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SUMMARY 

This paper investigates the efficiency of a design 
optimization scheme which is appropriate for systems which 
require a high likelihood of functioning on demand. Traditional 
approaches to the design of safety critical systems follows the 
preliminary design, analysis, appraisal and redesign 
stages until what is regarded as an acceptable design is 
achieved. For safety systems whose failure could result in loss 
of life it is imperative that the best use of the available 
resources is made and a system which is optimal not just 
adequate is produced. 

The methodology presented in the paper retains the 
commonly used fault tree method to analyse the individual 
system designs. By the use of house events a single fault tree 
is constructed to represent the failure causes of each potential 
design to overcome the time consuming task of constructing a 
fault tree for each design investigated during the optimization 
procedure. 

The final design specification is acheved using a 
genetic algorithm to perform the optimization with the 
constraints incorporated by penalising the fitness of infeasible 
designs. To demonstrate the practicality of the method 
developed it has been applied to a High Integrity Protection 
System (HIPS). 

1. INTRODUCTION 

For safety systems installed on potentially hazardous 
plant it is essential that they have the maximum likelihood of 
working on demand possible for the resources available This is 
particularly true when the hazard could kill or injure members 
of the workforce or the public. 

Techniques such as fault tree analysis (Ref. I), 
networks (Ref. 2 ) ,  Markov analysis (Ref. 3) and simulation 
(Ref. 4) are now commonly used for system availability 
assessment. However, as with many other engineering 
disciplines they are used in a traditional design process of 
preliminary design, analysis, appraisal and redesign. The 
initial design specification is analysed to predict its likelihood 
of failure to perform according to the design intention. Its 
predicted performance is then compared to that which is 
considered acceptable. The criterion used to determine the 
adequacy of the design is usually a comparison with a pre- 
determined target figure for its availability. If the system 
performance is not acceptable then deficiencies in the design are 

removed and the analysis and appraisal stages repeated. When 
the predicted system performance is regarded as adequate the 
design process stops and the design is adopted. 

It is highly unlikely that the design parameters can be 
manually selected such that the optimal system performance is 
achieved within the available resources. An approach by which 
optimal performance can be obtained using the fault tree 
analysis method to determine the availability of each system 
design, was described in a paper in 1994 (Ref. 5) .  The 
methodology presented in this paper improves the efficiency of 
that used in the 1994 paper by incorporating the latest advances 
in the fault tree analysis technique using Binary Decision 
Diagrams (Refs. 6 - 10) and a Genetic Algorithm (Ref. 11) to 
perform the optimization. Genetic Algorithms have been 
shown to provide good results for reliability problems where 
distributions represent the component failure rates (Ref. 12). 

2. SYSTEM DESIGN CONSIDERATIONS 

Safety systems are designed to operate when certain 
conditions occur and act to prevent their development into a 
hazardous situation. As such there are certain features common 
to all safety protection systems. All safety systems have 
sensing devices which monitor for the occurrence of the 
triggering events. These sensors usually measure some process 
variable and transmit its current level to a controlling device. 
The controlling device determines whether the current situation 
is acceptable by comparing the input signal to a set point. 
When the sensed variable violates the set point the protective 
action is initiated. The protective action may either prevent a 
hazardous situation occurring or reduce its consequences. 

The design engineer has a number of choices to make 
regarding the structure and operation of the safety system which 
can influence reliability. These design options are described 
below. 

2. I Redundancy and diversity levels 
The safety system must be designed to have a high 

likelihood of working on demand. Thus single component 
failure should not be able to prevent the system from 
functioning. One means of achieving this is by incorporating 
redundancy or diversity into the system structure. Redundancy 
duplicates elements within a system while diversity involves 
the addition of a totally different means of achieving the same 
function. Both redundancy and diversity can be used at 
component level or sub-system level. 
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Increased levels of duplication in the form of fully 
redundant and fully diverse elements will also increase the 
number of spurious systems trips. To counteract this, partial 
redundancy is commonly utilised where k sensors of the n 
sensors fitted have to indicate the trip condition for action to be 
taken. 

