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Genetic algorithms in optimal safety system design

R L Pattison and J D Andrews*

Department of Mathematical Sciences, Loughborough University, Leicestershire, UK

Abstract: This paper describes a design optimization scheme for systems that require a high

likelihood of functioning on demand. For safety systems whose failure could result in loss of life it

is imperative that the best use of the available resources is made and that a system which is optimal

and not just adequate is produced.

To demonstrate the practicalities of the method it has been applied to a high-integrity protection

system. Analyses of individual system designs are carried out using the latest advances in the fault

tree analysis technique utilizing the binary decision diagram approach.

A genetic algorithm (GA) is used to perform the optimization resulting in the final design

specification. Techniques are introduced to penalize the fitness of infeasible designs and to incorpo-

rate these values into the GA.

The latter part of the paper considers the effect of varying parameters, which affect the action of

the GA. A parameter combination is suggested which may achieve the most effective exploration of

the search space and, thus, result in the best system design.

Having implemented the GA it became apparent that areas of the algorithm could be improved.

The latter part of the paper investigates suggested improvements to particular processes of the

scheme.
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1 INTRODUCTION

Failure of a safety system for a potentially hazardous

industrial system or process may have severe conse-

quences, possibly injuring members of the workforce or

public and occasionally resulting in loss of life. It is,

therefore, imperative that such systems have a high

likelihood of functioning on demand.

One measure of system performance is the probability

that the system will fail to operate when necessary.

Typically the design of a safety system follows the

traditional design process of preliminary design, analysis,

appraisal and redesign. If, following analysis, the initial

design does not meet some predetermined acceptability

target for system unavailability, deficiencies in the design

are removed and the analysis and appraisal stages are

repeated. Once the predicted system unavailability of a

design reaches the acceptable criteria, the design process

stops and the system is adopted. For a system whose

failure could result in fatality, it could be considered that

a merely adequate level for system unavailability is not

sufficient. The aim should be to produce the optimal

performance attainable within the constraints imposed

on resources.

It is highly unlikely that the design parameters can be

manually selected such that the optimal system perfor-

mance can be achieved within the available resources. An

approach, by which optimal performance can be ob-

tained using the fault tree analysis method to determine

the availability of each system design, was described in

a paper in 1994 [1]. An alternative methodology was

presented in a later paper [2], which incorporated the

latest advances in the fault tree analysis technique, using

binary decision diagrams [3–7] and utilized a genetic

algorithm (GA) [8, 9] to perform the optimization. The

research presented in this paper extends the approach in

reference [2] by investigating the effects of modifying the

GA process and the parameter values used. The GA

process is thus more accurate and effective.

2 SAFETY DESIGN CONSIDERATIONS

Safety systems are designed to operate when certain

conditions occur and act to prevent or mitigate their
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development into a hazardous situation. Where poss-

ible, a safety system should not be designed such that

single component failure can prevent the system from

functioning. To ensure this, redundancy or diversity

can be incorporated into the system. Redundancy du-

plicates elements within a system while diversity in-

volves the addition of a totally different means of

achieving the same function.

Component selection is a second design option. Each

component selected for the design is chosen from a

group of possible alternatives. The design engineer must

decide how to trade off the specific characteristics of

each component to give the most effective overall sys-

tem performance.

The time interval between preventative maintenance

activities is a further consideration. This is generally

assigned on an ad hoc basis after the design has been

fixed. Significant gains are to be made by considering

the maintenance frequency at the design stage.

The choice of design is not, however, unrestricted.

Practical considerations place limits on resources,

which prevent a completely free choice of system de-

sign, rendering some design variations infeasible.

3 THE DESIGN OPTIMIZATION PROBLEM

The objective of the design optimization problem is to

minimize system unavailability by manipulating the

design variables such that limitations placed on them

by constraints are not violated. Commonly with mathe-

matical optimization problems, such as linear program-

ming, dynamic programming and sequential

unconstrained optimization [10], there will be an ex-

plicit objective function which defines how the charac-

teristic to be minimized is related to the variables.

In this problem an explicit objective function cannot

be formulated. The system performance is assessed

using a fault tree specifically representing the design in

question.

The nature of the design variables also adds difficulty

to the problem. Design variables that represent the

levels of duplication for fully or partially redundant

systems and the number of weeks between maintenance

activity are all integer. Selecting component types is

governed by Boolean variables, i.e. selection or non-se-

lection. A numerical scheme is, therefore, required that

produces integer values for these variables since it will

not be appropriate to utilize a method where real

numbers are rounded to the nearest whole number.

