

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 359

To identify the smallest fault tree sections which contain dependencies

Huiling Sun and John Andrews
Department of Aeronautical and Automotive Engineering, Loughborough University,

Loughborough, UK

Abstract

Since the early 1960’s fault tree analysis has become the most frequently used technique to
quantify the likelihood of a particular system failure mode. One of the underlying
assumptions which justifies this approach is that the basic events are independent. However,
many systems feature component failure events for which the assumption of independence is
not valid. For example, standby dependency, maintenance dependency or sequential
dependency can be encountered in engineering systems. In such situations, Markov analysis
is required during the quantification process.

Since the efficiency of the Markov analysis largely depends on the size of the established
Markov model, it is most effective to apply the Markov method only to the smallest possible
fault tree sections containing dependencies. The remainder of the system assessment can be
performed by the application of the conventional assessment techniques. The key of this
approach is to extract from the fault tree the smallest sections which contain dependencies.
This paper gives a brief introduction on some main existing dependency types and provides a
method aimed at establishing the smallest Markov model for the dependencies contained
within the fault tree.

Keywords: Fault tree analysis; Markov method; Dependency; Modularistion

1. Introduction

Since its conception in the 1960s, the fault tree analysis method has been increasingly
employed by many industries to assess the rationality of system designs from a risk and
reliability perspective, usually reflected by the likelihood of a particular system failure mode.

The fault tree method [1,2] has the assumption that the basic events, which usually represent
component failure, occur independently. This assumption enables the fault tree quantification
using Kinetic Tree Theory [3]. Features of some systems mean that the independence
assumption is invalid. In this case an alternative method such as Markov Analysis should be
employed [1,2].

Markov models become very large with relatively moderate numbers of components in a
system. This results in models which are difficult to generate, validate or solve. They also
lack the documentation which is a feature of the fault tree diagram.

As a result, hybrid fault tree/Markov methods have been evolved for systems where
redundancies are encountered [4,7]. These retain the failure logic development of the fault
tree diagram whilst enabling Markov analysis to be performed on the portions of the system
containing the dependency.

This approach works efficiently for dependencies introduced for situations such as standby
redundancy. In such circumstances the dependent events are generally located below a single

 360

gate in the fault tree and the smallest part of the system which requires Markov analysis is
easily determined. However, other types of dependency can be associated with any groups of
basic events appearing in the fault tree. For efficient analysis the smallest section of the fault
tree which contains the dependencies and must be solved using a Markov model has to be
identified.

This paper describes some of the situations which introduce dependencies in the system
failure model and develops a method to identify the smallest system sub-sections, fault tree
sections, whose solution will be solved with a Markov model.

2. Types of dependency

Dependencies can arise between components in a system for a number of reasons such as:
maintenance, standby, sequential failures and secondary failures. These types of dependency
are discussed separately to identify the features they exhibit in the analysis.

Maintenance dependency rises from the situation where one maintenance engineer or team
of engineers has to take responsibility for a group of components usually of the same or
similar type. In this case when one component has failed and is under repair, components
from the same group which fail subsequently have to go into a queue waiting for repair till
the engineer has restored the first component. It may be that some failures are more critical
than others and so are given higher priority by the maintenance team. Either way the queuing
means that the failure of one component affects the repair times and therefore probability of
failure of other components.

Function-related dependency can be considered in sub-categories defined in terms of what
specific functional connection is involved between components. These 4 types of dependency
discussed here are named as standby dependency, sequential dependency, secondary failure
dependency and initiator-enabler dependency.

The use of standby systems, where the failure of the primary system activates the standby to
take over the primary system duty, is also a cause of dependency. If the likelihood of the
standby component failure increases as it experiences the operational load due to the failure
of the primary operating component, there exists a dependency between the standby
component failure probability and the operating component status (working or failed).
Therefore failure to take into account the standby dependency will produce incorrect system
unavailability and failure intensity. Usually 3 terms are used to describe different standby
situations: hot standby, cold standby and warm standby [1], of which the latter two give rise
to the standby dependency.