2.2 Component selection 
Each component selected for the design will be chosen 

from a group of possible alternatives. For every valve, relay, 
pressure sensor, etc., for which a selection is to be made there 
will be several choices, each with associated characteristics 
such as failure rate in each failure mode, cost and time taken for 
their scheduled maintenance. The design engineer has to decide 
how to trade-off these characteristics to give the most effective 
option for the overall system performance. 

2.3 Maintenance interval 
Generally the time interval between preventive 

maintenance activities is assigned on an ad hoc basis. This is 
now changing with the more frequent application of reliability 
centred maintenance. Even so, the allocation of available 
maintenance effort is only considered after the system design 
has been finalised. Since component selection determines the 
time taken to maintain the system there are significant gains to 
be made by considering the maintenance frequency at the design 
stage. 

2.4 Limitations on the design choices 
There are many options open to the design engineer. 

To produce the most effective system these parameters need to 
be selected to give optimal system performance. The choice of 
design is not, however, unrestricted. Some of the possible 
design variations will not be feasible. Practical considerations 
of limits placed on resources will prevent a completely free 
choice of system design. Such considerations may include 
cost, limited maintenance effort, system weight, space 
limitations and other requirements of the system performance 
such as limits to the spurious trips occurrence rate. 

3. OPTIMIZATION SCHEME 

There are many mathematical optimization methods 
available. The application of methods such as linear 
programming, dynamic programming, non-linear programming 
and sequential unconstrained optimization (SUMT) to 
reliability problems is described by Tillman (Ref. 13). 
However, the features offered by the methods make them 
inappropriate for the type of problem considered in this paper. 

Many of the optimization methods require an explicit 
function (objective function) which defines how the 
characteristic to be minimized is related to the design variables. 
A variation in some of the design variables, such as redundancy 
levels, gives a discrete change in the structure of the system 
and prevents an objective function being deduced. 

Design variables which represent the levels of 
redundancy for a component are integer. If partial redundancy is 
incorporated through the use of voting systems, the number of 

successful channels to give the trip condition also needs to be 
chosen. This too is an integer variable for the design. 

When component types are selected there will be a 
choice from several options which fulfil the same function. 
For example equipment supplied from different manufacturers. 
A variable corresponding to each potential piece of equipment 
can take the value 1 to indicate its selection and 0 to represent 
non-selection. This Boolean variable is again an integer over a 
restricted range. The optimization scheme must be appropriate 
for integer variables. 

Constraint forms which are linear or non-linear 
functions of the design variables need to be incorporated in a 
general solution scheme. Constraints which determine aspects 
of the system performance (such as limitations on the expected 
number of spurious trips) which can only be evaluated by a full 
analysis of each potential design (implicit constraints) may 
also be specified. 

Recent algorithms such as simulated Annealing and 
Genetic Algorithms (Ref. 1 1 )  provide alternative methods 
which can cope with the features of design optimization. Any 
algorithm which is used to optimize the availability of a safety 
system must possess the following characteristics: 
1 Efficient analysis routine to quickly evaluate a large 

number of potential designs. 
2 .  An optimization strategy which: 

(a) does not require an explicit objective function, 
(b) is appropriate for integer variables, 
(c) can cope with implicit and explicit constraint forms of 

(d) does not require linear forms of explicit constraints. 
equality or inequality type. 

