
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

 

 

NEW SYSTEMS FOR CATALYTIC ASYMMETRIC EPOXIDATION 

 

By 

 

© Phillip Parker MChem, AMRSC. 

 

 

A Doctoral Thesis 

 

 

Submitted in partial fulfilment of the requirements for the award of 

 

Doctor of Philosophy 

 

 

At Loughborough University 

Department of Chemistry 

November 2009 

 

 

Supervised by 

 

Professor Philip C. Bulman Page B.Sc., Ph.D., D.I.C., FRSC 



  Phillip Parker 

  i 

ABSTRACT 
 

New systems for catalytic asymmetric epoxidation 
 

Phillip Parker 
 

Key Words: Epoxidation, Alkene, Asymmetric Synthesis, Iminium salt, Oxaziridinium salt, 
Oxone, Hydrogen Peroxide, Sodium Hypochlorite, Oxidation, Organocatalysis, Catalysis 

  
This thesis describes the catalytic asymmetric epoxidation of olefins mediated by chiral iminum 
salts. The first chapter introduces some of the most novel and effective catalytic asymmetric 
methods for preparing chiral oxiranes. 
 
The second chapter is divided into three sections. The first section of chapter two is dedicated 
to our efforts to develop new aqueous oxidative conditions using both hydrogen peroxide and 
sodium hypochlorite as efficient, green oxidants that remove the temperature boundaries 
observed with the use of Oxone® as the stoichiometric oxidant. A wider range of available 
temperatures was examined allowing optimization of both oxidative systems. Ethereal 
hydrogen peroxide was observed to mediate asymmetric epoxidation within an acetonitrile 
monophasic co-solvent system giving enantioselectivities of up to 56%. When sodium 
hypochlorite was used in a biphasic solvent system in conjunction with dichloromethane; it was 
observed to mediate oxidation of the substrate alkenes in up to 71% ee. 
 
The second and third sections of chapter two are dedicated to our efforts to synthesize chiral 
iminium salts as catalysts for asymmetric epoxidation based on a biphenyl azepinium salt 
catalyst structure.  
 
From previous work within the Page group, the asymmetric synthesis and subsequent defined 
stereochemistry of a chiral carbon atom α to the iminium nitrogen atom was shown to have 
significant effect on the enantiocontrol of epoxidation using the iminium salt catalyst. Work 
was completed on biphenyl azepinium salt catalysts, inserting an alkyl or aryl Grignard reagent 
into the iminium bond using a pre-defined dioxane unit as a chiral auxiliary. Oxidation of the 
subsequent azepine gave a single diastereoisomerically pure azepinium salt. The methyl 
analogue of this sub-family of azepinium catalysts has been shown to give up to 81% ee for 
epoxidation of 1-phenylcyclohexene, furthermore, the binaphthalene azepinium salt with an 
additional methyl group was also synthesized and was shown to give up to 93% for epoxidation 
of 1-phenylcyclohexene. 
 
Continuation of the substitution α to the nitrogen atom gave rise to an interesting tetracyclic 
(biphenyl) azepinum salt catalyst. Construction of an asymmetric oxazolidine ring unit 
encapsulating the azepinium nitrogen and one of the methylene carbon atoms was achieved. In 
doing so two chiral centres α to the nitrogen atom were generated. The azepinium chiral carbon 
atom was populated by an addition methyl group with variation in the substitution on the 
oxazolidine chiral carbon atom. The benzyl analogue of this sub-family of tetracyclic 
azepinium catalysts has shown to give up to 79% ee for epoxidation 1-phenylcyclohexene. 
 
The third chapter is the experimental section and is dedicated to the methods of synthesis and 
characterization of the compounds mentioned in the previous chapter. 
 
X-ray reports regarding the crystallographic analysis of the structures presented in chapter two 
are provided in appendix A. Appendix B contains the analytical spectra for the determination of 
enantiomeric excess of the epoxides.  
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Å   Angström 

Ac   acetyl 

AcCl  acetyl chloride 

AIBN  2,2’-azobis(isobutyronitrile) 

aq.   aqueous 

Ar   aromatic 

BINAP  binaphthalene 

BINOL  1,1’bi(2-napthol) 

Bn   benzyl 

Boc   tert-butoxycarbonyl 

bp   boiling point 

n-butyl  normal butyl 

t-butyl  tert-butyl 

°C   degrees celsius 

c   concentration  

cm-1   wavenumber 

conc.  concentrated 

conv.  conversion 

CSA  10-camphorsulphonic acid 

δ   chemical shift 

d   dextrorotatory  (optical rotation) 

D   dextro   (Fischer projection) 

DCM  methylene chloride 

DET  diethyl tartrate 

DIPEA  diethylpropylamine 

DIPT  diisopropyl tartrate 

DMP  2,2-dimethoxypropane 

DPPF  1,1'-bis(diphenylphosphino)ferrocene 

DPPP  bis(diphenylphosphino)propane 

dr   diastereoisomeric ratio 

ee   enantiomeric excess 

equiv.  equivalent(s) 

Et   ethyl 
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Et3N  triethylamine 

g   gram(s) 

GC-FID  gas chromatography, flame ionisation detector 

h   hour(s) 

hfc   (heptafluoropropylhydroxymethylene)camphorato 

J   coupling constant 

l   laevorotatory  (optical rotation) 

L   laevo   (Fischer projection) 

LCMS  liquid chromatography mass spectroscopy 

m-CPBA  m-chloroperbenzoic acid 

Me   methyl 

MHz  mega hertz 

min   minute(s) 

mmol  milli-moles 

mL   milli-litres 

mp   melting point 

Ms   methanesulfonyl 

MS   mass spectrometry 

NBS  N-bromosuccinamide 

NMR  nuclear magnetic resonance 

nOe   nuclear Overhauser effect 

Oxone®  potassium monoperoxysulphate (KHSO4 K2SO4 2KHSO5) 

Pd(DPPF)  paladium (1,1'-bis(diphenylphosphino)ferrocene) 

Ph   phenyl 

Pg   protecting group 

ppm   parts per million 

PTC  phase-transfer catalyst 
iPr   isopropyl 

pTSA  toluene- para-sulphonic acid 

quat.  quaternary 

R   alkyl 

re   rectus, stereochemical descriptor 

RDS  rate determining step 

Rf   retention factor 

rt   room temperature 



  Phillip Parker 

  v 

si   sinister, stereochemical descriptor 

SM   starting material 

TBAF  tetrabutylammonium fluoride 

TBHP  tert-butylhydroperoxide 

TBME  tert-butylmethyl ether 

Tf   trifluoromethansulphonyl 

TEA  Triethylamine 

TFA  trifluoroacetic acid  

THF  tetrahydrofuran 

TLC  thin layer chromatography 

TMSCl  trimethylsilyl chloride 

TPPP  tetraphenylphosphonium monoperoxysulfate  

Tr   trityl (triphenylmethyl) 

Ts   toluenesulfonyl 

U.V.  ultraviolet 
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1 Introduction 
“The universe is dissymmetrical; for if the whole of the bodies which compose the solar 

system were placed before a glass moving with their individual movements, the image in 

the glass could not be superimposed on reality……….. Life is dominated by 

dissymmetrical actions. I can foresee that all living species are primordially, on their 

structure, in their external generates functions of cosmic dissymmetry.” 

– Louis Pasteur, 18481 

 

1.1 Asymmetric synthesis 
Louis Pasteur identified that all living organisms, as well as the molecules they house, 

can be ‘dissymmetrical’. Dissymmetry, or asymmetry is the lack of equivalence between 

two objects, this is the case for carbon atoms containing four in–equivalent groups. The 

central carbon atom is deemed chiral and chirality is one of the most fundamental 

concepts in chemistry. 

 
HO

HO COOH

NH2 H
HO

HO COOH

NH2 H

 

 

  1, L-DOPA 2, D-DOPA    

 

Chiral comes from the Greek word ‘cheir’ which in English translates as ‘hand’. A pair 

of hands are mirror images of one another, they cannot be superimposed. Chiral 

molecules also behave in this way. Molecule 1 can be reflected in a mirror and observed 

as a molecule identical to 2. Both 1 and 2 have identical physical and chemical identities, 

melting point, boiling point and molecular weight etc, all except their conformation in 

space. This means that 1 cannot be superimposed on 2. Molecules exhibiting this 

characteristic such as 1 and 2 are named enantiomers, the central carbon atom in each 

molecule is deemed chiral. 



  Phillip Parker; Introduction 

  2 

The general nomenclature for two enantiomers at a chiral carbon atom is the R and S 

notation. R is the notation for rectus, Latin for right and S is the notation for sinister, 

Latin for left. Figures 3 and 4 are an example of R and S enantiomers. The notation of 

each chiral carbon is denoted via the Cahn–Ingold–Prelog rules; the atom with the lowest 

atomic number attached to the central carbon is held furthest from the eye through the 

central carbon atom, the three remaining atoms are ranked A, B and C by the value of its 

atomic number (high to low). The R enantiomer, 3, has the configuration that rotates 

clockwise through the three largest atoms, whereas the S enantiomer, 4, rotates through 

the same atoms in an anti–clockwise direction.2 

 

H A

C B

H A

B C
A > B > C > H

 
 

  3, R–enantiomer 4, S–enantiomer   

 

In the human body, enantiomers may work as independent chemical entities to one 

another as they can be absorbed, activated and degraded in different ways and at 

different rates. Cell membranes and enzymes in the human body contain protein 

receptors made of chiral amino acids.1 The chiral receptors operate using a “lock and 

key” mechanism, in which the receptors are able to distinguish between individual 

enantiomers and they preferentially interact with the enantiomer that has the desired 

chirality, fitting together as a “lock and key”. This allows the receptor to initialise a 

chemical process, a bodily function or initiate therapeutic effects. If the chiral receptor 

were to interact with the opposite enantiomer no response may occur, but ultimately a 

detrimental response may also occur. Therefore the preferred enantiomer can show 

increased activity over its enantiomer, whether it be higher levels of therapeutic 

effectiveness or oppositely higher levels of toxicity.1 

 

Two examples of chiral drug recognition are L-DOPA and R–thalidomide. Emil Fischer 

devised the D and L nomenclature when attempting to identify unknown enantiomers of 

common amino acids and sugars. He portrayed glyceraldehyde in its Fischer projection 

and gave each enantiomer a notation: the (+)-enantiomer was labelled D for dextro and 
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the (–)-enantiomer was labelled L for laevo. In 1951 it was proven that the D enantiomer 

actually had the R absolute configuration, and consequently L was S.1 

 

L-DOPA, 1, is used in the treatment of Parkinson’s disease. L-DOPA is administered 

into the body as a ‘pro-drug’ as dopamine itself cannot cross the blood brain barrier.3 

When L-DOPA is taken into brain cells it is automatically converted to dopamine by 

enzyme catalysed in–vivo decarboxylation. The enzyme used is L-DOPA decarboxylase; 

this is a chiral enzyme and enantiomer specific; it will not convert D-DOPA, 2, into 

dopamine. Therefore the administration of DOPA must be exclusively in the L form, as 

the D form will not be converted into the required drug dopamine, and a build up of D-

DOPA can become toxic inside the human body. 

 

NO O

N
H

H
O

O

NO O

N
H

H
O

O

 
 

  5, R–Thalidomide 6, S–Thalidomide   

 

The second and far more serious example is in the case of R and S–thalidomide, 5 and 6. 

Thalidomide was discovered in the 1950’s as a powerful sedative and anti–nausea drug 

that could have great potential in early pregnancy sickness. Unbeknown at the time, one 

enantiomer was a powerful teratogen, which causes extremely harmful effects on a 

growing foetus.4 A racemic mixture, a 50% mixture of both enantiomers, was given to 

the pregnant mothers, and upon the birth of their babies, teratogenic effects were 

observed affecting the growth of the new born baby’s limbs. After extensive testing it 

was found that R–thalidomide was the active and therapeutic drug that showed no 

teratogenic effects even in high concentrations, whereas S–thalidomide was shown to be 

the teratogen and had little sedative and anti–nausea effect. 

 

 

As observed from these two examples, when designing drugs and utilising natural 

products, stereo-discrimination is essential to produce enantiomerically pure compounds 
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that can be used for human and animal consumption. Due to the inactivity or adverse 

effects shown by racemic drugs, stringent rules have been imposed over monitoring, 

regulation and testing. In 2002, 36% of the worldwide pharmacy market consisted of 

chiral drugs, amounting to >$140 billion.5  

 

 

1.2 Epoxides 
Epoxides are a sub–class of ethers in that they contain the C–O–C unit, but they are 

configured in a three membered heterocyclic ring system.6 Due to the epoxides 

heterocyclic structure, which is analogous to cyclopropane and aziridines, it is highly 

strained, with bond angles at approximately sixty degrees. Therefore epoxides undergo 

facile ring opening with even the weakest of nucleophiles to generate compounds with 

stereo- and regio- selective functionality, with the driving force behind the ring opening 

being the relief of the epoxides highly strained cyclic system.7 Asymmetric epoxidation 

is an example of asymmetric catalysis that is being developed by multinational research 

groups.8,9,10,11 The development of enantioselective catalysts enable the generation of one 

‘major’ epoxide enantiomer. This, in turn, will enable the highly enantioselective 

construction of many natural products that contain an epoxide unit. 

 

O

O

NH

O

Cl

OMeON
HR

O

O

O

 
 

7, cryptophycin 1: R = H 

8, cryptophycin 52: R = Me 

 

Cryptophycin 1 and 52 (7 & 8) are two examples of natural products containing an 

epoxide functionality that exhibits cytotoxic activity against malignant tumours in the 

human body.12  

 



  Phillip Parker; Introduction 

  5 

 

O

 
 

9, (+)-disparlure 

 

The gypsy moth is native to parts of the UK and temperate Europe, but accidental 

introduction to the US in 1879 caused widespread damage and destruction. The female 

gypsy moth is incapable of flight; she releases a sex pheromone containing an epoxide 

functionality, (+)-disparlure (9), when ready for mating.13 The male moth will become 

attracted to this pheromone, find the female and copulate. The (–)-disparlure enantiomer 

was found to be totally inactive and shows no activity even at high concentrations. 

Therefore the active (+)-enantiomer can be used to falsely attract the male gypsy moth in 

order that numbers can be regulated. 

 

Many natural products contain the epoxide functionality as a single enantiomer, which 

may be essential for biological activity. The synthesis of chiral epoxides in natural 

products or as versatile intermediates has shown great potential for economic viability 

and for future scientific research, especially when incorporated into asymmetric catalytic 

cycles where the amount of catalyst used remains low and the output of the chiral 

epoxide is large compared with the quantity of catalyst used.14 
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1.3 Achiral epoxidation of alkenes 
The generation of achiral epoxides is often accomplished by the oxidation of alkenes 

using organic peracids, first discovered in 1909 by Prileshaev.15 Hydrogen peroxide is 

the general oxidant used to generate a peracid, the most useful peracids perhaps being 

peracetic and perbenzoic acids, and substituted derivatives such as m–chloroperbenzoic 

acid (m–CPBA) the mechanism of oxygen transfer is shown in Scheme 1. 

 

 
 

Scheme 1 

 

Originally the transition state model of this reaction was though to be planar 

(10),16,17,18,19,20 but further research has calculated that the transition state must be a 

lower energy spiro transition state conformation (11), this transition state model is also 

known as the ‘butterfly mechanism’ first published by Barlett in 1950. Both transition 

state models proceed through a concerted mechanism, and therefore the epoxidation is 

stereospecific.  

 

 
 

      10, Planar TS model 11, Spiro TS model   
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Alkenes with α-situated electron withdrawing groups such as enones can be directly 

oxidised by a solution of hydrogen peroxide. Weitz and Scheffer first described the use 

of an alkaline solution of hydrogen peroxide;15 the alkaline solution deprotonates the 

hydrogen peroxide, the nucleophilic hydroperoxy anion can then reversibly attack the 

enones conjugated alkene (Scheme 2).15 The system can then ring close through 

nucleophilic attack of the carbon anion at the more electrophilic peroxy–oxygen atom, 

displacing a hydroxide molecule and generating the epoxide. Due to the long life 

expectancy of the carbanion, the α,β carbon–carbon sigma bond can rotate during the 

stepwise mechanism and therefore the reaction is not stereospecific. 
 

O

-OOH

O-

O
OH

O

O(-OH)

O-

O OH

α
β

 
 

Scheme 2 

 

A second method, used by Richardson and Yao, is achieved by using a bicarbonate-

activated peroxide (BAP) at neutral pH.21 The generation of the electrophilic peracid 

requires the presence of a carbonate atom, generally sodium hydrogen carbonate or 

ammonium hydrogen carbonate in a water–based solution. Hydrogen peroxide 

undergoes nucleophilic attack on the most electrophilic peroxy–oxygen by HCO3
– 

anions, generating peracidic HCO4
– anions in solution. The HCO4

– percarbonate 

generates the racemic epoxide through a mechanistic pathway similar to the m–CPBA 

peracidic mechanism observed in Scheme 1, via transition state 12.  
 

O

O O

O H

 
 

12, transition states for percarbonate epoxidation 
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Payne, has developed another method of hydrogen peroxide mediated epoxidation.22,23 In 

this system hydrogen peroxide is used in conjunction with a nitrile functionality to 

generate epoxides in good yield. In the presence of base, hydroperoxy anions 

nucleophilically attack the nitrile carbon to generate a peroxyimidic acid intermediate 

(Scheme 3). The peroxyimidic acid is then thought to generate the racemic epoxide 

through a similar concerted mechanism to that occurring in peracidic epoxidation 

(Scheme 1). There is however no direct evidence that this mechanism is correct. 

 

Me C N
O O

H
H

Me C
NH

O OH

K2CO3, MeOH  
 

Scheme 3 

 

1.4 Metal-catalysed asymmetric epoxidation of alkenes 
Due to the growing interest in asymmetric epoxidation, many international research 

groups have developed a range of oxidation catalysts and systems. Several of the most 

innovative and efficient approaches are reviewed here, with a discussion of their 

advantages and disadvantages in modern asymmetric catalysis.  

 

1.4.1 The Sharpless catalytic asymmetric epoxidation of allylic alcohols 

The Sharpless epoxidation of allylic alcohols was discovered in 1980 by Sharpless and 

Katsuki.24 First, using vanadium and molybdenum metal centred catalysts,25 Sharpless 

found that an allylic alcohol could be substituted for an alkoxide ligand that was already 

chelated to the metal catalyst. In later work using titanium, the oxidant, t-butyl peroxide 

also displaces an alkoxide ligand, thus generating a titanium complex with both a t-butyl 

peroxide and an allylic alcohol co-ordinated to the central titanium atom. Due to the 

proximity of the two chelated ligands, the weakly nucleophilic alkene forced 

nucleophilic attack on to the peroxide generating the epoxide. After further modification, 

Sharpless discovered the most advanced and efficient catalyst, which was a titanium 

tetra–isopropoxide-diethyl tartrate (DET) catalyst (13). 



  Phillip Parker; Introduction 

  9 

 

O O
Ti O

Ti
O

R2OOC OR1

COOR2R2O O

R1O
OR1

O OR2

R1 = Et, R2 = iPr

OR1

 
 

13, Sharpless titanium(VI) complex. 

 

The advantages of this methodology were that the procedure is both catalytic and 

enantioselective.26 As observed in 13, the chiral Ti(VI) complex exists as a dimer with a 

C2 plane of symmetry. The predictibility of the stereochemical induction in the epoxide 

product (Scheme 4) is the main reason that the Sharpless epoxidation has become so 

important and is so widely used today.  
 

