

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MINIBIX: ITEM BANKING WITH WEB
SERVICES

Steve Lay, William Billingsley, Raymond Chan,
Dan Sheppard

Minibix: Item Banking with Web Services

Steve Lay <swl10@cam.ac.uk>
William Billingsley
Raymond Chan
Dan Sheppard

CARET, University of Cambridge

Abstract

The Minibix system was developed from an existing prototype item bank
system in use for high-stakes testing at the University of Cambridge. The
system has been developed over the last year with support from the JISC e-
Learning Programme. This project has redeveloped the system based on
version 2 of the IMS Question and Test Interoperability (QTI) specification and
is publishing the resulting system under an open source license.

In this paper, we propose a simple service model for describing the authoring,
banking, test construction and delivery of assessment content. The item
banking model is implemented by the Minibix system and will be
demonstrated in conjunction with authoring, test construction and delivery
systems developed by the sister projects: AQuRate (Kingston University) and
AsDel (University of Southampton).

These services, as part of a wider e-Framework, could enable tool integration
on a scale suitable for interacting with large-scale item banks. Private banks
are already used routinely in high-stakes summative assessment but open
repositories of items for formative use are now becoming available. For
example, the E3AN item bank for Electrical and Electronic Engineering or the
item bank for the Physical Sciences recently announced by the HEA.

REST
During the development of the Minibix system a number of approaches to
implementing the web-service interfaces were investigated. In the end, a
simple "REST"-ful approach was taken. This approach builds directly on
existing web protocols to provide services that are easy to understand and
implement. The approach works well when the service is inherently resource
based, like the collection of pages that make up a website, and gives rise to
some simple ways to integrate powerful item functions into other web
applications.

Open Source
The Minibix project worked with the companion projects to adopt a common
approach to open source development and licensing. This has, in theory,

enabled code to be shared more easily amongst the projects. In this paper we
report on our experiences and the lessons learned.

Background

The QTI specification is a technical format for the exchange of assessment
content and results. Although widely implemented, version 1 of the
specification (Smythe, Shepherd, Brewer & Lay, 2002) has not led to the
seamless interoperability desired by the community. Version 2 (Lay &
Gorissen, 2006) was developed to address the technical flaws that were
identified as hampering interoperability in practice. In particular, version 2
strengthens the role of IMS Content Packaging as the required way to transfer
QTI-based content between systems. The development of QTI v2 has
provided a solid platform on which to start building web services to support
the integration of diverse assessment applications.

The Minibix system was born out of work at Cambridge Assessment (formerly
University of Cambridge Local Examinations Syndicate). Cambridge
Assessment has a long history of expertise in test development and uses a
large-scale production environment that includes an item banking system
called LIBS. The production process for their English for Speakers of Other
Languages (ESOL) tests has been described in some detail (Saville, 2003).

There seems little doubt that a move to electronic publishing (and even
delivery) will have a significant impact on test development processes.
Research at Cambridge Assessment into Item Banking in XML (IBiX) led to a
prototype application to support a new Thinking Skills for Admissions (TSA)
test. The TSA test is used by many Cambridge University colleges as part of
the process of interviewing prospective students (Harding, 2004). The system
draws on a large item bank of pre-calibrated items delivering both online and
paper-based forms of the tests with rapid delivery of results to college
admissions tutors. The prototype item bank, which covers only a small part of
a full production system's scope such as that implemented by LIBS, has come
to be known as Mini-IBix or simply "Minibix".

In the UK, the Joint Information Systems Committee (JISC), in particular
through its E-Learning Programme, has supported a number of projects that
have taken forward work on transforming digital item banks. The SPAID
project (Young, MacNeill, Adams & McAlping) produced a system that began
to address metadata tagging and packaging of QTI content. This work was
followed up in more detail by the Scottish Qualifications Authority (SQA) with
a broader look at the framework of services required to support item banking
(McAlpine, Tierney & Zanden, 2006). Both Cambridge Assessment and the
SQA are concerned mainly with high-stakes summative assessment. The use
of item banks for formative assessment, and in particular to encourage the
exchange of questions within the UK HE community, was investigated in
depth in the IBIS report (Sclater, 2004) with practical experience gained in the
COLA project (Sclater & MacDonald, 2004). There remain concerns about
whether the conditions for interoperability of this type of content actually exist

(Sclater, 2007). Despite the scepticism, Sclater does acknowledge that a
move to a service-oriented approach such as that adopted by the e-
Framework could help stimulate this type of exchange.