4. SYSTEMS ANALYSIS 

Whichever optimization scheme is employed (but 
particularly for Genetic Algorithms) the analysis of a large 
number of potential designs is required. The most effective 
means of assessing the availability of safety systems is fault 
tree analysis. However, it is a time consuming task to 
construct and analyse a fault tree for each potential design. 
Manual construction of the fault tree for each design would 
make the optimization scheme impractical and computer 
construction processes are not yet developed to the required 
standard. This difficulty can be resolved by constructing a 
single fault tree to represent all possible design variations. 
House events in the fault tree which are either TRUE or 
FALSE are utilised to switch on or off different branches to 
model the changes in the causes of system failure for each 
design alternative. The house event structures are used as 
defined below for the different design variables: 

4.1 Component type selection 
Consider a component type which is to be selected 

such as a valve. If there are three potential valves to select 
from, then define the design variables H1, H2 and H3 take the 
value 1 if the appropriate valve is selected and 0 if it is not. If 
H 1 ,  H2 and H 3  are non-negative integers then the following 
constraints need to be incorporated in the optimization problem 
definition. The H1 I 1,  H2 I 1,  H 3  I 1, H 1 +  H2 + H3 = 1 .  
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cost of each component and the time required for their 
maintenance may also need to be incorporated into other 
potential constraints. The fault tree structure for failures of the 
valve, whichever is selected, is shown in figure 1. 

Failure a 
I 

I 1 

Valve No1 
selected U and Fails 

selected 
and Fails 

Valve No3 

and Fails 

ri il 
Fitted Fitted Fitted VI 

H1= 1 H 2 =  1 

Figure 1. Fault Tree Structure for Component Selection 

4.2 Redundancy Levels 
For a sub-section or component which may be 

duplicated in the system design to provide redundancy, an 
integer design variable may be set to indicate the number of 
duplications. For example, if N represents the number of 
pressure transmitters on a system then for a failure of this sub- 
section to result in system failure it would need to affect all 
fitted channels. The fault tree structure can again be 
constructed for each design option, using house events as 
shown in figure 2 where a maximum of three levels of 
redundancy is allowed. 

~ 
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Figure 2. Fault Tree Structure for Redundancy Levels 

The constraints 1 5 N I 3 would be added to the problem 
constraint list and depending on the value of N one or more 
Rouse events would be set. 

Changing the time interval between inspections will 
increase the probability of the existence of dormant, unrevealed 
component failures, Variation in this design parameter will 

change the probability of occurrence of the relevant basic 
events in the fault tree. 

5. BINARY DECISION DIAGRAMS 

During the optimization phase of the design scheme it 
will be requid to derive the system failure probability for a 
large number of potential designs. To ensure that this can be 
achieved in the most efficient manner the fault tree structure 
representing the failure of all system designs will be converted 
to a Binary Decision Diagram (BDD). Analysis of BDDs has 
been shown to be much faster then the quantification of the 
fault tree structure itself. 

A BDD is a directed acyclic graph. All paths through 
the BDD terminate in one of two states, either a 1 state, whch 
corresponds to system failure, or a 0 state which corresponds to 
a system success. All the paths terminating in a 1 state give 
the cut sets of the fault tree. A BDD is composed of terminal 
and non-terminal vertices, which are connected by branches. 
Terminal vertices have the value 0 or 1 and non-terminal 
verticescorrespond to the basic events of the fault tree. Each 
vertex has a 0 branch which represents basic event non- 
occurrence (works) and a 1 branch which represents basic event 
occurrence (fails). As an example BDD consider figure 3. 

XI rootveltex Q 

Figure 3. Example BDD 

All the left hand branches leaving each vertex are the 1 
branches and all the right hand branches are the 0 branches. 

Every path starts from the Top basic event, called the 
root vertex, and proceeds down through the diagram to the 
terminal vertices. Only the vertices that lie on a 1 branch on 
the way to a terminal 1 vertex are included in a path which 
represents the cut sets. For example the paths, or cut sets, of 
the BDD shown in figure 3 are: 

(1) 
x3 .x4 (2) 
X l . X 2  

The BDD represents the same logical function as its equivalent 
fault tree. 

Approaches to construct and quantify the BDD ate 
given in detail elsewhere (Refs. 6-7). Where House events ate 
encountered in the fault tree they are treated as Basic events for 
the purpose of BDD construction. Using this process the fault 
tree shown in figure 1 for the component selection design 
variables can be represented by the BDD shown in figure 4 
(using an ordering of basichouse events. 
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V1< H1< V2 < H2 < V3< H3). 