OH

R1
R2R3

O
(-)-DET  "O"

(+)-DET  "O"

tBuOOH
Ti(OiPr)4

CH2Cl2

OH

R1
R2R3

OOH

R1
R2R3

 
 

Scheme 4 
 

The Sharpless epoxidation has become one of the most important discoveries over the 

last thirty years, and in 2001 Barry K. Sharpless was presented with the Nobel Prize for 

Chemistry in acknowledgement of this research.2 

 

The dimeric complex is insensitive to other functionality and therefore the process is 

totally specific to the allylic alcohol moiety, even over other alkenes that may be 

present.27 With the selection of the appropriate enantiomer of the catalyst and the correct 

geometry of the allylic alcohol, generation of the required epoxide enantiomer can be 

observed in over 90% ee (Scheme 4). 
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Sharpless epoxidation requires an allylic alcohol, an oxidant; tbutyl peroxide (TBHP), 

and the pre–catalyst; Ti(VI) isopropoxide-diethyl tartrate (DET) (Scheme 5). In–situ the 

allylic alcohol becomes chelated to the chiral Ti(VI) metal centre ((Figure 14.1). The 

most electrophilic TBHP oxygen atom is then nucleophilically attacked by the Ti(VI) 

chelated t–butyl ester thus, generating the Ti(IV) peroxide ((Figure 14.2). 
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Scheme 5 

(Figure 14.1 – 14.5) 
 

The Ti(IV) is in a bidentate arrangement to both the alkyl alkoxide and the TBHP 

anion.28 Due to the close proximity of the two ligands the activated TBHP is then 

attacked by the weakly nucleophilic alkene at the most electrophilic oxygen ((Figure 

14.3). This generates the epoxide preferentially on one of the two enantiotopic faces of 

the alkene ((Figure 14.4). The Ti(VI) is regenerated by the release of the epoxide, now 

co–ordinated to the epoxy alkoxide and t–butoxide ((Figure 14.5). The catalytic cycle 

replaces the epoxy alkoxide with another allylic alcohol ((Figure 14.1), and the t–

butoxide with another t–butyl peroxide group ((Figure 14.2). The recycling of the Ti(IV) 

catalyst has been proven through mechanistic studies (Scheme 6). 
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Ti(OR)4 + 2 x tartrate Ti(tartrate)2(OR)2 + 2 x ROH 

 

Scheme 6 
 

It was observed that if the alkoxide ligands are replaced by DET–allylic alcohol ligands 

(Scheme 6),29 the equilibrium lies to the right, towards the DET ester chelated complex. 

Once the allylic alcohol reacts with the activated THBP, the recycled Ti(IV) releases the 

epoxy alkoxide and re–chelates to another allylic alcohol. 

 

 

In previous work Sharpless observed that vanadium and titanium complexes generate 

intrinsically 1,2–anti products when the allylic alcohol contains functionality at carbon 

one. Kinetic resolution will occur when using a racemic C1 functionalised allylic 

alcohol, as one enantiomer will react quicker than its opposite enantiomer.28 Therefore, 

the Ti(IV) complex will generate the anti–enantiomer faster than the syn-derivative. The 

slower reacting alkene enantiomer therefore becomes enantiomerically enriched (Scheme 

7). 
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Scheme 7 

 

Taking a molecule containing two double bonds that could potentially undergo Sharpless 

epoxidation, the more nucleophilic of the two reacts more readily (Scheme 8).30 Again 

one enantiomer of the epoxide is generated faster than the other, so this enantiomer is 

observed in the final mixture as the major product, giving a yield of 35% (out of a 

possible 50%) and with an enantiomeric excess of greater than 95% ee. The unreacted 

allylic alcohol is therefore also enantiomerically enriched. 
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Scheme 8 
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The Sharpless asymmetric epoxidation is a widely used and efficient method for the 

production of versatile epoxide intermediates, building blocks and the generation of 

natural products used in organic chemistry. 
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Scheme 9 

 

For example, the Sharpless methodology has been used to produce one enantiomer of 3–

hydroxypipecolic acid (Scheme 9).31 The trans–isomer, 15 generates part of the structure 

of febrifugine (18), a potent antimalarial agent, and also of (–)- swainsonine (19), which 

has shown potent and specific α-D–mannosidase inhibitory activity. The cis–isomer, 16 

is a precursor of tetrazomine (17) an anti–tumor antibiotic. 
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One major limitation of the Sharpless asymmetric epoxidation method is the requirement 

for the allylic hydroxyl group in order to achieve enantioselective epoxidation. Therefore 

this method is ineffective in the epoxidation of unfunctionalised alkenes. This limitation 

has spurred the development of other asymmetric epoxidation methods capable of 

achieving high enantioselectivity for unfunctionalised alkenes. 
 

 

1.4.2 Metalloporphyrins as catalysts for asymmetric epoxidation. 

In 1983 Groves and Myers first discovered that planar Fe(III) porphyrin complexes are 

models for the oxidising enzyme cytochrome P450 monooxygenase.32,33 Groves and 

Myers first developed a Fe(III) porphyrin complex catalyst (20) with the ability to 

oxidise unfunctionalised alkenes. 
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20, Fe(III) porphyrin complex catalyst 21 

 
 

Many combinations of metal centres and diverse chiral ligands have been screened to try 

and increase both reactivity and enantiomeric excess. Recently chiral metal porphyrins 

have been developed that have given moderate to good ee; Berkessel’s carbonyl 

ruthenium(II) metalloporphyrin,34 with a novel D4 symmetric ligand (21),35,36 Naruta’s 

iron complex,37 with either binaphthalene or a bitetralin–linked porphyrin, and 

Collman’s iron α,α,β,β–tetrakis(aminophenyl)porphyrin with attached binaphthyl 

moieties.38 
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Unfortunately this methodology is substrate-specific, requiring styrene based alkenes 

producing the corresponding styrene oxides with up to 89% ee. The greatest problem 

with this epoxidation methodology is the low yielding multistep approach to synthesise 

the large and complex chiral catalysts.39 

 

 

1.4.3 Chiral Salen complexes for asymmetric epoxidation. 

In 1985, Kochi first devised and reported a manganese(III) Salen complex capable of 

catalytic epoxidation of unfunctionalised alkenes.40,41 Both porphyrins and Salen 

complexes are initially based on the oxidising enzyme cytochrome P450 mono–

oxygenase; it is the oxomanganese(V) cation that is thought to be the active oxidising 

agent. The major difference between these two types of chiral catalyst is that the 

oxidised metal porphyrins are planar, whereas Katsuki has shown that the oxidised Salen 

complexes are based on tetrahedral carbons in close proximity to the metal centre, which 

give the Salen complexes a folded structure.42 This amplifies the asymmetric induction 

imposed by the chiral catalyst on the generation of the epoxide. 

 

1.4.4 Jacobsen and Katsuki’s chiral Salen complexes. 

Jacobsen has developed a multitude of catalysts based on the manganese(III) Salen 

complexes of chiral Schiff bases. The ligands are derived from chiral 1,2-diamines and 

substituted salicylaldehydes. Oxidising agents such as periodates and sodium 

hypochlorite have been utilised to oxidise the Salen pre–catalyst to the 

oxomanganese(V) active catalyst. Jacobsen’s catalysts have been observed to be 

particularly effective in the oxidation of cis-aryl substituted olefins, for example, catalyst 

22 has been shown to produce high ee, up to 98% for certain dimethylchromene 

derivatives (Scheme 10).43,44,45,46,47 However, Jacobsen’s catalysts generate poor 

selectivity when used in conjunction with trans-aryl and aliphatic alkenes. 
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Scheme 10 22, Jacobsen’s catalyst 
 

Katsuki has also reported chiral Mn(III) catalysts, developing catalyst 23. This method 

uses chiral residues attached at an aromatic carbon ortho to a phenolic group. 
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Scheme 11      23, Katsuki’s catalyst

 

Katsuki’s catalyst contains the standard asymmetric centres at the 1’ and 2’ positions, 

but Katsuki’s catalyst, 23, differs from Jacobsen’s as it also contains axial chirality in the 

form of enantiomerically pure binaphthyl groups incorporated in to 3,3’ 

positions.48,49,50,51,52,53 Katsuki’s system exhibits similar enantioselectivities to the 

Jacobsen catalyst for cis–aryl alkenes, greater than 99% ee for certain dimethylchromene 

derivatives (Scheme 11). However greater enantioselectivities are observed when 

oxidising trans–alkenes.54 
 

The enantioselectivity in epoxidation is believed to be induced by a chiral Salen catalyst 

through a side on approach of the alkene to the oxomanganese(V) intermediate. It is 

known that asymmetric centres at carbon 1’ and 2’ induces higher enantioselectivity in 

epoxidation of cis–aryl alkenes. 
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24, Preferential alkene approach to the chiral Salen complex 

 

The 3,3’ axial symmetry (R4/ R4’ groups) directs the orientation of the approach of the 

substrate alkene towards the oxo–Mn(V) bond (solid arrow, figure 24). The 3,3’ 

functionality inhibits approach from the more sterically hindered face (dashed arrow). 

Therefore, these interactions enforce enantiofacial selection of the oxygen transfer and 

explain the raised enantioselectivity of the Katsuki Salen complex, especially for trans-

alkenes. 

 

One major disadvantage with Salen Mn(III) epoxidation is the lack of retention of the 

alkene configuration in the epoxidation of some substrates. This is especially the case 

when attempting to oxidise aryl–substituted acyclic cis–alkenes. Epoxidation of these 

acyclic alkenes does not occur with retention of configuration. 
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Scheme 12 
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The cause of this (Scheme 12) is postulated to be a step–wise radical mechanism in 

which bond rotation of the radical intermediate causes the scrambling of the cis–

geometry to yield the trans–epoxide. This problem was ‘modified’ by the addition of 

quaternary cinchona alkaloid-derived salts to the reaction mixture, to give trans–

epoxides in up to 90% ee. 
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25, Conformationally reversed Salen complex 
 

More recently, Katsuki has developed a conformationally reversed Salen complex (25), 

with an attached carboxylate group on the ethylenediamine moiety.55 

 

In a standard Salen complex, due to the tetrahedral geometry of carbon 1, which would 

hold the asymmetric functionality, this group is forced pseudoequatorial (Scheme 13), 

making the Salen complex adopt a folded rather than planar conformation confining the 

olefin to only approach from over the 1’, 2’ positions. It is this conformation that 

controls the asymmetric induction of the epoxidation in all Salen complexes.  
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Scheme 13, Pseudoequatorial and pseudoaxial conformations of Mn-Salen complexes 
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In the conformationally reversed Salen complex, the catalysts conformation forces the 

carboxylate group, at carbon 1’, pseudoaxial (Scheme 13). Due to the exchange from 

pseudoequatorial to pseudoaxial conformation, the carboxylate group can then stabilise 

the oxo–Mn(V) active catalyst. This change in conformation now confines olefin 

approach from over the 3 and 3' positions, thus inducing the opposite enantiocontrol. For 

example, dimethylchromene derivatives are oxidised with up to >99% ee. 
 

The Jacobsen/Katsuki Salen-mediated asymmetric epoxidation has proven to be one of 

the most successful methods for epoxidation of cis–aryl alkenes with high enantiomeric 

excess. Unfortunately Salen catalysed reactions suffer from two fundamental problems. 

Firstly a loss of stereospecificity through a radical intermediate is observed. Secondly, 

and most importantly, Salen complexes are only successful in the oxidation of aryl 

alkenes, meaning that Salen complex methodology is of limited use. 
 

 

1.5 Metal-free catalytic asymmetric epoxidation. 

1.5.1 Julia–Colonna epoxidation of α,β–unsaturated ketones. 

In 1980 Julia and Colonna demonstrated that high enantioselectivities, up to 97%, could 

be achieved in epoxidation of an α,β–unsaturated ketone such as chalcone (Scheme 

14).56,57 Julia developed a triphasic oxidative system containing poly–L–alanine, toluene, 

and aqueous alkaline hydrogen peroxide as the oxidant. Unfortunately the Julia 

methodology suffers from extended reaction times of up to 24 hours and low substrate 

scope. 
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Scheme 14   97% ee 

 

Roberts has further investigated the Julia–Colonna epoxidation. Roberts has produced an 
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improved biphasic system that reduces reaction times to approximately thirty 

minutes,58,59 increasing the enone substrate range to include some unreactive, α-

substituted and cis substituted aryl, heteroaryl and alkenyl enones, but most importantly 

maintaining the enantioselectivity (97% ee for chalcone). Under the new biphasic 

conditions the reaction is performed in a non–aqueous solvent, such as THF, using a 

water–free source of hydrogen peroxide; the readily available urea–hydrogen peroxide 

popularised by Heaney was the oxidant of choice.60 DBU is used as a non–nucleophilic 

base.61 
 

In 1976 Wynberg introduced the idea of phase transfer catalysis (PTC) for epoxidation, 

an alternative method to facilitate the production of an epoxide from an α,β–unsaturated 

ketone with high enantiocontrol. Wynberg used a quinine-derived quaternary ammonium 

salt (26) as the chiral phase transfer catalyst in the presence of alkaline hydrogen 

peroxide and a stoichiometric oxidant, giving up to 55% enantiocontrol when using 

chalcone as the test substrate.62,63,64,65,66,67 
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Further work by other research groups has proven that the quinine-derived quaternary 

ammonium salts, such as 26 –28, generate high ee when investigating enantioselective 

α,β–unsaturated ketone epoxidation. Lygo has generated modifications of catalyst 27 

giving enantioselectivities of 71 – 90%,68,69,70 and Arai has identified catalyst 28; by 

exchanging the halogen group on the benzyl functionality up to 92% enantiocontrol has 

been achieved.71,72 Lygo and Maruoka have also produced C2–symmetric catalysts 29 

and 30, containing BINAP and a biphenyl azepinium ring functionalities, both giving up 

to 97% enantioselectivity.73,74,75 

 

 

1.5.2 Dioxirane mediated asymmetric epoxidation. 

1.5.2.1 General overview 

Dioxirane–mediated asymmetric epoxidation has emerged as one of the most effective 

methods for producing enantiomerically enriched epoxides over the past twenty years. 

The general method for production of a dioxirane is by the use of a ketone and a 

stoichiometric oxidant, generally Oxone®, in either a monophasic (CH3CN/H2O) or a 

biphasic (CH2Cl2/H2O) system at neutral pH (7–8) (Scheme 16). The composition of 

Oxone® is 2KHSO5.KHSO4.K2SO4, the active component being potassium 

monopersulfate (KHSO5, potassium peroxomonosulfate). The use of Oxone® has 

increased rapidly due to good stability, simple handling, the non-toxic nature, the 

versatility of the reagent and the low cost. 
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Scheme 16, dioxirane mediated epoxidation 
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In the early 1980’s, research groups lead by Curci and Marples both described the 

generation of stoichiometric dioxiraines from chiral ketones (31 – 35).76,77,78 They were 

used as pre–catalysts for dioxirane-mediated asymmetric epoxidation of alkenes, 

affording their respective epoxides in up to 20% ee. 
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1.5.2.2 Shi’s chiral–fructose derived ketone catalysts. 

In 1990 Shi designed a fructose-based ketone catalyst, 36, that displayed remarkably 

desirable features for asymmetric epoxidation, affording up to 95% ee in the epoxidation 

of trans–stilbene (Scheme 17). 
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Scheme 17              Catalyst 36, 95% ee 

 

The fructose ketone catalyst (36), is oxidised to the dioxirane with a stoichiometric 

oxidant such as Oxone® (Scheme 18).79 

 

The electrophilic dioxirane undergoes nucleophilic attack from the alkene, which 

generates the epoxide. Trans– and tri-substituted alkenes give from 80% to 95% ee. The 

desriable features of the fructose catalyst are the close spacing of the stereogenic 

centre(s) and the reacting centre(s), resulting in efficient chemical communication 
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between the dioxirane and the substrate. The fused rings on the α–carbons reduce 

epimerisation of the stereogenic centres. Electron-withdrawing groups may be added to 

the ketone to activate the carbonyl functionality. 80,81 
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Scheme 18, Shi's catalytic dioxarine epoxidation 

 

Unfortunately, Shi’s catalyst undergoes decomposition through Baeyer–Villiger 

oxidation,82,83 and so the amount of catalyst is typically 30 mol% (Scheme 18). This 

problem was eased by raising the pH of the reaction from neutral, pH 7/8, to alkaline, > 

pH 10 with the addition of potassium carbonate. The resulting epoxides were gained 

with increased ee ranging from 91% to 97% and are stable under basic conditions 

(Scheme 17). 

 

Another result of the raised pH was that the nucleophilicity of the Oxone® was also 

increased. Not only does this help supress the Baeyer–Villiger side reaction therefore 

increasing the yields of selected epoxides to 95%, but increased the rate of reaction 

therefore reducing the amount of catalyst required to 20 mmol%. 

 

The synthetic utility of this methodology84,85 was widely explored by the asymmetric 

epoxidation of various hydroxyalkenes (90–94% ee), enol ethers and enol esters (80–
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91% ee), enynes (90–97% ee), vinylsilanes (84–94% ee), cis–alkenes (84–97% ee), 

terminal alkenes (30–94% ee), and mono–epoxidation of conjugated dienes (90–97% 

ee). The epoxidation of conjugated dienes has also been shown to be highly 

enantioselective. Kinetic resolution of racemic 1,3-disubstituted cyclohexenes and 

racemic allylic substituted cyclic olefins has also been completed.86,87 

 

1.5.2.2.1 Transition States for ketone catalysts 

There are two possible transition state models (transition state–models) to describe how 

the alkene interacts with the dioxirane, the spiro and planar transition state models 

(Scheme 19).10,16, 87, 88 
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Scheme 19, Spiro and Planar transition state models 

 

A transition state model is invaluable for predicting the stereochemical outcome of the 

epoxidation reaction. The large, bulky functional groups on both the alkene and the 

dioxirane directly determine the angle and orientation of the approach of the substrate to 

the catalyst, therefore determining the regio- and stereochemistry of the epoxide 

produced. Scheme 19 shows the two major transition state models for Shi’s fructose 

catalyst, spiro and planar. The alkene approaches the dioxirane, placing the bulky R 

groups away from the dioxiranes ketal moeities, therefore reducing repulsive steric and 

electronic interactions. 

 

The spiro transision state model is favoured over the planar model, due to the overlap 

and therefore stabilising interaction between the reacting lone pair of the oxygen and the 

the π* orbital of the alkene (stereoelectronic origin). The oxygen lone pair and the π* 

orbital do not overlap in the planar transision state model, so there is less stabilisation. 
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Shi showed that the asymmetric epoxidation of trans and tri-substituted alkenes was 

efficiently completed with the fructose-derived ketone catalyst. The stereochemistry was 

predictable using a simple model. Unfortunately cis and terminal alkenes were a problem 

as the largest group(s) on the alkene could point away from the dioxirane, resulting in 

poor selectivity as the alkene could flip 180 degrees (Scheme 20). 
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Scheme 20 
 

Shi has also reported alkaline hydrogen peroxide-mediated asymmetric epoxidation in 

the presence of nitriles.89 The peroxyimidic acid reported by Payne is postulated to be 

the active oxidant in the dioxirane generation of the fructose catalyst (Scheme 21).22,23 

High yields and enantioselectivities under these reaction conditions with up to 95% ee 

for 1–phenylcyclohexene oxide have been reported. 
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Scheme 21, hydrogen peroxide-mediated dioxirane epoxidation 
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Unfortunately the original fructose catalyst is ineffective for electron-deficient and α,β–

unsaturated alkenes due to the decomposition through the Baeyer–Villiger reaction. Shi 

designed two further catalysts. From wide screening, Shi observed that 

(–)-quinic acid-derived catalyst 37 showed increased enantiocontrol, up to 94% ee, and 

increased rates of reaction, up to 80%, over the original fructose catalyst (36).90 
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Scheme 22                            Catalyst 37, 94% ee 

 

With the success resulting from this additional acetate group, Shi then adapted the 

original fructose catalyst, exchanging the lower 2,3- ketals for two acetate moieties, 

generating catalyst 38.84 The electron withdrawing ability of the acetate groups again 

inhibited the Baeyer–Villiger reaction. The enantiocontrol was increased for trans and 

tri-substituted alkenes as well as for α,β–unsaturated alkenes (82 – 98% ee). The rate of 

reaction was also greatly increased.91 
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Scheme 23                Catalyst 38, > 95% ee 

 

Shi designed a nitrogen analogue of the fructose catalyst,82,85 the rationale being that the 

nitrogen substitution could impart enantiocontrol in the epoxidation of cis and terminal 

alkenes. The nitrogen functionality was added to the fructose ketone by the Amadori 

rearrangement,82,85,929394 and the highest enantiocontrol was observed when a N–Boc 
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group was incorporated in the catalyst (39). The enantioselectivity for trans alkenes was 

observed to be lower when using 39,82,85 but for cis and terminal alkenes the nitrogen 

analogue gave up to 94% and 85% ee respectively (Scheme 24). An additional feature of 

the nitrogen analogue is that it retards the Baeyer–Villiger reaction to a higher degree 

than the original fructose catalyst (36). 
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Scheme 24 Catalyst 39, 91% ee 
 

Shi has suggested that there may be an attraction between the Rπ functionality of the 

approaching alkene and the oxazolidinone of the ketone catalyst (41).16,95 As a result of 

this, alkene groups containing Rπ functionality (41) may be significantly differentiated 

from those without (40), leading to increased enantioselectivity. Shi further 

demonstrated that catalysts containing N-aryl substitution (R1) strengthen the attractive 

interaction through conjugative electron withdrawal from the oxazolidinone 

functionality. It is postulated that the approaching alkene containing π functionality and 

the electron poor oxazolidinone undergo an electronic field effect i.e. a through-space 

electrostatic interaction.96,97,98 The exact nature of this attractive interaction between the 

Rπ functionality and the oxazolidinone is not clear at present.16,99 
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Structural evidence of most effective catalysts revealed that the nitrogen substituent (R2) 

points firmly away from the dioxirane, therefore proving that it (R2) could not influence 

the alkene sterically, only electronic factors may be important.17 
 

The same rationale was applied to terminal and geminal alkenes.17,82,85 The ketone 

catalysts oxazolidinone functionality may differentiate, using an electronic field 

interaction, between the approaching alkenes functional groups; those in which contain 

Rπ functionality (42 & 43) and those in which the Rπ functionality is absent. This 

differentiation imparts increased enantiocontrol onto the selected alkene.  
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  42 43    
 

Due to the need for π character the Catalyst 39 performs poorly with non-aryl alkenes. 
 

