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Birnbaum’s Measure of Component Importance for
Noncoherent Systems

John D. Andrews and Sally Beeson

Abstract—Importance analysis of noncoherent systems is lim-
ited, and is generally inaccurate because all measures of impor-
tance that have been developed are strictly for coherent analysis.
This paper considers the probabilistic measure of component
importance developed by Birnbaum (1969). An extension of this
measure is proposed which enables noncoherent importance anal-
ysis. As a result of the proposed extension the average number
of system failures in a given interval for noncoherent systems
can be calculated more efficiently. Furthermore, because Birn-
baum’s measure of component importance is central to many
other measures of importance; its extension should make the
derivation of other measures possible.

Index Terms—Fault tree, importance measures, noncoherent,
structure function.

ACRONYMS1

FTA —fault-tree analysis

iff —if and only if

r.h.s. —right-hand side

s- —statistical(ly)

NOTATION

—structure function: defines the system

state in terms of the states of the system

components

—Birnbaum-measure of component relia-

bility Importance

—Jackson’s proposed-extension of Birn-

baum-measure

—component-repair criticality: the

system is in a working state such that re-

pair of component would cause system

failure

—component-failure criticality: the

system is in a working state such that failure

of component would cause system failure

—system unavailability: the system is in a

failed state at time

— the system fails with component

failed

— the system fails with component

working
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1The singular and plural of an acronym are always spelled the same.

—unavailability of component

—availability of component

—indicator variable with value of 0 or 1

—total number of system components

—total number of prime implicants

—total number of elements in a selected prime

implicant

—total number of critical system-states

—system unconditional failure intensity

—s-expected number of system failures in

—unconditional failure intensity of compo-

nent

—unconditional repair intensity of compo-

nent

—occurrence of prime-implicant set in

—event that prime implicant exists at time

— at least 1 prime-implicant set exists at

time

I. INTRODUCTION

Definition

C
OHERENT: A system is coherent if each component is

relevant, and the structure function is increasing (nonde-

creasing).

Safety systems are designed to protect against hazardous

events; if failure occurs on a potentially hazardous system, the

consequences can be disastrous. Many examples are possible;

e.g., the recent crash of the Concord aeroplane in Paris, 2000

July. This left all 113 passengers and crew-members dead.

Such disasters make clear the need to minimize the likelihood

of system failure. Today, reliability assessment is critical in

analyzing and improving system safety.

FTA [1], [2] is a well known and widely used deductive

technique developed by Watson in the early 1960s to enable re-

liability assessment of a wide variety of systems. A fault-tree di-

agram expresses the causes of a particular system-failure-mode

(top event) in terms of component failure modes that are con-

nected by gates (logical operators).

The 3 fundamental gate types used in the fault tree are: AND,

OR, and NOT. Generally the use of the NOT gate is discour-

aged because a fault tree might be noncoherent if the NOT gate

is used or is directly implied. In a noncoherent system, compo-

nent failed states and component working states can contribute

to system failure. This can be considered philosophically to be a
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poor analysis because, intuitively, it is a bad design that has com-

ponents working correctly and contributing to system failure.

From a practical viewpoint, the use of NOT logic increases the

complexity of analysis and, in some circumstances does not pro-

vide additional information about the system. If only the AND

and OR gates are used in the fault tree, and all basic events repre-

sent failures, then the fault tree is coherent, and only component

failures can contribute to system failure.

A fault tree is noncoherent if its structure function does

not comply with the definition of coherence given by the prop-

erties of relevance and monotonicity [3], [4]:

1) Every component is relevant: for

some .

2) The structure function of component is mono-

tonically increasing: , .

;

.

• Condition #1 ensures that each component contributes to

the system state.

• Condition #2 an increasing (nondecreasing) structure

function, ensures that the system state deteriorates (at

least does not improve) with an increasing number of

component failures.

• Component failures cannot improve the system state.

Although the use of NOT logic is often discouraged, [5]

demonstrates that for multi-tasking systems, NOT logic is

essential if successful and meaningful analysis is to be per-

formed. This is also true for event-tree analysis [6]–[8]. Hence

it is essential to consider NOT logic for such systems and be

able to analyze resulting noncoherent fault trees efficiently and

accurately.