Figure 4. Component Selection BDD 
The quantities appearing on the 1 and 0 branches developed 
from each node in figure 4 represent the probability of going 
down each path (component failure, component success). The 
probability of each path to a terminal one node can be obtained 
by taking the product of the individual probabilities 
encountered in travelling along the path. Since each of these 
paths represents a mutually exclusive set of events the system 
failure probability is determined by summing the probability of 
each such path to a terminal 1. 

The house events are turned on and off by setting their 
probability to one or zero respectively. For example consider 
the design where valve type number one has been selected for 
the fault tree shown in figure 1. This is presented by 
H1= 1, H2 = 0, H3 = 0 in the design variables. Therefore 

considering probabilities q H 1  = 1 , q ~ 2  = 0 and q H 3  = 0 on 
the BDD shown in figure 4. If q H 2  and q H 3  are zero the 
only paths which can exit from nodes H2 and H3 are along the 
zero branches which only lead to a terminal 0. The only path 
to a terminal 1 node leaves nodes V1 and H1 on their 1 
branches which has probability qv1 as required. 

The representation of redundancy levels by house 
events is manipulated in the same way. This means that in 
converting the fault tree to a BDD all design variables are 
adjusted by altering node event probabilities. 

~ 
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6. GENETIC ALGORITHMS 

Genetic Algorithms are a class of optimization 
procedures that use principles mimicking those of natural 
selection and genetics. 

Genetic algorithms require the parameter set of an 
optimization problem to be coded as a finite-length string over 
some finite alphabet. These strings are analogous to 
chromosomes in nature and the ensemble of possible values the 
parameter set can take is comparable to a gene pool. 

The genetic algorithm initialises and maintains a 
population of individuals, i.e. strings, over successive 
generations which evolve according to rules of selection. Each 
individual in the population receives a measure of its fitness in 
the environment. Reproduction then focuses attention on 
highly fit individuals, by exploiting the available fitness 
information. 

The whole process is influenced by the action of 
genetic operators, typically this consists of “genetic” crossover 
and mutation, though others have also been used. These 
operators perturb individual strings providing potential for 
exploration around the gene pool. 

Crossover involves mating two individuals, selected 
to enter the next generation, by crossing parts of their solution 
strings. Consider, for example, two strings: 

s1 = 011010 s 2  = 101100 

If the crossover point is chosen to be 3; the strings used in the 
next generation are: 

sr = 01 1 100 s2 = 101010 

Mutation is generally the random alteration of a 
parameter value on the solution string. As regards a binary 
coded string this simply means changing a 1 to a 0 and vice 
versa. 

Reproduction and crossover effectively explore the 
search space. Occasionally, however, they may become 
overzealous and loose some potentially useful ‘genetic 
material’. Mutation helps maintain sufficient diversity in the 
population. 

Genetic algorithms are robust in application to a wide 
variety of problem domains, including high dimension, 
stochastic problems, with many nonlinearities and 
discontinuities. They differ from traditional optimization 
techniques in that they work with a coding of the parameter set 
and not the parameters themselves. They simultaneously search 
a population of points in the solution space and use objective, 
i.e. the fitness, rather than auxiliary information, such as 
gradients. 

7. EXAMPLE 

As an example, the technique has been applied to the 
simple high pressure protection system taken from (Ref. 5) .  
The basic features of the high pressure protection system are 
shown in figure 5. Its function is to prevent a high-pressure 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on October 31, 2008 at 08:39 from IEEE Xplore.  Restrictions apply.



surge passing through the system. In this way protection is 
provided for processing equipment whose pressure rating would 
be exceeded. The high pressure originates from a production 
well of a not normally manned offshore platform and the pieces 
of equipment to be protected are vessels located downstream on 
the processing platform. 