Shi has reported a skeletal alteration of the pyranose catalyst 39 by generating a catalyst 

with carbocyclic skeleton, catalyst 44, which has been shown to give enantioselectivities 

of 89 – 93%, unfortunately the difficult and lengthy synthesis of 44 paired with the 

requirement of an aryl alkene makes it an unattractive tool for catalysis. 
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Scheme 25    Catalyst 44, 89 – 93% ee 
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Most recently Shi has formed more efficient derivatives of pyranose catalyst 39. 

Catalysts 45 and 46 are prepared from D–glucose and have been used to impart 

enantiocontrol over styrene (80 – 92% ee), cis alkenes (81 – 98% ee), conjugated cis-

dienes (76 – 94% ee) and conjugated cis–enynes (80 – 97% ee). 

 

O
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O O

O

O
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45 46   

 

Other research groups such as Shing, Adam and Zhao have all generated sugar based 

dioxirane catalysts. 100,101,102 These oxidations are believed to proceed through similar 

transition states to Shi’s fructose catalyst, however they have not provided epoxides with 

high enantioselectivity. 

 

1.5.2.3 Dan Yang: C2 symmetric dioxirane catalysts 

Yang’s most efficient C2 catalyst (47) has been developed from 1,1’–binaphthyl–2,2’ 

dicarboxylic acid.103 In these C2 symmetric molecules the binaphthalene units are used 

as the chiral control element keeping the C2 symmetric ketone rigid. The catalyst also 

contains two large ketal groups at positions 3 and 3’. These groups have two 

responsibilities, first to help facilitate activation of the carbonyl functionality, through 

electron withdrawal, enabling the formation of the dioxirane catalyst.104,105 Secondly, 

and most importantly, they act as steric control elements. The ketals are the closest 

functionalities in space to the dioxirane when oxygen transfer occurs, and they help to 

direct the approach of the alkene. 
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47, Yang’s C2 symmetrical ketone Catalyst 
 

High enantioselectivities were obtained for trans-disubstituted and tri-substituted 

alkenes, the best substrate being trans-4,4’-diphenylstilbene, giving 95% ee. 

 
 

1.5.2.4 Armstrong’s α–functionalised dioxiraine 

In 1998 Armstrong reported the electronic activation of a catalyst capable of asymmetric 

alkene epoxidation. Armstrong focused on α–functionalised ketones. As previous 

research within the group had shown that α–Amido ketones were unsuccessful as the 

carbon atom alpha to both the amine and ketone becomes highly electropositive due to 

extensive electron withdrawal. The α-carbon is therefore prone to Baeyer–Villiger 

decomposition. β–Amido ketones are not prone to the Baeyer–Villiger reaction and thus 

favoured as dioxiraine catalysts. Armstrong was able to generate well-defined chiral 

catalysts based on tropinone derivatives (48).106 

 

N

COOEt

O

F

 
 

48, Armstrong’s tropinone catalyst 
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Fluorine, a very strong electron-withdrawing group, was placed α to the ketone, in order 

to activate the ketone by withdrawal of electron density. The equatorial fluoro 

compounds were the most reactive as well as being the most stable to the Baeyer–

Villiger reaction.107,108 These α–fluoroketone catalysts oxidised tri-substituted aryl 

alkenes with up to 83% ee 

 

The enantioselectivity of the epoxide generation has been explained by transition state–

models.109 The α–fluorine has a dipole interaction with the approaching alkene, and this 

directs the alkene to one enantiotopic face, generating a enantioselective epoxidation.  

 

 

1.5.2.5 Denmark’s α–functionalised chiral dioxiranes 

Denmark has devised, among other chiral ketone catalysts, a bis-fluoro dioxiraine 

catalyst with the ability to catalyse asymmetric epoxidation.110,111,112 Denmark has shown 

that good to excellent enantioselectivities for trans–alkenes can be achieved when using 

catalyst 49. However, catalyst loadings are high (30 mol%). 

 

O

F

F  
 

49, Denmark’s α–fluoro chiral ketone 

 

Denmark postulated a spiro transition state model for this biaryl chiral dioxirane. Due to 

the catalysts C2 symmetry, the activated dioxirane oxygen atoms become homotopic,112 

the alkene may then approach the biaryl skeleton through either route a, or route b 

(Scheme 26).  
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Scheme 26, Denmarks spiro transition state model.112 

 

The approach through route b is disfavoured due to the proximity of the methyl 

substituents. Route a does not suffer from this steric interaction and therefore becomes 

the favoured spiro transition state. Denmark has also postulated that catalyst 49 may 

impart higher levels of enantiocontrol over alkenes with aryl functionality, this may be 

due to an electronic, π-π stacking interaction between the catalyst, and the alkenes aryl 

substituents. 

 

 

1.5.3 Iminium/oxaziridinium salt mediated asymmetric epoxidation 

1.5.3.1 Initial observations by Lusinchi 

In 1976 Lusinchi first reported the use of oxaziridinium salts in asymmetric epoxidation. 

He observed that an unstable oxaziridinium salt could be prepared by peracid oxidation 

of an achiral steroidal imine with Oxone®, followed by quaternisation using methyl 

fluorosulfonate (Scheme 27).113,114,115 

 

The oxaziridinium salt so generated contains a highly electrophilic oxygen atom. 

Lusinchi postulated that this highly strained heterocycle could then transfer the oxygen 

to an alkene.116 
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Scheme 27 

 

Lusinchi proved his postulate by deriving an oxaziridinium salt from 

dihydroisoquinoline.116,117,118,119 The imine was oxidised to the oxaziridine with a peracid 

and then quaternised with methyl fluorosulfonate. This oxaziridinium salt transferred the 

electrophilic oxygen to several simple nucleophilic alkenes in good yield. 

 

Following this breakthrough, Lusinchi prepared the first enantiomerically pure 

oxaziridinium salt. This was achieved by quaternisation of an oxaziridine, derived from 

(1S,2R)-(+)-norephedrine, producing the oxaziridinium salt, 50 (Scheme 28).120 
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50 

Reaganets and conditions; (a) PhCHO, NaBH4. (b) CF3COOH, H2SO4. (c) NaOCl, 

NaOMe. (d) MCPBA, MeOH. (e) Me3O+BF4
-. (f) Me3O+BF4

-, MeOH. 

(g) NaHCO3, p-nitrobenzoic acid

Scheme 28 

 

Lusinchi used this enantiomerically pure oxaziridinium salt (50) in stoichiometric 

amounts to oxidise simple alkenes to their corresponding epoxides, for example trans–

stilbene gave up to 33% ee. Lusinchi reported that a side product of the reaction was the 

iminium salt. He described that upon oxygen transfer from the oxaziridinium salt to the 

substrate alkene, the iminium salt catalyst was generated. If an oxidant is then added to 

this iminium ion, the oxaziridinium ion is regenerated and, capable of oxygen transfer to 

the alkene.. 

 

Lusinchi developed this approach with the addition of a catalytic amount (20 mol%) of 

the norephedrine iminium salt (50). He observed that trans–stilbene was again generated 

with 33% ee.  

 

Lusinchi has shown that oxaziridinium salts are wide-spectrum oxygen transfer reagents. 

They are capable of transferring oxygen to other nucleophilic substrates such as; 

sulfides, to generate sulphoxides;121 amines, to generate nitrones; and imines, to generate 

oxaziridines.122 
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Bohé, a student of Lusinchi, has since shown that dihydroisoquinolinium salt catalysts 

can under go loss of active oxygen from the oxaziridinium salt.123 This occurs with 

irreversible base catalysed isomerisation of the oxaziridinium salt containing protons α 

to the nitrogen atom. This isomerisation causes a breakdown in the catalytic cycle.  
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Scheme 29 

 

 

Bohé has therefore developed a more stable achiral 3,3-disubstituted 

dihydroisoquinolinium catalyst (Scheme 29). This catalyst has displayed increased 

stability in comparison to the unsubstituted dihydroisoquinolinium catalyst, as it cannot 

undergo base catalysed isomerisation, due to there being no α–protons adjacent to the 

nitrogen atom.123,124 
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1.5.3.2 A C2–symmetric binaphthalene based iminium salt. 

Aggarwal and Wang have reported an iminium salt catalyst that is based on a C2 

symmetric binaphthalene functionality.125,126,127      Catalyst 51 is thought to undergo 

oxidation with Oxone® to produce preferentially one diastereoisomer of the active 

oxaziridinium catalyst. This helps to induce enantiocontrol in the epoxidation by the 

exclusion of the competing oxygen transfer transition states on the more hindered face of 

the oxaziridinium salt.128 
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Scheme 30      Catalyst 51, 42% ee 

 

This binaphthyl-based iminium catalyst afforded 1–phenylcyclohexene oxide inducing 

71% ee. All other alkenes tested gave lower ee. 

 

 

1.5.3.3 Acyclic/exocyclic iminium salt catalysed asymmetric epoxidation 

Armstrong has produced a range of acyclic iminium salt catalysts that transfer oxygen 

from the oxaziridinium unit to the nucleophilic alkene. These exocyclic iminium salts 

(52) were produced by the condensation of trimethylsilylpyrrolidine with aromatic 

aldehydes in the presence of trimethylsilyl triflate.129 
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52, exocyclic iminium salts 

 

Armstrong observed that only aromatic iminium salt derivatives with a substituted 

electron–withdrawing group such as a chlorine or trifluoromethyl group would catalyse 

the reaction. Catalyst 52 afforded 100% conversion of trans–stilbene to the 

corresponding epoxide.130 

 

Armstrong attempted to derive a range of exocyclic iminium salt catalysts comprising of 

binaphthyl units, methoxy substituted naphthyl groups, and chiral pyrrolidines. The only 

positive results were gained with the pyrrolidine catalysts, but these catalysts gave low 

enantioselectivities. 

 

Komatsu has produced a set of aliphatic ketiminium salts bearing an exocyclic iminium 

unit. They are easily prepared by the condensation of cyclic amines with cyclic ketones 

in the presence of HBF4.131 
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It was found that 53 gave the best conversion to the epoxide. A chiral version of this 

ketiminium salt, 54, was produced, which gave 39% ee and 70% conversion when using 

cinnamyl alcohol as the substrate. 
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More recently, Yang discovered that the condensation of an amine (55) with a suitable 

ketone (56) under acidic conditions generated the iminium salt in situ; this iminium salt 

then efficiently catalysed the epoxidation of trans–α–methylstilbene, imparting 59% ee 

(Scheme 31). Further research showed that some amines could individually mediate the 

epoxidation of alkenes by oxygen transfer via a peracid intermediate.132 
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Scheme 31, in situ generation of the iminium salt 

 

 

1.5.3.4 Intramolecular epoxidation of unsaturated oxaziridines 

Armstrong has also reported his findings on an enantioselective intramolecular 

asymmetric epoxidation.133 An imine was generated from the condensation of a primary 

amine and an unsaturated aldehyde. The imine was converted to the oxaziridine salt as a 

pair of separable diastereoisomers (Scheme 32). 
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Scheme 32 

 

Both oxaziridines were converted in to oxaziridinium salts by methylation of the 

nitrogen with methyl trifluoromethanesulfonate. In the presence of these oxaziridinium 

salts, the attached alkene underwent intramolecular asymmetric epoxidation with 84 – 

98% ee depending on the identity of R1, R2 and R3. 

 

 

Armstrong has suggested that the high stereoselectivity occurs through each of the two 

diastereoisomeric oxaziridinium salts progressing through one of two different transition 

states.134,135 The planar transition state model (58) generates the opposite stereochemistry 

to that of the parent oxaziridine. For example, the planar transition state of the (2R, 3R) 

gives the pro–S conformation. The spiro transition state model (57), however, retains the 

stereochemistry from the oxaziridine used; the (2R, 3R) oxaziridine gives the pro–R 

conformation. 
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57 

Spiro model, (4R) epoxide predicted 

58 

Planar model, (4S) epoxide predicted 

Experiment shows that both diastereoisomers of the oxaziridinium species give results 

consistent with the spiro transition state model (57). Unfortunately there is a loss of 

selectivity when the chain length exceeds three atoms between the aldehyde and alkene. 

 

 

1.5.3.5 Page’s chiral iminium salt catalysts 

1.5.3.5.1 Dihydroisoquinolinium salt catalysts 

Initially based around the findings of Lusinchi and Bohé the Page group produced their 

own dihydroisoquinolinium salt catalysts with important variations. They introduced a 

chiral exocyclic nitrogen substituent through cyclo-condensations of primary amines 

with 2–(2–bromoethyl)-benzaldehyde and subsequent counter ion exchange with 

tetraphenylborate to generate the crystalline iminium salts (59). The rationale was that 

the close proximity of the exocyclic asymmetric centre to the site of oxygen transfer 

would increase the enantiocontrol induced in the epoxidation of alkenes.136 

 

 



  Phillip Parker; Introduction 

  41 

 

N+
R*

BPh4
-

 
 

59, Page's isoquinolinium salt catalyst 

 

A range of primary amines were cyclo-condensed with the bromoaldehyde and tested for 

their enantioselectivity in the epoxidation of simple alkenes.  
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Figure 60 

 

The general method of epoxidation used Oxone® (2 equiv.) as the stoichiometric oxidant 

in MeCN/H2O (1:1), Na2CO3 (4 equiv.) as base and the iminium salt catalyst (10 mol%). 

Initial observations showed that one catalyst gave higher enantioselectivity than all 

others; this was the N–isopinocampheyl derivative (61) that gave 40% enantioselectivity 

at 0 ºC for the epoxidation of 1–phenylcyclohexene . 

 

N+
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61, N–isopinocampheyl iminum salt catalyst 
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The mechanism of oxidation is hypothesised to occur through nucleophilic attack of the 

persulphate oxidant (KHSO5) on the electrophilic iminium carbon atom, forming a pair 

of persulphate diastereoisomers as the nucleophile can attack at either the Re or Si face 

of the iminium bond.137 

 

It is currently suspected that the rate-determining step is the subsequent nitrogen lone 

pair attack on to the most electrophilic oxygen, displacing a sulphate-leaving group to 

give the two corresponding diastereoisomeric oxaziridinium salts. The oxygen transfer 

by these diastereoisomeric oxaziridinium salts onto the prochiral faces of the alkene 

substrate may occur with varying degrees of enantiocontrol through a spiro transition 

state model (Scheme 33).138 
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Scheme 33 
 

1.5.3.5.2 Reaction parameters 

A review of the reaction parameters was completed in order to optimise the reaction 

conditions with respect to the enantioselectivity of the oxidation process. The 

isopinocampheylamine derivative was chosen as the model catalyst for the optimisation 

of the parameters that were thought to influence the enantioselectivity of the process.139 

 

In addition to the original tetraphenylborate anion, the corresponding bromide, 

tetrafluoroborate, hexafluorophosphate, perchlorate and periodate salts were also 

prepared. All of the salts were tested in the asymmetric catalytic epoxidation of 1–

phenylcyclohexene . The periodate and bromide salts produced enantioselectivies (35% 
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and 40% respectively) comparable to those obtained with the tetraphenylborate catalyst 

(40% ee), while the fluoride containing counter–ions afforded lower ee (28%), as did the 

perchlorate salt (20% ee). All of the salts produced the same enantiomer of the epoxide 

product (R,R) as the major component, and all of the reactions were complete within the 

same time scale, ~ 45 minutes. 

 

As previously indicated, the standard oxidation solvent used was acetonitrile/water (1:1 

or 2:1). Initial observations suggested that increasing the water concentration in 

acetonitrile also increased the rate of oxidation. Presumably a result of increasing 

Oxone® solubilisation with increasing water concentration, such that the rate of 

nucleophilic attack by persulphate on the iminium species is increased, leading to a 

concentration effect coupled with better solvation of the departing sulfate ion. Yang has 

more recently published evidence that in the presence of a bicarbonate salt the rate of 

reaction can be increased, if the amount of water is reduced to 10% in acetonitrile.105 

 

Reducing the amount of Oxone® and base by a factor of two (i.e. using one equivalent 

of Oxone® and two equivalents of sodium carbonate), resulted in incomplete conversion 

after one hour in the improved (2:1) solvent system. This may result from competitive 

decomposition of Oxone® under the basic conditions, and hence, in a faster reaction, 

more of the unstable oxidant is consumed in the desired oxygen transfer process. The 

effect is more pronounced when small amounts of catalysts are used. It was also 

observed that there was no significant change in enantiocontrol when the reaction 

temperature was varied from –10 °C to 30 °C for varying co-solvent ratios. 

 

Increasing the water content of the reaction solvent system gives a considerable rate 

change without change in enantioselectivity. This suggests that the rate-determining step 

does not involve oxygen transfer to the substrate, i.e. that the subsequent enantioselective 

oxygen transfer to alkene is not the rate-determining step under these conditions 

(Scheme 33). 

 

 

Also investigated was the potential correlation of reaction rates and extent of asymmetric 

induction with the polarity of the co–solvent, The co–solvents used were selected so that 

they differed significantly in dielectric constant (indicated by the values in brackets): 
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dichloromethane (8.9), trifluoroethanol (26.7), acetonitrile (37.5), water (78.4), 

formamide (111). 
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Catalyst 61 

Scheme 34 

 

The epoxidation of 1–phenylcyclohexene with the isopinocampheyl catalyst (61) was 

performed in a 1:1 ratio of co–solvents. In order also to examine the counter–ion effect 

(Scheme 34), the catalyst was tested both as its perchlorate and tetraphenylborate salts 

(20 and 40% ee respectively, in acetonitrile). The perchlorate and tetraphenylborate salts 

mediate the quantitative epoxidation of 1–phenylcyclohexene in trifluoroethanol within 

30 minutes and 26% ee. There was no reaction in formamide for either salt, suggesting 

that the iminium species are too well stabilised, and the possibility of an irreversible 

reaction with formamide is also possible. In dichloromethane, enantioselectivity 

mediated by the perchlorate salt increased to 33% but only 50% conversion after three 

hours whereas the tetraphenylborate gave no oxygen transfer. The difference in reactivity 

for the counter–ions in dichloromethane/water reflects the poor miscibility of the two 

solvents, which must severely limit the availability of the inorganic oxidant in the 

organic phase.  

 

For the isopinocampheyl tetraphenylborate salt, catalyst loading with respect to 

enantiocontrol is shown in Figure 62. Using a fixed concentration of 1–

phenylcyclohexene  as substrate, the graph shows that the enantioselectivity remains 

within experimental error as the catalyst loading decreases from 5 mol% to 1 mol%. 

Lower catalyst loading, down to 0.1 mol%, results with complete conversion of the 

substrate alkene to the desired epoxide but with a reduction in the enantioselectivity. 

Later work has shown that other catalysts appear to suffer less in this regard. 
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Figure 62 

 

1.5.3.5.3 Development of iminium salt catalysts 

Page hypothesised that the presence of a primary or secondary hydroxyl group may 

improve enantioselectivity. Therefore a range of iminium salt catalysts was prepared 

from chiral amino alcohols, but unfortunately both poor reactivity and enantioselectivity 

were observed.139 

 

Page then introduced a substituted dioxane functionality, using (1S, 2S)-2–amino–1–

phenylpropane–1,3-diol, which was protected as the acetonide. This gave a dioxane unit 

with a primary amine that would undergo cyclo-condensation with the bromoaldehyde. 

This N–aminodioxane-functionalised iminium salt catalyst (63) was employed in the 

epoxidation of alkenes, and it induced similar enantiocontrol to the N–isopinocampheyl 

derivative, for example giving 40% ee at 0 ºC when oxidising 1–phenylcyclohexene 

(Scheme 35). 
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Catalyst 63, 40% ee 

Scheme 35 

 

1.5.3.5.4 Electronic control of dioxane sub–units 

The success of this N–aminodioxane catalyst is thought to stem from the high 

conformational rigidity of the six–membered dioxane ring and also the syn relationship 

between the nitrogen heterocycle and the phenyl moiety. NMR spectroscopy and single 

crystal X-ray analysis suggest that the dioxane ring retains its chair conformation by 

placing the nitrogen heterocycle axial and the equally large phenyl ring equatorial (64). 