Sequential dependency refers to the situation where a certain system level event will take
place only when its causes occur in a specific sequence. Usually in the fault tree sequential
dependency is represented by the ‘Priority AND gate’ as shown in Figure 1. With the priority
AND gate, only when basic events occur in the order from left to right, i.e., a first, then b,
finally c, will the output event represented by G0 occur.

 361

Figure 1. Priority AND gate

Secondary failure dependency can be introduced to a fault tree structure when it is
developed by considering the state-of-component faults which are then represented by an OR
gate with primary failure, secondary failure and command faults as input [5] (see figure 2
below). The definition of a secondary failure event is that they occur when the component is
operating outside its expected working environment. This can occur due to the failure of
another component in the system. To return the system to the fully functioning state requires
the repair of both the components whose failure combined to cause the original problem
(secondary failure) and the original problem itself [6]. Failure to account for the repair of the
additional failure might lead to a serious underestimation of the system unavailability.

Figure 2. Fault tree development of state-of-component fault

Initiator-enabler dependency again is concerned with the order of component failure, but is
less prescriptive than the sequential failure. This type of dependency usually occurs in the
analysis of safety systems. The enabling events produce the condition which allows the
initiating event to cause a hazard. Therefore the enabling events occur (in any order) prior to
the initiating event. A good understanding of this type of dependency has to start with the
definitions of initiating events and enabling events. As defined in Ref. 1, initiating events
perturb system variables and place a demand on control/protective systems to respond, whilst
enabling events represent the failure of inactive control/protective systems which permit
initiating events to cause the top event. Below is a simple tank system (figure 3) to illustrate
the distinction between the initiating and enabling events and the necessity to take into
account the initiator-enabler dependency.

G0

b a c

State-of-component fault

Primary
component

failure

Secondary
component

failure

Component
command

fault

 362

Figure 3. Pressure tank

In this system, when the tank is over-pressurised, the relief valve will open to reduce the
pressure in the tank. Therefore the fault tree presentation for the top event ‘Tank ruptures due
to overpressure’ will be drawn as shown in figure 4 (assuming that any overpressure will
rupture the tank):

Figure 4. Pressure tank fault tree

Consider the situation where the tank is over-pressurised prior to the relief valve being stuck:
since the relief valve will function to let out the fluid, the top event will not occur. On the
contrary, when the relief valve has been stuck unrevealed, the subsequent tank over-
pressurisation will lead to the occurrence of the top event and consequently reveal the failure
of relief valve. Therefore the influence of the initiator-enabler dependency exists in two
aspects: the first is that the order matters in distinguishing the effect of the failures on the
system; the second is that the occurrence of the initiator will reveal any failures of the
enablers and reduce their downtime causing a dependence in their failure probability.

3. Fault trees which contain dependencies

As is mentioned in the first section, the traditional fault tree methodology is not an
appropriate approach for assessing systems where dependency exists between basic events.
Meanwhile the Markov method provides a sound solution to the dependency problem [7].
The Markov method analyses the system by defining each state in which the system can
reside and assigning a rate for every transition between these states. In this way it is able to

TANK
Output valve

Relief valve

Tank ruptures due
 to high pressure

Tank over-pressurized Relief valve fails stuck

 TP RS

 363

produce very accurate system risk and reliability measures for all types of dependency
identified.

However, a problem comes along with the strength. Due to the way the models are
formulated, the Markov method will produce a model which feature an exponential increase
in size with the number of basic events included in it. This characteristic has severely
restricted the effective application of the Markov method for moderate and large systems.

One approach to resolve this difficulty is to combine the Markov method and the
conventional fault tree method by applying the Markov method only to fault tree sections
where dependency between basic events exists. The key to the effectiveness of this solution
process is to identify the smallest sections involving dependency within the given fault tree
structure in order to produce a solvable Markov model. These sections which contain the
dependencies are independent of the remainder of the fault tree.

As far as the five types of dependencies discussed in the previous section are concerned,
initiator-enabler dependency, secondary failure dependency, standby dependency and
sequential dependency tend to be grouped under a single OR or AND gate in the original
fault tree structure which makes the corresponding smallest module easy to identify.
Alternatively the maintenance dependency features dependent basic events which appear
anywhere in the fault tree and the identification of the corresponding smallest module is even
more necessary and important.

