View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Loughborough University Institutional Repository

B Loughborough
University

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence
conditions.

@creative
common

COMMONS E E D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the waorlk

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

» Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

https://core.ac.uk/display/288391651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Toidentify the smallest fault tree sections which contain dependencies

Huiling Sun and John Andrews
Department of Aeronautical and Automotive Enginegrioughborough University,
Loughborough, UK

Abstract

Since the early 1960’s fault tree analysis has mmecthe most frequently used technique to
qguantify the likelihood of a particular system fmé mode. One of the underlying
assumptions which justifies this approach is thathiasic events are independent. However,
many systems feature component failure events fachwthe assumption of independence is
not valid. For example, standby dependency, maames dependency or sequential
dependency can be encountered in engineering systamsuch situations, Markov analysis
is required during the quantification process.

Since the efficiency of the Markov analysis largdpends on the size of the established
Markov model, it is most effective to apply the Mav method only to the smallest possible
fault tree sections containing dependencies. Theaireder of the system assessment can be
performed by the application of the conventionadeasment techniques. The key of this
approach is to extract from the fault tree the $#stlsections which contain dependencies.
This paper gives a brief introduction on some nexiisting dependency types and provides a
method aimed at establishing the smallest Markowdehdor the dependencies contained
within the fault tree.

Keywords: Fault tree analysis; Markov method; Dependencygivaristion
1. Introduction

Since its conception in the 1960s, the fault trealysis method has been increasingly
employed by many industries to assess the ratignafi system designs from a risk and
reliability perspective, usually reflected by tlieelihood of a particular system failure mode.

The fault tree method [1,2] has the assumptiontti@basic events, which usually represent
component failure, occur independently. This assiongnables the fault tree quantification

using Kinetic Tree Theory [3]. Features of sometays mean that the independence
assumption is invalid. In this case an alternathathod such as Markov Analysis should be
employed [1,2].

Markov models become very large with relatively m@de numbers of components in a
system. This results in models which are diffidoltgenerate, validate or solve. They also
lack the documentation which is a feature of thetfaee diagram.

As a result, hybrid fault tree/Markov methods haween evolved for systems where
redundancies are encountered [4,7]. These retairaiture logic development of the fault
tree diagram whilst enabling Markov analysis topeeformed on the portions of the system
containing the dependency.

This approach works efficiently for dependenciesoitiuced for situations such as standby
redundancy. In such circumstances the dependentseaee generally located below a single

359

gate in the fault tree and the smallest part ofsygtem which requires Markov analysis is
easily determined. However, other types of depetylean be associated with any groups of
basic events appearing in the fault tree. For iefiicanalysis the smallest section of the fault
tree which contains the dependencies and must lsedsasing a Markov model has to be
identified.

This paper describes some of the situations whittoduce dependencies in the system
failure model and develops a method to identify shwallest system sub-sections, fault tree
sections, whose solution will be solved with a Marknodel.

2. Types of dependency

Dependencies can arise between components in ensyst a number of reasons such as:
maintenance, standby, sequential failures and slacgriailures. These types of dependency
are discussed separately to identify the featimeg ¢xhibit in the analysis.

Maintenance dependency rises from the situation where one maintenanceénerg or team

of engineers has to take responsibility for a grofigomponents usually of the same or
similar type. In this case when one component hdsdf and is under repair, components
from the same group which fail subsequently havgaanto a queue waiting for repair till
the engineer has restored the first componentalt be that some failures are more critical
than others and so are given higher priority byrttaéntenance team. Either way the queuing
means that the failure of one component affectgepair times and therefore probability of
failure of other components.

Function-related dependency can be consideredbrcaiegories defined in terms of what
specific functional connection is involved betwaamponents. These 4 types of dependency
discussed here are named as standby dependenugnsafjdependency, secondary failure
dependency and initiator-enabler dependency.

The use oftandby systems, where the failure of the primary system activakesstandby to
take over the primary system duty, is also a caisgependency. If the likelihood of the
standby component failure increases as it expergetite operational load due to the failure
of the primary operating component, there existslependency between the standby
component failure probability and the operating poment status (working or failed).
Therefore failure to take into account the standegendency will produce incorrect system
unavailability and failure intensity. Usually 3 nes are used to describe different standby
situations: hot standby, cold standby and warmdétaiil], of which the latter two give rise
to the standby dependency.

