

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A NEW METHOD FOR PARSING
STUDENT TEXT TO SUPPORT

COMPUTER-ASSISTED
ASSESMENT OF FREE TEXT

ANSWERS

Elizabeth Guest and Sally Brown

A New Method for Parsing Student Text to
Support Computer-Assisted Assessment of

Free Text Answers

Elizabeth Guest and Sally Brown, Leeds Metropolitan University

Abstract

Due to current trends in staff-student ratios, the assessment burden on staff
will increase unless either students are assessed less, or alternative
approaches are used. Much research and effort has been aimed at automated
assessment but to date the most reliable method is to use variations of
multiple choice questions. However, it is hard and time consuming to design
sets of questions that foster deep learning. Although methods for assessing
free text answers have been proposed, these are not very reliable because
they either involve pattern matching or the analysis of frequencies in a “bag of
words”.

The first step towards automatic marking of free text answers by comparing
the meaning of student answers with a single model answer is to parse the
student work. However, because not all students are good at writing
grammatically correct English, it is vital that any parsing algorithm can handle
ungrammatical text. In this paper, we present preliminary results of using a
relatively new linguistic theory, Role and Reference Grammar, to parse
student texts and show that ungrammatical sentences can be parsed.

Introduction

In the current climate of increasing student numbers and decreased funding
per student in many HEIs internationally, it is necessary to find economies of
scale in teaching and supporting undergraduate students. Economies of scale
are possible to a certain extent for lectures and tutorials, but this is less
possible for assessment. As staff student ratios decrease, the assessment
burden on staff will increase unless alternative approaches are used.

One solution to this dilemma is to seek ways to mark student work
automatically. This is being done at present using variations on multiple
choice questions, with a variety of innovative question types that test learning
beyond simple recall. If designed correctly, these kinds of tests can provide
students with immediate feedback on how well they are doing and can provide
valuable formative pointers for further learning. Extensive evidence
demonstrates that increased formative assessment can impact positively on
student learning and retention (Sadler, 1989) (Sadler, 1998) (Rust, 2002)
(Sambell and Hubbard, 2004) (Yorke, 2001). However, it can be difficult to
design if we want to make it truly an integral part of learning and if we want to

223

avoid encouraging inappropriate student behaviour, such as random guessing
of answers.

Considerable work has been undertaken in recent years to investigate and
implement approaches to CAA that foster deep learning (Beevers et al., 1989)
(Brown et al., 1999), but significant advances still remain to be made. Some
have argued that it is currently possible to assess essays by automatic means
but we remain unconvinced. However, it would be very helpful if it were
possible to automatically mark short free text answers using CAA approaches,
thus reducing the drudgery for markers. This would allow more scope in the
setting of questions and would give students more opportunity to show what
they understand and can do. Much research has been aimed at this question,
but this generally either involves pattern matching (Sukkarieh et al., 2003)
(Sukkarieh et al., 2004) or latent semantic analysis (Wiemer-Hastings, 2001)
(Landauer et al., 1997), or a combination of these (Pérez and Alfonsa, 2005).
These methods work to a certain extent, but because they are not based on
the meaning of the text, they are quite easy to fool. For instance latent
semantic analysis can be fooled by writing down the right kinds of words in
any order. The problem with current approaches to pattern matching on the
other hand, is that if the student writes down a correct answer in a different
way, it will be marked wrong.

Our innovative approach is based on the grammatical tradition of parsing, that
is breaking down language into its functional components like verbs, nouns
and adverbs. Role and Reference Grammar (RRG) (Van Valin and LaPolla,
1997) (Van Valin, 2005) is a relatively new linguistic theory that majors on
predicates and their arguments. It separates the most vital parts of the
sentence from the modifiers (adverbs, adjectives, auxiliaries, and articles).
This means that the core meaning can be extracted first and then the
modifiers fitted in at a later stage. As long as the arguments and the verbs are
in the correct order for English (subject verb object) then the sentence can be
understood. It doesn’t matter if (for example) Chinese students forget the
articles, the sentence can still be parsed and the meaning extracted. The core
meaning of the sentence is extracted via the use of templates. This makes it
easier to extract the important parts of the meaning of the sentence: we just
need to identify the predicate and the arguments which are clearly labelled
branches within the templates.