It is also worth noting that the release of the item bank for the Physical
Sciences, recently announced by the HEA, demonstrates a continued
commitment to creating a community of sharing based on interoperability
standards. A proprietary equivalent already exists for QuestionMark
Perception users in the form of their SWAP service. The current age of social
software suggests that creating a market based on the free exchange of
content contributed as part of an initial central investment (e.g. HEA) and
sustained by contributions that do little more than build the reputations of the
contributors, might be feasible. There is still no sign of the type of micro-
payment system considered in the IBIS report.

Minibix Project

The JISC-funded Minibix project was part of the e-Learning Programme, the
general aim being to improve e-Learning through "a technical infrastructure
that supports flexibility, diversity and extendibility”. The project, along with
AQuRate and AsDEL, was focussed on building and testing software tools to
be released under an open source license. It is envisaged that providing free
exemplar code that can be copied or incorporated directly into third party
applications will help reduce the level of investment required to produce tools
that utilise the QTI specification, breaking the cycle of content sharing being
held back by a lack of capable tools which are not developed because the
investment is not justified given the lack of content sharing!

A key objective was the integration of authoring, banking and delivery tools
through service interfaces, something that goes beyond the scope of the QTI
specification itself. JISC is a founding member of the e-Framework, an
international initiative to help promote interoperability through a service-
orientated approach.

Service Model

The service model we have developed has therefore been designed with the
needs of the e-Framework in mind. The e-Framework describes itself as
promoting "service-oriented approaches to facilitate technical interoperability
of core infrastructure". The assessment domain has been slow to develop
sustainable service-oriented approaches (SOA). The Remote Question
Protocol (RQP) was developed as part of the Serving Maths project (Delius,
2005) and provided an early example of an attempt to link assessment
systems together to enable specialist processing to take place. RQP was
developed before QTI version 2 and had to cope with the absence of a unified
format for assessment content. The domain in which it was developed,
mathematics, remains poorly served by the current range of question types
supported in general assessment systems. As a result, RQP includes the

negotiation of the content format to be used. In practice, the impact on
interoperability is therefore limited.

The R2Q2 project (Wills et al, 2006) was a forerunner to the AsDel project for
assessment delivery. R2Q2 was aimed at providing a SOA to assessment
delivery using QTI version 2. The resulting service model teases apart the
processes involved in managing the presentation and response processing of
a QTI-based assessment. However, although the analysis provides a very
useful design pattern for developers of delivery systems the need to express
the interfaces developed as web services is questionable. The component
parts in the model would typically be run together as part of a unified system
and early indications from the current round of projects suggest that artificially
using web-based services to implement these interfaces has a significant
effect, reducing the capacity of any resulting system.

Both RQP and R2Q2 do provide a possible model for managing response
processing externally. There is a strong case to be made for using a SOA to
allow specialist systems to carry out response processing. Systems that
support algebraic manipulation, advanced parsing or statistical processing of
free text responses are likely to be written using specialist computer
programming languages not suited to developing the main body of the
assessment delivery system. The idea of using a SOA to tackle integration of
components from diverse architectures was raised following experience with
the PyAssess project (Lay, 2007). This project looked at SOA models for
response-processing in some detail.

One other significant development in the use of SOAs for assessment
interoperability is the IMS Global Learning Consortium's guidelines on Tools
Interoperability (TI). Unlike the models described above, this work looked at
the interface between a learning environment and an external assessment
system. The early demonstrations of TI were encouraging, although the depth
of assessment information exchanged was very limited (amounting to little
more than a returned score). IMS are now undertaking a new activity in
support of the TI agenda with a view to publishing a full specification.