Sequential dependency refers to the situation where a certain systensllevent will take
place only when its causes occur in a specific @secgl Usually in the fault tree sequential
dependency is represented by the ‘Priority AND ‘gageshown in Figure 1. With the priority
AND gate, only when basic events occur in the ofdan left to right, i.e., a first, then b,
finally c, will the output event represented by Gur.

360

GO

/l\
® OO

Figure 1. Priority AND gate

Secondary failure dependency can be introduced to a fault tree structure whets i
developed by considering the state-of-componerntsfathich are then represented by an OR
gate with primary failure, secondary failure ananooand faults as input [5] (see figure 2
below). The definition of a secondary failure eventhat they occur when the component is
operating outside its expected working environm@ihis can occur due to the failure of
another component in the system. To return theesy$t the fully functioning state requires
the repair of both the components whose failure loed to cause the original problem
(secondary failure) and the original problem it$6]f Failure to account for the repair of the
additional failure might lead to a serious undenestion of the system unavailability.

State-of-component fault

[

Primary Secondary | | Component
component| [component command
failure failure fault

Figure 2. Fault tree development of state-of-congpbfiault

Initiator-enabler dependency again is concerned with the order of componentifejlbut is
less prescriptive than the sequential failure. Tipgme of dependency usually occurs in the
analysis of safety systems. The enabling eventduyoe the condition which allows the
initiating event to cause a hazard. Therefore tiabkng events occur (in any order) prior to
the initiating event. A good understanding of ttype of dependency has to start with the
definitions of initiating events and enabling exwers defined in Ref. 1, initiating events
perturb system variables and place a demand omotfpnbtective systems to respond, whilst
enabling events represent the failure of inactieatl/protective systems which permit
initiating events to cause the top event. Below 8mple tank system (figure 3) to illustrate
the distinction between the initiating and enabliengents and the necessity to take into
account the initiator-enabler dependency.

361

Output valve

TANK > < >

Relief valve

Figure 3. Pressure tank

In this system, when the tank is over-pressurisieel,relief valve will open to reduce the
pressure in the tank. Therefore the fault treegmidion for the top event ‘Tank ruptures due
to overpressure’ will be drawn as shown in figuréagsuming that any overpressure will
rupture the tank):

Tank ruptures due
to high pressure

[|
Tank over-pressurized Relief valve fails stuck

Figure 4. Pressure tank fault tree

Consider the situation where the tank is over-pmessd prior to the relief valve being stuck:
since the relief valve will function to let out tlfleid, the top event will not occur. On the
contrary, when the relief valve has been stuck weaked, the subsequent tank over-
pressurisation will lead to the occurrence of the évent and consequently reveal the failure
of relief valve. Therefore the influence of thetimmior-enabler dependency exists in two
aspects: the first is that the order matters itirdjsishing the effect of the failures on the
system; the second is that the occurrence of thmtor will reveal any failures of the
enablers and reduce their downtime causing a deperdn their failure probability.

3. Fault trees which contain dependencies

As is mentioned in the first section, the tradiibrfault tree methodology is not an
appropriate approach for assessing systems wheendency exists between basic events.
Meanwhile the Markov method provides a sound sotuto the dependency problem [7].
The Markov method analyses the system by defieach state in which the system can
reside and assigning a rate for every transitidwéen these states. In this way it is able to

362

produce very accurate system risk and reliabilitgasures for all types of dependency
identified.

However, a problem comes along with the strengthe o the way the models are
formulated, the Markov method will produce a modegich feature an exponential increase
in size with the number of basic events includeditinThis characteristic has severely
restricted the effective application of the Markaethod for moderate and large systems.

One approach to resolve this difficulty is to consithe Markov method and the
conventional fault tree method by applying the Markmethod only to fault tree sections
where dependency between basic events exists. 8heokhe effectiveness of this solution
process is to identify the smallest sections invmg\dependency within the given fault tree
structure in order to produce a solvable Markov ehod@hese sections which contain the
dependencies are independent of the remaindeedatit tree.