FTA can be split into 2 stages:

1) Qualitative analysis—identifies the minimal cut sets or,

for noncoherent fault trees, the prime-implicant sets (min-

imal combinations of both success and failure events that

cause the top event).

2) Quantitative analysis—involves calculating the system

unavailability and the system unreliability; and can in-

volve analysis of component and minimal cut set (prime

implicant) importance.

Importance analysis, and Birnbaum’s measure of component re-

liability importance in particular, is the focus of this paper.

II. BIRNBAUM’S COMPONENT IMPORTANCE

When assessing a system, its performance depends on that

of its components. Some components play a more important

role in causing or contributing to system failure than others.

The concept of importance measures is to numerically-rank

the contribution of each component, or basic event, to reflect

the susceptibility of the system to the occurrence of this event.

Importance-measures assign a numerical value between 0 and

1 to each system component; 1 signifies the highest level of

importance.

Reference [9] introduced the concept of importance, and de-

veloped a probabilistic measure of component-reliability impor-

tance. is defined as: the probability that component is

critical to system failure; i.e., when fails it causes the system to

pass from a working-state to a failed-state. Birnbaum’s measure

is also referred to as the criticality function:

(1)

system fails with component failed ,

system fails with component working ,

vector of component unavailability’s for the remaining

components.

is generated using the inclusion-exclusion expansion

(and is considered in greater detail later).

Although this field has received much attention over the past

30 years, the majority of measures that have been developed,

have been developed specifically for the analysis of coherent

systems, and therefore have ranked component failures. Impor-

tance analysis of noncoherent systems is extremely limited; it

is generally inaccurate and misleading because importance is

approximated using the measures developed for the analysis of

coherent systems.

Reference [10] considers the extension of some of the most

commonly used measures of importance to enable analysis of

noncoherent systems; it begins by developing an extension of

Birnbaum’s measure and then uses this extension to extend other

measures based on Birnbaum’s measure. This proposed exten-

sion of Birnbaum’s measure is:

(2)

It is not clear exactly how this measure should be interpreted;

(2) suggests only 1 calculation per component. However, in

a worked example, [10] actually ranks component failure

importance and component repair importance separately. To

demonstrate the difficulties encountered with this extension,

consider the basic noncoherent system that [10] uses during

this worked example. The system has 3 prime-implicant

sets: , . . While the system details are not

important for this demonstration, they are in [11].

The calculation procedure in [11] can be used to obtain an ex-

pression for the system unavailability function of a noncoherent

system. The calculation procedure is

(3)

if event is a member of , if event is a member

of .

if

if

if a normal literal occurs, if a negated literal

occurs.

Rather than perform Boolean reduction with terms involving

both failed and success states, the following identity is used:

.
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TABLE I
THE RESULTS OBTAINED IN [10]

Hence, the following expressions are obtained from (3):

Thus:

(4)

The component unavailability’s assigned in [10] are ,

, ,

. The results, using these numbers, in [10] for are

in Table I.

An alternative way of considering Birnbaum’s measure for

this example is to consider component-criticality by an exhaus-

tive tabular approach. Consider a system with components;

the system state can then be expressed in terms of the compo-

nent states. It is possible to determine whether a component is

critical to system failure, given the states of the remaining

components. There are possible states of the other

components. By identifying the critical situations for compo-

nent and summing their probabilities of occurrence, one can

calculate the probability that component is critical to system

failure.

Thus for the example in [10], Table II identifies the critical

states for each of the 3 components. Table III records the sum

of the critical situations for each event, the probability that each

event is critical to system failure, and the ranking that each com-

ponent receives.

Comparing the results from [10] in Table I with those in

Table III it is clear that not only does the extension [10] cal-

culate component criticality incorrectly but that it also ranks the

components incorrectly. Hence it the extension [10] is not con-

ceptually equivalent.