In this work we describe a method for using the RRG paradigm for parsing
student texts, which do not have to be grammatically correct. This work can
be used as a pre-processing step to those methods that use latent semantic
analysis or pattern matching. There is evidence to suggest that latent
semantic analysis gives better results when the subject, verb, and object of
the sentence is used rather than an unstructured “bag of words” (Wiemer-
Hastings, 2001). Our method will provide a mechanism for extracting some
structure. If structure can be extracted, then this structure can also be passed
to a pattern matcher, which will decrease the number of possibilities that have
to be included. This method will also enable accurate marking of
ungrammatical sentences.

224

Parsing for Role and Reference Grammar

Role and Reference Grammar (RRG) (Van Valin and LaPolla, 1997) (Van
Valin, 2005) was developed as a result of asking the question “What would a
linguistic theory look like if it was based on Lakhota and Tagalog rather than
English?”. The result is a theory that is suited to describe a huge range of
languages, including English. Of all the linguistic theories, it is most closely
related to functional grammar, but there are important differences.

Role and Reference Grammar posits algorithms to go from syntax to
semantics and semantics to syntax. The main contribution is the use of
parsing templates and the notion of the CORE. A CORE consists of a
predicate (generally a verb) and (normally) a number of arguments. It must
have a predicate. Everything else is built around one or more COREs. Simple
sentences contain a single CORE; complex sentences contain several
COREs.

The fact that RRG focuses on COREs, means that the semantics is relatively
easy to extract from a parse tree. You just have to look for the PRED, and
ARG branches of the CORE to obtain the predicate (PRED) and the
arguments (ARG). Who did what to whom will depend either on the ordering
of the ARG branches (in the case of English), or on their cases, or both.

SENTENCE

CLAUSECLAUSE

PrCSPrCS

WHWH

What

CORECORE PERIPHERY

ADV/ PPADV/ PP

ADVADV

yesterday.

ARGARG

NPNP

PNPN

Pat

NUCNUC

PREDPRED

V3V3

showdiddid

ARGARG

PPPP

PP

to

NPNP

John

Figure 1: Example RRG parse tree.

An example of an RRG parse tree is given in figure 1. Notice that in this
example, the word “did” does not feature in the parse tree, but it is linked to
the verb “show”. This is because it is an operator. An important feature of

225

RRG from a parsing point of view is that parsing happens in two projections:
the constituent projection, shown in figure 1 and the operator projection, which
consists of words which modify other words (such as auxiliaries and
adjectives). This is important because modifiers are often optional and it
simplifies the parsing process considerably if these can be handled
separately. Note that adverbs, which can modify larger constituents (such as
COREs and CLAUSEs) go in the constituent projection so that it is clear what
they are modifying. “Yesterday” in this example is an adverb which modifies
the CORE, to show when the action took place.

RRG makes extensive use of templates. These templates consist of whole
trees and are thus harder to use in a parsing algorithm than rules. The
templates can easily be reduced to rules, but only at a loss of much important
information. The example in figure 1 consists of one large template that gives
the overall structure and some simple templates (which are equivalent to
rules) so that elements such as NP and PP can be expanded. An NP is a
noun phrase and in this theory consists of a noun, pronoun, or question word.
Templates are required to parse complex noun phrases, such as those with
embedded clauses. A PP is a prepositional phrase and consists of a
preposition followed by a NP. Clearly if we reduce the template in the example
in figure 1 to the rule

 CLAUSE → NP NP V PP ADV

we lose a lot of the information inherent in the structure of the template. A
further feature of RRG is that the branches of the templates do not have to
have a fixed order and lines are allowed to cross. The latter is important for
languages such as German and Dutch where the adverb that makes up the
periphery normally occurs within the core. This feature will be important in our
application for marking work by students for whom English is not their first
language.