Constraints involved in this problem fall into the

category of either explicit or implicit constraints. The

cost and maintenance downtime can be represented by

an explicit function of the design parameters. However,

the number of spurious trips can only be calculated via

a full analysis of the system, which will again employ

the fault tree analysis technique.

4 GENETIC ALGORITHMS

GAs are a robust class of optimization techniques that

use principles mimicking those of natural selection and

genetics. Each system design is coded as a string of

parameter values. Each string is analogous to a chro-

mosome in nature. The method then works with a

population of strings.

The structure of the GA is that each string is as-

signed a measure of its fitness in the environment.

Selection (or reproduction as it is also known) then

exploits this fitness information. The greater the fitness

value the higher is the string’s chance of being selected

to enter the next generation.

The whole process is influenced by the action of the

genetic operators, typically cross-over and mutation.

These perturb the parameter information on each string

and allow for greater exploration about the search

space.

The basic method of selection allocates offspring to

the next generation via a biased roulette wheel. Each

string is assigned a certain percentage of the roulette

wheel depending on the size of their fitness value in

relation to the other strings in the population.

Cross-over involves crossing information between

two solution strings, already selected to enter the next

generation, from some randomly determined cross-over

point. Mutation is the alteration of a specific parameter

value on the solution string. Both operators enable

exploration of different system designs.

5 SYSTEM ANALYSIS

5.1 Use of fault trees

As no explicit objective function exists, fault trees are

used to quantify the system unavailability of each po-

tential design. It is, however, a time-consuming imprac-

tical task to construct a fault tree for each design

variation.

To resolve this difficulty, house events can be used to

enable the construction of a single fault tree capable of

representing causes of the system failure mode for each

possible system design. House events in the fault tree,

which are either TRUE or FALSE, are utilized to

switch on or off different branches to model the

changes in the causes of failure for each design

alternative.

Consider, for example, the choice of a valve type,

from the possible alternative valves V1,V2 or V3. The

structure of the tree is as shown in Fig. 1. If valve type

Proc Instn Mech Engrs Vol 213 Part E E02198 © IMechE 1999
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Fig. 1 Fault tree structure for component selection

1 is selected the house event H1, corresponding to the

selection of this valve is set to TRUE. House events H2

and H3, corresponding to the selection of V2 and V3,

are conversely set to FALSE. A contribution to the top

event arises from the left-most branch only. The two

right-most branches are in effect switched off. Levels of

redundancy are handled in a similar manner.

The spurious trip frequency for each design is an

implicit constraint that requires the use of a fault trees

analysis to assess its value. House events are again used

to construct a fault tree capable of representing each

potential design for this failure mode.

5.2 Use of binary decision diagrams

In order to improve efficiency the binary decision dia-

gram (BDD) method is used to solve the resulting fault

tree. A BDD is a directed acyclic graph composed of

terminal and non-terminal vertices, which are con-

nected by branches. Terminal vertices have the value 0

or 1 and non-terminal vertices correspond to the basic

events of the fault tree. Each vertex has a 0 branch

which represents basic event non-occurrence (works)

and a 1 branch which represents basic event occurrence

(fails). Thus, all paths through the BDD terminate in

one of two states, either a 1 state, which corresponds to

system failure, or a 0 state, which corresponds to a

system success. The BDD represents the same logical

function as the fault tree from which it is developed. As

an example consider the BDD illustrated in Fig. 2.

Analysis of a BDD has proven to be more efficient

than the quantification of the fault tree structure itself.

This is because evaluation of the minimal cut sets for

use in the quantification is not required. In addition the

BDD produces more accurate results.

The fault tree structures for each system failure mode

are converted to their equivalent BDDs. A full descrip-

tion of the conversion process can be found in refer-

ences [3] and [4]. For the purpose of BDD construction,

where house events are encountered in the fault tree,

they are treated as basic events. Using this process the

fault tree for the component selection design variables,

shown in Fig. 1, can be represented by the BDD in Fig.

2.

The quantities q appearing on the 1 and 0 branches

developed from each node in Fig. 2 represent the

Fig. 2 Component selection BDD

E02198 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part E
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Fig. 3 High-integrity protection system

probability of going down each path. The house events

are turned on or off by setting their probability to 1 or

0 respectively. Consider, for example, the design where

valve 1 has been selected for the fault tree shown in Fig.