The first level of protection is to be the ESD 
(emergency shutdown) sub-system. Pressure in the pipeline is 
monitored using pressure transmitters (PTs). When the 
pipeline pressure exceeds the permitted value then the ESD 
system acts to close the Wing and Master valves on the well 
together with any ESD valves that have been fitted. 

To provide an additional level of protection a second 
level of redundancy can be incorporated by the inclusion of a 
HIPS (high-integrity protection system). This works in a 
similar manner to the ESD system but is completely 
independent in operation. 

Even with a relatively simple system such as this 
there are a vast number of options for the designer to considers. 
In this example it is required to determine values for the design 
variables that represent the following: 

Component Failure rate 

Wing valve 1.14 x 105 
Master valve 1.14 x 105 

Designer Options 

Mean Cos t  Test  
repair t ime 
t ime  
36.0 100 12 
36.0 100 12 

How many ESD valves are required 
(0, 1,2>? 

How many HIPS valves are required 
(0, 1, 2)? 

How many pressure transmitters for 
each sub-system (0, 1, 2, 3, 4)? 

How many transmitters are required to 

Which of two possible ESD/HIPS 
valves to select? 

Which of two possible pressure 
transmitters to select? 

Maintenance test interval for each sub- 
system (1 week - 2 years)? 

trip? 

HIPS valve 1 
HIPS valve 2 
ESDV valve 1 

Limitations have been placed on the design such that: 
1. The total system cost must be less than loo0 units. 

Hardware costs are given in table 1 .  
2. The average time each year that the system resides in the 

down state due to preventive maintenance must be less 
than 130 hours. Times taken to service each component at 
each maintenance test are also shown in table 1. 

5.44 x 106 36.0 250 15 
1 x 105 36.0 200 10 

5.44 x 106 36.0 250 15 

Sub-system I Sub-system 2 

Solenoid valve 
Relay contacts 
Pressure 
transmitter 1 
Pressure 
transmitter 2 
Computer 

Well 

5 x 106 36.0 20 5 
0.23 x 106 36.0 1 2 
1.5 x lo6 36.0 20 1 

7 x  106 36.0 10 2 

1 x 105 36.0 20 1 

Figure 5. High-integrity protection system (HIPS) 

Table 1. Component data 

8. GENETIC ALGORITHM IMPLEMENTATION 

SGA-C is a C-language translation and extension of 
the original Pascal SGA, simple genetic algorithm, code 
presented by Goldman (Ref. 11). This package was used as a 
framework to build the genetic algorithm software package for 
the safety protection system optimization. The user may 
choose parameters governing population size, number of 
generations, crossover and mutation rate. The following is a 
discussion of the significant changes and extensions necessary 
to carry out the modelling for the HIPS optimization. 

8.1 Coding and initialising the population 
Each solution string represents a particular system 

design depending on the values assigned to each of its 10 
parameters. Each parameter must be allowed a particular length 
of the string, i.e. a particular number of bits, in order to 
accommodate its largest possible value in binary form. For 
example 81, the parameter governing the maintenance test 
interval for subsystem 1, requires 7 bits to accommodate its 
maximum time span of 104 weeks. In total each string 
representing all design variables is 32 bits in length and can be 
interpreted as a set of concatenated integers coded in binary. 

Initialising random strings of 1’s and 0’s directly may 
create non-feasible system designs. For example, consider NI,  
the parameter governing the number of pressure transmitters for 
subsystem 1. The design can accommodate 0 through to 4 
pressure transmitters, thus 3 bits of the string are allocated to 
accommodate this parameter. Random initialisation of these 3 
bits of the string can produce eight different combinations, i.e. 
corresponding to 0 through to 7 in denary form. The 
combinations 0 to 5 are feasible, however, the other 3 are not. 
To overcome this the initialisation procedure uses two routines 
to create the binary strings in two stages. 
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The first function initialises the string in integer form 
parameter by parameter using a random number function which 
only generates numbers between specific stated ranges. These 
integer values for each string are stored in data structures. 