This thermodynamically favourable conformation reduces the 1,3-diaxial interactions 

and allows electronic interactions between the oxygen lone pairs and the electron poor 

carbon iminium atom (65). 138 

 

 
 

     64   65 66   

 

Therefore the thermodynamic conformation leading to the equatorial positioning of the 

phenyl ring may then help inhibit approach toward one face of the iminium unit by either 

the Oxone® oxidant or the approaching olefin. One diastereoisomeric oxaziridinium salt 

may therefore be favoured (66) over the other and in turn generating epoxides with 

increased ee.  
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Of the two generalised transition state models, the spiro transition state is the accepted 

model with in iminium salt catalysed asymmetric epoxidation. Due to the postulated 

conformer 64, the presence of the phenyl group may hinder the attack of the oxidant at 

the si face therefore generating the minor oxaziridinium diastereoisomer (Scheme 36). 

The oxidant attack at the re face is therefore favoured, thus generating the major 

oxaziridinium diastereoisomer, which through a spiro transition state undergoes oxygen 

transfer to the alkene yielding the epoxide with high enantiocontrol. 
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Scheme 36 
 

1.5.3.5.5 Biphenyl azepinium salts 

The Page group have also exchanged the dihydroisoquinolinium backbone (63) for a 

biphenyl structure fused into an azepinium salt (67) in the hope of increased 

enantioselectivity. 11 
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67, azepinium salt catalyst 
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Preparation of this catalyst proceeded through ring closure of 2,2’–biphenyldimethanol 

with HBr to give the dibenzooxepine. Treatment with bromine generated the 

bromoaldehyde, which can then be condensed with the primary aminodioxane. Addition 

of NaBPh4 gave the desired iminium salt catalyst (67). This azepinium salt catalyst 

generated 60% ee and 100% conversion for 1-phenylcyclohexene in under 10 minutes (5 

mol%), showing that the biphenyl substructure increased both enantioselectivity and rate 

of reaction over previous catalysts (40% ee for both catalyst 61and Catalyst 63). 

 

It was observed that the Oxone® system would only work if the solvent system in use 

contained a high percentage of water. Oxone® has the highest solubility in water over 

any organic solvent. Due to the quantity of Oxone® used (2 mmol) it will only dissolve 

in a considerable volume of water (~ 4.25ml), this is equal to the amount of the co–

solvent (MeCN) required, making the ratio of solvents 1:1. This has a limiting effect on 

the range of temperatures at which the reaction can be carried out. The highest reaction 

temperature is defined by Oxone® itself as it starts to decompose at approximately 30 

°C.140 The lowest temperature is defined by the solvent system; the use of a 1:1 

(MeCN:H2O) co–solvent system allows the temperature to be reduced to –8 °C before 

the aqueous phase freezes. An opportunity to enhance the enantioselectivity of the 

process could be provided if the reaction could be completed at lower temperatures. 

 

Therefore the Page group investigated other oxidants with the idea of designing a non–

aqueous epoxidation system. They found that tetraphenylphosphonium 

monoperoxysulfate (TPPP, 68) gave the highest enantioselectivity of all oxidants tested. 

Most importantly, it is completely soluble in organic media, gave no background 

epoxidation and at –40 ºC gave good enantioselectivity in the epoxidation of 1–

phenylcyclohexene , attaining 67% ee141 
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68, TPPP 
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A temperature study was undertaken, as lower temperature could now be attained 

without freezing of the reaction medium. First it was found that MeCN gave higher ee 

than methylene chloride when used as the reaction solvent. Secondly, and most 

importantly, as the temperature of the reaction decreases the enantioselectivity of the 

reaction increases. 

 

1.5.3.5.6 Binaphthalene azepinium salts 

Aggarwal has produced a binaphthalene–fused azepinium salt catalyst (68) that is achiral 

at the nitrogen substituent; this iminium salt catalyst affords 71% ee for 1–

phenylcyclohexene  and 45% ee for α–methylstilbene.128 The Page group postulated they 

could create a range of N–chiral catalysts that would induce higher levels of 

enantiocontrol by simply exchanging the biphenyl group for a binaphthalene unit, as in 

69. 
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69, binaphthalene azepinium salt 

 

The bromomethyl carbaldehyde was prepared from commercial (R) or (S) BINOL. To 

this, the aminodioxane was added, cyclo-condensing to generate the iminium salt (69).142 

 

Catalyst 69 generated 91% ee for 1–phenylcyclohexene oxide, 95% ee for 1–

phenyldihydronapthylene oxide, and 29% ee for 4-vinylbiphenyl oxide, which is the 

highest reported ee for the epoxidation of a terminal alkene using an iminium salt 

catalyst. 
 

The Page group have recently reported a novel sulphone functionalised isoquinolinium 

derived catalyst (70) that has given high enantiocontrol in the epoxidation of cyclic cis–

alkenes under non–aqueous conditions using chloroform as a solvent.143 
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70, sulphone functionalised isoquinolinium catalyst 
 

High yields of up to 86% and up to 97% ee were obtained. Catalyst 70 has been used to 

obtain excellent enantiocontrol in the epoxidation of 6–cyano–2,2-dimethylbenzopyran. 

The resulting epoxide is a useful intermediate, which when subjected to ring opening 

gives access to levcromakalim, a biologically active antihypertensive agent (Scheme 

37).143 
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Scheme 37 

 

Azepinium binaphthalene iminium salt catalysts have generated some of the highest 

enantioselectivities for iminium salt catalysed epoxidation. Even with decreased catalyst 

loading; a 0.1 mol% loading of catalyst 67 gives 88% ee for 1–phenylcyclohexene . 
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1.5.3.6 Lacour’s trisphat counterion chiral iminium salt catalysts 

Lacour’s research utilised the same iminium ion developed by Page; his derivation was 

to use a TRISPHAT [tris(tetrachlorobenzenediolato)phosphate(v)] counter-ion to pair 

with the active iminium species.144 The TRISPHAT anion and subsequent catalyst 

pairings are lipophilic and have preference for the less polar organic layer. The pairing of 

the enantiomerically pure TRISPHAT anion with a biphenyl catalyst leads to the 

formation of diastereoisomeric intramolecular and/or intermolecular interactions, which 

shifts the conformational equilibrium towards one preferred, (Ra) or (Sa), 

diastereoisomer of the active catalyst’s biaryl backbone. With one diastereoisomer 

preferred the observed enantiocontrol might increase. The binaphthyl based catalysts, 

with their fixed axial chirality, would not benefit from such pairing. 145 
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The TRISPHAT anion 71 was paired with biphenyl catalyst 72, matched (Sa,S) 

binaphthyl catalyst 73, mis–matched (Ra,S) binaphthyl catalyst 74 and mis-matched 

(Sa,R) catalyst 75. Catalyst 72 induced up to 54% and 68% ee when using 1–

phenylcyclohexane and 1,2-dihydronaphthylene respectively as the alkene substrates. 

Matched catalyst 73 induced 81% and 83% ee, whilst its atropisomer, mis–matched 74, 
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induced 79% and 78% ee over the same alkene substrates. Catalyst 75 offers the highest 

enantiocontrol for a TRISPHAT counter ion iminium salt catalyst giving 86% and 87% 

ee.146 It was observed that the TRISPHAT counter-ion decreases the enantiocontrol 

induced by the selected iminium salt catalysts.147 

 

N
O

O

Ph  
 

76 

 

In a small number of cases, amine 76 displayed similar enantioselectivity to its iminium 

salt catalyst derivative 73. Amine 76 imparted 80% ee for 1,2-dihydronaphthylene oxide 

and 49% ee for methyl trans stilbene oxide. 

 

 

1.5.4 Amine catalysed Epoxidation 

1.5.4.1 Initial observations by Aggarwal 

Aggarwal has also examined amine–catalysed epoxidation; his initial observations, 

based on control epoxidations, showed that a chosen secondary amine hydrogen chloride 

salt, with added bicarbonate salt and Oxone®, could mediate the alkene epoxidation 

alone. Condensation with a selected ketone, as previously shown, to produce the 

iminium salt catalyst was not required. This observation resulted in the trial of a 

multitude of secondary amines for activity.148 
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77, dinaphthyl–methyl pyrrolidine 
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Aggarwal produced an amine hydrogen chloride salt catalyst based on the most reactive 

and enantioselective secondary amine; this was a chiral dinaphthyl–methyl pyrrolidinium 

salt (77). 149 Using their optimised conditions, 77 mediated epoxidation, inducing up to 

66% ee.  
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78, persulphate stabilised complex 
 

Mechanistic studies of the oxidation process were completed. It was observed that on the 

addition of Oxone® to the chiral amine, the active oxidant, persulphonic acid, becomes 

hydrogen bonded to the amine salt, this may occur in three differing orientations (Figure 

78).150 A reduction in enantioselectivity may be envisaged due to the presence of these 

three competing transition states. The alkene then approaches the amine–peracid 

complex, and oxygen transfer occurs (Scheme 38). 
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Scheme 38 

 

 

1.5.4.2 Developments by Yang 

Whilst developing the in situ generation of iminium salt catalysts for asymmetric 

epoxidation, Yang also observed that control experiments involving just an amine 

facilitated the production of an epoxide from the alkene substrate.132 Following these 

observations Yang examined a variety of amines to determine their activity in 

asymmetric epoxidation. Yang found that cyclic secondary amines gave the highest 

levels of enantiocontrol, especially cyclic secondary amines containing a β–hydroxyl 

group. Yang optimised the process further by screening a range of pyrrolidine analogues 

for increased levels of enantiocontrol in the epoxidation of trans–stilbene. It was 

observed that amine 79 induced a fair level of enantiocontrol, giving up to 33% ee and 

58% conversion. 
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 79 

 33% ee 

 

80  

rt = 50% ee  

– 20 °C = 60% ee 
 

Further work showed that conversion of the hydroxyl group in to the corresponding 

fluoro group gave catalyst (80) with increased reactivity, which was observed to give 

enantiocontrol of up to 50% with 100% conversion with 1–phenylcyclohexene (        

Scheme 39). The enantiocontrol was increased further with the reduction of the 

temperature to –20 °C, giving up to 60% ee. Yang also completed mechanistic studies 

similar to those of Aggarwal and agreed that the mechanism does progress through a 

pyrrolidinium complex.151 
 

 

1.5.4.3 JØrgensen’s oxidation of α,β–unsaturated ketones. 

JØrgensen produced his first organo–catalytic asymmetric epoxidation of α,β–

unsaturated ketones using various peroxides as the stoichiometric oxidant.152 A number 

of chiral amines were examined as facilitators for the asymmetric epoxidation of 

cinnamic aldehyde. It was once more observed that a chiral pyrrolidine derivative, amine 

80, in conjunction with hydrogen peroxide afforded good ee, up to 96% ee in the product 

epoxide (Scheme 39). 
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Scheme 40 

 

Further investigations utilising amine 80 and hydrogen peroxide gave epoxides with high 

enantiomeric control (96 – 98%) and yield (60 – 90%). JØrgensen also published their 

mechanistic rationale for this procedure. 

 

The mechanism is postulated as involving initial nucleophilic attack by the amine on the 

aldehyde to generate the iminium intermediate. Nucleophilic attack of the peroxide on 

the β–carbon generates the chiral enamine intermediate. Nucleophile attack by the 

enamine at the most electrophilic per–oxygen then gives the epoxy–iminium adduct. 

Hydrolysis of the iminium functionality generates the desired epoxy–aldehyde and the 

amine catalyst (Scheme 41). 

 

The solvent of choice is usually dichloromethane, but recently JØrgensen has published a 

modification in which the reaction can be completed in an aqueous medium 

(ethanol/water) using amine 80 and hydrogen peroxide as a stoichiometric oxidant, 

generating up to 96% ee.153 
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Scheme 41 

 

Cordova has also investigated related catalytic systems using catalysts 82 and 83 similar 

result have been published using sodium percarbonate and hydrogen peroxide as 

stoichiometric oxidants, generating up to 98% ee.154 
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2 Results and discussion. 
The Page group’s epoxidation research has centred on the development of two core ideas. 

Firstly the development of highly enantioselective iminium salt organocatalysts for use in 

the asymmetric epoxidation of alkenes. To date several catalysts have given greater than 

90% enantiocontrol, the most enantioselective catalyst, 1, has given up to 97% ee in the 

epoxidation of 6-cyano-2,2-dimethylbenzopyran (Scheme 1). 

 

O

NC
TPPP (2 equiv.)

0oC

Catalyst 10 mol%
DCM

O

NC
O

N+

O

O

S
O

O

Catalyst 1, 97% ee 

Scheme 1 

 

The second field of study is in the development of novel oxidative systems for use with 

our enantioselective catalysts. To date the TPPP oxidative system has given the highest 

enantioselectivity of all oxidants screened, up to 97% ee (Scheme 1). 

 

The work described in this thesis is an extension of the work previously completed and is 

novel within the Page group. The first two sections of this chapter describe the efforts 

made by the author to develop new aqueous oxidative systems using hydrogen peroxide 

and sodium hypochlorite as stoichiometric oxidants. This would enable the constraints of 

other universal oxidants such as Oxone® to be lifted and potentially increased 

enantiocontrol to be achieved. It also would give us insight into the factors which 

organocatalysed oxidative systems facilitate oxygen transfer (Scheme 2). 

 

 

 

 

 

 



  Phillip Parker; Results and Discussion 

   65 

 

O

N+

N+O

H2O2

H2O

 
 

Scheme 2 

 

The third and fourth sections of this chapter describe the efforts made towards the 

synthesis of catalyst 2, a sub-structure of catalyst 3, inducing up to 95% ee on our test 

substrate 1-phenylcyclohexene, and catalyst 4, a novel catalyst based on the biphenyl 

backbone seen in catalyst 5, the most effective biphenyl iminium salt, which induces up to 

60% ee with our test substrate. We anticipated that further research into catalyst design 

would enable us to determine how steric and electronic factors influence enantiocontrol, 

both intra- and inter-molecularly, with respect to the organocatalyst and in achieving high 

enantioselectivity.  

 

N+

BPh4
-

Me
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N+

O

O

BPh4
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- BPh4
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Ph
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2            3     4 5

 

The standard iminium salt epoxidation conditions employ the triple salt Oxone® 

(2KHSO5•KHSO4•K2SO4) as a stoichiometric oxidant, sodium carbonate, and 

acetonitrile:water as the solvent mixture (Scheme 3). The presence of water was essential 

for Oxone® solubility, and the base was essential for the epoxidation reaction to proceed. 

The major limitation to this system was the restricted range of temperatures at which the 

epoxidation can be performed (0 °C to room temperature). The upper limit was determined 

by the stability of Oxone®, which decomposes relatively quickly in the basic medium at 

room temperature.1 The lower limit was determined by the use of the aqueous medium: the 
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typical ratios of acetonitrile to water solvent used as solvent lie between 1:1 and 10:1, and 

the medium, at a ratio of 1:1, freezes at around – 8 °C. A large quantity of inorganic by-

product was also generated from the decomposition of the oxidant. 1  

 
Oxone (2 equiv.)

Na2CO3 (4 equiv.)
0oC

Catalyst 10 mol%
MeCN/H2O

O

 
 

Scheme 3 

 

Iminium salt catalysts 6 and 7 mediate the epoxidation of 1-phenylcyclohexene in 41% 

and 59% ee when using Oxone® as the oxidant. We have recently prepared and utilised 

the tetraphenylphosphonium salt (TPPP) of monoperoxysulfate as a stoichiometric oxidant 

that was soluble in organic solvents. Enantiocontrol increases in these cases when using 

TPPP, in a solution of dichloromethane below 0 °C, to 43% and 67% ee respectively.  
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2.1 Optimisation of new systems for catalytic 

asymmetric epoxidation. 

2.1.1 Formulation of the iminium salt catalysts 

The synthesis of iminium salt catalysts 6 and 7 is shown below (Schemes 4, 5 and 6). The 

first step was the construction of aminodioxane unit. Commercially available (S)-(–)-2-

Amino-3-phenyl-1-propandiol 8 was N-protected with methyl formate to give 9 which was 

not isolated, subsequent diol protection with dimethoxypropane gave the 6-membered 

acetal unit 10. Finally, N-deprotection using hydrazine hydrate gave the aminodioxane 

unit 11 in 87% yield over three steps. 
 

OH OH

NH2 a.

OH OH

HN

O

 
 

8 9   
 

O O

HN c.b.

O

O O

NH2

94%
(two steps)

87%

 
 

10       11 

 

Reagents and conditions; (a) MeOH, NaOMe, MeOCHO, rt, 2 hrs. (b) Acetone, 2,2-

dimethoxypropane, HBr, rt, 4 hrs. (c) hydrazine hydrate, ∆, 4 hrs. 

Scheme 4 

 

The synthesis of catalyst 6 was initiated by the ring cleavage of isochroman 12 with 

bromine to generate the bromoaldehyde 13. On cylco-condensation with the amino 

dioxane 11 and anion exchange with sodium tetraphenylborate, the desired iminium salt 

catalyst was generated in 54% yield over two steps. 
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O O

Bra. b.

43% 54%  
 

12  13     
 

N+

O

O

BPh4
-

 
 

6 
 

Reagents and conditions; (a) 11, CCl4, Br2, HBr, Δ, 2 hrs.  

(b) EtOH, NaBPh4, MeCN, 0 °C → rt, 17 hrs. 

Scheme 5 
 

 

Catalyst 7 was produced using bis(hydroxymethyl)biphenyl 14 as the starting material. 

Exposure to aqueous hydrogen bromide generated the dibrominated intermediate 15. The 

condensation of the aminodioxane 11 gave the tertiary amine 16, which was oxidised to 

the iminium salt with N-bromosuccinamide. Subsequent anion exchange gave iminium salt 

catalyst 7 in 82% yield over three steps. 
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OH
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Br
Br
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98% 97%

 
 

14   15      
 

N+

O

O

BPh4
-

N
O

O c. & d.

80%

 
 

16 7   

Reagents and conditions; (a) HBr, ∆, 2 hrs. (b) 11, THF, TEA, ∆, 16 hrs. 

 (c) NBS, CHCl2, ∆, 10 mins. (d) NaBPh4, EtOH, rt, 20 mins. 

Scheme 6 

 

 

2.1.2 The utilisation of hydrogen peroxide as a stoichiometric oxidant. 

We were keen to investigate other potential oxidants in order to widen the range of usable 

reaction conditions, but most oxidants either do not drive the catalysed reaction or 

generate considerable achiral product through background oxidation of the alkene 

substrates. Hydrogen peroxide is perhaps the second most environmentally friendly 

oxidant available after oxygen, in terms of by-products, and its use as a stoichiometric 

oxidant would allow an inexpensive and ‘green’ process to be developed.2 Hydrogen 

peroxide is a standard reagent used to oxidise electron-deficient alkenes, such as enones 

and conjugated esters, to their corresponding epoxides in the presence of base and 

polyleucine catalyst (known as the Julia olefination).3 
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In order to develop a hydrogen peroxide-driven system using oxaziridinium salts as 

catalyst, several problems had to be addressed. Unlike Oxone®, hydrogen peroxide does 

not induce epoxidation in the absence of base. A co–catalyst that could be oxidised to a 

species that is capable of oxygen transfer to an iminium salt was therefore required. In the 

solid state, sodium percarbonate has been shown by X-ray crystallographic analysis to 

consist of a layered solid corresponding to Na2CO4•1.5 H2O.4 Richardson and Yao have 

since reported that, upon addition of hydrogen peroxide to sodium hydrogen carbonate, an 

equilibrium between sodium hydrogen carbonate and the corresponding percarbonate was 

established (Equation 1).5  

 

H2O2   +   HCO3
- HCO4

- + H2O 
 

Equation 1 
 

We reasoned that the percarbonate could, in principle, oxidise an iminium salt to the 

corresponding oxaziridinium salt,6 expelling carbonate as the leaving group. Upon trialling 

this we were pleased to find that commercial sodium percarbonate does indeed drive the 

reaction when present in large excess. The oxaziridinium salt could then directly oxidise 

the alkene substrate to the corresponding epoxide. The essential features of this proposed 

double catalytic cycle are illustrated in Scheme 7. 
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Scheme 7, Pathway A 
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Scheme 8, Pathway B  

 

We were pleased to find that initial experiments utilising hydrogen peroxide (50%, 6 

equiv.) and sodium hydrogen carbonate (0.2 equiv.) in an acetonitrile:water (9:1) solvent 

system using catalyst 6 (10 mol%) induced asymmetric epoxidation of 1-

phenylcyclohexene with up to 22% ee at 20 °C. 