The above features pose challenges for parsing according to the RRG
paradigm. We have overcome these challenges by making some additions to
the standard chart parsing algorithm. The main innovations are

a) a modification to enable parsing with templates
b) a modification to allow variable word order.

In addition, parsing also includes elements of dependency grammar to find
operators and to determine which word they belong to. At present the most
popular methods of parsing are HPSG (Hou and Cercone, 2001, Kešelj, 2001,
Wahlster, 2000) and dependency grammar (Chung and Rim, 2004,
Covington, 2003, Holan, 2002). HPSG is good for fixed word order languages
and dependency grammar is good for free word order languages. The
approach to parsing described below is novel in that is allows parsing with
templates, and because of the range in flexibility of word order allowed.

226

Outline of the parsing algorithm

The parsing algorithm relies on correctly tagged text. We use Shoebox
(available from SIL (www.sil.org/computing/shoebox)) to tag sentences.
Shoebox is a semi-interactive tagging program. It was chosen because the
user can define their own tags and because it is easy to ensure all tags are
correct. This is a good program to use for experimentation. Once the tags
have been finalised an appropriate automatic tagger can be used, or written
using standard techniques.

Once a sentence has been tagged, there are three parts to the parsing
algorithm:

1. Strip the operators. This part removes all words that modify other
words. It is based on a correct tagging of head and modifying
words. This stage uses methods from dependency grammar and
the end result is a simplified sentence.

2. Parse the simplified sentence using templates. This is done by
collapsing the templates to rules, parsing using a chart parser and
then rebuilding the trees at the end using a complex manipulation of
pointers. The chart parser has been modified to handle varying
degrees of word order flexibility. This is done by working out all the
possible combinations of the ordering using breadth first search.
These options are then built into a complex data structure in such a
way that relevant parts are deleted as parsing progresses, leaving
the correct option according to the data.

3. Draw the resulting parse tree.

Details of the extensions to the chart parser are given below.

Parsing Templates

Templates are parsed by collapsing all the templates to rules and then re-
building the correct parse tree once parsing is complete. This is done by
including the template tree in the rule, as well as the left and right hand sides.
When rules are combined during parsing, we make sure that the right hand
side elements of the instantiated rule, as represented in the partial parse tree,
point to the leaves of the appropriate rule template tree. This is especially
important when the order of the leaves of the template may have been
changed. The reference number for the rule that has been applied is also
recorded so that it can be found quickly.

Modifying nodes, such as PERIPHERY, cause problems with rebuilding the
tree. This is because such nodes can occur anywhere within the template,
including at the root and leaf levels. Also, if we are dealing with a sub-rule
whose root node in the parse tree has a modifying node, it is not possible to
tell whether this is a hang-over from the previous template, or part of the new
template. To solve this problem, modifying nodes have flags to say whether

227

they have been considered or not. There is a potential additional problem with
repeated nested rules because if processing is done in the wrong order, the
pointers to the rule template tree get messed up. To overcome this problem,
each leaf of a template is dealt with before considering sub-rules.

The algorithm for building the tree is:

1. Get the appropriate rule and rule template tree
2. If the rule tree is of depth 1 and has no embedded modifying nodes

(that is modifying nodes that point to a node other than the root),
then we can simply continue by looking at each of the children in
turn, starting at step 1.

3. If the rule tree is of depth greater than 1 or there are embedded
modifying nodes, then make the rule template tree point to the
appropriate places in the parse tree. This is done using the links
made from the parse tree to the rule template tree during parsing.
Note that the parse tree will consist of simple rule structures of
depth 1 and modifying nodes will show up as children.