1. This is presented by H1=1, H2=0, H3=0 for the

house events and hence the corresponding probabilities

qH1=1, qH2=0 and qH3=0 are set on the equivalent

BDD. The only path to a terminal 1 node leaves V1

and H1 on their 1 branches which has probability qV1

as required.

Quantification of the BDD can be carried out in the

GA source code. The probability values assigned to

each house event, determined by the design in question,

are available within the package and hence are auto-

matically assigned to the BDD. In terms of practicality

this is the major advantage of the BDD.

6 EXAMPLE

As an example, the technique has been applied to the

simple high-pressure protection system taken from ref-

erence [2]. The basic features of the high-pressure pro-

tection system are shown in Fig. 2. Its function is to

prevent a high-pressure surge passing through the sys-

tem. In this way protection is provided for processing

equipment whose pressure rating would be exceeded.

The high pressure originates from a production well of

an offshore platform not normally manned and the

pieces of equipment to be protected are vessels located

downstream on the processing platform.

The first level of protection is to be the emergency

shut-down (ESD) subsystem. Pressure in the pipeline is

monitored using pressure transmitters (PTs). When the

pipeline pressure exceeds the permitted value, then the

ESD system acts to close the wing and master valves on

the well together with any ESD valves that have been

fitted.

To provide an additional level of protection, a sec-

ond level of redundancy can be incorporated by inclu-

sion of a high-integrity protection system (HIPS) (Fig.

3). This works in a similar manner to the ESD system

but is completely independent in operation.

Even with a relatively simple system such as this

there are a vast number of options for the designer to

consider. In the example it is required to determine

values for the design variables given in Table 1. Limita-

tions have been placed on the design as follows:

1. The total system cost must be less than 1000 units.

Hardware costs are given in Table 2.

2. The average time each year that the system resides

in the down state owing to preventative mainte-

nance must be less than 130 h. The times taken to

service each component at each maintenance test are

also shown in Table 2.

3. The number of times that a spurious system shut-

down occurs would be unacceptable if it was more

than once per year.

7 GENETIC ALGORITHM IMPLEMENTATION

SGA–C is a C-language translation and extension of

the original Pascal simple genetic algorithm (SGA) code

presented by Goldman [8]. This package was used as a

framework to build the GA software for the safety

protection system optimization. Significant changes and

extensions were necessary to carry out the modelling of

the HIPS optimization.

Table 1 Design variables required

Design variableDesigner option

EHow many ESD valves are required (0, 1, 2)?
How many HIPS valves are required (0, 1, 2)? H

N1, N2How many pressure transmitters are required
for each subsystem (0, 1, 2, 3, 4)?

How many transmitters are required to trip? K1, K2

VWhich of two possible ESD/HIPS valves should
be selected?

Which of two possible pressure transmitters P
should be selected?

Maintenance test interval (MTI) for each u1, u2

subsystem (1 week–2 years)?

Proc Instn Mech Engrs Vol 213 Part E E02198 © IMechE 1999
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Table 2 Component data

Dormant failures

Mean repair
timeFailure rateComponent Cost Test time

12Wing valve 1001.14×105 36.0
12Master valve 1.14×105 36.0 100
15HIPS1 2505.44×106 36.0

200 10HIPS2 1×105 36.0
15ESDV1 2505.44×106 36.0

200 10ESDV2 1×105 36.0
5Solenoid valve 205×106 36.0

1 2Relay contacts 0.23×106 36.0
1PT1 201.5×106 36.0

10PT2 27×106 36.0
20Computer logic 1×105 136.0

stated limits, the respective penalty is added to the

system unavailability of the design in question. The

forms of penalty function used are described in Section

10.2:

Q %SYS=QSYS+CPEN+MDTPEN+STPEN (1)

where

Q %SYS=penalized probability of system

unavailability

QSYS=unpenalized probability of system

unavailability

CPEN=penalty exerted due to excess cost

MDTPEN=penalty due to excess MDT

STPEN=penalty due to excess spurious trips

7.3 Reproduction probabilities

The fitness value, or penalized system unavailability, is

evaluated for each string. For the purpose of selection

in the GA, each string is assigned a reproduction

probability which is directly related to its fitness value.

In the safety system optimization problem the smaller

the fitness value, the fitter is the string, and hence the

greater should be its chance of reproduction. For cases

such as these a possible approach is to let the reproduc-

tion probability be one minus the fitness value. How-

ever, using a string’s availability produces all

reproduction probabilities of a similar value, thus de-

tracting from the fitness information available to the

GA. A more specific method is required which retains

the accuracy of each string’s fitness value during con-

version to its corresponding reproduction probability.