 

 

2.1.2.1 Effects of the base on the reaction  

Previous work in investigating the ability of hydrogen peroxide to oxidise an iminium salt 

to the oxaziridinium salt in the presence of an alkene showed no evidence of epoxidation 

in the absence of base. In this context, we have tested several bases as possible promoters 

(Table 1). Our initial reactions were completed at both 0 °C and 20 °C, using 0.2 

equivalents of a range of mediators, including potassium hydrogen phosphate, potassium 

hydrogen sulphate, and sodium and potassium sulphates, in addition to those indicated in 

the table. From our previous work using Oxone® as the stoichiometric oxidant,7 we found 

that a 9:1 ratio in the acetonitrile:water solvent system gave optimum conversion and ee, 

and that catalyst 7 provided superior enantioselectivities to catalyst 6. We therefore used 

this solvent ratio and catalyst 7 in our investigation.  
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Table 1; Asymmetric Epoxidation of 1–Phenylcyclohexene mediated with  

Hydrogen peroxide by Catalyst 7 

Entrya Base Equiv. Temp./ °C Conv./ %b ee/ %b 

1 Li2CO3 0.2 0 29 19 

2 LiOH 0.2 0 100 28 

3 NaHCO3 0.01 0 < 5 < 5 

4 NaHCO3 0.1 0 22 35 

5 NaHCO3 0.2 0 63 33 

6 NaHCO3 0.2 20 100 29 

7 NaHCO3 1 0 34 35 

8 NaHCO3 1 20 100 31 

9 NaHCO3 2 0 35 35 

10 NaHCO3 2 20 100 32 

11 Na2CO3 0.2 0 52 36 

12 Na2CO3 0.2 20 100 27 

13 Na2CO3 1 0 47 34 

14 Na2CO3 2 0 42 36 

15 NaOH 0.2 0 100 28 

16 KHCO3 0.2 0 19 35 

17 KHCO3 0.2 20 57 32 

18 K2CO3 0.2 0 26 39 

19 K2CO3 0.2 20 96 34 

20 KOH 0.2 0 58 34 

21 Rb2CO3 0.2 0 29 35 

22 Rb2CO3 0.2 20 75 31 

23 Cs2CO3 0.2 0 41 36 

24 Cs2CO3 0.2 20 89 30 

25 NH4HCO3 0.2 0 7 40 
a epoxidation conditions: Iminium salt catalyst 7 (10 mol%), hydrogen peroxide (50%, 6 equiv.). Base, 

Acetonitrile:H2O (9:1), 24 hours. b Conversions and enantiomeric excesses were determined from the chiral 

GC–FID spectra by comparison of the alkene/epoxide and epoxide/epoxide peak areas respectively; the 

major enantiomer generated was the (1S,2S) epoxide.  
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Background epoxidation utilising 0.2 equivalents of base, at 0 °C over 24 hours, in the 

absence of any catalyst, was not observed for sodium, potassium, or lithium carbonates, 

but was observed at a low level when using caesium or rubidium carbonates (<5%), and 

ammonium bicarbonate (approx 2%). At room temperature, over 24 hours, the extent of 

the background epoxidation varied with the cation used: sodium (<5%), potassium (11%), 

rubidium (15%), caesium (15%) carbonates, and ammonium bicarbonate (20%). These 

results suggest that decreasing ion association increases background reaction; large 

organic cations, and the iminium salt when present, could enhance background epoxidation 

by this purely physical means, because their size makes interionic distance too large for 

electrostatic association.  

 

Table 1 shows that the potassium salts at 0 °C provide the highest enantioselectivity for 

reasonable conversions, giving 34% ee (KOH), 35% ee (KHCO3), and 39% ee (K2CO3). 

Rubidium and caesium carbonate also gave good enantiocontrol, but show the highest 

level of background epoxidation at 0 °C, although this was still low at <5%. The sodium 

salts show decreased enantiocontrol compared with their analogous potassium salts.  

 

It appears that the enantioselectivity achieved was largely independent of the type of 

mediator (HCO3
–, CO3

2– or OH–) used to promote the reaction. As we have previously 

established, in the absence of base no epoxidation occurs, and indeed even experiments 

containing very small amounts of base (0.01 equiv.) showed no epoxidation (entry 3). 

When the amount of base was increased to 0.1 equivalents, the desired epoxidation 

reaction furnished 1-phenylcyclohexene oxide with enantioselectivities of 35% ee for 

NaHCO3, 33% ee for Na2CO3 and 28% ee for NaOH. We also observed that for any base 

added at a level greater than 0.1 equivalents (up to 2 equivalents), the ee remained 

approximately constant. 

 

For the carbonate bases we next tested the effect of the accompanying counter-ion, but 

little variation in the product ee was observed (36% ee for Cs2CO3, 35% ee for Ru2CO3, 

39% ee for K2CO3, 31% ee for Na2CO3). Interestingly, similar levels of enantioselectivity 

were observed with rubidium and caesium carbonates despite increased background 

epoxidation in the absence of catalyst. Presumably the presence of an iminium salt catalyst 

offers a lower energy pathway, leading to asymmetric epoxidation.  
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In interpreting the observations it must be borne in mind that several equilibria determine 

the availability of the key species responsible for generating the oxaziridinium cations. 

The interrelation of these is shown in Scheme 9, in which are indicated pK-values for 

some of the individual processes in water that can be deduced from literature values for 

the pKa-values of water, hydrogen peroxide and carbonic acid, together with that for the 

equilibrium in Equation 1.  

 

For a solution of bicarbonate and hydrogen peroxide, formally 1 M in each at a pH such 

that we do not need to consider the presence of carbonate or percarbonate dianions (a fixed 

pH in the range 10-11), the ratio of [HCO3
-] to [HCO4

-] is ca. 3:1, i.e. approx. 0.75M H-

carbonate to 0.25M H-percarbonate. Each of these species is in equilibrium with [CO2
-] 

ions and, [OH-] ions or [HOO-] ions to a small degree, the effective equilibrium constant 

in the case of [HCO3
-] being 2.3 x 10-8, and that in the case of [HCO4

-] 7.2 x 10-4. The 

[HO-] + [HOO-] concentrations will therefore be given by the square root of Kc = 1.3 x  

10-4 for [HO-] and 1.35 x 10-2 for [HOO-]. At the autogenerated pH of the solution (ca. 10) 

any surplus H2O2 will contribute to the concentration of [HOO-] and this could be as much 

as the concentration generated by dissociation of [HCO4
-]. Hence the ratio of [HCO4

-

]/[HOO-] is of the order of 10 – 20. 8 The ratio may perhaps be manipulated by buffering 

the pH. 

 

Under the reaction conditions the situation will be substantially different because in 90% 

aqueous MeCN the water activity is much lower than in pure water and this  will increase 

the ratio [HCO4
-]/[HOO-].5 Also remember that only the proton transfer processes are 

effectively instantaneous; additions to and dissociations from CO2 are relatively slow 

(half-lives of the order of minutes to hours, depending on solvent) compared with the 

proton transfers. 

 

Bearing in mind that the hydrogen percarbonate anion can exist in two prototropic forms, 

HOO-CO-O- and HO-CO-OO- only the less stable of which (the latter) is expected to be 

an effective oxidising agent for the iminium cation, and that hydroperoxide anion may be 

intrinsically more reactive, the balance of reaction between pathways A and B in Scheme 

9 may be substantially less than 20. Percarbonate and hydroperoxide anions can be 

expected to convert chiral iminium salts to the oxaziridinium species with different facial 
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selectivities, giving different diastereoisomeric excesses. Since each diastereoisomeric 

oxaziridinium cation will have its own overall reactivity and enantioselectivity in 

transferring an oxygen atom to the alkene, the enantioselection observed in the epoxide 

produced in iminium ion-catalysed oxidation was expected to be dependent on the choice 

of oxidant. Different enantioselectivities are thus to be anticipated from iminium ion 

mediated oxygen transfer using as oxidant Oxone®, hydrogen peroxide in the presence of 

a carbonate base, and hydrogen peroxide using a strong base capable only of deprotonating 

it.  

 

HCO3
- HCO4

-

HO- HO2
-

H2O; pK 7.64CO2, H2O

H2O2; pK 0.5

H2O

CO2, H2O

H2O2

H2O; pK 4

H2O; pK 3.14

CO3
2- CO4

2-

HO- HO-
H2O; pK 3.75 H2O

 
 

Scheme 9 

 

The active oxidant in Oxone® is KHSO5, and so KHSO4 was tested to determine if the 

hydrogen peroxide oxidant could oxidise the potassium salt to the active persulfate in situ, 

in the hope that this system might give similar enantioselectivity to the Oxone® 

epoxidation system. When Na2SO4, K2SO4 and KHSO4 were used in test reactions poor 

levels of conversion to the respective epoxides (<15%) were observed.  
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2.1.2.2 Effect of temperature on the reaction  

We next investigated the effect of temperature on the enantioselectivity in epoxidation 

reactions carried out between –10 and 30 °C (Table 2). A small increase in 

enantioselectivity was observed as the temperature was reduced. As the temperature 

decreased the rate also decreased, requiring one week for the reaction to reach completion 

at 0 °C, whereas full conversion to the epoxide at 20 °C was observed in less than 24 

hours. At 30 °C, the reaction was complete after 2.5 hours. Catalyst 7 showed increased 

levels of enantioselectivity over catalyst 6, but 6 generally gave better conversion to the 

epoxide at lower temperatures. 

 

Table 2; Effect of Temperature on the Asymmetric Epoxidation of 1–Phenylcyclohexene 

Mediated by Catalysts 6 and 7 a  

Entry Catalyst Temp./ °C Time/ h Conv./ %b ee/ %b 

1 7 –10 24 19 35 

2 7 –5 24 21 38 

3 6 0 24 62 15 

4 6 0 7 days 100 13 

5 7 0 24 48 36 

6 7 0 7 days 100 34 

7 7 10 24 66 32 

8 6 20 23 100 18 

9 7 20 22 100 29 

10 7 30 2.5 100 32 
a Epoxidation conditions: Iminium salt catalyst (10 mol%), hydrogen peroxide (50%, 6 equiv.). NaHCO3 

(0.2 equiv.), Acetonitrile:H2O (9:1), 24 hours. b Conversions and enantiomeric excesses were determined 

from the chiral GC–FID spectra by comparison of the alkene/epoxide and epoxide/epoxide peak areas 

respectively. The major enantiomer generated was the (1S,2S) epoxide as deduced by both GC-FID and 

optical rotation against enantiopure standards.  
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2.1.2.3 Effects of solvents on the reaction  

2.1.2.3.1 Effects of the ratio of co-solvents used  

Our first reactions were carried out using an acetonitrile:water (9:1) solvent system. We 

have investigated the effect of the proportion of water on the enantioselectivity of the 

epoxidation process (Scheme 10).  

 
H2O2 (6 equiv.)

NaHCO3 (0.2 equiv.)
0oC

Catalyst 10 mol%
MeCN/H2O

O

 
 

Scheme 10 

 

Reactions were carried out using six molar equivalents of hydrogen peroxide from a 50% 

aqueous solution; the results are shown in Table 3. In each case the volumes of water and 

hydrogen peroxide in the reagent were taken into account when determining the proportion 

of water present in the total solvent volume. A 0% water solvent system was achieved by 

the use of ethereal hydrogen peroxide. 
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Table 3; Asymmetric Epoxidation of 1–Phenylcyclohexene Mediated by Catalyst 7 with 

varying concentrations of acetonitrile and water solvent system  

Entry H2O/ % Temp/ °C Time/ h Conv./ % b ee/ % b 

1 d 0 c –5 7 days 100 56 

2 0 c 0 24 39 42 

3 0 c 20 24 100 45 

5 d 13 –5 7 days 100 46 

6 13 0 24 59 42 

4 13 20 24 100 39 

7 20 0 24 78 35 

8 20 20 24 100 32 

9 24 0 24 77 35 

10 24 20 24 100 28 

11 35 0 24 71 34 

12 35 20 24 100 26 

13 50 0 24 46 30 

14 50 20 24 100 23 

15 61 0 24 27 30 

16 61 20 24 100 23 
a Epoxidation conditions: Iminium salt catalyst 7 (10 mol%), hydrogen peroxide (50%, 6 equiv.). NaHCO3 

(0.2 equiv.), Acetonitrile:H2O, 0 ºC, 24 hours. b Conversions and enantiomeric excesses were determined 

from the chiral GC–FID spectra by comparison of the alkene/epoxide and epoxide/epoxide peak areas 

respectively. The major enantiomer generated was the (1S,2S) epoxide as deduced by both GC-FID and 

optical rotation against enantiopure standards. c Ethereal hydrogen peroxide used; reaction volume contained 

13% Et2O. d K2CO3 used as base.  

 

The table clearly shows that increasing the proportion of water present decreases the 

observed ee under these conditions. This was in sharp contrast to our aqueous Oxone® 

system, in which ee was unaffected by the proportion of water, but in which the rate of 

reaction increases sharply as the proportion of water was increased.7b Although many 

hours or even days may be required for these reactions to reach completion, the 

enantioselectivity of the epoxide product remained constant throughout this time. 

Maximum enantioselectivity was obtained under the anhydrous reaction conditions (56% 

ee); this was comparable to the Oxone®-mediated system (60% ee), when using 1-
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phenylcyclohexene as the substrate and iminium salt 7 as catalyst.9 This effect of water 

content with respect to enantioselectivity may perhaps be interpreted in terms of water 

influencing the stereochemical course of the reaction by affecting the diastereofacial 

selectivity of addition of the peroxy anion to the iminium carbon atom (Scheme 8, 

Pathway B), for example by diastereofacially selective co-ordination of water molecules to 

the electron-deficient iminium units. Changing the solvent will, of course alter the 

equilibria shown in Scheme 9, perhaps slowing down the percarbonate generation relative 

to the fast proton transfers; thus hydroperoxide may become relatively more important 

than percarbonate, and this also might reduce enantioselectivity. Further, anions generally 

are less active in aqueous solvents than in dipolar aprotic ones, and this might slow down 

the addition of percarbonate or hydroperoxide to the iminium ion.  

.  
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2.1.2.3.2 Effects of change of organic co-solvent  

A range of reactions with different co-solvents was carried out using catalyst 7, 

hydrogen peroxide, and potassium carbonate, at – 5 °C to prevent background 

epoxidation (Table 4) 

 

Table 4; Asymmetric Epoxidation of 1–Phenylcyclohexene Mediated by Catalyst 7 in 

Various Solvent Systems a  

Entry Co-solvent Conv./% b ee/% c 

1 Cyclohexane 26 32 

2 Hexane 0 0 

3 Toluene 0 0 

4 Ether 27 27 

5 Chloroform 0 0 

6 Ethyl acetate 0 0 

7 THF 53 30 

8 Dichloromethane 0 0 

9 Methyl isobutyl ketone 69 26 

10 Acetone 5 53 

11 Ethanol 12 0 

12 Methanol 13 42 

13 Acetonitrile 19 35 
a Epoxidation conditions: Iminium salt catalyst 7 (10 mol%), hydrogen peroxide (50%, 6 equiv., K2CO3 (0.2 

equiv.), solvent (1 ml), – 5 ºC, 24 hours. b Conversions were evaluated from the chiral GC–FID spectra by 

comparison of the alkene and epoxide peak areas. c Enantiomeric excesses were determined by chiral GC–

FID spectra by comparison of the two epoxide peak areas. The major enantiomer generated was the (1S,2S) 

epoxide as deduced by both GC-FID and optical rotation against enantiopure standards. 

 

It appears that solvents that provide good base solubility and also provide a homogenous 

reaction mixture increase the enantioselectivity of the epoxidation, for example acetone 

(53% ee), methanol (44% ee), and acetonitrile (37% ee).  
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2.1.2.4 Conclusion  

We have successfully demonstrated the use of hydrogen peroxide as the stoichiometric 

oxidant in iminium salt-catalysed asymmetric epoxidation, providing a cheaper and 

greener alternative to Oxone®. The reaction was promoted by a catalytic amount of 

inorganic mediators such as carbonate, hydrogen carbonate and hydroxide. The 

enantioselectivity of the reaction was largely independent of the amount of base and 

catalyst, and the nature of cation associated with the base. In contrast, water content and 

temperature appear to have the greatest impact on the enantioselectivity and rate. We 

believe that this process operates through a double catalytic cycle (Scheme 2).  

 

Ethereal H2O2 (6 equiv.)
K2CO3 (0.2 equiv.)

- 5 oC
Catalyst 7 (10 mol%)

MeCN

O N+

O

O

BPh4
-

 
 

Scheme 11 Catalyst 7, 56% ee  

 

Optimisation of the oxidative system enabled asymmetric epoxidation of 1–

phenylcyclohexene with 56% ee utilising catalyst 7 and ethereal hydrogen peroxide in the 

absence of water at – 5 °C (Scheme 11). Further work on alternative oxidants and catalysts 

towards more enantioselective systems is in progress. 
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2.1.3 The utilisation of sodium hypochlorite as an organic oxidant.9 

During our work with hydrogen peroxide, we observed that carbonate salts co-catalysed 

the epoxidation effectively, with no background epoxidation being observed when 

reactions were carried out at temperatures of up to 5 °C. We suggested that a double 

catalytic cycle may operate in these processes, with percarbonate providing an 

intermediate oxidising stage.5 We conjectured that sodium hypochlorite might provide an 

alternative stoichiometric oxidant for our iminium salt-catalysed systems by generating a 

percarbonate oxidant in-situ in the presence of a carbonate salt.  
 

Sodium hypochlorite is inexpensive, relatively safe, and has high oxygen content. In the 

form of commercial bleach it can oxidize electron-deficient alkenes, such as enones and 

conjugated esters, to their corresponding epoxides with the addition of catalytic base,3a but 

does not generally directly oxidize electron-rich alkenes to their corresponding epoxides.10 

Bleach has been used as an oxidant in asymmetric epoxidation using a range of catalysts 

including chiral salen complexes,11 manganese porphyrin complexes,12 and quaternary 

ammonium salts.13 There is also precedent for the use of other hypochlorite oxidants such 

as potassium hypochlorite for oxygen transfer,22b,14,15 for example oxidations of alcohols to 

ketones,16 aldehydes to acid chlorides,17 ketones to carboxylic acids,18 sulfides to 

sulfoxides,19 phosphines and phosphites to phosphine oxides and phosphates.20 Donohoe 

has reported the use of potassium hypochlorite as an oxidant for catalytic asymmetric 

aminohydroxylation,21 and Corey has reported asymmetric epoxidation catalysed by 

dihydrocinchonidinium salts using potassium hypochlorite as oxidant.22b 
 

Sodium hypochlorite itself does not directly oxidise simple alkenes under our reaction 

conditions: blank reactions in the presence of potassium carbonate, but in the absence of 

an iminium salt catalyst, show no conversion to the epoxide over 24 hours. Under the 

same conditions and in the presence of the iminium salt, epoxidation was observed. 
 

It was therefore postulated that sodium hypochlorite could generate the percarbonate in-

situ (Equation 2),3b,5 which in turn could oxidise the iminium salt to the oxaziridinium salt 

thus generating a species capable of oxygen transfer to the alkene substrate. 
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NaOCl + HCO3
- NaCl + HCO4

- 
 

Equation 2 

 

Two possible catalytic cycles are illustrated in Scheme 12, Pathway A and Scheme 13, 

Pathway B for the proposed process. Hypochlorite may generate percarbonate, which then 

acts as the oxygen transfer agent, followed by oxaziridinium ion formation (Scheme 12, 

Pathway A); such a double catalytic cycle involving a second mediator does not appear to 

have been previously proposed for other processes involving hypochlorite. Alternatively, 

hypochlorite may add directly to the iminium unit (Scheme 13, Pathway B). Both 

pathways involve expulsion of a leaving group to generate the oxaziridinium 

intermediates, potentially as a pair of diastereoisomers, each of which may induce 

asymmetric oxygen transfer to a substrate. These diastereoisomers would be expected to 

display different enantioselectivities in any such reaction; the observed ee in each case 

may therefore be an aggregate of the two.  
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Scheme 12, Pathway A 
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Scheme 13, Pathway B 

 

Initial experiments carried out at room temperature using sodium hypochlorite solution 

(13%, 3 equiv.) as stoichiometric oxidant, potassium carbonate (0.25 equiv.) as mediator, 

and iminium salt catalyst 7 (10 mol%) in an acetonitrile medium induced asymmetric 

epoxidation of 1-phenylcyclohexene with up to 50% ee (Scheme 14). We were encouraged 

by this observation to investigate the parameters affecting this potentially attractive 

reaction system.  