4. Clear all the children in the parse tree. This will have the effect of
removing any embedded modifying nodes.

5. Copy all the children of the template tree and copy into the
appropriate place in the parse tree.

6. If the template has modifying nodes, copy that part of the template
tree and insert into the appropriate place in the parse tree.

7. Replace the leaves of the copied template trees with the original
leaves. This is possible because the template leaves are pointing to
the original leaves (step 3).

8. Consider each leaf in turn, modifying the parse tree as above (start
at step 1 for each leaf).

Parsing with fixed, free, and constrained word order

There were two main problems to solve in order to modify the chart parser to
handle varying degrees of word order flexibility:

1. Working out a notation for denoting how the word order can be
modified.

2. Working out a method of parsing using this notation.
(1) was achieved by the following notation on the ordering of the leaves of the
template, treating the template as a rule.

• Fixed word order: leave as it is {N V N}
• Free word order: insert commas between each element {N,V,N}

(Note that case information is included as an operator so that the
undergoer and actor can be identified once parsing is complete.)

• An element has to appear in a fixed position: use angular brackets:
{N, <V>, ADV} this means that N and ADV can occur before or after

228

v, but that V MUST occur in 2nd position. Note that this is 2nd
position counting constituents, not words.

• Other kinds of variation can be obtained via bracketing. So for
example {(N, V) CONJ (N, V)} means that the N’s and V’s can
change order, but that the CONJ must come between each group. If
we had {(N,V),CONJ,(N,V)} Then the N’s and V’s must occur next
to each other, but each group doesn’t not have to be separated by
the CONJ, which can occur at the start, in the middle, or at the end,
but which cannot break up an {N,V} group.

Modifications to the parsing algorithm.

Parsing was achieved via a structure that encoded all the possible orderings
of a rule. So for example the rule CORE→N, V, N would become

This means that N or V can occur in any position and N has to occur twice.
The lines between the boxes enable the “rule” to be updated as elements are
found.

Using this schema, SENTENCE→(N,V) CONJ (N,V) would become

In this case, the CONJ in the middle is by itself because it has to occur in this
position because the grouping word order is fixed. The groupings of N’s and
V’s show where the free word ordering can occur.

To apply a rule, the first column of the left hand side of the rule is searched for
the token. Any tokens that do not match are deleted along with the path that

229

leads from them. In the first example, after an N is found, we would be left
with

And in the second example, after an N is found we would be left with

Note that in order for the rule to be satisfied, we must find a V and then a
CONJ: there are no options for position 2 once the element for position 1 has
been established.

In this way, we can keep track of which elements of a rule have been found
and which are still to be found. Changes in ordering with respect to the
template are catered for by making sure that all instantiated rules point back
to the appropriate leaves of the rule template, as described above.

The different possibilities for each rule are obtained via a breadth first search
method that treats tokens in brackets as blocks. Then the problem becomes
one of working out the number of ways that blocks of different sizes will fit into
the number of slots in the rule.

Results

Preliminary results of applying these algorithms to student texts are very
promising, but some issues have been highlighted. The method parses
relatively simple sentences correctly and the main arguments and verbs are

230

found. In addition, some very long and complicated sentences are parsed
correctly and many kinds of grammatical errors do not cause any problems.

231

SENTENCE

CLAUSECLAUSE

CORECORE

ARGARG

I

NUC2NUC2

PRED2PRED2

targetwould

ARGARG

NPNP

CORE-NCORE-N PERIPHERY

CLAUSECLAUSE

CORE-MINCORE-MIN

NUC2NUC2

populatedpopulated

ARGARG

PPPP

by students

areasmain

CORE-MINCORE-MINLNK

and

PERIPHERY

ADV/PPADV/PP

PPPP

PP

at

NPNP

timesdifferent

PPPP

PP

during

NPNP

day.the

NUC2NUC2

PRED2PRED2

V2V2

attendwould

ARGARG

placethe same

Figure 2: An example of a correctly parsed sentence.