Section 10.3 considers this conversion method further

and investigates a more effective alternative.

8 RESULTS

The program was used with a population of ten strings.

A maximum of 50 generations was allowed together

with a mutation rate of 0.01 and cross-over rate of 0.7.

In total, therefore, 500 system evaluations were per-

formed in determining the best design. The running

time of the program was of the order of minutes. The

fittest string from the entire process arose in generation

15. The characteristics of this design are specified in

Table 3.

Convergence to a fit design through the GA is not

necessarily smooth. A particularly fit string may be

produced in an early generation as a result of its

random nature; else the structure of the GA may enable

uniform convergence to a fit string over later

generations.

7.1 Coding and initializing the population

To specify a safety system design a value is assigned to

each of the ten design parameters. These values are

then expressed in binary form and placed contiguously

to form a string of binary digits. Each parameter must

be allowed a particular length of the string, i.e. a

particular number of bits, in order to accommodate its

largest possible value in binary form. For example u1,

the parameter governing the MTI for subsystem 1

requires 7 bits to accommodate its maximum time span

of 104 weeks. In total each string representing all design

variables is 32 bits in length and can be interpreted as

a set of concatenated integers coded in binary form.

The restricted range of values assigned to each

parameter does not in each case correspond to the

representative binary range on the solution string. For

this reason a specialized procedure is used to code, to

initialize and, in subsequent generations, to check the

feasibility of each string [2].

7.2 Evaluating string fitness

Constraints are incorporated into the optimization by

penalizing the fitness when they are violated by the

design. The fitness of each string consists of four parts:

(a) probability of system failure, unavailability, QSYS,

(b) penalty for exceeding the total cost constraint,

(c) penalty for exceeding the total maintenance down-

time constraint and

(d) penalty for exceeding the spurious trip constraint.

The result is a sole fitness value for each design, re-

ferred to as the penalized system unavailability of the

design.

Calculating the penalized system unavailability in-

volves the derivation of the penalty formula for excess

cost, maintenance down-time (MDT) and spurious trip

occurrences. If a particular design exceeds any of the

E02198 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part E
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Table 3 Characteristics of the best design

Subsystem 1
Number of ESD valves 0
Number of PTs 3
Number of PTs to trip system 2

23MTI

Subsystem 2
Number of HIPS valves 2

3Number of PTs
Number of PTs to trip system 2
MTI 57

Valve type 2
1PT type

123 hMDT
Cost 842 units

0.455Spurious trip

System unavailability 0.001 12

Table 5 A summary of the quantitative results for the muta-

tion rates M1, M2 and M3

Mutation rate

M3M2M1

Sum of fitness values 0.015 031 0.017 101 0.018 992
1.25×10−3 1.42×10−3Average fitness value 1.58×10−3

Table 6 A summary of the quantitative results for the cross-

over rates C1, C2, C3 and C4

Crossover rate

C1 C2 C3 C4

0.011 9530.0130.013 6410.012 53Sum of
fitness
values

Average 1.044×10−3 1.37×10−3 1.08×10−3 9.96×10−4

fitness
value

9 THE GA PARAMETERS

The GA requires the following selection parameters to

be set:

(a) population size,

(b) cross-over rate,

(c) mutation rate and

(d) number of generations.

The values entered for these parameters have a

marked effect on the action of the GA. Using the

optimization software previously described, an analysis

was carried out to investigate the effect of changing

these parameter values. A limited set of values for each

parameter was chosen as in Table 4.

In total, 36 runs of the optimization were carried out,

thus ensuring that each possible combination of the

values above was analysed. The penalized system un-

availability of the best overall string per run was then

investigated for each parameter set.

To obtain an indication of the effect of setting each

parameter to a particular value the best penalized sys-

tem unavailability obtained for all the other parameter

values was summed and averaged. A summary of the

best results is given in Tables 5, 6 and 7, for the

mutation rate, cross-over rate and population size re-

spectively.

9.1 Discussion of the quantitative results

As might be expected, larger populations lead to a

better performance. When the population size doubles

from 10 to 20 strings the fitness value improves by 20

Table 7 A summary of the quantitative results for the popu-

lation sizes P1, P2 and P3

Population size

P2 P3P1

0.016 642 0.013 5520.020 93Sum of fitness values
Average fitness value 1.13×10−31.74×10−3 1.39×10−3

per cent. An additional 18 per cent improvement is

incurred when the initial population is further increased

to 50 individuals.