The work undertaken by the assessment toolkit projects complements the
above approaches. It looked at the system involved in the creation and
publishing of assessment content, including making it available to the
assessment delivery system.

The e-Framework describes sets of co-operating applications and services as
Service Usage Models (SUMs). The scope of the QTI SUM is illustrated in
Figure 1.

Figure 1

In this high-level view of the model, the general business processes are
illustrated with the supporting services along with the main data stores
present in the system. In this diagram, "Item Bank" and "Test Bank" are
classed as services. In practice, both services may be provided by the same
software system.

The item authoring and test construction processes involve the upload and
maintenance of the item and test content in the banks. This type of Create,
Read, Update and Delete process is supported by an interface commonly
abbreviated to "CRUD". The e-Framework hasn't been designed to capture
services at the level of CRUD but, in the case of item banking, these
interfaces provide a gateway to a rich and varied set of workflow processes.
The challenge is to provide a model flexible enough to allow business-specific
workflow processes while retaining interoperability amongst the various tools.

Figure 2 describes the interaction between the author of an item and the item
bank workflow processes using the Business Process Modelling Notation.

Figure 2

In this picture, the triggers that control the authoring process are indicated as
message based events. For example, in a high-stakes process maintaining a
large item bank the process might be initiated by a formal invitation to write
material and terminate with a message indicating acceptance of the finished
product. During the process, requests to revise (or even delete) the item might
also be occur. The messages sent to the item bank itself, indicated by the
dotted arrows, trigger sub-processes (shown in a collapsed form) that are
likely to vary from formal quality control workflows to something simpler such
as a human moderator checking to prevent abuse of an open item exchange.
The model we have developed for Minibix supports a flexible approach to
implementing these workflows.

System View
In the system-oriented view of the model (Figure 3) the traditional item bank is
at the centre, dividing its functions into those of item banking, test banking,
test construction and analysis. These divisions are not artificial (although in
practice item and test bank functions are often shared) as the supporting
construction and analysis processes are typically carried out using specialist
software.

Figure 3: A Model for Creating, Managing and Publishing Assessment

Content with Web Services

This model is expressed using Unified Modelling Language (UML) notation.
The circles indicate the available interfaces to the central banking system
components. An interface is just a defined set of messages, the expected
behaviour and resulting responses. These interfaces are combined to form
the services required to support the business processes illustrated above.

The interfaces play a critical role in creating an abstraction that allows tools
that implement (provide) or use (consume) the interface to work interoperably
without the need for tight integration based on specific knowledge of each
other's technical design.

REST
The creation of software that provides or consumes interfaces requires that a
mechanism is agreed for the passing of messages and responses. There are
a variety of methods to choose from when passing messages over the
internet. The Minibix project explored a number of approaches in collaboration
with the AQuRate and AsDel project teams.

SOAP is a method suitable for implementing a wide range of interfaces,
including those that manipulate complex data objects. The programmer
typically uses a third party SOAP library compatible with their development
platform (e.g., PHP, Java, etc.) to construct and send the messages and
responses. To the programmer, SOAP can provide a very natural way of
implementing web services, seamlessly turning a complex request to a
remote network application server into a simple function or method call with
very little additional programming effort. Unfortunately, there remain
significant compatibility issues with the various SOAP libraries that limit the
types of message that can be reliably exchanged.

At the opposite extreme is a group of methods which are collectively, if
loosely, described as REST-based methods. REST is a description of the
simple resource-based model of the world-wide-web. The client is envisaged
as traversing a network of internet nodes or states (each with a URL)
occasionally updating them or creating new ones. The client is provided with a
representation of the current node (typically a web page) from which the
model gets the name REpresentational State Transfer or REST. This simple
model is fundamental to our view of the web; without it concepts such as
'back' (return to previous node) and 'home' (return to start node) would be
meaningless.

The REST model works very well for resource based systems, including file
systems and databases. Therefore, the projects chose to explore a REST
approach to implementing the item and test bank services. Figure 4 shows a
REST based view of a Minibix server.