 
NaOCl (3 equiv., 13%)
K2CO3 (0.25 equiv.)

Catalyst 7 (10 mol%)
Solvent

O

 
 

Scheme 14 

 

The effect of inorganic mediator on asymmetric epoxidation  

Mixtures containing iminium salt 7 and sodium hypochlorite in the presence of an alkene 

substrate but in the absence of an inorganic mediator showed no conversion to the 

corresponding epoxides. Therefore sodium hypochlorite, like hydrogen peroxide under 

similar conditions, is unable to drive the epoxidation process, and thus presumably does 

not oxidize iminium salts to oxaziridinium salts, in the absence of inorganic mediator. We 
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therefore investigated the effects on the reactions of several added mediators in reactions 

carried out over 24 hours (Table 5).  

 

Table 5; Asymmetric Epoxidation of 1–Phenylcyclohexene using Different Mediators a  

Entry Base Conv./%b ee/%c 

1 - 2 0 

2 K2CO3 50 68 

3 K2CO3 
d 53 66 

4 K2CO3 
e 71 69 

5 K2CO3 
f 32 66 

6 KOH 13 67 

7 K2HPO4 27 63 

8 NaHCO3 92 60 

9 KF 14 < 5 

10 TBAF 89 16 
a Epoxidation conditions: iminium salt 7 (10 mol%), sodium hypochlorite (13%, 6 equiv.), mediator (0.25 

equiv.), dichloromethane (1 ml) 0 ºC, 24 h. b Conversions were evaluated by GC analysis based upon alkene 

and epoxide content. c Enantiomeric excesses were determined by chiral GC analysis; the major enantiomer 

was the (1S,2S)-epoxide. d Epoxidation conditions: iminium salt 7 (10 mol%), sodium hypochlorite (13%, 6 

equiv.), mediator (0.40 equiv.), dichloromethane (1 ml) 0 ºC, 24 h. e Epoxidation conditions: iminium salt 

(10 mol%), sodium hypochlorite (13%, 6 equiv.), mediator (1.00 equiv.), dichloromethane (1 ml) 0 ºC, 24 h. 
f Epoxidation conditions: iminium salt (10 mol%), sodium hypochlorite (13%, 6 equiv.), mediator (0.25 

equiv.), no solvent, 0 ºC, 24 h.  

 

Rewardingly, the reactions proceeded smoothly when a mediator was included, and the 

enantioselectivity observed was largely independent of the type of mediator (hydrogen 

carbonate, carbonate or hydroxide) used to promote the reaction. Experiments containing a 

very low proportion of mediator (0.01 equiv.) showed minimal conversion to the epoxide. 

When the proportion of mediator was increased to 0.25 equivalents, the reaction furnished 

1-phenylcyclohexene oxide with 68% ee with K2CO3, 60% ee with NaHCO3, and 67% ee 

with KOH. For any mediator, the ee remained constant when the mediator was added in 

greater proportion than 0.1 equivalents. We concluded that, in those cases using 

carbonates as bases, percarbonate may be generated, and this may mediate the generation 

of an oxaziridinium ion. The large variation in conversions and to a lesser extent on the 
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enantioselectivity, due to the change of mediator may reflect that the conversion mirrors 

rate of reaction. The rate of reaction is dependent on the ease of generation of the 

oxaziridinium species, and this would be affected by factors such as the multiphase 

structure, ion association, identity of the peroxy nucleophile generated; while by contrast 

the ee should be less variable, unless there is a large variation in the direction of attack on 

the iminium salt using different inorganic mediators.  

 

The effects of solvent and temperature  

As potassium carbonate appeared to offer the best ees, together with margins for 

improvement in both conversions and ees, we chose this mediator for further studies. 

Several solvents were investigated, with reactions carried out at room temperature and 0 

°C using catalyst 7 (Table 6).  

 

Table 6; Asymmetric Epoxidation of 1–Phenylcyclohexene Mediated by Catalyst 7 with 

varying solvents. a 

Entry Solvent Temp./°C Catalyst Time/h Conv./%a ee/%a 

1 acetonitrile rt _ 24 100 < 5 

2 dichloromethane rt _ 24 0 - 

3 chloroform 0 _ 24 0 - 

4 acetonitrile rt 7 2 100 50 

5 dichloromethane rt 7 2 100 60 

6 acetonitrile 0 7 4 100 56 

7 dichloromethane 0 7 24 50 68 

8 chloroform 0 7 24 47 48 
Iminium salt Catalyst 7 (10 mol%), sodium hypochlorite (13%, 3 equiv.), K2CO3 (0.25 equiv.), solvent 

(1ml), alkene substrate (1 equiv.). a Conversions and enantiomeric excesses were determined by chiral GC 

analysis; the major enantiomer was the (1S,2S)-epoxide.  
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The results presented in table 2 show that acetonitrile facilitates complete conversion to 

the epoxide in less than 24 hours in the absence of the iminium salt catalyst, perhaps as a 

result of peroxyimidic acid formation. No such background epoxidation was seen over the 

same period when using dichloromethane or chloroform as the reaction solvent. 

Interestingly, in the presence of catalyst 7, the epoxide was obtained in 50% ee at rt and 

56% ee at 0 °C in acetonitrile solvent, despite the ready background pathway, the presence 

of the iminium salt catalyst presumably offering a lower energy pathway for reaction, 

leading to asymmetric epoxidation. When using dichloromethane as the reaction solvent, 

iminium salt catalyst 7 induces epoxidation with 60% ee at rt and 68% ee at 0 °C. Oxygen 

transfer, for example from percarbonate, to the iminium ion may take place at the solvent-

solvent interface (Scheme 15). Alternatively, the iminium salts may act as phase transfer 

agents, the oxidation to oxaziridinium species then taking place in the aqueous phase 

before return of the oxaziridinium ion to the organic phase. Assuming that hypochlorite 

will be largely contained in the aqueous phase, the oxaziridinium species would then 

become the dominant oxidant in the organic phase.  

 

It seems likely that the decreased enantiocontrol in the acetonitrile reaction was due to 

background epoxidation, rather than a genuine solvent effect. Use of chloroform, however, 

clearly results in poorer induced enantioselectivity, although chloroform does not promote 

background epoxidation. We have previously observed excellent enantiocontrol when 

using chloroform as the solvent under non-aqueous conditions, with TPPP as 

stoichiometric oxidant.8,9  
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Scheme 15 
 

Stronger hypochlorite oxidants such as potassium hypochlorite and t-butyl hypochlorite 

have also shown precedent for oxygen transfer,14,22 Therefore both oxidants were tested 

for their capacity as an oxidant within our current conditions (Scheme 16). Unfortunately 

t-butyl hypochlorite proved too strong an oxidant as full conversion to the epoxide was 

observed without inducing enantioselectivity. 
 

 

KOCl or ButOCl(3 equiv.)
K2CO3 (0.25 equiv.)

0oC
Catalyst 10 mol%

DCM

O

 
 

Scheme 16 
 

In previous work it was observed that when attempting to oxidise cis-substituted alkenes, 

the utilisation of iminium salt catalyst 1, a sulphone derivative of catalyst 6, gave high 

levels of enantiocontrol. More interestingly, when using chloroform as a solvent, catalyst 1 

generated the opposite enantiomer of the desired epoxide. When epoxidation was 

attempted in any other solvent the enantiocontrol decreased and the stereochemistry of the 

epoxide product reverted back to that of which the parent catalyst 6 yielded. 
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N+

O

O

BPh4
-

S
O

O  
 

Catalyst 1 

 

With the new sodium hypochlorite system giving good enantiocontrol when used in 

conjunction with chloroform and iminium salt catalyst 7 (up to 47%), it was proposed that 

the use of iminium salt 1 when used under these same sodium hypochlorite conditions 

would give encouraging results. 

 

Thiomicamine, 17 was formate protected at the nitrogen (18, Scheme 17), allowing 

subsequent p-TSA catalysed diol protection, 19 with 2,2-dimethoxypropane. The thiol was 

oxidised to the sulphone, 20 with m-CPBA. The formate protecting group was removed 

using hydrazine hydrate generating sulphone aminodioxane 21 in 26% over four steps. 
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Reagents and conditions; (a) MeOH, NaOMe, Methyl formate, rt, 2 hrs. (b) Acetone, 

2,2-DMP, p-TSA, rt, 4 hrs. (c) m-CPBA, DCM, rt, 16 hrs.  

(d) N2H4, ∆, 4hrs. 

Scheme 17 

 

Isochroman was ring opened with bromine to generate the phenyl bromo aldehyde 23 

(Scheme 18). The sulphone aminodioxane 21 was then condensed with bromoaldehyde 

23 to yield iminium salt 1 in 34%. 
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1 

 

Reagents and conditions; (a) CCl4, Br2, HBr, rt, 2 hrs. 

(b) 21, EtOH, NaBPh4, MeCN, 0 °C → rt, 17 hrs. 

Scheme 18 

 

Catalyst 1, 6 and 7 were then tested with in the new oxidative system to observe their 

effectiveness on a range of test substrates (Table 7). 

 

It was observed that using iminium salt catalyst 7 in dichloromethane gave the best 

reaction profile when using sodium hypochlorite as the oxidant giving up to 68 % 

conversion, and up to 71 % ee for 2,3-dihydronaphthylene. Decreased enantioselectivities 

were observed when using either acetonitrile or chloroform as the solvent. Reversal of 

enantiocontrol was not observed for any substrate used when employing salt catalyst 1 

and chloroform as the solvent.  
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Table 7; Asymmetric Epoxidation of Unfunctionalised Alkenes Mediated by Catalysts 

6, 1 and 7.a 

Epoxide Catalyst Solvent Conversion/% c ee/% c 
Major 

enantiomer d 

O  

6 MeCN 49 17 (–)-1S,2S 

6 CH2Cl2 10 49 (–)-1S,2S 

1 MeCN 100 28 (–)-1S,2S 

1 CH2Cl2 50 17 (–)-1S,2S 

1 CHCl3 60 19 (–)-1S,2S 

7 MeCN 100 55 (–)-1S,2S 

7 CH2Cl2 50 68 (–)-1S,2S 

7 CHCl3 47 48 (–)-1S,2S 

O

 

6 MeCN 9 21 (–)-1S,2R 

6 CH2Cl2 23 33 (–)-1S,2R 

1 CHCl3 13 46 (–)-1S,2R 

7 MeCN 24 66 (–)-1S,2R 

7 CH2Cl2 68 71 (–)-1S,2R 

O

 

6 MeCN 34 8 (–)-1S,2S 

6 CH2Cl2 42 9 (+)-1R,2R 

1 CHCl3 44 8 (+)-1R,2R 

7 MeCN 20 14 (–)-1S,2S 

7 CH2Cl2 98 13 (–)-1S,2S 
a epoxidation conditions: Iminium salt catalyst (10 mol%), Sodium hypochlorite (13%, 6 equiv.). K2CO3 

(0.25 equiv.), Solvent (1 ml) 0ºC, 24 hours. b Enantiomeric excesses were determined by chiral GC–FID 

spectra by comparison of the two epoxide peak areas. c Conversions were evaluated from the chiral GC–

FID spectra by comparison of the alkene and epoxide peak areas. d Absolute configurations of the major 

enantiomers were determined by comparison of both optical rotation and GC-FID with those reported in the 

literature. 
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With the new sodium hypochlorite oxidative system inducing up to 71% ee, the next step 

was to assess catalyst 3 with in this system (Scheme 2), which induces up to 95% ee 

under the original Oxone® conditions. 

 

NaOCl (3 equiv.)
K2CO3 (0.25 equiv.)

0oC
Catalyst 10 mol%

DCM

O N+

O

O

BPh4
-

 
 

Scheme 19 3 

 

When catalyst 3 was used under the sodium hypochlorite conditions, little conversion to 

the epoxide was observed. This was due to the decomposition of the binaphthalene based 

catalyst under the reaction conditions over the prolonged 24 hour reaction time. 

 

 

2.1.3.1 Conclusion. 

The addition of the K2CO3 elevates the pH of the reaction to ≥ 11.0. This rise in pH 

facilitates the generation of hypochlorite anions in the reaction mixture. The hypochlorite 

anion then follows one of the two hypothesised pathways (Scheme 12, Pathway A and 

Scheme 13, Pathway B) via either an aminohypochlorite adduct or an aminopercarbonate 

adduct. Both pathways collapse to generate the oxaziridinium intermediate as a pair of 

diastereoisomers with the expulsion of an appropriate leaving group. These 

diastereoisomers almost certainly operate through different transition states during the 

oxygen transfer to the substrate and with different kinetics therefore inducing different 

enantioselectivities. The observed ee in each case was an average of the two processes. 
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Commercial sodium hypochlorite has shown to be a useful stoichiometric oxidant in 

iminium salt-catalysed asymmetric epoxidation. Addition of sodium hypochlorite to a 

carbonate salt forms an extremely reactive species capable of oxidising iminium salts to 

their corresponding oxaziridinium salt. Optimization of the oxidative system has enabled 

asymmetric epoxidation with good enantiocontrol of up to 71%, in the epoxidation of 

2,3-dihydronapthylene when using iminium salt 7. The overall process enjoys simplicity 

and environment friendliness that may be of benefit to both industrial and academic 

laboratories.  
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2.2 New novel catalysts for catalytic asymmetric 

epoxidation. 
Over the last ten years Page has developed a range of iminium salt catalysts incorporating 

a chiral substituent at the iminium nitrogen atom. The presence of chirality α to the 

iminium nitrogen has been shown to induce increased enantiocontrol in epoxidation 

reactions compared to catalysts that contain an N-achiral substituent. 

 

We hypothesised that more complex chiral groupings α to the iminium nitrogen and at 

other strategic locations may further increase the enantioselectivity induced in 

asymmetric epoxidation. 

 

 

2.2.1 Dihydroisoquinolinium salt catalysts with α nitrogen chirality. 

Work within the group was aimed towards the generation of dihydroisoquinolinium salt 

catalysts with chiral functionality incorporated into the dihydroisoquinolinium ring and 

also α to the iminium nitrogen atom. Iminium salt 24 is one such target. 

 

N+
R1

R2
OH

BPh4
-

 
 

24 

 

With iminium salt 24 identified, a retro-synthetic outline was postulated (Scheme 20). 
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Scheme 20 

 

The desired iminium salt 24 would be generated by quarternisation of 25 with a suitable 

alkyl group. Oxidation of amine 26 with NBS would generate imine 25, the former (26) 

would be generated by the acid deprotection and reduction of 27. Using Seebach 

methodology, base deprotonation of 28 α to the carbonyl group and trapping with the 

introduction of ‘RX’ would generate the substituted tricycle 27 maintaining the chirality 

present in 29. 23 And finally the first hypothesised synthetic step would be the cyclisation 

of enantiomerically pure tetrahydroisoquinoline 29 with pivaldehyde so generating the t-

butyl acetal 28.  

 

Using 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (29) as the starting material, 

attempts to cyclise the amino and carboxylic acid functionalities with pivaldehyde under 

Dean and Stark conditions were unsuccessful (Scheme 21). A range of reaction 

conditions using both the acid and its sodium salt, were attempted in an effort to cyclise 

the starting material; unfortunately these conditions were all unsuccessful (Table 8). 

Further attempts to prepare this family of catalysts was therefore abandoned 
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Reagents and conditions; (a) Pivaldehyde (for conditions see Table 8).  

Scheme 21 

 

Table 8; Methods for the cyclisation of  

1,2,3,4-tetrahydro-isoquinoline-3-carboxylic acid. 

Entry 
Starting 

material 
Solvent 

Acid / Lewis 

Acid 
Temp./ °C Time/ h Product 

1 Sodium salt Pentane - 36 48 SM 

2 Sodium salt Toluene - 110 48 SM 

3 Acid Pentane - 36 48 SM 

4 Acid Toluene - 110 48 SM 

5 Sodium salt Pentane PTSA 36 48 SM 

6 Sodium salt Toluene PTSA 110 48 SM 

7 Acid Pentane PTSA 36 48 SM 

8 Acid Toluene PTSA 110 48 SM 

9 Sodium Salt Acetonitrile BF3.OEt rt 48 SM 

10 Sodium Salt Acetonitrile BF3.OEt 82 48 SM 

11 Sodium Salt Pentane BF3.OEt 36 48 SM 

12 Acid Acetonitrile BF3.OEt rt 48 SM 

13 Acid Acetonitrile BF3.OEt 82 48 SM 

14 Acid Pentane BF3.OEt 36 48 SM 

15 Acid Pentane TFA 36 48 SM 

16 Acid Toluene TFA 110 48 SM 
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2.2.2 Iminium salt catalysts based on a biphenyl azepinium backbone 

Page has reported that iminium salt catalysts based on a biphenyl skeleton fused with an 

azepinium salt induce good enantioselectivity and excellent reactivity in terms of 

conversion of an alkene to the corresponding epoxide (Scheme 22). 
 

Catalyst (10 mol%)

Oxone (2 equiv.)
Na2CO3 (4 equiv.)
MeCN:H2O (1:1)

O N+ N+

O

O

BPh4 –BPh4 –

 
 

      30 7  

      29% ee       60% ee  

       100% conv.        100% conv. 

Scheme 22 

 

It was evident that iminium salt catalysts containing an N-chiral appendage gave 

increased enantiocontrol over chiral catalysts containing an achiral N-substituent. The 

approach of the oxidant or the alkene substrate to the iminium or the oxaziridinium salt 

(respectively) is presumably directed electronically or sterically by this α-chirality, 

therefore increasing enantiocontrol. 

 

The biphenyl azepinium catalysts contain a methylene group α to the nitrogen. It was 

postulated that the biphenyl azepinium iminium bond (5) could undergo Grignard 

addition to generate the corresponding amine 32, this amine could then be re-oxidised to 

the iminium salt 31, using NBS (Scheme 23). This would give a second chiral centre α to 

the iminium nitrogen, which we hoped would induce increased enantioselectivity by 

electronic and/or steric interaction with the approaching oxidant or alkene substrate. 
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Scheme 23 

 

Using N-isopinocampheyl iminium salt 30 as a model substrate, methyl magnesium 

bromide was added to the iminium bond. The addition proceeded smoothly generating an 

inseparable pair of diastereoisomers 33, determined by 1H NMR spectroscopy as a 1:1 

diastereoisomeric ratio. Reaction of the diasteoisomeric mixture with NBS generated the 

bromide iminium salt, which underwent ion exchange to generate the tetraphenyl borate 

iminium salt 34 as a 1:1 mixture of inseparable diastereoisomers. Only oxidation at the 

methylene carbon atom α to the nitrogen atom was observed, no oxidation is observed at 

the new chiral carbon centre α to the nitrogen. 

 

N+

BPh4
-

N N+
a. b & c

79% 71%

BPh4
-

 
 

30  33 34 

 

Reagents and conditions; (a) MeMgBr, THF, –78 °C → rt, 2 hrs.  

(b) NBS, DCM, rt, 10 mins. (c) EtOH, NaBPh4, rt, 2 hrs . 

Scheme 24 

 

This second-generation iminium salt catalyst 34 was tested for its ability to induce 

enantiocontrol in asymmetric epoxidation of 1-phenylcyclohexene (Scheme 25). Catalyst 

34 imparts 61% ee in 1 hour, with 100% conversion to the epoxide. In comparison to the 

parent catalyst 30, which imparts 29% ee with 100% conversion in less than 30 minutes, 
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showing that the α-substituted iminium salt catalyst 34 induces considerably increased 

levels of enantioselectivity over 30. 

 

Catalyst (10 mol%)

Oxone (2 equiv.)
Na2CO3 (4 equiv.)
MeCN:H2O (1:1)

O N+

BPh4 –

N+

BPh4 –

 

      35 7  

     29% ee    61% ee 

     100% conv.    100% conv. 

Scheme 25 

 

From this encouraging result we focused our attention on the substitution of N-dioxane 

iminium salt catalyst 7, as this has proven to impart higher levels of enantiocontrol than 

the isopinocampheyl catalyst 30. Several Grignard reagents (MeMgBr, iPrMgBr, 

PhMgBr & BnMgBr) were added to the iminium bond generating the respective amines 

36 – 39 (Scheme 26). NBS oxidation converted the amines into their bromide iminium 

salts in good yields (40 – 43). 
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36 R = Me (91%) 

37 R =iPr (62%) 

38 R = Ph (47%) 

39 R = Bn (60%) 

40 R = Me (63%) 

41 R = iPr(83%) 

42 R = Ph (91%) 

43 R = Bn (83%) 

 

 

Reagents and conditions; (a) RMgBr, THF, –78 °C to rt, 2 hrs. 