The mutation rate parameter implies that the largest

rate, 0.1, leads to the generation of a fitter string.

Strings produced in each run of the program with the

largest mutation rate were on average 20 per cent fitter

than program runs with the lowest rate. The cross-over

parameter again produced a slight bias towards the

highest value.

These results support a more random search. A

population of ten strings may not incorporate enough

diversity from the onset and for this reason a high

degree of mutation moves to areas in the search space,

which would otherwise not be explored. Too high a

mutation and cross-over rate, however, indicates that

the inherent properties of the GA have been lost and

the structured random search has degenerated to a

purely unstructured enumerative technique. A balance

between the diversity and processing time was made to

obtain the best results and it is suggested that a high

population size is selected together with a cross-over

rate of 0.7 and a mutation rate of 0.01.

Table 4 Chosen sets of parameter values

Mutation rate 0.1 0.01 0.001
0.80.5 0.7Cross-over rate 0.6

10Population size 20 50
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10 MODIFYING THE SGA

Having implemented the GA, areas of improvement

became apparent. The following sections consider these

areas in more detail.

10.1 Utilization of the MDT resource

The MTI parameters for each subsystem directly affect

the unavailability of a design. They also contribute to

the calculation of a system’s MDT, which exerts a

penalty on the system unavailability if 130 h is

exceeded.

Fully utilizing the 130 h MDT resource and splitting

the available effort between the two subsystems to the

best advantage will result in the most optimal system

unavailability. It was noted that very few designs pro-

duced in the GA approached this limit and, hence, are

not fully utilizing their available resources.

The MDT is governed by the values assigned to the

MTI parameters for subsystems 1 and 2. These MTI

parameters span a much greater range of values than

the other parameters and hence occupy a greater pro-

portion of the string. The test parameters have a much

larger area of the search space to explore. This knowl-

edge supports the evidence from a quantitative analysis,

implying a need for greater variation within this area of

the string. Three methods to improve the exploration of

the range of values allowed by the MTI parameters

have been explored, as discussed in Subsections 10.1.1

to 10.1.3.

10.1.1 MDT modification method 1

In method 1 the GA executes in the normal manner

and a best overall string is deduced. This best system

design is then sent to an additional routine. Within this

routine a loop checks the system unavailability for each

feasible combination of test intervals for subsystems 1

and 2. Any infeasible combination with an MDT ex-

ceeding 130 h is ignored. The combination of MTIs 1

and 2 resulting in the most optimal system performance

is retained.

10.1.2 MDT modification method 2

Method 2 introduces greater search to the MTI area of

the string, without affecting the rest of the design. This

method uses the inversion operator.

Inversion is a reversal of a segment of the string.

Consider, for example, the string S, given by

S=1 0 0 0 1 1 1
----------

1 1 0 1 1 1 0

If cut points a and b are generated, e.g. a=2 and b=7,

S %=1 0 1 1 1 0 0
----------

1 1 0 1 1 1 0

The string S % is the original string with the bits 2 to 7

inverted.

Cross-over and mutation are carried out in the latter

part of each string pair only, i.e. between bits 15 and

32. Consequently, following the action of the two ge-

netic operators the MTI area of the string is unaffected.

Each new string is then further processed. The string is

first decoded to obtain the MTI values for each subsys-

tem. These are stored. The MTI area of each string is

then inverted between two randomly generated points a

and b, where 00aBb014. Following inversion the

modified MTI values are established and stored. Four

potential MTI parameter combinations now exist for

the two subsystems. The resulting combinations are

considered in one of two ways.

Method 2a evaluates the MDT associated with each

MTI combination using the MDT formula. The pair of

values that result in the MDT closest to but not greater

than 130 h are retained. If all resulting MDT values are

greater than 130 h, the test intervals associated with the

lowest are kept. The penalty formula is enforced as in

the original GA.

Method 2b evaluates the system unavailability in

addition to the MDT for each MTI combination.

Should any pair of test intervals exceed 130 h MDT the

respective penalty is added to the system unavailability

for that combination. The test intervals resulting in the

lowest penalized system unavailability are retained.

10.1.3 MDT modification method 3

Method 3 is a mixture of methods 1 and 2. As in

method 2, cross-over and mutation are carried out in

the latter part of each string only. Each string is then

processed in the MTI area. Each string enters a loop, as

with method 1, that checks the system unavailability of

the design for every feasible combination of test

parameters in the range. The pair of test parameters

resulting in the best system performance for each sys-

tem is retained. The population of strings, therefore,

enters the next generation with each design fully utiliz-

ing all the available MDT resource.