As far as the five types of dependencies discugsdtie previous section are concerned,
initiator-enabler dependency, secondary failure eddpncy, standby dependency and
sequential dependency tend to be grouped undergie SDR or AND gate in the original
fault tree structure which makes the correspondingallest module easy to identify.
Alternatively the maintenance dependency featuegsedent basic events which appear
anywhere in the fault tree and the identificatiéth@ corresponding smallest module is even
more necessary and important.

4. ldentification of Independent Fault Tree Sections

The strategy for solving the dependency problenoisdentify the smallest independent
sections or modules of the fault tree. Those wimhtain dependencies will be solved using
the appropriate Markov model. This paper presehts algorithm for identifying the
independent modules. The algorith will be demomstirdy means of an example problem.
An example fault tree is presented in figure 5 Whgused to illustrate the whole of process
of identifying smallest dependent modules. Dudgdyipical random distribution feature, the
maintenance dependency is considered the worst sifisation and as such will be
considered in the fault tree as shown in table 1.

Dependency Dependency Number of Number of Basic event list
group no. type basic events repairs

1 Maintenance 2 1 5and 8

2 Maintenance 3 1 1,2and 7

Table 1. Dependency information

363

GO

G7
| _I_‘
[[|
G2 G4 8 11 12 G8 10
[[|
G3 5 6 G5 13 G9 2
[|
9 11 6 14 G10 G11
| |
I | [|
3 4 G12 7
1 2

Figure 5. Example fault tree

This fault tree includes 12 gates and 14 basicteyefh which 3 (2, 6 and 11) appear more
than once. Maintenance dependency exists betweso &eents 5 and 8, plus 1, 2 and 7 as
for each group there is only one engineer respt&ib the maintenance.

The process of identifying the smallest independetion containing a certain dependency
can be broken down into the following stages:

1) Re-organize dependency information

2) Fault tree simplification

3) Form the dependency information

4) Combine dependent events

5) Modularisation

6) Update the dependency information

7) Re-modularise for each type of dependency

The following sections will provide a detailed eayation of each of the seven steps using the
example fault tree displayed in figure 5.

364

4.1 Re-organize The Dependency I nformation

When there exist more than one type of dependeti®re might be overlap between
different dependency groups. That is, the dependgraups must be considered together in
order that an independent sub-tree can be foundid@&itifying the overlap and merging
corresponding dependency groups, this step is aitmgorovide a precise picture of the
dependency relationship between basic events. ¥amg@e, if there is secondary failure
dependency existing between primary failure evesué secondary failure event b, and also
a maintenance dependency exists between basic @aemnt ¢, although they are contained in
different dependency groups, basic events a, lcatwuld bear the same dependency serial
number to ensure they will end up in the same neothrlthe later Markov analysis.

Considering the dependency information of the exanipult tree provided in table 1,
dependency serial number information is listecalvlé 2 after the re-organization and will be
referred to during the course of the following step

Dependency serial number Number of basic events icBasnt list
1 2 5and 8
2 3 1,2and 7

Table 2. Dependency serial information
4.2 Fault tree ssmplification

Simplification of the fault tree structure is aimadreducing the fault tree to its most concise
form without changing the logic function it reprate The simplification is achieved by
applying to the fault tree the framework as followkich is composed of 4 reduction
techniques, of which the first 3 are used in theniéa code [8]:

Contraction subsequent gates of the same type are contrawteafm a single gate. This
structures the fault tree as an alternating sequeh&ND gates and OR gates.
Extraction:this looks for structures of the type illustratedfigure 6 and converts them as
illustrated. The effect is to identify the commactor, i.e. the repeated basic event.

a N
N — N

5

Case 6a

365

=
@ﬁ@@ﬁ@_’ 50

Case 6b

Figure 6. Extraction

Factorisation pairs of (independent) events that always ocogether in the same gate type
are identified and combined to form a single compévent. Events which occur in
dependency groups are not included when definic@ifa.