Figure 4: A RESTful view of an item bank stored in Minibix

Using simple HTTP client libraries enables a wider range of possible client
platforms to develop systems with. Requests are constructed as simple URLs,
for example, to obtain a list of all the objects in the bank called "B1" you can
use a simple request of the form:

http://server.domain.com/minibix/B1

Likewise, to search for a list of all objects in B1 that match the query "physics"
you use a simple URL like this:

http://server.domain.com/minibix/B1?query=physics

Adding new objects follows a similar pattern to simple web forms. Indeed, it is
possible to construct a simple form on an HTML page that uploads a content
package to the item bank. Individual objects are given 'tickets' as an
acknowledgement each time a new object is created. These tickets can then
be used directly in the URLs, for example:

http://server.domain.com/minibix/B1/T3/metadata

This URL returns the metadata for the object with ticket T3 in bank B1.

Open Source Development

The QTI specification is complex and developing software that meets the
breadth of use cases supported, to a level of quality suitable for end users,
will not be possible without building on the outputs of existing projects. To this
end, the three projects have agreed to publish their combined outputs through
the Sourceforge environment under the "New BSD" license. This license,
which has very liberal terms, was chosen to enable the maximum flexibility in
the way the source code is used in future. The project goal of "kick-starting"
the adoption of QTI version 2 could have been hampered if we had restricted
future developers from distributing tools commercially. We hope that these
steps will provide a useful starting point for future QTI-based tool
development.

Although the right type of license and collaboration tools are necessary for
maintaining an ongoing open source development effort they are not
sufficient. The creation of some type of community around the development is
required. Rhatz (OSS Watch) refers to this as the "usual panacea" when
attempting to sustain (or expand) an open source development project (Rhatz,
2005). He lists the typical outcomes:

• stay small (remains a nerd tool)
• gather users but no new developers (frustrated users)
• fragment when primary leader loses interest (unattractive for new

people)
• develop power but with minimal documentation (no way to find the

power)
• grow within an expert community (high price for admission)
• go commercial (stops being free)
• simply die

To investigate options for our own project futures, the three projects organized
a joint workshop in February 2008 where the issue was discussed amongst
developers and users of assessment systems.

Our first observation was that the attendees were skewed towards people
who see themselves as users, rather than developers. There is no doubt that

the possibilities thrown up by computer-assisted assessment are wide
ranging. But there remains a dichotomy between those who wish to apply
software to improve an existing process and those who feel that computers
should be used "for what they are good for" and should not simply be used to
move paper-based assessment onto screens. This indecision as to where to
direct efforts, combined with the fact that the community appears to have little
developer resource, does indicate a danger of falling into the second of
Rhatz's categories. On the other hand, it could simply be a further symptom of
the lack of direction already discussed (Sclater, 2007).

During a small break-out session to look specifically at sustainability (of a
community) some further problems were raised.

Why is code reuse so hard to achieve?
One factor was the perceived risk of building on code of unknown quality.
Although a development 'from scratch' may take longer than one that builds
directly on pre-existing work the overall development effort is perceived to be
more predictable. This is a frustrating suggestion given that much of the
development effort has been geared towards taking smaller steps in 6-12
month projects. A possible conclusion to draw is that code outputs need to be
of the type which don't require future modification but can be used 'as is', in
the same way that other basic utilities are built upon when developing any
application.

Web services provide one way to achieve a kit of parts approach but the
services offered have to be at an appropriate level. As discussed already,
performance will be unacceptable if web services are relied upon for basic
operations. The Minibix developers found this to be the case when
investigating the possibility of using the services provided by the SPAID
system. Although functional, these services were not appropriate when
developing code that relies heavily on manipulating IMS content package
files. Minibix is therefore structured so as to encourage reuse at the code
library level. Web services are reserved for the message passing envisaged
between the tools identified in the system model. In a similar move, the AsDel
project has packaged much of the basic functionality of a delivery system into
the JQTI library.

Security
A second problem is one of security. It is important to have a robust support
strategy when deploying software in a high-stakes testing environment. The
security of open source software relies on the vigilance of the community
around its development and use. While this is absent, investing in an open
source solution is seen as very risky.