10.1.4 Results of the GA using the MDT

modification methods

The GA with MDT modification methods 1, 2a and 2b

and 3 was tested. Each method improved the utilization

of MDT resources, thus improving the performance of

the system. Method 1 does not affect the GA process

directly. The MDT is considered after as opposed to

during the design stage, as is typical of most engineer-

ing disciplines. It is common engineering practice to

ensure that the resulting design achieves its most opti-

mal performance.

Method 3 ensures that all resources are used at all

times, eliminates the need for an MDT penalty formula

E02198 © IMechE 1999 Proc Instn Mech Engrs Vol 213 Part E
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and results in the best system performance. This

method, however, relies on a very large number of

system unavailability evaluations and may be consid-

ered impractical for larger systems.

Method 2 achieves the desired intention to intro-

duce greater variety into the test interval parameter

area of the string. Full use of the MDT resource is

not guaranteed but the general case results in conver-

gence towards the limit. The advantage of this

method is that it is incorporated within the design

process and does not require an excessive number of

extra system unavailability evaluations.

Method 3 achieves the best results for the HIPS

system. It is probable that method 2b would be more

practical for larger safety systems. This explores extra

safety system evaluations but not to excess.

10.2 Derivation of the penalty formula

If the performance of a design is significantly im-

proved owing to a comparatively small excess in one

or more of the constraints, the design in question

deserves further consideration. An excessive abuse of

the limits with only a small degree of performance

improvement conversely implies that the design be

discarded. It is essential that an appropriate penalty

be exerted to the system unavailability when con-

straints are violated which retain these features.

A spurious trip results in loss of production of the

industrial system, and hence loss of profit. For this

reason a spurious trip is expressed in terms of excess

cost and the cost penalty formula used. The penalty

formula under consideration is, therefore, that regard-

ing cost.

The cost penalty in the original SGA is derived

from the formula

Cost penalty=
�excess cost

100

�5/4

×0.002 (2)

A base level in system performance is assumed. An

unavailability of 0.02 for a system is considered rea-

sonably fit. Should the cost of a design exceed 1000

units, the excess cost percentage should be reflected in

the system unavailability as a corresponding percent-

age improvement about the base level. Thus, a design

which costs 1100 units should show an improvement

of at least 0.002. This relationship is linear. Small

excesses in cost may be tolerated but, as the extra

cost becomes much larger, its feasibility significantly

decreases [2]. For this reason an exponential relation-

ship is preferred, as given in equation (2).

The multiplying factor of 0.002, 10 per cent of the

base level performance, is the area of concern. This

value is a fixed percentage of a fixed system un-

availability. Owing to the set form of the multiplying

factor the penalty formula does not take into account

the system unavailability of the particular design be-

ing penalized.

To illustrate this, consider the following example:

1. Design A costs 1150 units and has an unpenal-

ized system unavailability of 0.015. Apply the

cost penalty formula

�150

100

�5/4

×0.002=0.0033 (3)

The penalized fitness value is 0.018, a fitness

decrement of approximately 18 per cent.

2. Design B costs 1150 units and has an unpenal-

ized system unavailability of 0.002. Applying the

cost penalty formula also gives a penalty of

0.0033. The penalized fitness value is then 0.0053,

a fitness decrement of approximately 62 per cent.

The comparative penalty for the fitter string is much

greater. The penalty should take the fitness value of

the system to be penalized into consideration.

An alternative penalty formula is introduced which

takes into account both the cost violation and the

system unavailability of the design being penalized.

This is achieved using a multiplying factor which,

rather than being fixed, varies according to the sys-

tem unavailability of the design.

Consider a particular design with cost C. The cost

C exceeds 1000 units. The percentage excess of the

system’s cost is calculated, XC say. The multiplying

factor is derived by calculating XC per cent of the

system unavailability of the design under consider-

ation. In the designs A and B previously stated, both

designs exceed 1000 units by 15 per cent, i.e. XC=15

per cent. The system unavailability of design A is

0.015, of which 15 per cent is 0.0025. The multiplying

factor to be used in the penalty formula for this de-

sign is, therefore, 0.0025. Hence, apply the penalty

formula

Cost penalty=
�150

100

�5/4

×0.0025=0.0041 (4)

The penalized fitness value is 0.0191, a 22 per cent

decrement. The system unavailability of design B is

0.002, of which 15 per cent is 0.0003. Hence, apply

the cost penalty formula

Cost penalty=
�150

100

�5/4

×0.0003=0.000 49 (5)

The penalized fitness value is 0.0025, a 20 per cent

decrement.