232

An example of a correctly parsed sentence is “I would target main areas
populated by students and would attend the same place at different times and
during the day.” The parse tree for this example is given in figure 2. Note that
the complex object “main areas populated by students” has been parsed
correctly and that the tree attaches the qualifying phrase to “area” so that it is
clear what is being qualified. An important source of ambiguity in English
sentences is caused by prepositional phrases and this is a main cause of
multiple parses of a sentence. In this example, the phrases “at different times”
and “during the day” are placed together in the periphery of the CORE,
although arguably they should have a different structure. This is a design
decision to limit the number of parses. This kind of information needs
semantic information to sort out what attaches to what. This cannot be
obtained purely from the syntax.

An example of an ungrammatical sentence that is correctly parsed is “Results
from the observations would be less bias if the sample again was not limit the
students in the labs between 9:30 and 10:30 on a Thursday morning.” This
sentence parses correctly because the affix that should be on “limit” is an
operator and the correctness of the operators is not checked during the
parsing process. The word “bias” is labelled as a noun and gets attached as
the second argument to “would be”, although it should be “biased”, which
would get it labelled as an adjective. Despite these errors, the meaning of the
sentence is clear and the parse will enable the meaning to be deduced.

The sentence “Therefore, asking only the students present on a Thursday
morning will exclude all the students that either have no lessons or are not
present” produces two parses: once correct and one incorrect. The incorrect
parse breaks up “Thursday morning” to give two clauses:

a. Asking only students present on a Thursday
b. Morning will exclude all the students that either have no lessons

or are not present
In the first clause, the subject is “asking only students”, the main verb is
“present” and the object is “on a Thursday morning”. This does not make
sense, but it is syntactically correct as far as the main constituents are
concerned. Similarly, the second clause is also syntactically correct, although
it does not make sense. There are two ways of eliminating this parse. The first
is to do a semantic analysis; the second is to not allow two clauses
juxtaposed next to each other without punctuation such as a comma.
However, students tend to not be very good at getting their punctuation
correct. The current implementation of the parsing algorithm ignores all
punctuation other than full stops for this reason.

An issue that makes parsing problematic is that of adverbs. These tend to be
allowed to occur within several places within the core and some, such as
yesterday, modify groups of words rather than a single word. The best
solution, given their relative freedom of placing and the fact that sorting out
where best to put them is more a meaning than a syntactic issue, would be to

233

remove them and work out where they belong once the main verb and
arguments have been identified.

Most of the above issues have to be left to an analysis of meaning to sort out
the correct parse. There is no clear division between syntax and semantics.
However there is another issue that has been highlighted to do with grammar
and punctuation. How tolerant of errors should the system be? We have
shown that errors in the operators do not cause problems for the parser, and
errors in the placing of adverbs are relatively easy to deal with, but errors in
the main constituents are not handled. For example the phrase “the main
people you need to ask will not be in the labs so early unless that have got
work to hand in” occurs in one of the texts. The current algorithm will not
handle these kinds of mistakes. But should the system be able to handle
these kinds of mistakes, or should students be encouraged to improve their
writing skills?

Conclusion

We argue that this approach, though still under development, potentially has
huge benefits for students and staff in higher education and could, with further
improvements, form one building block in constructing a new paradigm for
CAA. Our intention is to use this as the first stage in a system that uses a new
semantic framework, ULM (Universal Lexical Metalanguage) (Guest and
Mairal Usón, 2005), to compare the meaning of student texts with a (single)
model answer.

234

References

Beevers, C E, Foster, M G, and McGuire, GR. 1989. Integrating Formative
Evaluation into a Learner Centred Revision Course. British Journal of
Educational Technology:115-119.

Brown, S, Race, P, and Bull, J. 1999. Computer Assisted Learning in Higher
Education. London: Kogan Page.

