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Abstract-Most mechanisms are both 
underconstrained and overconstrained. The motions 
attributable to underconstraint can be seen so that they 
are easily imagined from a drawing whereas actions 
attributable to overconstraint cannot. Dual coupling 
networks have the property that the action and motion 
systems of one are transposed in the other. So, by finding 
the dual of a mechanism, actions attributable to 
overconstraint become motions in its dual that can be 
imagined. Earlier work cited explains the methodology 
and validates the theory mathematically: this paper 
provides some simple examples. 
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I. Introduction  
 
The term coupling network is applied to an assemblage 
of coupled rigid bodies that can be underconstrained, 
overconstrained, both or neither. Coupling networks 
include statically indeterminate structures that are 
overconstrained but not underconstrained, kinematically 
designed kinematic chains that are underconstrained but 
not overconstrained, simply stiff (statically determinate) 
structures that are neither and kinematic chains that are 
both.  
 
There is no general agreement about the essential 
features of duality as it applies to TMM. Huang [1] 
writes of the duals of joints, chains and single circuit 
mechanisms; forces said to be dual to the motions of 
bodies in a four-bar linkage are described but not the 
entirety of the coupling network within which these 
actions can exist. Shai [2, 3] uses dual graphs to extend 
the study of duality to mechanisms having more than one 
circuit again showing that actions in the dual are 
analogous to the motions of the mechanism. Shai and 
Pennock [4] also include characteristics of serial and 
parallel manipulators.  
 
Gosselin and Lallemand [5] review nine earlier papers 
that refer to the duality of serial and parallel 
manipulators. They write: “…this duality concerns 
essentially the velocity kinematics of serial robots and 
the statics of parallel manipulators.” They imply that 

there is more to duality than the demonstration of an 
analogy. In [5] they show that simultaneously there is 
also an analogy between the statics of serial robots and 
the kinematics of parallel robots. Dual sets of equations 
are provided. The understanding that Gosselin and 
Lallemand have of duality appears to correspond closely 
with the statement below.  
 
Two related mathematical concepts are said to be dual if 
two properties of each are transposed in the other. The 
Platonic solids provide examples. The number of faces 
of one of a dual pair is the number of vertices of the 
other. Thus the cube has six faces and eight vertices; its 
dual, the octahedron, has eight faces and six vertices. In 
[6], and in this paper, the motion and action screw 
systems of a coupling network are the two properties that 
are transposed with those of the dual coupling network. 
In [6] the dual coupling networks N+ and N– studied are 
far from simple. The network N+, analysed 
comprehensively in [7], has two circuits and nett degrees 
of freedom and constraint ++++

NF  and ++++
NC  that are three and 

two respectively. The coupling network N–, dual with 
N+, has three circuits and nett degrees of freedom and 
constraint −−−−

NF  and −−−−
NC  that, because of duality, must be 

two and three respectively. For this paper there are many 
simpler examples to choose from but space constraints 
mean that few can be selected. From these, instructive 
variations are developed.  
 
II. The gross and nett degrees of freedom and 
constraint 
 
A coupling between two bodies has a characteristic 
degree of freedom (dof) f and a degree of constraint (doc) 
c, where f + c = 6. A coupling network with n bodies and 
e couplings can be said to have a gross dof F = Σf and a 
gross doc C = Σc. The gross dof F is also the true (nett) 
dof FN provided that there are no circuits of couplings. It 
has been shown [7] that the effect of closing circuits of 
couplings is to introduce indirect couplings between 
pairs of directly coupled bodies in parallel with those 
direct couplings. These indirect couplings can reduce the 
gross dof F to a lower value, the nett dof FN.  
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Analogous statements can be made about the gross and 
nett degrees of constraint C and CN. It is necessary first 
to introduce the idea of a cutset of couplings. The term 
cutset is borrowed from graph theory. A cutset of 
couplings [7] is a set of couplings the removal of which 
creates two disconnected coupling networks each of 
which could comprise one body and no couplings. Thus 
the absence of a cutset implies only one body. A single 
body could nonetheless provide terminals for couplings. 
Because the body is rigid and forms part of a closed 
circuit with each coupling, the body can transmit any 
action that a coupling can transmit. Thus, for a coupling 
network comprising a single body with couplings, the 
gross doc C is also the nett doc CN. A stringed musical 
instrument is such a body if the parts involved in 
tensioning strings are immobilised or ignored. The eight 
strings of a mandolin can be regarded as couplings 
between points (terminals) on the mandolin. All eight 
strings can be at different unknown tensions so both C 
and CN are eight. The effect of cutting a mandolin in two 
would be to break all eight circuits that are vital for 
maintaining string tensions.  
 