Eliminatiorn this process employs the Boolean laws of absmrptisplayed as follows:

a+(a.b)=a
a.(atb)=a

By extending the absorption law, the eliminatiocht@que can reduce events that are
repeated over any number of levels of a fault ln@ach. This can be illustrated by the two
examples shown in Figure 7:

Gl

© 5 E

Case 7a

366

5 & 5 &
A J— [
5 5

-
© 6 O © @

Case 7b

Figure 7. Elimination

Primary and secondary gates are defined to desthbealgorithm of this reduction
technique. A primary gate is the highest gate aichvithe repeated variable is first
encountered as an input. A secondary gate is g gatew the primary gate, at which a
second occurrence of the event appears as an [@puthe algorithm is that when the
primary and secondary gates are of different tyfressecondary gate can be eliminated from
the fault tree, while if the primary and secondgates are of the same type, the repeated
event under the secondary gate can be eliminatedeXample case 7a in figure 7, the
repeated variable is event a, the primary gatelist® secondary gate is G4. since G1 and
G4 are different gate type, G4 is eliminated asshd-or case 7b the repeated event is a and
is an input to primary gate G1 and secondary g&el&this case G1 and G3 are both OR
gates and so event 1 is deleted from the secomyadaeyG3.

When the elimination results in gates that havg onk input, these gates are replaced in the
fault tree structure by their single input.

Applying the simplification to the example fauleérin figure 5, the reduced fault tree will be
obtained as shown in figure 8. The reductions thelthe contractions between G8 and G9,
eliminations of event 2 under G12, and finally @aigation of event 3 OR 4. To distinguish

factors from other elements in the fault tree, ¢hf@stors are named from 3001 onwards.

367

GC

G1 G6 G7

Ga 5| 6 Gs | 1 G11 2

9 11 6 14 1 7

Figure 8. Simplified fault tree
4.3 Form the dependency information

This step is to decide the dependency serial nusnveich each gate in the fault tree is
dependent upon. The information forms the basis tha implementation of the next
combination step. The dependency of each gatefisedeby a list of all the dependency
serial numbers to which basic events below it enfHult tree structure belong.

This step is conducted by traversing the fault toegecide the dependency serial number that
each gate features. This process is illustrateld avgimple example (see Figure 9).

GO

o

.
O OO ©

Figure 9. Form dependency information

Assume that after the re-organisation of dependgnayp information, events a and b bear
dependency serial number 1, and events c, d areloadto dependency serial number 2.

368

Therefore the dependency of G1 is the dependen®@l s¢ its immediate descendants, i.e.,
serial 1, since both of its input events a anddiuie in dependency serial 1. Similarly, the
dependency of G2 is serial 2. And finally the degeties of GO is identified as serial 1 and
2 because G1 has dependency serial 1 and both @2went e are characterized by
dependency serial 2.

Therefore, according to this algorithm, the dep@awgleserial information of each gate in the
simplified fault tree in figure 8 is summarizedtable 3.

Gate GO G1 G2 G3 G4
Dependency 1, 2 1 1 - -
serials

Gate G5 G6 G7 G8 G11
Dependency - - 2 2 2
serials

Table 3. Gate dependency serials
4.4 Combine dependent events

The purpose of this step is to restructure thetfeak in a way which will separate those
events with the same dependency serial into sepdratnches. Using the information
generated in the previous phase, each gate wiixbenined in turn, additional gates of the
same logic type as the gate being investigatedadded where necessary to group the input
events (immediate descendants) of the same depgndenal. The reason for implementing
the ‘combination’ phase is that the resulting neateg (numbered from 20001 upwards) are
leading to a fault tree structure with the smaliedependent sub-trees for each dependency.

For the example in figure 9, the application of tamation will result in a new fault tree
structure as shown in figure 10. G2 and basic eeertoth of which feature dependency
serial 2, is grouped under the new gate 20001, lwbansequently also bears dependency
serial 2.

GO

)

G1 20001

;3

Figure 10. Restructured fault tree

369

Similarly, when applied to the fault tree in figuBethe ‘combination’ step will produce the
restructured fault tree shown in figure 11 with ngates 20001 and 20002.

GC

)

[|
G1 GE G7

N0

12

0

|
13 2000:

? PR B

GA3 5 6 6 14 G11 2

CH E]

1 7

'D

Figure 11. Combination

When there exist more than one way to carry outtmbination process due to the overlap
of dependency serial numbers between the siblitgsgaach of the combination approaches
will lead to the same final result.

4.5 Modularisation

The task of this phase is defined as to identifdubes in the fault tree. A module of a fault
tree is a sub-tree that is completely independeomn fthe rest of the tree. After the

modularisation, each module will be replaced witsuper-event in the original fault tree

structure. The super-event has the same relialghiyracteristics as the fault tree section
which it has replaced and is determined using Matkeory or fault tree theory depending

on whether the corresponding module contains degp#rizhsic event or not.