(b) NBS, DCM, ∆, 10 – 25 mins. 

Scheme 26 

 

From the V.T. 13C NMR data, we calculated that the addition of all Grignard reagents to 

catalyst 7 gave one single diastereoisomer in each case. Epoxidation of our test substrate 

1-phenylcyclohexene was completed using these new iminium salt catalysts; the catalysts 

displaying the highest enantiocontrol were then used to catalyse oxidation of two other 

representative alkenes (Table 9). 

7 
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Table 9; Asymmetric Epoxidation of Unfunctionalised Alkenes Mediated by Catalyst 7, 

and catalysts 40 – 43.a 

Epoxide Catalyst Conversion/% c ee/% c 
Major 

enantiomer d 

O  

7 100 61 (–)-1S,2S 

40 100 81 (–)-1S,2S 

41 100 72 (–)-1S,2S 

42 100 71 (–)-1S,2S 

43 72 75 (–)-1S,2S 

O

 

7 100 32 (–)-1S,2R 

40 100 56 (–)-1S,2R 

43 56 25 (–)-1S,2R 
O

 

7 90e 41f (–)-1S,2S 

40 100e 75f (+)-1R,2R 
a epoxidation conditions: Iminium salt catalyst (10 mol%), Oxone® (2 equiv.). Na2CO3 (4 equiv.), Solvent 

(1:1 Acetonitrile/H2O) 0ºC. b Enantiomeric excesses were determined by chiral GC–FID spectra by 

comparison of the two epoxide peak areas. c Conversions were evaluated from the chiral GC–FID spectra 

by comparison of the alkene and epoxide peak areas. d Absolute configurations of the major enantiomers 

were determined by comparison of both optical rotation and GC-FID with those reported in the literature. e 

Enantiomeric excesses were determined by chiral HPLC spectra by comparison of the two epoxide peak 

areas. f Conversions were evaluated from the 1H NMR spectra by comparison of the alkene and epoxide 

peak integrations. 

 

The parent catalyst 7 induces up to 61% ee in the epoxidation of 1-phenylcyclohexene. 

Increased enantiocontrol was observed for all of the second generation catalysts, with 

catalyst 40, containing an added methyl group, inducing the highest enantiocontrol, 

giving up to 81% ee and 100% conversion in one hour. 

 

Catalyst 40 shows increased levels of enantiocontrol over its analogues (41 - 43). From 

the crystal structure (Figure 44), it is evident that there are possibly two factors which 

contribute to high enantioselectivity. The additional axial methyl substituent C(29) α to 

the iminium nitrogen N(1) probably impedes the approach of the oxidant from the si face 

due to the steric hindrance. The methyl group may inhibit approach to the si face of the 
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iminium bond without hindering the bond rotation of the aminodioxane unit around the, 

N(1)-C(5). As high enantiocontrol is then directly related to the approach of the alkene 

towards the ‘free’ re face, any interference with the aminodioxane rotation could directly 

hinder the re face. 

 

Substitution of larger alkyl and aryl substituent’s at C(28) may cause higher levels of 

interference with this aminodioxane rotation, causing enantiocontrol to be reduced as 

observed in catalysts 41 - 43 presumably by preventing the adoption of the optimal 

approach control. The introduction of a methyl group appears to be the optimal 

substitution, balancing si face hindrance with controlled approach of the alkene. 

 

 

 

 

 

N+

O

O

Figure 44, X-ray crystal structure of catalyst 40 

 

The next logical step was to use this methodology to insert a methyl group in to the 

iminium bond of binaphthyl based iminium salt catalyst 3 (Scheme 27). 

 

R-Binol (45, Scheme 27) was converted to the triflate, 46. This underwent Kumada 

coupling with methyl magnesium bromide to yield the bismethyl-binaphthyl compound 

47. NBS bromination initiated by AIBN generated the dibromobinaphthylene, 48, which 

was smoothly condensed with aminodioxane 11 to generate the cyclic amine, 49. NBS 

oxidation of this amine gave the iminium bromide salt 50. 
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OH
OH

a OTf
OTf

b

99% >99%

 
 

45 46     

 

c dBr

Br50% 98%

 
 

47 48     

 

e
N

O

O
N+

O

O
Br-

68%

 
 

49 50 

 

Reagents and conditions; (a) Triflic anhydride, 2,6-lutidine, DMAP, DCM, –30°C → 

rt, 4 hrs. (b) MeMgBr, Ni(Cl)2(PPh2)2, Et2O. (c) NBS, CCl4, AIBN, hv, rt, 5 hrs. (d) 11, 

THF, TEA, Δ → rt, 5 mins. (e) NBS, DCM, rt, 20 mins. 

Scheme 27
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The binaphthyl azepinium bromide salt 50 was treated with methyl magnesium bromide, 

generating the tertiary amine 51 as a pair of diastereoisomers in a 3:2 ratio, determined by 
13C NMR spectroscopy data.  

 

N+

O

O

Br-

N
O

O
a b

56% 79%

 
 

50    51    

 
Br-

N+

O

O

 
 

52 

 

Reagents and conditions; (a) MeMgBr, THF, –78 oC to rt, 2 hrs. 

(b) NBS, DCM, ∆, 15 mins. 

Scheme 28 

 

Amine 51 was subjected to NBS oxidation generating the desired azepinium bromide salt 

52 in good yield as a pair of inseparable diastereoisomers.  

 

Catalyst 52 was then compared to its parent, catalyst 3, as were catalysts 34 and 40 to test 

for their ability to induce enantioselectivity in the epoxidation of several alkene substrates 

(Table 10). 
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Table 10; Asymmetric Epoxidation of various alkenes with the original parent catalysts 

and also the second generation catalysts.a 

Epoxide Catalyst 
Conversion/%

d,e 

ee/%
b,c 

Major 

enantiomer f 

O  

30 100 17 (+)1R,2R 

34 100 61 (+)1R,2R 

7 100 60 (–)1S,2S 

40 100 81 (–)1S,2S 

3 100 91 (–)1S,2S 

52 100 93 (–)1S,2S 

O

 

30 100 10 (–)1R,2S 

34 100 28 (–)1R,2S 

7 100 32 (+)1S,2R 

40 100 56 (+)1S,2R 

3 100 17 (+)1S,2R 

52 100 24 (+)1S,2R 

O

 

30 95 38 (+)1S,2R 

34 23 68 (+)1S,2R 

7 90 41 (–)1R,2S 

40 100 75 (–)1R,2S 

3 100 95 (–)1R,2S 

52 90 96 (–)1R,2S 

O

 

30 95 0 - 

34 95 6 (+)1R,2R 

7 90 15 (–)1S,2S 

40 100 21 (–)1S,2S 

3 100 12 (–)1S,2S 

52 81 12 (–)1S,2S 
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O

 

30 100 38 (+)1R 

34 100 38 (+)1R 

7 90 24 (–)1S 

40 100 21 (–)1S 

3 98 20 (–)1S 

52 81 25 (–)1S 
a epoxidation conditions: Iminium salt catalyst (2.5 mol%), Oxone® (2 equiv.). Na2CO3 (4 equiv.), Solvent 

(1:1, Acetonitrile:H2O 5 ml) 0ºC, 17 mins – 6 hrs. b Enantiomeric excesses were determined by chiral GC–

FID spectra by comparison of the two epoxide peak areas. c Conversions were evaluated from the chiral 

GC–FID spectra by comparison of the alkene and epoxide peak areas. d Enantiomeric excess determined by 

Chiral HPLC on a Chiracel OH-D column. e Conversion evaluated from the 1H-NMR by integration alkene 

versus epoxide. f Absolute configurations of the major enantiomers were determined by comparison of both 

optical rotation and GC-FID with those reported in the literature. 

 

From Table 10 it can be seen that the second generation of iminium salt catalysts induce, 

in most cases, higher enantiocontrol than the parent catalyst. The addition of a methyl 

substituent as for catalyst 40, 3, and 34, gives increased enantiocontrol, presumably due 

to the additional methyl group sterically and/or electronically controlling the approach of 

either the oxidant and the alkene substrate. This is remarkable in the case of 52 as the 

catalyst is used as a pair of diastereoisomers. One possible explanation is that one 

diastereoisomers is far more reactive than the other. 

 

 

2.2.2.1 Conclusion 

On reflection, we have observed that the introduction of a chiral carbon atom α to the 

iminium nitrogen significantly increases the enantiocontrol of azepinium salt catalysts 

towards epoxidation of unfunctionalised alkenes. 

 

The introduction of an aryl or alkyl substituent may increase the steric hindrance around 

one of the two prochiral faces available, therefore increasing the preference for formation 

of one diastereoisomeric oxaziridinium intermediate, and may also help to control the 

subsequent approach of the alkene substrate. 
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2.2.3 Iminium salt catalysts based on a 7,5-fused bicyclic lactam 

substructure. 

It has been shown that variations to our original biphenyl azepinium salt catalyst 

substructure have enabled increased levels of enantiocontrol in epoxidation of selected 

alkenes. 
 

Furthermore, work investigating the impact of a second chiral carbon atom α to the 

iminium nitrogen shows increased enantiocontrol over alkene substrates. We therefore 

postulate that other iminium salt catalyst sub-structures based on the original biphenyl 

motif but containing multiple chiral carbons α to the iminium nitrogen could generate 

high levels of enantioselectivity. 
 

N+Br-

t-Bu
OMe

t-Bu
OMe

H

F3C

CF3

CF3

CF3

 
 

53 
 

A fundamental problem concerning biphenyl structures is their ability to rotate around the 

aryl/aryl bond forming two interconverting atropoisomers denoted Ra and Sa by Cahn-

Ingold-Prelog rules. Recent work has concerned atropo-enantioselective reactions 

generating a single atropoisomer. Work reported by Lygo on asymmetric phase transfer 

alkylation,24,25 generated catalyst 53 by insertion of six bulky substituent’s on the 

azepinium biphenyl skeleton. This slows the biphenyl aryl/aryl rotation and establishes 

one thermodynamically favourable atropoisomer. Our group, using catalyst 53 as the 

template, incorporated amino dioxane 11 in to the biphenyl skeleton, so generating 

iminium salt catalysts 54 and 55.26 Under the standard Oxone® conditions 22% and 44% 

ee (respectfully) was generated with our test substrate 1-phenylcyclohexene (Scheme 29). 

 



  Phillip Parker; Results and Discussion 

   109 

N+

OMe

OMe

O

O

Ph

CF3

CF3

CF3

CF3

BPh4
-

Oxone (2 equiv.)
NaHCO3 (5 equiv.)
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CF3

CF3

CF3
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BPh4
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54 

22% ee 

63% conv. 

 

  55  

44% ee  

100% conv.  

Scheme 29 

 

It was observed by V.T. 1H NMR spectroscopy that an atropoisomeric mixture of 

iminium salt catalyst 55 was present, at 20 °C this was 1:10.2 increasing to a ratio of 1:32 

at -40 °C, therefore displaying the preference for one atropoisomer, the identity of which 

is unknown at present.  

 

From this work it was envisaged that if the biphenyl skeleton could be generated atropo-

enantioselectively with out the presence of the bulky substituents, the presence of a single 

atropoisomer could be sufficiently investigated. 
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It was reported by Levacher,27 that Meyers’ bicyclic lactam methodology was widely 

used in the stereoselective construction of five- and six- membered ring nitrogen 

heterocycles.28 These lactams provide a number of highly functionalised chiral building 

blocks that may be used further, in a wide range of stereoselective transformations, 

resulting in a chiral axis of the biaryl motif in greater than 95% de (Scheme 30). The 

desired lactam was generated from an amino alcohol condensation with the acetyl 

bicyclic ester. This acetyl bicyclic ester was further disconnected using Suzuki 

methodology to give acetyl phenyl boronic acid and 2-iodobenzoic ester.  

 

O
RO

O

H2N
OH

N

O

O

H

 
 

56 57 58 

 

I B

OR

O
OH

HO
O

 
 

     59 60   

 

Scheme 30 

 

We hypothesised this 7,5-fused bicyclic lactam substructure 56 could be used to generate 

iminium salt catalyst 61 (Scheme 31), by the reduction of amide 56 to amine 62 and 

subsequent NBS induced iminium salt formation would give the desired iminium salt 

catalyst 61.  
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Scheme 31 

 

This methodology would allow almost any amino alcohol to be condensed within the 

biphenyl backbone. As demonstrated by Levacher, the condensation of (R)-phenyl 

glycinol gives excellent diastereoisomeric and atropoisomeric control.  
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R
N+

O

R

Oxone

N+

O

RO

N+

O

RO

Oxone

O O

 

 

Scheme 32 

 

Furthermore either, enantiomer of the selected amino alcohol could be condensed within 

the biphenyl backbone so generating either enantiomer of the iminium salt catalyst 

(Scheme 32). Oxidation of the enantiopure iminium salt would generate, preferentially, 

one diastereoisomer of the oxaziridinium salt intermediate. This diastereoisomer of the 
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oxaziridinium salt in turn would then, preferentially, generate one enantiomer of the 

epoxide. 

 

The synthesis of the desired bicyclic lactam was initiated using 2-iodo-benzoic acid (63) 

as our starting material; this was converted to the methyl ester, 64 with acetyl chloride in 

methanol (Scheme 33). The ethyl ester 65 was prepared by using thionyl chloride 

followed by potassium carbonate in ethanol (Scheme 33). 

 

O

I

OH

O

I
O

a

O

I
O

b

81%

72%

 
 

 63 

 

64 (Me)   

65 (Et)    

 

Reagents and conditions; (a) Acetyl chloride, MeOH, Δ, 12 hrs. (b) Thionyl chloride, Δ, 

2 hrs. K2CO3, absolute EtOH, Δ, 12 hrs. 

Scheme 33 

 

The esters (64 & 65) underwent coupling with 2-acetylphenylboronic acid (60) using 

Suzuki methodology to yield the desired methyl and ethyl esters,  66 (Me) &  67 

(Et). 
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O
RO
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 64 (Me)  

65 (Et)   

60   

 

 66 (Me, 64%) 

 67 (Et, 76%) 

 

Reagents and conditions; (a) Toluene, EtOH, 5% aq. K2CO3, Pd(PPh3)4, Δ, 48 hrs. 

Scheme 34 

 

The Suzuki conditions used by Levacher were a toluene:ethanol:water solvent system 

(10:1:1), potassium carbonate as the base (3 equiv.) and a palladium catalyst, specifically 

Pd(PPh3)4 (10 mol%), but we have observed similar yields when employing Pd(DPPF). 

The reaction was heated under reflux over 48 h to give the biphenyl compounds in 64% 

(R = Me) and 76% (R = Et) yields. 

 

The 2'-acetyl-biphenyl-2-carboxylic acid esters  66 (Me) &  67 (Et), underwent 

amino alcohol condensation with R-phenyl glycinol to generate the 7,5-fused bicyclic 

lactams with 95% de (R = Me) and 98% de (R = Et) as determined by 13C NMR 

spectroscopy (Scheme 35). 

 

O
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O
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H2N
OH

(S)
N

O
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 66 (Me) 

  67 (Et) 

57  

 

56 (Me, 57%) 

   (Et, 45%) 

 

Reagents and conditions; Toluene, Δ, (Me) 18 hr, (Et) 138 hr. 

Scheme 35 
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The condensation generates the lactam as a pair of diastereoisomers with the major 

diastereoisomer 56 (aR,3R,13S based on CIP rules) generated in 86% yield displaying 

both functional groups of the oxazolidine moiety in a trans relationship (Scheme 36). 

Levacher describes this diastereoselectivity through 1H and 13C NMR spectroscopy. Our 

reported NMR spectroscopy data is in agreement with Levacher’s reported quotation.27 
 

Levacher postulates that the trans-oxazolidine intermediate forms the lactam through a 

“pro-(aR) rotation” about the biaryl axis, giving rise to the exclusive formation of bicyclic 

lactam (aR,3R,13S) 56. Conformational restrictions in the 5,7-fused bicyclic lactam 

prevents the lactamisation of the trans-oxazolidine intermediate from taking place 

through a “pro-(aS) rotation” about the biaryl axis.27 
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In contrast, the only way for the cis-oxazolidine intermediate to further react with the 

carboxylic acid or ester is to initiate a “pro-(aS) rotation” about the biaryl axis to produce 

the (aS,3R,13R) minor isomer 56. The absolute configuration of the chiral axis present in 

the biaryl unit was therefore controlled by that of the N,O-acetal centre in the oxazolidine 

intermediate. 

 

With the desired single diastereoisomer of the 7,5-fused bicyclic lactam in hand, we 

endeavored to reduce the amide to the tertiary amine (Scheme 37, Table 11).29 

 

(S)
N

O

O

(R)
(S)

N

O

(R)aR aR

 
 

56 62 

Scheme 37 

 

Table 11; Methods for the reduction of amide 56 

Entry Solvent Reductant Temp./ °C Time/ h Product 

1 THF BH3.S(CH3)2 0  ∆ 2 decomposition 

2 THF BH3.THF 0  ∆ 2 decomposition 

3 THF LAH -78  0 2 decomposition 

4 THF NaBH4 -78  0 2 decomposition 
 

Unfortunately the reduction of the amide did not occur using the reductive methodology 

shown. After aqueous work-up crude, 1H NMR spectroscopy showed no presence of the 

desired methylene protons, but more importantly the oxazolidine methyl group 

disappears, indicating decomposition of the starting material. 
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2.2.4 An alternative synthesis of 7,5-fused bicyclic azepinium salt 

catalysts. 

Using Lavacher’s biphenyl lactam work as a synthetic guideline it was decided that an 

alternate route would be attempted in the absence of an amide group, hence removing the 

problematic reductive step. 
 

We postulated that the tetracyclic amine 62 could be retrosynthetically disconnected to 

the biphenyl amino alcohol 69 (Scheme 38); this amino alcohol would be generated from 

oxazolidinone 70, which in turn would be prepared using Suzuki methodology from 

boronic acid 60 and oxazolidinone 71 Reductive amination of substituted oxazolidinone 

72 with 2-iodobenzylbromide 73 would be used to initiate the synthesis. 
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Scheme 38 
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Our first synthetic step was the alkylation of (R)-phenyl oxazolidinone 72 with 2-

iodobenzylbromide in 95% yield (Scheme 39).  
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Br-
12%

(three steps)
50%

 
 

62 61
 

Reagents and conditions; a. NaHMDS, KOtBu, rt → 50°C, 2 hrs. 

(b) PhMe:H2O:EtOH, Pd(PPh3)4, aq. K2CO3, ∆, 24hrs. (c) aq. NaOH, DCM, ∆, 16 hrs. 

(d) HCl, TBME, ∆, 30 mins. (e) NBS, DCM, 0°C → rt, 20 mins. 

Scheme 39 

 

The N-benzyl oxazolidinone 71 was coupled with acetyl phenyl boronic acid using 

Suzuki methodology described in the previous synthesis. The yield of this step was 

extremely poor when utilising Pd(PPh3)4 or Pd(DPPF) as the palladium catalyst within 
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several solvent systems (DMF, Tol:H2O:EtOH, NMP, 1,4-dioxane) and base (K2CO3, 

KF, KOAc) combinations. With a difficult purification process also involved we 

therefore decided that the crude material would be taken on into the next synthetic step. 

Hydrolysis of the oxazolidinone was completed within aqueous sodium hydroxide in 

dichloromethane; the organic phase was immediately treated with pTSA in methanol to 

generate the desired tetracyclic amine 62 in 10% yield over three steps. Finally the 

iminium bromide salt 61 was generated using NBS in chloroform. 
 

We immediately tested iminium salt 61 for its catalytic ability (Scheme 40), using 1-

phenylcyclohexene as our test substrate under our standard Oxone® oxidative conditions. 

Catalyst 61 gave 100% conversion within thirty minutes imparting a modest 55% ee for 

1-phenylcyclohexene oxide.  
 

O

Catalyst (10 mol%)
Oxone (2 equiv.)

NaHCO3 (4 equiv.)
MeCN:H2O

(S)
N+

O

(R) Br-aR

 
              Catalyst 61  

       55% ee 

       100% conv. 

Scheme 40 

 

From this result we had established a new group of iminium salt catalysts that was active 

for the catalytic asymmetric epoxidation of alkenes. Unfortunately the overall yield in 

this synthetic route tied with the problematic purification of many of the intermediates led 

us to seek another synthetic route. 
 