For a coupling network comprising two or more bodies 
and two or more couplings the gross dof C may be 
reduced to a nett dof CN. The circuit that is vital in order 
for a coupling A to transmit action will now have in it 
another coupling B. Whereas a rigid body can transmit 
any action, coupling B may be incapable of transmitting 
some or all of the actions that coupling A is capable of 
transmitting.  
 
III. Creating the dual of a coupling network 
 
There are four stages to the process of creating the dual 
of a coupling graph N+. It is necessary to find couplings 
dual to those of N+; to create ++++

CG , the coupling graph of 
N+; to construct −−−−

CG , the coupling graph dual with ++++
CG , 

and finally; to synthesise a coupling network N–, having 
−−−−
CG  as its coupling graph and couplings dual with those 

of N+. 
 
A. Dual couplings  
 
Two couplings that exhibit the property that the system 
of motion screws for one is identical, geometrically, to 
the system of action screws of the other will be referred 
to as dual couplings. Several pairs of dual couplings have 
been described [6]. For a given coupling A there can be 
several couplings that meet the requirement that their 
motion and action systems are the transpose of those of 
coupling A. 
 
 

B. The coupling graph of a coupling network 
 
A coupling network N+ has a coupling graph ++++

CG  in 
which each node of ++++

CG  represents a rigid body of N+; 
and each edge of ++++

CG  represents a coupling of N+. 
 
C. Dual coupling graphs 
 
The dual of ++++

CG  is required. Only planar graphs have a 
dual graph so it is necessary to explain planar graphs 
before proceeding. 
 
 C.1 Planar graphs 
 
A planar graph is a graph that can be embedded onto the 
surface of a sphere or plane without having any pairs of 
edges that cross one another. When a planar graph is 
embedded on the surface of a sphere each area of that 
spherical surface that is surrounded by edges of the 
graph is called a region [8] or face [9] of the graph.  
 
 C.2 Dual graphs  
 
A planar graph G+ has a dual planar graph G− that is 
created in the following way. Within each region of G+ 
there exists one node of G−. Also, each edge of G+ is 
crossed by one edge of G−. It is convenient to refer to a 
pair of crossing edges, one from each of a pair of dual 
graphs, as corresponding edges. For dual coupling 
graphs ++++

CG  and −−−−
CG  corresponding edges represent dual 

couplings. Dual coupling graphs that appear later are 
interlinked; ++++

CG  is drawn in blue and −−−−
CG in yellow.  

 
D. The nett dof and doc of dual coupling networks 
 
Because screw systems are transposed in dual coupling 
networks it is a necessary, but insufficient, condition that 

++++
NF  = −−−−

NC  and ++++
NC  = −−−−

NF . 
 
IV. The dual of a chain of couplings in series 
 
The coupling network N+ shown in the top left of Fig. 1 
comprises three bodies numbered 1-3, coupled by two 
revolute couplings with parallel axes labelled A, B. The 
network is an adaptation of part of a figure provided by 
Hunt [10], page 66, as a proof, by analogy, of the 
Kennedy-Aronhold theorem of three centres. One change 
from Hunt’s figure is that the central angular velocity 
vector is reversed in direction. Now the three vectors are 
angular velocities of pairs of bodies in cyclic sequence 
12, 23 and 31, where ω12, for example, is the angular 
velocity, relative to member 1, of member 2. The vectors 
must sum to zero. 
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Any coupling that is capable of transmitting a force, but 
no more than a single force, is dual with a revolute 
coupling. Thus, any dual of N+ has two couplings that 
each transmits a force. N+ has a coupling graph ++++

CG , 
with three nodes and two edges and its dual −−−−

CG  has one 
node and two edges. Both graphs are shown at the top 
right of Fig. 1. Both edges of −−−−

CG  are called loops 
because their ends terminate at the same node. Two 
coupling networks, either of which can be N–, a dual of 
N+, are shown at the bottom of Fig 1. For the version on 
the left two couplings are provided by elastic bands in 
tension. In the other, bolts are screwed through tapped 
holes in the main body until the hemispherical ends of 
the bolts make contact with a surface of the same body 
and the bolts are in compression. The bolts are then 
welded to the main body otherwise there would be three 
bodies in N–, not one. Note that ++++

NF  = −−−−
NC  = 2 and ++++

NC  = 
−−−−

NF  = 0. Because −−−−
NC  = 2 the equilibrant force 

transmitted by the web of the I-shaped body has a line of 
action parallel with, and anywhere between, the other 
lines of action. Dually, in N+, the axis of angular velocity 
ω31 must lie between the other two. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1. Bodies coupled in series shown top left, alternative duals below 

and their dual coupling graphs top right 
 
Generally the dual of a coupling network comprising 
bodies and couplings in series is a single body providing 
ports [11] for the same number of couplings in parallel. 
So the metal strap of a wristwatch with nine links and 
eight pins and a mandolin with eight strings, and with the 
means of tensioning immobilised, can be dual coupling 
networks. They are dual only if some more conditions 
are met. The watchstrap must not be pinned to the watch 
otherwise a closed circuit is created the dual of which 
would have two bodies not one. Adjacent links of the 
strap must be in relative motion. Finally, at the instant 
that the duality is valid, the pins of the watchstrap must 
be coplanar.  
 