The algorithm developed by Rauzy and Dutuit [1G}vies an efficient means to identify
the modules, which mainly requires two depth-firstversals of the fault tree. The first
performs a step-by-step traversal recording fohegte and event, the step number at which
the first, second, and final visits to that noderevenade. It also records the number of
appearances in the traversal which will be usedl later stage. In this first traversal, it must
be noted that the graph under a vertex is neveersad twice [11]. Therefore when gates

370

appear more than once in the tree, only its fippiearance will be traversed completely, after
this, its appearances elsewhere in the tree willdaed like a basic event.

In order to ensure that dependent basic eventsriegt the same dependency serial will end
up in the same module, they are treated as a diagie event with the same label during the
first traversal. All events in the same dependegmup will be replaced with an id that
characterizes the particular dependency serialekample, in the fault tree in figure 9, both
a and b will be replaced by label 10001, and c,nd @ by 10002 (dependency event
numbering starts at 10001).

The principal of the algorithm for modularisatianthat if any descendant of a gate has a first
visit step number smaller than the first visit stepmber of the gate, then it must also occur
beneath another gate. Similarly, if any descendlasta last visit number greater than the
second visit number of the gate, then again it naastur elsewhere in the tree. Therefore a
gate can be identified as heading a module only if:

* the first visit to each descendant is after thet fisit to the gate and

* the last visit to each descendant is before thergkvisit to the gate

Then the second pass through the fault tree ass#ss®e conditions. The maximum (Max)
of the last visits and the minimum (Min) of thesfiwvisits of all the descendants (any gates
and events appearing below that gate in the tweddch gate will be obtained based on the
result of the first traversal.

Therefore, based on the fault tree in figure 1&,ttho traversals will provide the information
given in tables 4 — 7.

Gates Vigit Gates Visit Gates Visit
number number number
GO 1 G4 14 G8 27
G1 2 G5 15 3001 28
20001 3 6 16 20002 29
G2 4 14 17 Gl1 30
G3 5 G5 18 10002 31
9 6 13 19 10002 32
11 7 G4 20 Gl1 33
G3 8 G1 21 10002 34
10001 9 G6 22 20002 35
6 10 11 23 G8 36
G2 11 12 24 10 37
10001 12 G6 25 G7 38
20001 13 G7 26 GO 39

Table 4. i traversal — event visit

Gates GO Gl 20001 G2 G3 G4
1% visit 1 2 3 4 5 14
2" yisit 39 21 13 11 8 20
Last visit 39 21 13 11 8 20
Number of 1 1 1 1 1 1
appearances

371

Gates G5 G6 G7 G8 20002 G11
1% visit 15 22 26 27 29 30
2" visit 18 25 38 36 35 33
Last visit 18 25 38 36 35 33
No. of 1 1 1 1 1 1
appear ances
Table 5. ¥ traversal - gates

Basic events 9 11 10001 6 14

1% visit 6 7 9 10 17

2" visit 6 23 12 16 17

Last visit 6 23 12 16 17

Number of 1 2 2 2 1

appear ances

Basicevents 13 12 3001 10002 10

1% visit 19 24 28 31 37

2" visit 19 24 28 32 37

L ast visit 19 24 28 34 37

No. of 1 1 1 3 1

appear ances

Table 6. traversal — basic events

Gates GO G1 20001 G2 G3 G4
Min 2 3 4 5 6 10
M ax 38 23 23 23 23 19
Gates G5 G6 G7 G8 20002 G11
Min 10 7 27 28 30 31
M ax 17 24 37 35 34 34

Table 7. 2% traversal

Therefore, according to the conditions for a mod@e, G7, G8, and 20002 are identified as
heading the modules. To distinguish themselves father events in the fault tree, these
modules are assigned a unique id starting from @Wards, i.e., GO — 6001, G7 — 6002, G8
— 6003, and 20002 — 6004. their structure are showviigure 12.