Altering the cost penalty formula enables a more

detailed exploration around the border of the search

space. The lack of final system designs from the origi-

nal GA that portray a slight excess in either the cost

or trip constraints implies that the penalty exerted is

too great.
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10.3 Converting the fitness value to a roulette wheel

percentage

Each design receives a measure of its fitness. This is the

design string’s penalized system unavailability. This

value is not in an appropriate form to be directly used

in the selection process of the GA since, the smaller the

fitness, the better is the design.

A specialized conversion method is required. It is

imperative that the conversion method gives rise to

roulette wheel percentages in accordance with the

fitness value of each string. A system whose perfor-

mance is twice as good as another should have twice

the percentage allocation.

The original conversion method allocates each string

to one of three categories according to its fitness value.

The ranges of values covered by each category are given

in Table 8.

Each string in category 1 is automatically given zero

per cent. This category consists of poor system designs.

If they do not feature on the roulette wheel, they will be

eliminated from the succeeding generation.

Category 2 contains relatively unfit designs. It is,

however, important to retain a little diversity in the

population. Each string is allocated some portion of a

total of 5 per cent of the roulette wheel.

The strings that fall into category 3 are of ultimate

interest. To enhance their fitness values each string is

subtracted from the upper category limit, 0.1. A partic-

ular amount of the remaining 95 per cent of the roulette

wheel is then allocated to each string, depending on

how much their fitness value exceeds the 0.1 limit.

Problems occur when a very high, or a very low,

proportion of strings fall into a particular category. The

percentage allocated to each category is fixed and,

therefore, independent of the number of strings that it

contains.

An alternative method is required which is able to

cope with very diverse populations and simultaneously

to show sensitivity to a highly fit set of strings. Initially

nine categories are depicted which cover the area of the

fitness domain of importance, i.e. below 0.2, and each

category is assigned a particular weight, as shown in

Table 9. As the category becomes fitter, its weight

increases in size.

The fundamental steps of the modified method are

then as follows:

1. Firstly each category is designated a particular per-

centage of the roulette wheel depending on:

Table 9 Nine categories plus weights

Fitness domain

Lower limitUpper limit WeightCategory

0.2 12
\ 0.1E1

220.05E0.1 \ 2
\0.05 3 E 0.01 32

0.01 0.005 42
\ 4 E

0.005 0.004 52
\ 5 E

620.003E6\0.004
E 0.002 720.003 \ 7

0.002 820.001E8\

E9\ 920.001 0

(a) the number of strings, n, of the total population

N in the category and

(b) the weight assigned to the category.

2. The percentage allocated to each category is then

distributed appropriately between the strings within.

The method used must ensure that a system in a

fitter category is given a greater percentage than a

poorer design in a less fit category.

The following sections describe steps 1 and 2 in

greater detail.

10.3.1 Establish the percentage allocation for each

category

Each string in the population is considered in turn. It is

first established into which category the string falls. As

in the original method the fitness value is enhanced by

subtracting its value from the upper limit of the least-fit

category, namely 0.2. The enhanced fitness value is then

multiplied by the weight associated with the category

into which the string falls. The ‘weighted’ values of the

strings in each separate category are summed. The

result is that each category is designated a particular

value directly related to the number of strings that it

contains and its weight. Using these designated values

the relative percentage of each category is calculated.

10.3.2 Distribute the percentage of each category

between the strings that it contains

Having established the percentage allocated to each

category, the average percentage allocated to each

string within each category can be evaluated. As the

categories become fitter, the average percentage allo-

cated to each string should increase.

The important aspect here is to ensure that strings in

fitter categories are given a larger percentage than those

in less-fit categories. For each category, the average

percentage allocated to each string in the previous

non-empty category is ascertained. As regards category

9, this is always zero.

Table 8 Range of values of categories of fitness

values

Upper limitLower limit Category

0.10 00 3
0 0.20.1 B 2

1.00.2 B 1 0
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The total percentage appointed to each category is

split into two parts: a ‘used’ and an ‘excess’ percent-

age. Each string in a category, X say, must be given a

percentage at least that of the average allocated to each

string in the most previous non-empty category, as

previously determined. If category X contains n from N
strings in the population, the ‘used’ percentage is

catXused=n×prevavX

where

catXused= ‘used percentage of category X

prevavX=average percentage allocated to each
string in the most previous

non-empty category

The ‘excess’ percentage for a category is, therefore, its

total minus its ‘used’ percentage. Each string in a

category is first given the average percentage allocation

of each string in the most previous non-empty category.