V. Duals of some four bar linkages 
 
Figure 2a shows a planar four-bar linkage N+ with links 
of equal length instantaneously in the configuration 
whereby the centrelines of the (R) couplings cut any 
plane perpendicular to them at points that form the 
vertices of a square.  
 
 
 
 
 
 
 
 
 
 

Fig. 2a. A planar 4-bar and associated dual graphs 

 
Also shown are the four angular velocity vectors of equal 
magnitude representing the instantaneous relative 
motions of contiguous links when progressing in a 
consistent direction around the circuit. A magnitude ωij  
is the angular velocity, relative to body i, of body j. The 
dual couplings must therefore be capable of transmitting 
equal forces. On the right of Fig. 2a are the coupling 
graphs: ++++

CG  with four nodes, −−−−
CG  with two nodes. 

 
A. Variations on the theme of an unstable bar stool  
 
There are several kinds of coupling that can transmit a 
force. Figure 2b shows two images of a miniature 
barstool. Integral with the base are two posts that have 
hemispheric upper ends; each end makes a single point 
contact with the flat underside of the seat. The same 
forces are transmitted if legs integral with the seat 
replace the posts integral with the base, but that 
arrangement is less stable.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 2b Duals of the planar 4-bar linkage 

 

 A.1 Assuming weightlessness 
 
On the left of Fig. 2b there are also two couplings 
provided by elastic bands between the seat and base. The 
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locations of the four force vectors transmitted by the 
posts and bands correspond with those of the angular 
velocity vectors of the four-bar linkage. The four forces 
would be equal if the seat could be assumed to have zero 
mass. If that assumption is made then the barstool is a 
dual coupling network N– of the 4-bar linkage. It is well 
known that the 4-bar linkage N+ has a nett dof ++++

NF  = 1. 
Duality requires that, for N–, −−−−

NC  = 1. This means that, 
provided that the elastic bands are in tension, if the 
magnitude of any one of the four forces is known then 
the forces in the other three couplings can be found. 
Obviously, for this example, all four forces are equal.  
 
Less obviously, but of greater significance, −−−−NF  = 3. 
Because the hemispherical ends of the posts make single 
point contact with the underside of the seat, the seat can 
translate in any horizontal direction or rotate about a 
vertical axis through an infinitesimal displacement. The 
tension in the elastic bands is unaffected by infinitesimal 
displacements. These motions are all transitory motions 
that belong to the system classified by Hunt [10] as the 
fifth special 3-system of motion screws. They are the 
motions of planar kinematics. Duality requires that ++++

NC  = 
3; furthermore the actions that can exist within N+, the 4-
bar linkage, are geometrically identical to the motions 
that the bodies of N– can have. It follows that, within the 
four-bar linkage, all bodies and couplings are capable of 
transmitting a torque in any direction perpendicular to 
the revolute axes and a force parallel with those axes. 
 
 A.2 with a gravitational coupling 
 
There is a simple way of avoiding the need to assume 
that the seat is weightless. One of the two elastic bands 
can be removed and the centre of mass of the seat shifted 
so that it lies above the point where the missing elastic 
band was attached. The weight of the seat can replace the 
force in the elastic band that is removed provided that the 
weight is identical to the force exerted by the remaining 
band. An obvious way of shifting the location of the 
mass centre of the seat without modifying the seat is to 
have someone sit on the seat. On the right of Fig. 2b this 
is demonstrated. Such an unstable stool cannot be 
recommended but Barbie can. 
 
B. Changes resulting in a stable bar stool 
 
In the planar four-bar linkage shown in Fig. 2a, suppose 
that a spherical (S) coupling replaces the (R) coupling at 
A and a Hooke coupling replaces the (R) coupling 
opposite A at C to create a new coupling network N+. 
The orientation of the Hooke coupling is important. 
Whereas, for the 4R linkage, ABCD were points in any 
one of the planes perpendicular to the coupling axes, for 
the new linkage, let ABCD occupy the only one of these 

planes in which the centre of the (S) coupling lies. The 
point C is now the centre of the Hooke coupling; the 
plane of the rotation axes of the Hooke coupling is 
perpendicular to the line AC and the two (R) axes of the 
Hooke coupling are both at 45 degrees to the plane 
ABCD. For this new coupling network N+, ++++

NF  remains 
one but ++++

NC  drops to zero. The dual coupling graphs are 
unaffected by this change but two couplings of the dual 
coupling network N– are altered.  
 