372

GC

20001 G4 1 12

13

]
[I I é_‘_\

G3

i

9 11

14

Figure 12a. Module 6001

G7 G8

20007

o ()

Fic Figure 12c. jule 6002 Ej

Module 600:

Figure 12d. Module 6004

Figure 12. Modules identified
4.6 Update the dependency information

By this stage, independent sub-trees have beetifiddnHowever, with the aim to find out
the smallest modules which contain dependent basents, the task has not been

373

accomplished yet. To attain the aim, two points tmhes made clear: the first is which
modules contain which dependency serial; and thergkis whether these modules are the
smallest one. This step is designed to providertfeemation required to answer these two
guestions.

Slightly different from step 3, dependency inforioatis updated establishing not only which
dependency serials each gate contains but alsoutsal dependency serials. The mutual
dependency serial of a gate is a list of dependessrials which all of its immediate
descendants feature.

Take module 6001 in figure 12 for example, it candetermined that gate G2 contains
dependency serial 1 and since only one of its thmeet events features dependency serial 1,
it has no mutual dependency serial. Gate 20001igktly different: since both of its input
events, gate G2 and event 8 features dependenalyXkegate 20001 bears dependency serial
number 1 as its mutual dependency serial. Wheonites to gate GO, it is a similar case with
G2 with the exception that one of its input everstsa module which is treated as an
independent basic event in this process.

Accordingly, table 8 below gives the dependencyatanrformation of each of the modules
shown in figure 12.

Gates GO Gl 20001 G2 G3 G4
Dependency 1 1 1 1 - -
serial contained

Mutual - - 1 - - -
dependency

serial

Gates G5 G6 G7 G8 20002 G1l1
Dependency - - - - 2 2
serial contained

Mutual - - - - 2 2
dependency

serial

Table 8. Updated gate dependency serials
4.7 Re-modularise for each dependency serial

In this last phase, re-modularisation will be aariout for each of the modules identified
which contain dependencies. This process will ifietihe smallest independent section for
each dependency serial. Table 8 indicates that le&@001 led by gate GO and module 6004
led by gate 20002 contains dependency serials 1 Zanespectively, on which re-
modularisation will be conducted.

The Re-modularisation consists of two steps: firstihas to be determined whether a certain
module is already the smallest one for the givepeddency serial. If is, the re-
modularisation process is completed then. Otherwhgesecond step needs to be carried out.

To answer the question posed in the first step,h@eto refer to the information generated

by table 8. The solution states that for an exgstimodule to be the smallest one in terms of a
given dependency serial, the mutual dependencyglsert the gate which leads the module

374

must include the given dependency serial. The Uyidgralgorithm is when this condition is
fulfilled, there is no way to further break dowretmodule so that a smaller independent
section will be obtained which contains the depeggeserial in question.

Accordingly, by referring to table 8, it can be cluded that module 6004 led by gate 20002
is already the smallest independent section foredégncy serial 2 which includes basic
events 1, 2 and 7. Whilst, module 6001 with topega0O does not fulfil the condition.
accordingly the second stage of the re-modulaasatiill be carried out.

The second step can be generalized by the follogtegs.

a) Traverse the module from the top event, alwaylewWing the gate which contains the
given dependency serial and recording the downwaitt, until the gate is encountered
whose mutual dependency serials also include trengiependency serial.

For example, regarding module 6001 in figure 12teérms of dependency serial 1, the
downward path will be: GO, G1, 20001.

b) The last gate appearing in the Path establighedlep (a) as having the correct mutual
dependency serial would be leading the smallesipaddent sub-tree if it had been identified
as a module. The fact that it is not a module imgis that some of its descendants must have
occurred elsewhere in the module, which are defam®greventing elements. In this step,
those preventing elements and their appearancsegleuhe fault tree section headed by this
gate will be identified.

One solution is to see whether the number of ajppeas of any descendant under this gate is
the same as its number of appearances in the whadielle. If it is different, the descendant
turns out to be the preventing element.

For example, basic events 6 and 11 are identifegraventing elements because both of
them occur only once under gate 20001 but occuetii module 6001 (see table 6).

c) After the preventing elements have been detedisel next thing is to identify an
independent sub-tree from the existing module tdugte those preventing elements. The
approach can be illustrated by the specific exaroptaodule 6001.

First some information should be listed:

The downward Path is: GO, G1, 20001

The potential module: led by gate 20001

Preventing elements: basic event 6 with anothenroence at location 16 and basic event 11
at location 23 in table 4.