A second function than inserts each initialised integer 
value, in its binary form into the correct area of the 32 bit 
string. This cycle is carried out as many times as required to 
create a population of M feasible individuals. 

8.2 Evaluating string fitness 

A simple explicit objective function to calculate the 
fitness of each string does not exist. The fitness of each string 
comprises 3 parts; 

Probability of system unavailability, QSYS, 
penalty for exceeding the total cost of the string, 
penalty for exceeding the total maintenance down-time 
constraint. 

Calculating each string's cost and maintenance 
downtime (MDT) is fairly straightforward. Both these 
constraints do use an explicit formula with data values. 

The probability of system unavailability proved more 
difficult. This involved utilising a BDD, incorporated into the 
Genetic Algorithm software package. By entering the specific 
probabilities of each basic event for a particular string, this 
method is capable of representing the causes of dormant failure 
for each possible system design. 

String fitness must, however, be represented in the 
SGA as one value only. This value is then used to determine 
which members of the population will be reproduced into the 
next generation. The probability of system unavailability is 
the value in which we are ultimately interested, but as 
mentioned before the sting must not exceed certain design 
limitations. For this reason the values for cost and MDT must 
be used to penalise the probability of system unavailability if, 
and only if, either exceed their limits, i.e., 

cost > 1000 units, MDT > 130 hours. 

Penalty formulae were thus derived for both cost and MDT. 
During MDT components in the safety system are 

being inspected so the safety system is unavailable. Hence 
MDT above 130 hours per year directly affects the 
unavailability of the system. 130 hours or below is feasible 
and incurs no penalty. If the MDT of a particular string 
exceeds 130 hours; 

Qsys' = Qsys + (MDT- 130)/ 8760 for MDT > 130. 

Where: 

unavailability 
Qsys = unpenalised probability of system 

8760 = hourslyear 
Qsys' = penalised probability of system 

unavailability 

It is relatively easy to prescribe a penalty for 
exceeding this constraint since it directly affects the 
unavailability. 

The second constraint is cost which must be less than 
1000 units. It is difficult to fix a penalty value for exceeding 
this constraint. There are many approaches which could be 
used. It is assumed here that a direct relationship exists 
between cost and performance. If cost exceeds its limit by 100 
units, i.e. 10 percent, we would expect an increase in 
performance by the particular design of at least 10 percent. 

As an example a theoretical system with a probability 
of system unavailability equal to 0.02 and cost 1000 units was 
considered. The value 0.02 is accepted as a reasonable value for 
system unavailability. If the cost of the system increases to 
1100 units, we would expect that the probability of system 
unavailability would decrease to 0.01 8. This relationship is 
linear. String designs with excessive cost will not be adopted 
and must be heavily penalized. This implies the use of an 
exponential relationship would be more appropriate. Hence the 
following form is assured; y = x%. Consequently the 
penalty function for excess cost was chosen to be; 

COST PENALTY = (EXCESS COST / 1000)A x 0.002 

and hence, 

Qsys' = Qsys + COST PENALTY 

N.B. The value of 0.002 comes from 10% of the value 0.02 
chosen initially as a reasonable estimate of system 
unavailability. 

8.3 Converting string fitness 

As stated earlier the main purpose of the fitness value 
is to establish which strings will be reproduced in the next 
generation. 

In the safety system optimization problem the smaller 
the fitness value the fitter the string and hence, the greater its 
chance of reproduction. For cases such as these a possible 
approach is to use its reproduction probability as one minus 
the fitness value. This, however, causes problems. Most final 
system unavailability values lie between 0 and 0.1. One 
minus these values results in the majority of numbers around 
0.95. This method does not give a high enough priority to the 
fitter strings. Hence, a more specific method to convert the 
fitness values to a reproduction probability was derived. 

