 0

0

G

2004

K

1

1 0

0

M1

M2

Module 'M1' Module 'M2'

TOP EVENT

Figure 8 - BDDs for Fault Tree Modules

The problem has now reduced to solving BDDs with a combined total of 9 intermediate nodes.
Much smaller than the original problem. In this small example the reduction in complexity is not
critical for larger fault tree structures this can be essential for a solution.

Top Event Quantification

For any BDD consisting of only basic events the method for calculating the top event probability
or failure intensity was described earlier. This section describes how this methodology can be
extended to account for BDDs which feature complex events or modules.

Top Event probability

First the failure probability of the complex events and modular events is calculated. For complex
event XC with inputs X1 and X2, then:

For an AND gate 21qqqC =

For an OR gate 2121 qqqqqC −+=

The calculation for the modular events is the same as that described for calculating the probability
of a complete BDD. Probabilities of failure for complex events and other modular events
contained in the structure being analysed are necessarily evaluated first. When all complex
events and modular events have been quantified then the BDD representing the top event can then
be evaluated.

Top Event Frequency

For a BDD containing only basic events, one pass through the BDD calculating the parameters
contained in equation 4 enables the failure intensity to be calculated using equation 2.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

383

For BDDs with complex events and modules the criticality function, Gi(q) for each basic event
still needs to be calculated in order to use equation 2.

Criticality function of basic events within complex events: The criticality function can still be
calculated using equation 4. For this we need to know))((tprC q))((1 tpoC q))((0 tpoC q for
the complex events. Since complex events can only be one of two forms, the BDDs are simply
that of an AND gate or an OR gate. When these are inserted into the original BDD they have the
structures illustrated in figure 9 where the terminal 1 nodes are replaced by))((1 tpoC q and the

terminal o nodes by))((0 tpoC q . The probability of the paths before the root node of the

complex event BDD is))((tprC q rather than 1.

X1

X2

prC

po0

po0po1

C

CC

XC=X1.X2

X1

X2

prC

Cpo0

po1

po1

C

C
XC=X1+X2

Figure 9 - Complex event BDDs

Using Figure 9 the values of))((tpr
ix q))((1 tpo

ix q))((0 tpo
ix q can be calculated for the

variables X1 and X2 from:
AND

X1
00

011

1

221

1

)1(

CX

CXCXX

CX

popo

poqpoqpo

prpr

=

−+=

=

X2
00

11

2

2

12

CX

CX

XCX

popo

popo

qprpr

=

=

=

OR

X1
010

11

)1(
221

1

1

CXCXX

CX

CX

poqpoqpo

popo

prpr

−+=

=

=

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

384

X2
00

11

2

2

22
)1(

CX

CX

XCX

popo

popo

qprpr

=

=

−=

Events X1 and X2 may be either basic events or other complex events, this process is repeated
until values have been calculated for all the basic events. The criticality functions of the basic
events are calculated using equation 3. Complex events can occur more than once in the BDD in
which case the criticality functions must be summed.

Criticality function of basic events within modules: Modules are treated in a similar way to the
complex events. The modular event has mpr as the prior probability to the root of the module.

1
mpo is the probability which occurs at any terminal-one node on the module and 0

mpo the
probability of any terminal-zero node on the module. The contributions for each component Xi:

ixpr 1
ixpo and 0

ixpo are then derived in terms of the similar quantities for the module. This differs
from the approach taken for the complex events only in that the structures of the modules are not
predetermined. Where modules appear more than once in the fault tree structure the calculations
are repeated for each occurrence and the criticality contributions for the basic events summed.

Conclusions

A strategy has been produced which enables the analysis for large fault tree structures. The
approach makes use of the Binary Decision Diagram and its inherent accuracy and efficiency. In
breaking the analysis down into smaller sections by factorisation and modularisation, the
selection of an appropriate variable ordering system for the BDDs becomes less critical.

References

1. Andrews J.D. and Moss T.R., Reliability and Risk Assessment, 2nd Edition, Professional
Engineering Publishing Ltd, 2002.

2. Rauzy A, New Algorithms for fault tree analysis, Reliab Engng Syst Safety, 1993, 40,
pp203-211.

3. Sinnamon R.M. and Andrews J.D., Improved Efficiency in Qualitative Fault Tree
Analysis, Quality and Reliability Engineering International, Vol 13, 1997, pp285-292.

4. Sinnamon R.M. and Andrews J.D., Increased accuracy in Quantitative Fault Tree
Analysis, , Quality and Reliability Engineering International, Vol 13, 1997, pp299-309.

5. Nikolskaia, M, Binary Decision Diagrams and Applications to Reliability Analysis,
Doctoral Thesis, University of Bordeaux, 1999.

6. Bartlett L.M. and Andrews J.D., Efficient Basic Event Ordering Schemes for Fault Tree
Analysis, Quality and Reliability Engineering International, 15, 1999, pp95-101.

7. Bartlett L.M. and Andrews J.D., Selecting an Ordering Heuristic for the Fault Tree-
Binary Decision Diagram Conversion Process using Neural Networks, IEEE Trans
Reliability, 51, No 3 2002, pp344-349

8. Bouissou M, An Ordering Heuristic for Building Binary Decision Diagrams from Faul
Trees, Proc of Reliability and Maintainability Symposium , ARMS96, Jan 1996, pp208-
214.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

385

9. Platz O and Olsen J.V., FAUNET: a Program Package for Evaluation of Fault Tress and
Networks, Research Establishment Risk Report No 348, DK-4000 Roskilde, Denmark,
Sept 1976.

10. Dutuit Y and Rauzy A, A Linear-time Algorithm to find Modules of Fault Trees, IEEE
Trans Reliab, 1996, 45(3).

11. Sinnamon R.M. and Andrews J.D., Quantitative Fault Tree Analysis using Binary
Decision Diagrams, Eur J Automation, 1996, 30(8).

Biography

Prof. John Andrews, PhD., Department of Systems Engineering, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, England., telephone +44 (0)1509 227286, e-mail –
J.D.Andrews@lboro.ac.uk

John Andrews joined Loughborough University, Department of Mathematical Sciences in 1989
having spend 10 years performing industrial research. Recently he transferred to the newly
formed Department of Systems Engineering. He has numerous publications on risk and
reliability methods including the jointly authored text Reliability and Risk Assessment now in its
second edition.

PROCEEDINGS of the 21st INTERNATIONAL SYSTEM SAFETY CONFERENCE - 2003

386

	MAIN MENU
	TABLE OF CONTENTS
	AUTHOR INDEX

	Search CD-ROM
	Search Results
	Print

	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document

	CD-ROM Help