Traverse upward from preventing elements and reitmid antecedents:

Event 6, G5, G4, G1

Event 11, G6, GO

For each preventing element, the traversal stoplseagate which also appears in the down
path established in step(a). After the upward tisaldor each preventing element is finished,

pick one of the last gates in the traversals wlappears at the highest level of the module
structure. Therefore, in terms of event 6, thedrsal stops at G1 and for event 11, it stops at
GO0. And GO will be singled out as it lies in thesfilevel of the module. Now the new

375

potential module will be formed by combining fatrte sections led by G1 and G6 as G1 and
G6 are both immediate input events to GO and irclu@venting elements 6 and 11.

In this new potential module, no preventing elemed been detected, the combination of
G1 and G6 becomes the new module labelled 6005wkismallest for dependency serial 1.
See figure 13 and 14.

6005

GC

) l l
Ak

Figure 13. Module 6001 | I | ’_k_‘

20001 G4 1 12
[| |
G2 8 G5 13
[|
5| 6 6 14

Figure 14. Module 6005

If the new potential module contains any prevengigments, the procedures are repeatedly
applied until a new module is identified.

d) If a module includes more than one dependencglsthey shall be dealt with one after
another in the same way.

So far, having progressed through the seven stagedilles 6005 and 6004 are identified as
the smallest modules for dependency serial 1 amdsf@ectively. These modules will be
handled with the Markov method in the quantitatekability analysis.

376

5. Conclusion

The algorithm presented in this paper provides thatewhich enables efficient analysis of

fault trees which contain dependent basic eveni& fault tree is structured in order to

identify the smallest modules containing dependasic events. For these modules Markov
analysis is used to determine the failure probgténd failure frequency. These predictions
are in turn used to quantify higher level modulediluthe top event characteristics are

obtained. For those sections or modules which db cumtain any dependencies the
conventional fault tree analysis method or BinagciBion Diagram method are employed.

References

1. Andrews J.D. and Moss T.R., "Reliability and IRisssessment”," edition, Professional
Engineering Publishing, 2002.

2. Kumamoto & Henley E.J. “Reliability Engineeriagd Risk Assessment”, Prentice Hall,
1981.

3. Vesely W.E., “A Time Dependent Methodology foault Tree Evaluation”, Nuclear
Design and Engineering, Vol. 13, 1970, pp337-360

4. Meshkat L, Dugan J.B. and Andrews J.D., “Depéilta Analysis of Systems with On-
demand and Active Failure Modes Using Dynamic Fdukes”, IEEE Transactions on
Reliability, Vol 51 No 2, June 2002, pp 240-251

5. Hassl D.F., Roberts N.H., Vesely W.E. and GeidbF.F., ‘Fault Tree Handbook”, US
Nuclear Regulatory Commission, 1981, NUREG-0492

6. Andrews J.D. and Dunnett S.J., “Analysis Methdds Fault Trees That Contain
Secondary Failures”, Proc. Instn Mech. Engrs, \&d8 Part E: J. Process Mechanical
Engineering, pp93-102

7. Pullum L. and Dugan J.B., “Fault Tree Models floe Analysis of Complex Computer-
based Systems”, Proceedings of the Annual RAM Swmpo, Las Vegas, Jan 22-25 1996,
pp 200-207.

8. Platz O., Olsen J.V., “FAUNET: A Program Packéwyethe Evaluation of Fault Trees and
Networks”, Riso report No 348, DK-4000, Roskilderibeark, Sept 1976.

9. Sun H. and Andrews J.D., “Identification of Ipgadent Modules in Fault Trees Which
Contain Dependent Basic Events”, Reliability Engimeg and System Safety, Vol. 86, Iss. 3,
pp285-296, December 2004

10. Dutuit Y and Rauzy A, “A linear Time Algorithto Find Modules in Fault Trees”, IEEE
Trans Reliability, 45, No 3, 1996.

11. Anand A and Somani A.K., “Hierarchical Analysis Fault Trees with Dependencies,
using Decomposition”, PROCEEDINGS Annual RELIABINTand MAINTAINABILITY
Symposium, Anaheim, 19 — 22 January 1998, pp 69-75

377