Predominantly only those strings with a final system 
unavailability of less then 0.1 are of interest. For this reason 
any string with an unavailability greater than 0.2 is 
immediately eliminated, i.e. given a fitness percentage of 0, so 
that they have no chance of being chosen for the next 
generation. Strings with an unavailability between 0.1 and 0.2 
are assigned reproduction probabilities which take up a total of 
5% of the chance of being selected for the next generation. The 
main reason for this being to combat premature convergence in 
that they have a chance to be chosen for the next generation, all 
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be it very small. This results in the fittest strings occupying 
95% of the wheel. 

The fitness values are now in a state appropriate for 
random selection using the reproduction probabilities. 

4 -  
c 
3 
i 
5 3.5 

2 3- 
z 
3 
2.5 

2- 

1.5 

9. RESULTS 

The program was used with a population of 10 
strings. A maximum of 50 generations was entemi, along 
with a mutation rate of 0.005 and crossover rate 0.7. Thus, in 
total, 500 results were obtained over the 51 populations 
analysed. The running time of the program was an order of 
minutes . 

From the results of the program two important factors 
were considered, the average string fitness and the best string 
fitness in each generation. These are shown in figures 6 and 7 
respectively. 

The initial population produced a set of strings with 
string fitness values ranging between 1.0 and 0.0052. Over 
successive generations the action of the genetic algorithm 
successfully produced string fitness convergence. 

Generation 10 showed a reduced range of fitness 
values, 0.01208 to 0.00356. Additionally, the parameters of 
each string started to show convergence. Generation 30 
onwards then began to represent dominance by highly fit 
strings. 

The fittest string from the entire process arose in 
generation 38, however, significant variation in the population 
still existed. Generation 50 showed almost total convergence 
to a very slightly less fit string with the final population's 
average fitness value of 0.002268. The fittest strings, having a 
penalized probability of system unavailability equal to 
0.00172. This string design has the following characteristics. 

M.T.I. for subsystem 1 : 54 hours. 
M.T.I. for subsystem 2 : 32 hours. 
and hence M.D.T. : 115.3 hours. 

Cost: 923 unit. 

- 

- 

- 

Subsystem 1: 
1 Pressure transmitter, hence 1 to trip, 
1 ESD valve. 

1 Pressure transmitter, hence 1 to trip, 
2 HIPS valves. 

Subsystem 2: 

Valves of type 2 
Pressure transmitter of type 1. 

This design achieves an unavailability of 1.72 x lo". 
The overall fittest string of generation 38 has a fitness value of 
0.001395. This design is an exact replica of the description 
above except that the M.T.I. for subsystem 2 is slightly lower 
at 26 hours and hence the M.D.T. is 128.8 hours. This system 
gives an unavailability of 1.395 x which optimizes the 
test intervals. 

Due to the random nature of the algorithm the genetic 
operator convergence is not necessarily smooth. It is, 
however, very effective. Unfit strings 'thrown up' due to 
mutation or crossover are promptly eliminated. Conversely 

highly fit strings lost through the action of the genetic 
algorithm are subsequently reintroduced into later generation. 

BEST STRING flTNESS PER GENERATlON 

mulalion: 0.005 
crossover: 0.7 

4.5 

11 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5  

GENERATION 
0 

Figure 6. 
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Figure 7. 
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1. 

2. 

3. 

4. 

CONCLUSIONS 

The use of House events in a fault tree structure can be 
used to represent the failure causes of all potential designs. 
Converting the fault tree structure to a Binary Decision 
Diagram results in all types of design parameters 
(component selection, redundancy levels and test intervals) 
being represented by ‘probability’ values in the analysis. 
The BDD also provides an efficient analysis method for all 
design options. 
The use of a Simple Genetic Algorithm provides a means 
of optimization which is capable of coping with all the 
requirements of the design problem. 
The approach was successfully tested on a High Pressure 
Protection System. 