III. EXTENSION OF BIRNBAUM’S MEASURE OF COMPONENT

IMPORTANCE FOR NONCOHERENT ANALYSIS

Birnbaum’s measure of component reliability importance

(importance is defined as: probability that component is

critical to system failure) is the fundamental probabilistic mea-

sure of importance. Many other measures of importance are

extensions of this measure. Birnbaum developed this measure

only for the analysis of coherent systems. It is calculated from

the system unavailability function, , which is obtained

using the exclusion-inclusion principle and Boolean reduction

laws. can be evaluated from (1) which, because

is linear in each , can be expressed as:

(5)

Because, for coherent systems, Birnbaum’s measure is central

to so many other measures of importance, its extension to en-

able analysis of noncoherent systems must provide a consistent

foundation to extend these measures for noncoherent analysis.

When dealing with a coherent system, system failure can

only be caused by component failure. Hence a component

in a coherent system can only be failure-critical. However,

when dealing with a noncoherent system, system failure can

be caused, not only by component failure (referred to as event

), but also by component repair (referred to as event . Thus

a component in a noncoherent system can be failure-critical

or repair-critical. These two criticalities must be considered

separately because component can exist in only 1 state at any

time.

The probability required is: the probability that component

is critical to system failure; this can be expressed as or

.

(6)

An expression for the system unavailability function can be ob-

tained from calculation procedure outlined in (3) [11]. Compo-

nent is failure critical if the system is working, but the system

fails if component fails. Thus the probability that component

is failure critical is the probability that the system is in a

working state such that the failure of component causes at least

1 prime-implicant set containing event to occur. This prob-

ability is calculated by obtaining the probability that at least

1 prime-implicant set containing event exists at time and then

dividing this probability by the unavailability of component .

To calculate this probability it is helpful to re-express the

system unavailability in the 3 distinct terms:

These 3 terms represent, respectively,

• those products involving the failure of component ,

• those products involving the repair of component ,

• those products for which component is irrelevant.

The probability that component is failure critical is:

(7)

Similarly, the probability that component is repair critical is

the probability that the system is in a working state such that

the repair of component causes at least 1 prime-implicant set

containing event to occur. This is calculated by obtaining the

probability that at least 1 prime-implicant set containing event
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TABLE II
POSSIBLE AND CRITICAL STATES FOR THE EVENTS

TABLE III
EXPECTED RESULTS

exists at time and then dividing this probability by the avail-

ability of component .

(8)

The top event can only exist at time if at least 1 prime-implicant

set exists at time . Hence, the repair and failure criticalities can

be calculated separately by differentiating with respect

to and , respectively.

(9)

(10)

(if is expressed according to the method in [11]).

Example

Consider the noncoherent system introduced in Section III,

the Boolean expression for the top event is:

The system unavailability is in (4). The proposed extension can

be used to calculate the repair and failure importance of any

component. The failure importance and repair importance for

component are calculated from (9) and (10):

(11)

(12)

Hence, from (6):

This result can be checked by using the tabular approach intro-

duced in Section III. There are 4 situations for which component

could be FAILURE or REPAIR critical to the system failure

according to the states of components and . Table IV outlines

the 4 situations; column #3 records whether component is crit-

ical to system failure.

TABLE IV
CRITICALITY ASSESSMENT FOR COMPONENT c

From Table IV it is clear that component is critical for 2 of

the 4 situations, hence Birnbaum’s measure for component is

calculated as:

Critical Situation

The result obtained using this tabular approach is the same as

the result obtained using the proposed equation. The proposed

extension calculates the probability that component is critical

to system failure. Having calculated the component repair and

failure criticality, components need to be ranked, and the results

analyzed; this is considered in Section V.

IV. EXPECTED NUMBER OF SYSTEM FAILURES

The expression for calculating the s-expected number of

system failures, , in , when the analysis is

coherent can be given in terms of Birnbaum’s measure of

component reliability importance [12].

(13)

This identity can be extended to noncoherent systems as fol-

lows:

(14)

On the r.h.s. of (14), term #1 calculates the s-expected number of

occurrences of system failure due to the failure of component

in a given interval, and term #2 calculates the s-expected number

of occurrences of system failure in the given interval due to the

repair of component .

If this extension of Birnbaum’s importance measure has the

desired properties, then (14) holds. This section tests this exten-

sion by considering a basic example and comparing the results
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obtained for using a method developed in [11] and

using (14).

The procedure in [11] works directly with the Boolean ex-

pression for the top event obtained from qualitative analysis.