Conclusions
The fundamental question of what people want from open source in the
assessment community remains open. Complete open-source assessment
tools aimed at early adopters are desirable if they enable experimentation with
new features not supported in commercial offerings. The success of Moodle

has largely been based on this type of approach and has now provided a
system mature enough for a market in commercial support to emerge. Could
this type of success be repeated in the e-assessment community?

References

Delius, G. (2005). Serving Maths,JISC Project, no publication available.
URL:http://www.jisc.ac.uk/deletsm.html

Fielding, R. (2000). Architectural Styles and the Design of Network-based
Software Architectures, PhD dissertation, University of California, Irvine.
URL: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Harding, R. (2004). Thinking Skills Tests for University Admission,
Proceedings of the 8th CAA Conference, Loughborough: Loughborough
University. URL: http://hdl.handle.net/2134/1949

Lay, S. (2007). PyAssess Project: a toolkit for QTI2 migration, Featured in e-
Learning Focus, JISC online journal. URL:
http://www.elearning.ac.uk/features/pyassess

Lay, S. & Gorissen, P. (2006). IMS Question & Test Interoperability
Specification Version 2.1, IMS Global Learning Consortium, Public Draft
(revision 2) Specification. URL: http://www.imsglobal.org/question/index.html

McAlpine, M., Tierney, B., & Zanden, L.v.d. (2006). Itembanking
Infrastructure: A Proposal for a Decoupled Architecture, Proceedings of
International Workshop in Learning Networks for Lifelong Competence
Development, TENCompetence Conference. March 30th-31st, Sofia,
Bulgaria: TENCompetence. URL: http://hdl.handle.net/1820/848

Rhatz, S. (2005). What is an open source software community? Presentation
to Building Open Source Communities, 4th July 2005, Edinburgh. Available
online from OSS Watch, University of Oxford. URL: http://www.oss-
watch.ac.uk/events/2005-07-04/index.pdf

Saville, N. (2003). The Process of Test Development and Revision in UCLES
EFL, Studies in Language Testing 15 (Edited by Weir, C. & Milanovic, M.),
Chapter 2, p57-120, Cambridge University Press, ISBN 0 521 01331 3

Sclater, N. (2004), Editor Item Banks Infrastructure Study (IBIS) HEFCE
Report. URL: http://www.toia.ac.uk/ibis/

Sclater, N. (2007). The Demise of eAssessment Interoperability? Proceedings
of the Workshop on Exchanging Experiences in Technology Enhanced
Learning - What Went Wrong? What Went Right? CEUR Workshop
Proceedings, Vol 317, ISSN 1613-0073. URL: http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-317/

Sclater, N. & MacDonald, M. (2004). Putting interoperability to the test:
building a large reusable assessment item bank, ALT-J, Research in Learning
Technology, Vol. 12, No. 3

Smythe, C., Shepherd, E., Brewer. L, & Lay. S (2002). IMS Question & Test
Interoperability Specification Version 1.2, IMS Global Learning Consortium,
Final Specification. URL: http://www.imsglobal.org/question/index.html

Wills, G., Davis, H., Chennupati, S., Gilbert, L., Howard, Y., Jam, E. R., Jeyes,
S., Millard, D., Sherratt, R. and Willingham, G. (2006). R2Q2: Rendering and
Reponses Processing for QTIv2 Question Types, Proceedings of the 10th
International CAA Conference, Loughborough University, UK. URL:
http://eprints.ecs.soton.ac.uk/12835/

Young, R., MacNeill, S., Adams, D. & McAlpine, M. (2005). SPAID (Storage
and Packaging of Assessment Item Data), JISC Project Final Report. URL:
http://www.jisc.ac.uk/uploaded_documents/SPAIDfinalreport.doc

	 Minibix: Item Banking with Web Services
	Steve Lay <swl10@cam.ac.uk> William Billingsley Raymond Chan Dan Sheppard CARET, University of Cambridge
	Abstract
	REST
	Open Source

	Background
	Minibix Project
	Service Model
	System View
	REST

	Open Source Development
	Why is code reuse so hard to achieve?
	Security
	Conclusions

	 References