4. Identification of Independent Fault Tree Sections

The strategy for solving the dependency problem is to identify the smallest independent
sections or modules of the fault tree. Those which contain dependencies will be solved using
the appropriate Markov model. This paper presents the algorithm for identifying the
independent modules. The algorith will be demonstrated by means of an example problem.
An example fault tree is presented in figure 5 which is used to illustrate the whole of process
of identifying smallest dependent modules. Due to its typical random distribution feature, the
maintenance dependency is considered the worst case situation and as such will be
considered in the fault tree as shown in table 1.

Dependency

group no.

Dependency

type

Number of

basic events

Number of

repairs

Basic event list

1 Maintenance 2 1 5 and 8

2 Maintenance 3 1 1, 2 and 7

Table 1. Dependency information

 364

Figure 5. Example fault tree

This fault tree includes 12 gates and 14 basic events, of which 3 (2, 6 and 11) appear more
than once. Maintenance dependency exists between basic events 5 and 8, plus 1, 2 and 7 as
for each group there is only one engineer responsible for the maintenance.

The process of identifying the smallest independent section containing a certain dependency
can be broken down into the following stages:
1) Re-organize dependency information
2) Fault tree simplification
3) Form the dependency information
4) Combine dependent events
5) Modularisation
6) Update the dependency information
7) Re-modularise for each type of dependency

The following sections will provide a detailed exploration of each of the seven steps using the
example fault tree displayed in figure 5.

G0

G1

G3

G2 G8

G9

G10 G11

G12

G4

G6 G7

G

10 12 11 8

6 5

11

2

3 4

1 2

7

G5 13

6 14 9

 365

4.1 Re-organize The Dependency Information

When there exist more than one type of dependency, there might be overlap between
different dependency groups. That is, the dependency groups must be considered together in
order that an independent sub-tree can be found. By identifying the overlap and merging
corresponding dependency groups, this step is aimed to provide a precise picture of the
dependency relationship between basic events. For example, if there is secondary failure
dependency existing between primary failure event a and secondary failure event b, and also
a maintenance dependency exists between basic event a and c, although they are contained in
different dependency groups, basic events a, b and c should bear the same dependency serial
number to ensure they will end up in the same module for the later Markov analysis.

Considering the dependency information of the example fault tree provided in table 1,
dependency serial number information is listed in table 2 after the re-organization and will be
referred to during the course of the following steps.

Dependency serial number Number of basic events Basic event list

1 2 5 and 8

2 3 1, 2 and 7

Table 2. Dependency serial information

4.2 Fault tree simplification

Simplification of the fault tree structure is aimed at reducing the fault tree to its most concise
form without changing the logic function it represents. The simplification is achieved by
applying to the fault tree the framework as follows which is composed of 4 reduction
techniques, of which the first 3 are used in the Faunet code [8]:
Contraction: subsequent gates of the same type are contracted to form a single gate. This
structures the fault tree as an alternating sequence of AND gates and OR gates.
Extraction: this looks for structures of the type illustrated in figure 6 and converts them as
illustrated. The effect is to identify the common factor, i.e. the repeated basic event.

Case 6a

b a c a c

a

b

 366

Case 6b

Figure 6. Extraction

Factorisation: pairs of (independent) events that always occur together in the same gate type
are identified and combined to form a single complex event. Events which occur in
dependency groups are not included when defining factors.
Elimination: this process employs the Boolean laws of absorption displayed as follows:

a+(a.b)=a
a.(a+b)=a

By extending the absorption law, the elimination technique can reduce events that are
repeated over any number of levels of a fault tree branch. This can be illustrated by the two
examples shown in Figure 7:

Case 7a

b a c a
c

a

b

G1

a G2

G3 b

G4

G1

a G2

b G3

c d

a e

c d

 367

Case 7b

Figure 7. Elimination

Primary and secondary gates are defined to describe the algorithm of this reduction
technique. A primary gate is the highest gate at which the repeated variable is first
encountered as an input. A secondary gate is a gate, below the primary gate, at which a
second occurrence of the event appears as an input [9]. The algorithm is that when the
primary and secondary gates are of different types, the secondary gate can be eliminated from
the fault tree, while if the primary and secondary gates are of the same type, the repeated
event under the secondary gate can be eliminated. For example case 7a in figure 7, the
repeated variable is event a, the primary gate is G1, the secondary gate is G4. since G1 and
G4 are different gate type, G4 is eliminated as shown. For case 7b the repeated event is a and
is an input to primary gate G1 and secondary gate G3. In this case G1 and G3 are both OR
gates and so event 1 is deleted from the secondary gate G3.