The (S) coupling is self-dual. Self-duality is explained in 
greater detail in [6] and in Section VII C of this paper. It 
means that, in the barstool, an (S) coupling, or a coupling 
that can transmit the same actions as an (S) coupling, 
must replace the single point contacts at A. A trihedral 
depression can be formed under the seat, or a part fixed 
to the underside that has this depression, as shown in Fig. 
3. The resultant of the three forces transmitted between 
the three faces of the depression and the hemispherical 
end of the post that contacts these faces is along the 
centreline of the post as it is in the dual of the planar 4R 
linkage. 
 
 
 
 
 
 
 
Fig. 3. Modifications to the underside of the barstool seat to reduce the 

nett dof from three to zero 

 
The dual of the Hooke coupling can be a two-point 
contact between the hemispheric end of the second post 
and two faces of a depression made in the seat, or in a 
part added to the seat. To be the correct dual these faces 
should be perpendicular to one another, both being at 45 
degrees to the plane of the underside of the seat. 
Furthermore, the plane of intersection of these faces 
must pass through the centre of the trihedral depression 
as shown in Fig. 3. The common normals at the two 
contacts correspond to the locations for the intersecting 
axes of the Hooke coupling. With these changes −−−−

NC  
remains one but −−−−

NF  is reduced from three to zero. The 
seat can no longer move without the disengagement of a 
coupling. Disengagement requires the temporary use of 
an additional active coupling, for example one provided 
by human intervention. 
 
C. A 4H kinematic chain with parallel axes and its dual 
 
The zero pitch motion screws of the planar four bar 
linkage shown in Fig. 2a belong to the 5th special 3-
system of screws. The screws of this special system must 
be all of the same pitch but not necessarily of zero pitch. 
Thus, four helical (H) couplings of the same pitch can 
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replace the (R) couplings. For this 4H kinematic chain 
++++

NF  = 1 and ++++
NC  = 3, like the 4R linkage. The coupling 

graphs are unaltered but the four couplings of N– must all 
be capable of transmitting wrenches on screws of the 
same pitch. In Fig. 2b posts provide two forces on the 
seat of the barstool. Elastic bands attached to the upper 
surface of the seats can replace these forces. Fig.4 shows 
such an arrangement turned on its side. Replacing the 
seat in this figure is a square plate suspended within a 
box. By suspending the plate from the top of the box its 
weight can be ignored. Imagine the four elastic bands 
being replaced by twisted cords of the kind used to 
tension a bow saw. All the cords must be twisted in the 
same sense, as well as providing the same torque/force 
ratio, the pitch of the screw. 
 
 
 
 
 
 
 

 

Fig. 4. Another dual of the planar 4-bar linkage 

 
VI The dual of a conventional barstool 
 
This barstool has three vertical legs terminating in 
hemispherical feet in contact with a horizontal floor at 
points ABC that form an equilateral triangle. There is 
stability so the alternative design, using vertical posts 
instead of legs, is not needed. The weight W of the 
barstool has a line of action through D at the centroid of 
the triangle ABC. Obviously the force on the seat 
through each leg is W/3 upwards.  
 
Consider now the planar four-bar linkage that is the dual 
of this barstool. The four centrelines linking bearing axes 
form a re-entrant quadrilateral with vertices at ABCD 
such that D is at the centre of an equilateral triangle 
ABC. Duality makes conventional kinematic analysis 
unnecessary. Moving around the circuit in a consistent 
direction, if the instantaneous relative angular velocity of 
the two members directly coupled by the bearing at D is 
ω, then the relative angular velocity of each of the other 
three pairs of directly coupled members is –ω/3. 
 
If N+ is the linkage and N– the barstool as before then 

++++
NF  = −−−−

NC  = 1 and ++++
NC  = −−−−

NF  = 3 again. One change is 
that the three degrees of freedom of N– are expressed 
now by the unrestricted freedom of the entire barstool to 
slide on the floor instead of the transitory freedom of the 
seat to slide on the posts. 
 