Chung, Hoojung, and Rim, Hae-Chang. 2004. Unlexicalized Dependency
Parser for Variable Word Order Languages based on Local Contextual
Pattern. [Feb 15-21]. Lecture Notes in Computer Science:
Computational Linguistics and Intelligent Text Processing (5th
International Conference CICLING) 2945:112-123.

Covington, Michael A. 2003. A Free Word Order Dependency Parser in
Prolog.

Guest, E, and Mairal Usón, Ricardo. 2005. Lexical Representation Based on a
Universal Metalanguage. RAEL, Revista Española de Lingüística
Aplicada 4:125-173.

Holan, Tomáš. 2002. Dependency Analyser Configurable by Measures. Text,
Speech and Dialogue 5th International Conference TSD:81-88.

Hou, Lijun, and Cercone, Nick. 2001. Extracting Meaningful Semantic
Information with EMATISE: an HPSG-Based Internet Search Engine
Parser. IEEE International Conference on Systems, Man, and
Cybernetics 5:2858-2866.

Kešelj, Valdo. 2001. Modular HPSG. IEEE International Conference on
Systems, Man, and Cybernetics 5:2867-2872.

Landauer, Thomas K., Laham, Darrell, Rehder, Bob, and Schreiner, M. E.
1997. How well can Passage Meaning be Derived without using Word
Order? A Comparison of Latent Semantic Analysis and Humans.
Proceedings of 19th Annual Conference of the Cognitive Science
Society:412-417.

Pérez, D, and Alfonsa, E. 2005. Adapting the Automatic Assessment of Free-
Text Answers to the Students. Paper presented at 9th Computer
Assisted Assessment Conference, Loughborough, UK.

Rust, C. 2002. The Impact of Assessment on Student Learning. Active
Learning in Higher Education 3:145-158.

Sadler, D R. 1989. Formative Assessment and the Design of Instructional
Systems. Instructional Science 18:119-144.

Sadler, D R. 1998. Formative Assessment: Revisting the Territory.
Assessmnet in Education: Principles, Policy and Practice 5.

Sambell, K, and Hubbard, A. 2004. The Role of Formative 'Low Stakes'
Assessment in Supporting Non-Traditional Students' Retention and
Progression in Higher Education: Student Perspectives. Widening
Participation adn Lifelong Learning 6:25-36.

Sukkarieh, Jana Z, Pulman, Stephen G, and Raikes, Nicholas. 2003. Auto-
marking: using computational linguistics to score short, free text
responses. Paper presented at International Association of Educational
Assessment, Manchester, UK.

Sukkarieh, Jana Z, Pulman, Stephen G, and Raikes, Nicholas. 2004. Auto-
Marking 2: An Update on the UCLES-Oxford University research into

235

using Computational Linguistics to Score Short, Free Text Responses.
Paper presented at International Association of Educational
Assessment, Philadephia.

Van Valin, Robert D Jr, and LaPolla, R. 1997. Syntax: Structure, Meaning and
Function. Cambridge: Cambridge University Press.

Van Valin, Robert D Jr. 2005. Exploring the Syntax-Semantics Interface:
Cambridge University Press.

Wahlster, Wolfgang. 2000. Verbmobil: Foundations of Speech-to-Speech
Translation: Springer.

Wiemer-Hastings, Peter. 2001. Rules for Syntax, Vectors for Semantics.
Proceedings of 22nd Annual Conference of the Cognitive Science
Society.

Yorke, M. 2001. Formative Assessment and its Relevance to Retention.
Higher Education Research and Development 20:115-126.

236

	 A New Method for Parsing Student Text to Support Computer-Assisted Assessment of Free Text Answers
	Elizabeth Guest and Sally Brown, Leeds Metropolitan University
	Abstract
	Introduction
	Parsing for Role and Reference Grammar
	Outline of the parsing algorithm
	Parsing Templates
	Parsing with fixed, free, and constrained word order
	Modifications to the parsing algorithm.
	Results
	Conclusion
	 References