When the elimination results in gates that have only one input, these gates are replaced in the
fault tree structure by their single input.

Applying the simplification to the example fault tree in figure 5, the reduced fault tree will be
obtained as shown in figure 8. The reductions include the contractions between G8 and G9,
eliminations of event 2 under G12, and finally factorisation of event 3 OR 4. To distinguish
factors from other elements in the fault tree, these factors are named from 3001 onwards.

G1

G2

G3

G1

G2

G3

a

b

c a d

a

b

c d

 368

G2

Figure 8. Simplified fault tree

4.3 Form the dependency information

This step is to decide the dependency serial numbers which each gate in the fault tree is
dependent upon. The information forms the basis for the implementation of the next
combination step. The dependency of each gate is defined by a list of all the dependency
serial numbers to which basic events below it in the fault tree structure belong.

This step is conducted by traversing the fault tree to decide the dependency serial number that
each gate features. This process is illustrated with a simple example (see Figure 9).

Figure 9. Form dependency information

Assume that after the re-organisation of dependency group information, events a and b bear
dependency serial number 1, and events c, d and e belong to dependency serial number 2.

G0

G1

G3

G8

3001 G11

G4

G6 G7

G

10 12 11 8

6 5

11

2

1 7

G5 13

6 14 9

G0

G1 G2

a b d

e

c

 369

Therefore the dependency of G1 is the dependency serial of its immediate descendants, i.e.,
serial 1, since both of its input events a and b feature in dependency serial 1. Similarly, the
dependency of G2 is serial 2. And finally the dependencies of G0 is identified as serial 1 and
2 because G1 has dependency serial 1 and both G2 and event e are characterized by
dependency serial 2.

Therefore, according to this algorithm, the dependency serial information of each gate in the
simplified fault tree in figure 8 is summarized in table 3.

Gate G0 G1 G2 G3 G4
Dependency
serials

1, 2 1 1 - -

Gate G5 G6 G7 G8 G11
Dependency
serials

- - 2 2 2

Table 3. Gate dependency serials

4.4 Combine dependent events

The purpose of this step is to restructure the fault tree in a way which will separate those
events with the same dependency serial into separate branches. Using the information
generated in the previous phase, each gate will be examined in turn, additional gates of the
same logic type as the gate being investigated, are added where necessary to group the input
events (immediate descendants) of the same dependency serial. The reason for implementing
the ‘combination’ phase is that the resulting new gates (numbered from 20001 upwards) are
leading to a fault tree structure with the smallest independent sub-trees for each dependency.

For the example in figure 9, the application of combination will result in a new fault tree
structure as shown in figure 10. G2 and basic event e, both of which feature dependency
serial 2, is grouped under the new gate 20001, which consequently also bears dependency
serial 2.

Figure 10. Restructured fault tree

G0

G1

G2 a b

d

e

c

20001

 370

G2

Similarly, when applied to the fault tree in figure 8, the ‘combination’ step will produce the
restructured fault tree shown in figure 11 with new gates 20001 and 20002.

Figure 11. Combination

When there exist more than one way to carry out the combination process due to the overlap
of dependency serial numbers between the sibling gates, each of the combination approaches
will lead to the same final result.

4.5 Modularisation

The task of this phase is defined as to identify modules in the fault tree. A module of a fault
tree is a sub-tree that is completely independent from the rest of the tree. After the
modularisation, each module will be replaced with a super-event in the original fault tree
structure. The super-event has the same reliability characteristics as the fault tree section
which it has replaced and is determined using Markov theory or fault tree theory depending
on whether the corresponding module contains dependent basic event or not.