VII. Self-dual coupling networks  

It is possible to anticipate one property of self-dual 
coupling networks even before an example is found. 
Because ++++

NF  = −−−−
NC  and ++++

NC  = −−−−
NF  for dual coupling 

networks N+ and N–, it follows that FN = CN for a self-
dual coupling network N. Obviously the + and – 
superscripts are unnecessary for a self-dual coupling 
network. Both self-dual couplings and self-dual graphs 
are needed. 

A. Self-dual couplings  

A coupling will be said to be self-dual if the screw 
system describing all possible motions that the coupling 
allows is identical to the screw system that describes all 
possible actions that the coupling can transmit. Among 
the surface contact couplings, often called lower 
kinematic pairs, the spherical (S) coupling and its 
variant, the planar or ebene (E) coupling, are self-dual.  
 
The screw system associated with both motions and 
actions of a spherical coupling is categorised by Hunt 
[10] as the 2nd special 3-system of screws. This special 
3-system comprises screws of the same pitch and the 
instantaneous screw axes (ISAs) form a star of ∞2 lines 
in all directions but having one point in common, the 
centre of the sphere. For the (S) coupling the pitches of 
the screws are all zero. Thus the motions that the two 
bodies directly coupled by an (S) coupling are capable of 
are all angular velocities about axes through the sphere 
centre provided that any other couplings that exist 
between those bodies, in parallel with the (S) coupling, 
do not inhibit those motions. Furthermore, the actions 
that can be transmitted by an (S) coupling are all forces 
with lines of action that pass through the sphere centre 
provided that the (S) coupling belongs to a closed circuit 
of bodies and couplings all of which are capable of 
transmitting those actions. 
The screw system associated with both motions and 
actions of an ebene (E) coupling are categorised by Hunt 
[10] as the 5th special 3-system of screws. This special 
3-system comprises screws of infinite pitch anywhere in 
space that all have a direction parallel to the same plane 
together with all screws of the same pitch with ISAs 
perpendicular to that plane. For the (E) coupling this 
pitch is zero. Thus, subject to the provisos explained 
above, the motions of the two bodies directly coupled by 
an (E) coupling are translational velocities in any 
direction parallel with the plane of a contact surface of 
the coupling and angular velocities about any axis 
perpendicular to the same plane. Furthermore, the 
actions that can be transmitted by an (E) coupling are 
torques in any direction parallel with the plane of a 
contact surface of the coupling and forces along any line 
of action perpendicular to the same plane.  
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B. Self-dual graphs 

A graph G that has a dual graph that is isomorphic with 
G is a self-dual graph. Two examples of self-dual graphs 
are provided in Fig.5 below. As before, each graph and 
its dual are interlinked. 
 
 
 
 
 
 

Fig. 5a and b. Pairs of self-dual graphs 

 
Fig.5a, on the left, comprises two nodes and two parallel 
edges between them. Fig. 5b is the complete graph with 
four nodes. A graph is described as complete if every 
pair of nodes is connected by an edge.  

C. Examples of self-dual coupling networks 

Suppose that the two edges of either of the self-dual 
graphs shown in Fig. 5a both represent (S) couplings and 
the graph is the coupling graph GC of a coupling 
network. That network could comprise a door, a 
doorframe, and the two (S) couplings from which the 
door is hung. The only motion both couplings permit is 
rotation about an axis through the sphere centres and the 
only possible action both couplings can transmit is a 
force along the same line. Thus FN = CN = 1 and, being 
overconstrained, it cannot be recommended.  

 

Fig. 6. By integrating rods of the same colour this becomes a self-dual 

simply stiff structure 

 
A construction is shown in Fig.6 that resembles a regular 
octahedron. It is made from 12 identical rods with 
magnets embedded in their concave ends that adhere to 
steel balls thereby creating couplings that behave like (S) 
couplings. Because each rod is free to rotate about its 
central axis FN is 12. If, however, each set of three rods 
of the same colour were to be made integral with one 
another these freedoms would be lost. Then there would 
be four bodies and six (S) couplings. The coupling 
network would be self-dual and have a coupling graph 

GC like either of the two self-dual graphs shown in 
Fig.5b. For this self-dual coupling network FN = CN = 0. 

VIII. Conclusions 

A contribution is made to the debate about what 
constitutes duality and, in particular, duality within 
TMM. The proposition is that duality requires the 
transposition of properties; analogy alone is insufficient. 
For TMM these properties are the action and motion 
screw systems of couplings in coupling networks. 
Mechanisms form an important subset of these networks.  
 
Because motions are easier to imagine than internal 
actions, the creation of the dual of any overconstrained 
coupling network can enable the internal actions to be 
recognised. Those actions are transformed into 
geometrically identical motions within the dual coupling 
network. Often these motions are easily imagined even 
from a drawing. 
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