REFERENCES 

~ 

1. J.D. Andrews, T.R. Moss, “Reliability and Risk 
Assessment”, 1993; Longmans. 

2. R. Billinton, R. Allan, “Reliability Evaluation of 
Engineering Systems, 2nd edition, 1993; Pitman. 

3. A. Villmeur, “Reliability, Maintainability and Safety 
Assessment”, Volume 2, 1992; Wiley. 

4. E.J. Henley, H. Kumamota, “Reliability Engineering and 
Risk Assessment”, 1981; Prentice-Hall. 

5 .  J.D. Andrews, “Optimal Safety System Design Using 
Fault Tree Analysis”, Proc. ZMechE, Vol. 208, 1994, pp 123- 
131. 

6. A. Rauzy, “New Algorithms for Fault Tree Analysis”, 
Reliability Engineering and System Safety, Vol 40, 1993, pp 

7. R.M. Sinnamon, J.D. Andrews, “Fault Tree Analysis and 
Binary Decision Diagrams”, Proceedings of 1996 Reliability 
and Maintainability Symposium, Las Vegas, Jan 1996, pp 
215-222. 

8. R.M. Sinnamon, J.D. Andrews, “New Approaches to 
Evaluating Fault Trees”, Proceedings of ESREL 95 conference, 
June 1995, pp 241-254. 

9. R.M. Sinnamon, J.D. Andrews, “Improved Efficiency in 
Qualitative Fault Tree Analysis”, Proceedings of 12th ARTS,  
Manchester, April 1996. 

R.M. Sinnamon, J.D. Andrews, “Improved Accuracy 
in Quantitative Fault Tree Analysis”, Proceedings of 12th 
ARTS, Manchester, April 1996. 

11. D.F. Goldberg, “Genetic Algorithms in Search 
Optimization and Machine Learning”, 1989; Addison-Wesley. 

12. L. Painton, J. Campbell, “Genetic Algorithms in 
Optimization of System Reliability”, IEEE Trans. Rel, Vol. 
44, No2, June 1995, pp 172-178. 

F.A. Tillman, C. Hwang, W. Kuo, “Optimization of 
Systems Reliability”, 1980; Marcel Decker. 

203-2 1 1. 

10. 

13. 

BIOGRAPHIES 

John D. Andrews, PhD, BSc. 
Department of Mathematical Sciences 
Loughborough University 
Loughborough, Leics. LE1 1 3TU, U.K. 
E-mail:J.D.Andrews @lboro.ac.uk 

Dr John Andrews currently lectures in Risk and Safety 
Assessment Techniques in the Department of Mathematical 
Sciences at Loughborough University. Prior to this 
appointment he was a Senior Lecturer in the Department of 
Mechanical and Production Engineering at Birmingham 
Polytechnic and has also had two periods of employment as a 
Senior Scientist Engineer in the Research and Development 
Division at British Gas 

His industrial work has involved research into 
methods of assessing the safety and risk of potentially 
hazardous industrial activities. This research is now continuing 
at Loughborough University. Dr Andrews is currently a 
member of committees of the Institution of Mechanical 
Engineers and the Safety and Reliability Society which focus 
on Risk, Safety and Reliability issues. 

Rachel L. Pattison, BSc. 
Department of Mathematical Sciences 
Loughborough University 
Loughborough, Leics. LE1 1 3TU, U.K. 
E-mail:R.L.Pattison@lboro.ac.uk 

Rachel Pattison is a second year PhD student working 
with Dr John Andrews on Reliability theory, mainly 
optimization of safety systems. She also tutors in Reliability 
and Mathematics of engineering at Loughborough University. 
Her BSc Joint Honours is in Mathematics, Physical Education 
and Sports Science and was gained at Loughborough. 

1997 PROCEEDINGS Annual RELIABILITY and MAINTAINABILITY Symposium 83 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on October 31, 2008 at 08:39 from IEEE Xplore.  Restrictions apply.

mailto:lboro.ac.uk
mailto:E-mail:R.L.Pattison@lboro.ac.uk