The algorithm developed by Rauzy and Dutuit [10] provides an efficient means to identify
the modules, which mainly requires two depth-first traversals of the fault tree. The first
performs a step-by-step traversal recording for each gate and event, the step number at which
the first, second, and final visits to that node were made. It also records the number of
appearances in the traversal which will be used in a later stage. In this first traversal, it must
be noted that the graph under a vertex is never traversed twice [11]. Therefore when gates

G0

G1

G3

G8

3001

G11

G4

G6 G7

G

10 12 11

6 5

11

2

1 7

G5 13

6 14

9

20001

8 20002

 371

appear more than once in the tree, only its first appearance will be traversed completely, after
this, its appearances elsewhere in the tree will be treated like a basic event.

In order to ensure that dependent basic events featuring the same dependency serial will end
up in the same module, they are treated as a single basic event with the same label during the
first traversal. All events in the same dependency group will be replaced with an id that
characterizes the particular dependency serial. For example, in the fault tree in figure 9, both
a and b will be replaced by label 10001, and c, d and e by 10002 (dependency event
numbering starts at 10001).

The principal of the algorithm for modularisation is that if any descendant of a gate has a first
visit step number smaller than the first visit step number of the gate, then it must also occur
beneath another gate. Similarly, if any descendant has a last visit number greater than the
second visit number of the gate, then again it must occur elsewhere in the tree. Therefore a
gate can be identified as heading a module only if:
• the first visit to each descendant is after the first visit to the gate and
• the last visit to each descendant is before the second visit to the gate

Then the second pass through the fault tree assesses these conditions. The maximum (Max)
of the last visits and the minimum (Min) of the first visits of all the descendants (any gates
and events appearing below that gate in the tree) for each gate will be obtained based on the
result of the first traversal.

Therefore, based on the fault tree in figure 11, the two traversals will provide the information
given in tables 4 – 7.

Gates Visit
number

Gates Visit
number

Gates

Visit
number

G0 1 G4 14 G8 27
G1 2 G5 15 3001 28
20001 3 6 16 20002 29
G2 4 14 17 G11 30
G3 5 G5 18 10002 31
9 6 13 19 10002 32
11 7 G4 20 G11 33
G3 8 G1 21 10002 34
10001 9 G6 22 20002 35
6 10 11 23 G8 36
G2 11 12 24 10 37
10001 12 G6 25 G7 38
20001 13 G7 26 G0 39

Table 4. 1st traversal – event visit

Gates G0 G1 20001 G2 G3 G4
1st visit 1 2 3 4 5 14
2nd visit 39 21 13 11 8 20
Last visit 39 21 13 11 8 20
Number of
appearances

1 1 1 1 1 1

 372

Gates G5 G6 G7 G8 20002 G11
1st visit 15 22 26 27 29 30
2nd visit 18 25 38 36 35 33
Last visit 18 25 38 36 35 33
No. of
appearances

1 1 1 1 1 1

Table 5. 1st traversal - gates

Basic events 9 11 10001 6 14
1st visit 6 7 9 10 17
2nd visit 6 23 12 16 17
Last visit 6 23 12 16 17
Number of
appearances

1 2 2 2 1

Basic events 13 12 3001 10002 10
1st visit 19 24 28 31 37
2nd visit 19 24 28 32 37
Last visit 19 24 28 34 37
No. of
appearances

1 1 1 3 1

Table 6. 1st traversal – basic events

Gates G0 G1 20001 G2 G3 G4
Min 2 3 4 5 6 10
Max 38 23 23 23 23 19
Gates G5 G6 G7 G8 20002 G11
Min 10 7 27 28 30 31
Max 17 24 37 35 34 34

Table 7. 2nd traversal

Therefore, according to the conditions for a module, G0, G7, G8, and 20002 are identified as
heading the modules. To distinguish themselves from other events in the fault tree, these
modules are assigned a unique id starting from 6001 onwards, i.e., G0 – 6001, G7 – 6002, G8
– 6003, and 20002 – 6004. their structure are shown in figure 12.