An additional portion of the categories’ ‘excess’ per-

centage is then given to each string.

10.3.3 Results comparing both con6ersion methods

The GA was tested with ten program runs, over 50

generations using the modified conversion method. The

overall system performance was improved using the

modified method. Most importantly the new approach

has a better ability to converge on a very fit design.

10.3.4 Discussion of the con6ersion method results

The original method is not able to cope adequately with

highly fit populations of system designs. The fitness

values of the strings are not accurately represented, and

hence the information used by the GA is not in accor-

dance with the actual fitness information of the

population.

The modified method is able to differentiate between

the strings in the fitter population, while simultaneously

retaining the ability to handle a varied population.

Essential information is not lost in the conversion

process. The best design obtained using the modified

conversion method had the characteristics shown in

Table 10.

11 SUMMARY AND DISCUSSION

The modified cost penalty and the modified conversion

method together with MDT modification method 3

(described in Section 10) is established as the preferred

GA method. It ensures that all MDT resources are used

at all times and are distributed between both subsys-

tems to the best advantage. As such, potentially fit

designs are not eliminated owing to inferior MTI val-

ues. This method, however, requires a large number of

system unavailability evaluations and may be consid-

ered impractical for larger systems (in which case

method 2a, plus application of method 1 to the result-

ing design, should be used). Analysing the system un-

availability of only those test interval combinations

within a specific range of the MDT limit effectively

reduces computer effort. Adapting the exhaustive ap-

proach to calculate the MDT values only, thus incur-

ring no extra demand on system unavailability

evaluations, is an alternative method with much less

demand on processing time. This distribution of

maintenance values between each subsystem may not,

in this case, be optimal.

The modified GA demonstrates the ability to find

and explore the fittest areas of the search space. This is

achieved via full usage of available MDT resources and

a thorough exploration of the boundary of the domain.

It is able to differentiate between highly fit strings as

the algorithm progresses and retention of the best de-

sign over latter generations is achieved.

The modified GA has been applied to a firewater

deluge system (FDS) on an offshore platform. The FDS

is a larger, more complex system than the HIPS, which

has in excess of 4.4×1010 design variations. The fault

tree used to quantify this system has more than 450

gates and 420 basic events and requires conversion to

17 BDDs.

Analysis of the FDS was carried out using the

modified GA. The average fitness of the initial popula-

tion was 0.207. The population average fitness reduced

to 0.0157 when convergence was achieved. The most

optimal design arose in generation 48 with a fitness

value of 0.013 26. The running time of the program was

of the order of 1 h on a workstation.

Table 10 Characteristics of the best design

obtained using the modified conver-

sion method

Subsystem 1
0Number of ESD valves

Number of PTs 4
Number of PTs to trip system 1
MTI 38

Subsystem 2
Number of HIPS valves 2
Number of PTs 4

2Number of PTs to trip system
30MTI

Valve type 2
PT type 1

MDT 120 h
Cost 882 units
Spurious trip 0.978

System unavailability 0.000 94
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Design projects require many months to progress

from the initial conceptual design through to detailed

design. Whether the use of computer time to aid this

process takes a matter of minutes or a number of days

is, therefore, not the issue and such differences are

considered unimportant.

12 CONCLUSIONS

1. An automated robust design optimization process

has been developed in which the adequacy of the

system performance is assessed using fault tree anal-

ysis. A single fault tree represents the causes of

failure for each possible design alternative of a

safety system. Implicit and explicit constraint forms

have been incorporated to place limits on the design

specification. The solution of this type of problem is

made possible by use of the BDDs to solve the fault

tree.

2. The GA has been shown to produce good results for

system design optimization. It is a robust method,

which can potentially be applied to a wide range of

systems.

3. The practicality of the overall design optimization

process has been demonstrated by successful appli-

cations to a high-pressure protection system.

4. Investigation of the results of the relatively small

problem of the HIPS has highlighted possible

difficulties in the GA’s exploration of the design

space. Problems can occur with the MTI variables

and their relationship with the constraint limiting

the MDT of the system. This parameter also domi-

nated, i.e. required a larger portion of the design

string than, the other variables which can result in

an inadequate exploration of the parameter’s search

space.

5. The simple GA has been modified to overcome the

difficulties in its application to the high-pressure

protection system to give a very effective design

tool.
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