(15)

“System unconditional failure intensity” top event occurs

at /unit-time . The top event occurs in iff none of the

prime-implicants sets exist at , and at least 1 prime-implicant

set occurs in . The unconditional failure intensity is:

(16)

Note: There is an important distinction between existence and

occurrence. If a prime implicant exists at time , then all com-

ponent states in the prime implicant must have occurred prior

to . Whereas, if a prime implicant occurs at time , 1 compo-

nent-state must occur in .

The first term of (16) represents the probability that at least

1 prime-implicant set occurs in . The second term of

(16) is a correction term that calculates the probability that at

least 1 prime-implicant set occurs in but do not fail the

system because it is already failed because at least 1 implicant

set already exists.

The unconditional failure intensity is calculated for the ex-

ample in Section II with the Boolean expression for the top

event.

The 2 terms of (16) are calculated separately. Term #1 on the

r.h.s. of (16) can be expressed using the inclusion-exclusion ex-

pansion to give:

Similarly, expanding term #2 on the r.h.s. of (16) gives:

(17)

Each term is also expanded about thus, for example, expan-

sion of term #1 gives:

(18)

Treating other terms in the same way gives:

Hence

Use the extended expression in (14) to calculate the s-expected

number of system failures. The system unavailability for this

example is given in (4). Hence:

From (14),

The s-expected number of system failures is the same for both

of the calculation procedures, demonstrating that,

1) the identity in (13) can be extended, as shown in (14), for

noncoherent analysis;

2) the proposed measure calculates the desired probability.
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Fig. 1. Simplified gas detection system.

V. GAS DETECTION SYSTEM EXAMPLE

Consider the simplified gas-detection system in Fig. 1. This is

a multi-tasking system introduced in [5]. The system has 2 sen-

sors, D1 and D2, which detect leakage in a confined space. The

detectors send signals along individual cables to the computer

logic control unit, LU. If the LU receives a signal that there is a

gas leak from any sensor, then 3 functions must be performed:

• Process shut down: de-energize relay R1,

• Inform the operator of the leak, using a lamp and siren

labeled L,

• Remove the power supply from affected areas: de-energize

relay R2.

Reference [5] considers one particular failure scenario

wherein, although the operator is informed of the gas re-

lease, both the “process shut-down” and the “power-supply

isolation” fail. It was shown that NOT logic was essential if

successful analysis was to be performed. The fault tree for

this particular mode of failure has 2 prime-implicant sets,

L LU R1 R2 D , L LU R1 R2 D .

To illustrate the method used to analyze component impor-

tance, availability values have been assigned to each component:

, , , .

The system unavailability is:

From (9) and (10)

TABLE V
RESULTS AND RANKING FOR TOTAL CRITICALITY

TABLE VI
RESULTS AND RANKING FOR FAILURE CRITICALITY

TABLE VII
RESULTS AND RANKING FOR REPAIR CRITICALITY

Tables V–VII record the results and ranking for the total criti-

cality, the failure criticality, and the repair criticality.

Table V records the total criticality of each component and the

ranking obtained. From this table, the system is most likely to

be in a critical state for components R2 and R1. The importance

of components LU and L are closely numerically ranked 2nd

and 3rd respectively. The failure and repair criticality of each

component are given in Tables VI and VII, respectively.

Components R1 and R2 are ranked highest and can only be

failure critical. From this ranking, the system is most likely to

be in a working but critical state for components R1 and R2.

Should system performance be inadequate, then 2 steps can be

taken to increase system reliability.

1. The likelihood of this critical state occurring for either R1

or R2 can be reduced. In general this can be achieved by in-

creasing the availability of any components whose failure is nec-

essary for component to be failure critical.

2. The availability of components R1 and R2 can be increased

to reduce the likelihood of either causing system failure.

Components LU and L were ranked 2nd and 3rd highest, but

both components can only be repair-critical. Thus if the system
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is in a state such that components LU and L are repair critical,

it is vital that they are not repaired to a working state until the

system-state changes and they are not repair critical. It is not

appropriate to reduce the availability of components that can be

repair critical, instead.

The probability of existence of the necessary and sufficient

conditions for the component to be repair-critical needs to be

minimized.

The repair of a component which can be repair-critical needs

to be done at an appropriate time, i.e., when it is not repair-

critical (other component failures repaired first).
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