 373

6003

Figure 12b. Module 6002

Figure 12d. Module 6004

G2

6002

Figure 12a. Module 6001

Figure 12. Modules identified

4.6 Update the dependency information

By this stage, independent sub-trees have been identified. However, with the aim to find out
the smallest modules which contain dependent basic events, the task has not been

G8

3001 G11

G7

10
2

1 7

20002

6004

Figure 12c.
Module 6003

G0

G1

G3

G4

G6

12 11

6 5

11

G5 13

6 14

9

20001

8

 374

accomplished yet. To attain the aim, two points must be made clear: the first is which
modules contain which dependency serial; and the second is whether these modules are the
smallest one. This step is designed to provide the information required to answer these two
questions.

Slightly different from step 3, dependency information is updated establishing not only which
dependency serials each gate contains but also its mutual dependency serials. The mutual
dependency serial of a gate is a list of dependency serials which all of its immediate
descendants feature.

Take module 6001 in figure 12 for example, it can be determined that gate G2 contains
dependency serial 1 and since only one of its three input events features dependency serial 1,
it has no mutual dependency serial. Gate 20001 is slightly different: since both of its input
events, gate G2 and event 8 features dependency serial 1, gate 20001 bears dependency serial
number 1 as its mutual dependency serial. When it comes to gate G0, it is a similar case with
G2 with the exception that one of its input events is a module which is treated as an
independent basic event in this process.

Accordingly, table 8 below gives the dependency serial information of each of the modules
shown in figure 12.

Gates G0 G1 20001 G2 G3 G4
Dependency
serial contained

1 1 1 1 - -

Mutual
dependency
serial

- - 1 - - -

Gates G5 G6 G7 G8 20002 G11
Dependency
serial contained

- - - - 2 2

Mutual
dependency
serial

- - - - 2 2

Table 8. Updated gate dependency serials

4.7 Re-modularise for each dependency serial

In this last phase, re-modularisation will be carried out for each of the modules identified
which contain dependencies. This process will identify the smallest independent section for
each dependency serial. Table 8 indicates that module 6001 led by gate G0 and module 6004
led by gate 20002 contains dependency serials 1 and 2 respectively, on which re-
modularisation will be conducted.

The Re-modularisation consists of two steps: firstly, it has to be determined whether a certain
module is already the smallest one for the given dependency serial. If is, the re-
modularisation process is completed then. Otherwise, the second step needs to be carried out.

To answer the question posed in the first step, one has to refer to the information generated
by table 8. The solution states that for an existing module to be the smallest one in terms of a
given dependency serial, the mutual dependency serials of the gate which leads the module

 375

must include the given dependency serial. The underlying algorithm is when this condition is
fulfilled, there is no way to further break down the module so that a smaller independent
section will be obtained which contains the dependency serial in question.

Accordingly, by referring to table 8, it can be concluded that module 6004 led by gate 20002
is already the smallest independent section for dependency serial 2 which includes basic
events 1, 2 and 7. Whilst, module 6001 with top gate G0 does not fulfil the condition.
accordingly the second stage of the re-modularisation will be carried out.

The second step can be generalized by the following steps.

a) Traverse the module from the top event, always following the gate which contains the
given dependency serial and recording the downward path, until the gate is encountered
whose mutual dependency serials also include the given dependency serial.

For example, regarding module 6001 in figure 12, in terms of dependency serial 1, the
downward path will be: G0, G1, 20001.

b) The last gate appearing in the Path established in step (a) as having the correct mutual
dependency serial would be leading the smallest independent sub-tree if it had been identified
as a module. The fact that it is not a module indicates that some of its descendants must have
occurred elsewhere in the module, which are defined as preventing elements. In this step,
those preventing elements and their appearances outside the fault tree section headed by this
gate will be identified.

One solution is to see whether the number of appearances of any descendant under this gate is
the same as its number of appearances in the whole module. If it is different, the descendant
turns out to be the preventing element.

For example, basic events 6 and 11 are identified as preventing elements because both of
them occur only once under gate 20001 but occur twice in module 6001 (see table 6).

c) After the preventing elements have been detected, the next thing is to identify an
independent sub-tree from the existing module to include those preventing elements. The
approach can be illustrated by the specific example of module 6001.

First some information should be listed:
The downward Path is: G0, G1, 20001
The potential module: led by gate 20001
Preventing elements: basic event 6 with another occurrence at location 16 and basic event 11
at location 23 in table 4.

Traverse upward from preventing elements and record their antecedents:
Event 6, G5, G4, G1
Event 11, G6, G0
For each preventing element, the traversal stops at the gate which also appears in the down
path established in step(a). After the upward traversal for each preventing element is finished,
pick one of the last gates in the traversals which appears at the highest level of the module
structure. Therefore, in terms of event 6, the traversal stops at G1 and for event 11, it stops at
G0. And G0 will be singled out as it lies in the first level of the module. Now the new

 376

G2

6002

Figure 13. Module 6001

6005

Figure 14. Module 6005

potential module will be formed by combining fault tree sections led by G1 and G6 as G1 and
G6 are both immediate input events to G0 and include preventing elements 6 and 11.

In this new potential module, no preventing element has been detected, the combination of
G1 and G6 becomes the new module labelled 6005 which is smallest for dependency serial 1.
See figure 13 and 14.

If the new potential module contains any preventing elements, the procedures are repeatedly
applied until a new module is identified.

d) If a module includes more than one dependency serial, they shall be dealt with one after
another in the same way.

So far, having progressed through the seven stages, modules 6005 and 6004 are identified as
the smallest modules for dependency serial 1 and 2 respectively. These modules will be
handled with the Markov method in the quantitative reliability analysis.

G0

G1

G3

G4

G6

12 11

6 5

11

G5 13

6 14

9

20001

8

6005

 377

5. Conclusion

The algorithm presented in this paper provides a method which enables efficient analysis of
fault trees which contain dependent basic events. The fault tree is structured in order to
identify the smallest modules containing dependent basic events. For these modules Markov
analysis is used to determine the failure probability and failure frequency. These predictions
are in turn used to quantify higher level modules until the top event characteristics are
obtained. For those sections or modules which do not contain any dependencies the
conventional fault tree analysis method or Binary Decision Diagram method are employed.

References

1. Andrews J.D. and Moss T.R., "Reliability and Risk Assessment", 2nd edition, Professional
Engineering Publishing, 2002.
2. Kumamoto & Henley E.J. “Reliability Engineering and Risk Assessment”, Prentice Hall,
1981.
3. Vesely W.E., “A Time Dependent Methodology for Fault Tree Evaluation”, Nuclear
Design and Engineering, Vol. 13, 1970, pp337-360
4. Meshkat L, Dugan J.B. and Andrews J.D., “Dependability Analysis of Systems with On-
demand and Active Failure Modes Using Dynamic Fault Trees”, IEEE Transactions on
Reliability, Vol 51 No 2, June 2002, pp 240-251
5. Hassl D.F., Roberts N.H., Vesely W.E. and Goldberg F.F., ‘Fault Tree Handbook”, US
Nuclear Regulatory Commission, 1981, NUREG-0492
6. Andrews J.D. and Dunnett S.J., “Analysis Methods for Fault Trees That Contain
Secondary Failures”, Proc. Instn Mech. Engrs, Vol. 218 Part E: J. Process Mechanical
Engineering, pp93-102
7. Pullum L. and Dugan J.B., “Fault Tree Models for the Analysis of Complex Computer-
based Systems”, Proceedings of the Annual RAM Symposium, Las Vegas, Jan 22-25 1996,
pp 200-207.
8. Platz O., Olsen J.V., “FAUNET: A Program Package for the Evaluation of Fault Trees and
Networks”, Riso report No 348, DK-4000, Roskilde Denmark, Sept 1976.
9. Sun H. and Andrews J.D., “Identification of Independent Modules in Fault Trees Which
Contain Dependent Basic Events”, Reliability Engineering and System Safety, Vol. 86, Iss. 3,
pp285-296, December 2004
10. Dutuit Y and Rauzy A, “A linear Time Algorithm to Find Modules in Fault Trees”, IEEE
Trans Reliability, 45, No 3, 1996.
11. Anand A and Somani A.K., “Hierarchical Analysis of Fault Trees with Dependencies,
using Decomposition”, PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY
Symposium, Anaheim, 19 – 22 January 1998, pp 69-75