We attributed the low yield of the second synthetic route to the presence of the 

oxazolidinone functionality. Both Suzuki methodology and oxazolidinone deprotection 

were thought to be sensitive procedures. The desired starting material and/or product are 

thought to degrade under one or both reaction conditions. We therefore decided to focus 

our attention on a synthetic intermediate that did not contain this problematic 

oxazolidinone. 
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 Scheme 41 

 

Scheme 41 shows our postulated retrosynthesis. The tetracyclic amine 62 would again be 

derived from a biphenyl backbone, but in this route the amino alcohol would be protected 

as the dimethyl acetal, 74. Disconnection with Suzuki methodology as before suggests 

the protected amino alcohol 75 as the precursor; this would be taken back through the 

iodobenzyl amino alcohol 76 and back to the starting materials, which we anticipated to 

be 2-iodobenzaldehyde (77) and phenyl glycinol (57). 
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It was decided that 2-Iodobenzaldehyde 77 would be generated within the laboratory, as 

it was not cost effective to purchase directly. Oxidation of 2-iodobenzyl alcohol 78 

occurred with 85% yield (Scheme 42). 
 

I

O
I

HO

a.

85%

 
 

78     77    
 

Reagents and conditions; a. CHCl3, MnO2, Δ, 2 hrs. 

Scheme 42 

 

Lithium aluminium hydride was used to reduce (R)-Phenyl glycine 79, thus generating 

(R)-phenyl glycinol 57 retaining its enantiopurity as assigned by optical rotation (Scheme 

43). Reductive amination of 2-iodobenzaldehyde with (R)-phenyl glycinol gave the N-

benzyl amino alcohol 76 in 80% yield. Protection of the amino alcohol functionality with 

dimethoxypropane yielded the oxazolidine 75 in 91% yield. 
 

The oxazolidine 75 was coupled with acetyl phenyl boronic acid 60 under what now were 

our ‘standard’ Suzuki conditions of a toluene:ethanol:water (10:1:1) solvent system, 

potassium carbonate base and catalysed by Pd(PPh3)4. Purification using column 

chromatography to isolate oxazolidine 74, gave two compounds by TLC. On closer 

inspection the acidic silica was deprotecting the dimethyl acetal, causing the molecule to 

ring close, generating the desired tetracyclic, 6,6,7,5 ring core 62. The reaction mixture 

was therefore treated with silica gel in chloroform over a 16-hour period. The reaction 

material was purified, giving the tertiary amine as a single diastereoisomer, the structure 

of which was absolutely defined by single X-ray analysis (Figure 80); this was smoothly 

converted to iminium salt 61 in 80% yield. 

 

 



  Phillip Parker; Results and Discussion 

   121 

OH
H2N b.a.O

H2N

OH I

O
95% 81%

 
 

79 57 77   

 

 
 

76  75 60  
 

N

O

N
OO e. f.

aR
40%

(two steps)
50%

 
 

74   62   

 

(S)
N+

O

(R) Br-aR

 
61 

 

Reagents and conditions; (a) LAH, TMS-Cl, THF, –78°C → rt, 2 hrs. (b) MeOH, 

NaBH3CN, 0°C → rt, 16 hrs. (c) DMP, PhMe, pTSA, Δ, 4 hrs. (d) PhMe:H2O:EtOH, 

Pd(PPh3)4, aq. K2CO3, Δ, 24 hrs. (e) Silica gel, CHCl3, rt, 30 mins.  

(f) NBS, CHCl3, rt, 15 mins. 

Scheme 43 
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Figure 80 An X-ray crystal of (R)-phenyl 6,6,7,5 tetracyclic tertiary amine 

 

It was observed from Figure 80 that cyclisation of the amino alcohol functionality occurs 

placing the methyl and phenyl functionalities in a cis-relationship. Scheme 44 shows the 

mechanism of intramolecular cyclisation.  
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Scheme 44 
 

On oxidation of the tertiary amines only one iminium proton is observed in the 1H NMR 

spectrum, therefore either, only one single atropoisomer is produced from the cyclisation 

step or, there is a rapid interconversion during the NMR time scale between the two 

possible atropoisomers favouring the more thermodynamically stable conformation when 

in the deuterated solvent. We also observe 95% diastereoselectivity in regard to the 

oxazolidine cyclisation.  
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Amino alcohol 76 was also tested for its activity under Suzuki methodology. What was 

expected was inactivation of the phosphorus catalyst leading to, at best, our unused 

starting material and no di-functionalised biphenyl backbone. To our delight, however, 

we achieved a one pot Suzuki coupling and intramolecular cyclisation generating the 

tetrcyclic, 6,6,7,5 ring core (62) as one diastereoisomer in 40% yield in one step. 
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Reagents and conditions; (a) PhMe:H2O:EtOH, Pd(PPh3)4, aq.K2CO3, Δ, 24 hrs.  

(b) Silica gel, CHCl3, rt, 30mins. 

Scheme 45 

 

From this route we were able to remove the protection and deprotection steps of the 

synthetic route, thus generating a new robust synthetic route with fewer steps, in which 

the phenyl substituted bromide azepinium iminium salt was generated in 24% yield over 

four steps. 
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Several analogues were then synthesised using (S)-alanine, (S)-valine, (R)- & (S)- 

phenylalanine and (1S,2R)-2-amino-1-phenyl-1-propanol (D-(+)-norephedrine). Catalysts 

82, 83, 84, 85 and 86 were isolated as single diastereoisomers with the yields of the key 

steps in Table 12 and the overall yields indicated in parentheses. 

 

 

(R)
N+

O

(S) Br-
(S)

N+

O

(R) Br-
(R)

N+

O

(S) Br- aR

 
 

82 (2%) 83 (6%)  61 (16%)   

 

 

(S)
N+

O

(R) Br-
(R)

N+

O

(S) Br- N+

O (S)

(R)
Br-

 
 

84 (44%) 85 (19%)  86 (15%)   
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Table 12; The isolated yields of the key intermediates in generating six tetracyclic 

iminium salt catalysts. 

 
I

HN
HO

R  

N

O

R

 

N+

O

R
Br-

 

R = (S)-Me 14% (87) 22% (88) 74% (82) 

R = (S)-iPr 16% (89) 47% (90) 81% (83) 

R = (R)-Ph 81% (76) 40% (62) 50% (61) 

R = (R)-Bn 90% (91) 60% (92) 82% (84) 

R = (S)-Bn 86% (93) 30% (94) 75% (85) 

R = (R)-Me 

R1 = (S)-Ph 
67% (95) 30% (96) 75% (86) 

 

Figure 97 shows the structure of the 6,6,7,5 tetracyclic tertiary amine of (S)-phenyl alinol 

(30% (94) the amine precursor for iminium salt catalyst 85. The methyl group and the 

benzyl group form a cis relationship. One single atropoisomer is again observed. 
 

  

Figure 97 An X-ray crystal of S-benzyl 6,6,7,5 tetracyclic tertiary amine 30% (94 

 

Catalysts 61 and 82 – 86 were tested in epoxidation reactions under our standard Oxone® 

conditions. 
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Table 13; Asymmetric Epoxidation of a range of alkenes by Catalysts 82 – 86a 

Epoxide Catalyst Conversion/% c, d ee/% b, c 
Major 

enantiomer f 

O  

7 100 60 (–)-1S,2S 

82 100 30 (–)-1S,2S 

83 100 30 (–)-1S,2S 

61 100 55 (+)1R,2R 

84 100 64 (+)1R,2R 

85 100 64 (–)-1S,2S 

86 100 30 (–)-1S,2S 

O

 

7 100 32 (+)1S,2R 

61 100 76 (–)1R,2S 

84 100 46 (–)1R,2S 

85 100 47 (+)1S,2R 

O

 

7 34 41 (–)1R,2S 

61 20 64 (+)1S,2R 

84 47 52 (+)1S,2R 

85 39 55 (–)1R,2S 

O

 

7 90 15 (–)1S,2S 

61 100 22 (+)1R,2R 

84 98 18 (+)1R,2R 

85 95 13 (–)1S,2S 

O

 

7 90 24 (–)1S 

61 100 30 (+1R 

84 100 23 (+)1R 

85 100 19 (–)1S 
a epoxidation conditions: Iminium salt catalyst (5 mol%), Oxone® (2 equiv.). Na2CO3 (4 equiv.), Solvent 

(1:1, Acetonitrile:H2O 5 ml) 0ºC, 1 hr – 6 hrs. b Enantiomeric excesses were determined by chiral GC–FID 

spectra by comparison of the two epoxide peak areas. c Conversions were evaluated from the chiral GC–

FID spectra by comparison of the alkene and epoxide peak areas. d Enantiomeric excess determined by 

Chiral HPLC on a Chiracel OH-D column. e Conversions were evaluated from the 1H-NMR spectra by 

integration of alkene and epoxide signals. f Absolute configurations of the major enantiomers were 

determined by comparison of both optical rotation and GC-FID. 
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From Table 13 it is evident that catalysts 61 (55%), 84 (64%) and 85 (64%) perform 

better when oxidising, 1-phenylcyclohexene, in terms of enantiocontrol, than catalysts 82, 

83 and 86 (all give 30% ee). The enantioselectivities imparted to the test substrate are 

comparable to the original azepinium catalyst 7, which itself gives up to 60% ee. When 

other alkene substrates were tested in conjunction with these three catalysts, the 

enantiocontrol observed by each catalytic iminium salt was different, depending on the 

alkene substrate used. As a general rule the tetracyclic azepinium catalysts give similar or 

increased levels of enantioselectivity compared with catalyst 7. The best results are 

observed when oxidising a cis alkene such as dihydronaphthalene where catalysts 61 

(76%), 84 (46%) and 85 (46%) outperform the original catalyst 7 (32%) considerably. 

 

2.2.4.1 Conclusion 

 

To conclude, we have successfully developed a new sub-structure of iminium salt catalyst 

containing a 6,6,7,5-ring tetracyclic core. The synthesis of these compounds has been 

streamlined and now the formulation of these novel iminium salts can be completed 

within four steps in good yields. We have postulated that the cyclisation occurs through 

one favoured atropoisomer giving rise to a favoured diastereoisomer in all the iminium 

salt catalysts generated. Catalysts 61, 84 and 85 generally perform better than or equal to 

catalyst 7. 
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2.3 Conclusion and Future work. 

2.3.1 Conclusions 

The aim of this thesis was the development of two novel ideas in the progression of 

catalytic asymmetric epoxidation. The first was the development of new oxidative 

systems for the use in asymmetric synthesis to induce higher levels of enantioselectivity 

for the epoxidation of unfunctionalised alkenes. The second was to develop chiral 

iminium salt catalysts with the ability to induce high levels of enantiocontrol in 

epoxidation of selected alkene substrates. 

 

 

The new hydrogen peroxide-mediated epoxidation methodology offers modest 

enantiocontrol, up to 56% ee with the 7-membered azepine catalyst 7 that was capable of 

enantiocontrol up to 70% when using TPPP as the stoichiometric oxidant (Scheme 46). 

The major problem with the H2O2 system was the low levels of conversion to the desired 

epoxide. 

 

Ethereal H2O2 (6 equiv.)
K2CO3 (0.2 equiv.)

- 5 oC
Catalyst 7 (10 mol%)

MeCN

O N+

O

O

BPh4
-

 
      Catalyst 7, 56% ee 

Scheme 46 

 

The new sodium hypochlorite methodology offers much higher enantiocontrol and 

conversion when used in conjunction with the same azepinium catalyst over the H2O2 

procedure, affording up to 71% ee (Scheme 47), similar to the enantioselectivities 

observed using TPPP as the oxidant. Comparison of the NaOCl system with Oxone® 

mediated epoxidation shows that the conversions are somewhat reduced. 
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O
N+

O

O

BPh4
-

NaOCl (3 equiv., 13%)
K2CO3 (0.25 equiv.)

Catalyst 7 (10 mol%)
DCM

 
           Catalyst 7, 71% ee 

Scheme 47 

 

Neither of these methods have ever previously been reported for oxidation of an iminium 

salt system. Optimisation has shown that lower reaction temperatures (– 5 °C), anhydrous 

conditions, specific solvents and exchange of the sodium bicarbonate salt for potassium 

carbonate best facilitates asymmetric epoxidation when added in sub-stoichiometric 

amounts (0.25 equiv.), therefore acting as a co-catalyst in these systems. 

 

Unfortunately due to the unstable nature of the binaphthalene based iminium salt catalyst 

in organic solvents, little conversion and ee was gained from these catalysts. 

 

We have also developed two new sub-structures of biphenyl azepinium salt catalysts. The 

asymmetric introduction of a methyl substituent has been completed using an 

aminodioxane unit as a chiral element. In almost all cases, increased enantioselectivity 

was achieved by catalyst 40 compared with the parent catalyst 7 when used in 

conjunction with our standard Oxone® conditions.  

 

 
 

 40 52    

 

 

Binaphthyl catalyst 52 was generated as a pair of diastereoisomers. When catalyst 52 was 
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used the mixture of diastereoisomeric salts gave up to 93% ee, marginally higher 

enantiocontrol in the epoxidation of 1-phenylcyclohexene over the parent catalyst 4 (91% 

ee). 

 

The 6,6,7,5-ring tetracyclic azepinium salt catalysts show promise as a new form of 

iminium salt catalyst. Thus far the phenyl (61) and benzyl (84 & 85) substituted catalysts 

have given the best reaction profiles, giving increased enantioselectivity over the original 

azepinium catalyst 7. Further work is on going in this field. 

 

N+

O

Br- N+

O

Br- N+

O

Br-

 
 

 61 84  85    
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2.3.2 Future Work 

Thus far only binaphthyl iminium salt 52 has been generated with Grignard addition to 

the ‘mis-matched’ diastereoisomer of the binaphthyl iminium salt. A pair of 

diastereoisomers was generated as the conflicting asymmetry of the binaphthyl and 

dioxane moieties both direct the Grignard addition. If the Grignard addition were 

introduced to the matched diastereoisomer iminium salt, catalyst 98 could be generated. 

Asymmetric addition may be observed due to the matching asymmetry of the two 

functionalities, therefore possibly generating one diastereoisomer. In turn increased 

enantiocontrol in subsequent epoxidations may also be observed. 

 

 

 

 52 98   

 

Optimisation of the 6,6,7,5 tetracyclic azepinium salt catalysts is suggested. This can be 

completed by investigation into the presence of multiple chiral groups α to both the 

iminium nitrogen and the oxygen atoms (R1 and R2, 99). 
 

N+

OR3

R1

Br-

R2

 
 

99 

 

A progression of this is the variance of the substitution on the chiral carbon on the 

azepinium ring (R3, 99). This range of optimisations would identify the most effective 

iminium salt in this sub-structure of catalyst. 
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Modification of the 6,6,7,5-ring tetracyclic azepinium salt catalysts to include a 

binaphthyl axis in place of the biphenyl axis is recommended. Increased enantiocontrol 

has been imparted by catalysts that contain this binaphthyl skeleton. 

 

N+

OR3

R1

Br-

R2

 
 

100 

 

Again full variance on all ‘R’ groups would complete optimisation, identifying the most 

effective iminium salt in this sub-structure of iminium salt catalyst 

 

N+

R3

R1

Br-

N+

R3

R1

Br-

R2 R2

 
 

  101 102    

 

Construction of a 6,6,7,5-ring tetracyclic azepinium salt catalysts without the oxazolidine 

ring such as 101 and 102, would present an interesting comparison to the 6,6,7,5-ring 

tetracyclic azepinium salt catalyst that have already been synthesised. 

 

Finally we need to investigate the mechanism by which our catalysts work. The use of 

computational and molecular modelling is possibly the best way to progress in aiding our 

research into explaining how our catalysts work. This approach may lead us to design 

more effective iminium salt catalysts capable of selecting one enantiotopic face in favour 

of the other, thus inducing higher enantiocontrol than our current catalysts. 
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3 Experimental 

3.1 General experimental 

Infrared spectra were acquired using a Perkin-Elmer Paragon 1000 FT-IR 

spectrophotometer. Solid samples were run as nujol mulls or as thin films of their 

solution in DCM on sodium chloride plates. Liquid samples were run neat. 

 

1H and 13C NMR spectra were measured at 400.13 and 100.62 MHz respectively using a 

Bruker DPX 400 MHz spectrometer and a Bruker Avance 400 MHz spectrometer. The 

solvent used for NMR spectroscopy was deuteriated chloroform (unless stated otherwise) 

using tetramethylsilane as the internal reference. Chemical shifts are given in parts per 

million (ppm) and J values are given in Hertz (Hz). 

 

Mass spectra were recorded using a Jeol-SX102 instrument utilising electron impact 

(E.I.) and fast atom bombardment (F.A.B.). Analysis by GCMS utilised a Fisons GC 

8000 series (AS 800), using a 15 m x 0.25 mm DB-5 column and an electron impact low-

resolution mass spectrometer. 

 

Melting points were recorded using an Electrothermal-iA 9100 melting point instrument 

and are reported uncorrected. 

 

Optical rotation values were measured with an Optical Activity-polAAar 2001 

instrument, operating at λ=589 nm, corresponding to the sodium D line at the 

temperatures indicated. The solvents used for these measurements were of 

spectrophotometric grade. The solutions for these measurements were prepared in 

volumetric flasks for maximum accuracy of the volume of solvent used. 

 

Microanalyses were performed on a Perkin Elmer Elemental Analyser 2400 CHN. 
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All chromatographic manipulations used silica gel as the adsorbent. Reactions were 

monitored using thin layer chromatography (TLC) on aluminium- or glass-backed plates 

with Merck Kiesel gel 60 F254 silica gel. TLC plates were visualised by UV radiation at 

a wavelength of 254 nm, or stained by exposure to an ethanolic solution of 

phosphomolybdic acid (acidified with concentrated sulphuric acid), followed by charring 

where appropriate. Purification by column chromatography used Merck Kiesel gel 60 

F254 silica gel. 

 

Reactions requiring anhydrous conditions were carried out under a nitrogen atmosphere 

unless otherwise stated, using glassware dried for 16 h at 150 ºC. Reaction solvents were 

obtained commercially dry, except for the following light petroleum (b.p. 40-60 ºC) was 

distilled from calcium chloride prior to use. Ethyl acetate was distilled over calcium 

sulphate or chloride. Dichloromethane was distilled over calcium hydride. 

Tetrahydrofuran was distilled under a nitrogen atmosphere from the 

sodium/benzophenone ketyl radical. 

 

Enantiomeric excesses were determined by either chiral shift proton Nuclear Magnetic 

Resonance, Chiral Gas Chromatography Flame Ionisation (GC-FID), or by Chiral High 

Performance Liquid Chromatography, (Chiral HPLC). 

 

The chiral shift proton nuclear magnetic resonance spectra were recorded in deuteriated 

chloroform on a Bruker DPX 400, operating at 400.13 MHz, in the presence of europium 

(III) tris [3-(hepta-floropropylhydroxymethylene)-(+)-camphorate], [(+)-Eu(hfc)3], as the 

chiral shift reagent and tetramethylsilane as the internal standard. 

 

The chiral column used for the determination of enantiomeric excesses (ee) of non-

racemic mixtures by chiral HPLC was Chiracel OD on a TSP Thermo-Separating-

Products Spectra Series P200 instrument, with a TSP Spectra Series UV100 ultra-violet 

absorption detector set at 254 nm and a Chromojet integrator. Solvents used (hexane and 

isopropanol) were of HPLC grade. 
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The chiral column used for the determination of enantiomeric excesses (ee) of non-

racemic mixtures by chiral GC-FID was Chiradex B-DM on a CE instruments GC 8000 

series spectrometer, with flame ionisation detector and a Chrome-card integrator. The 

solvent used (hexane) was of HPLC grade. 

 

3.2 Numbering systems. 

The assignments of the proton and carbon-13 resonances have been made according to 

several numbering systems (Scheme 1). Some of these systems used are standard 

chemical nomenclature while others were introduced arbitrarily by a previous author.1 In 

the latter case, the introduced system was based on the structural resemblance of the 

compounds to others in the literature. 

 

Aromatic systems are numbered according to standard protocols. Aromatic carbon atoms 

bearing a substituent are always quaternary, quat.Ar-C. All aromatic carbon atoms which 

are attached to a hydrogen atom are termed Ar-CH (13C spectra) or Ar-CH (1H spectra). 

The dihydroisoquinolinium nucleus is numbered according to a standard system but the 

carbon atoms of this moiety are termed isoq. The biphenyl system is also numbered and 

carbon atoms of this moiety are termed biphenyl. The binapthylene nucleus is numbered 

with the carbon atoms termed binap. 
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Scheme 1 Numbering systems employed in the experimental procedures. 
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3.3 Individual experimental proceedures 

(3S,4S)-N-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-formamide.2 

 

 

 

  8 9 10 

 

(1S,2S)-2-Aminophenyl-1,3-propanediol (8) (5.00 g, 29.9 mmol) was dissolved in 

methanol (50.0 mL), methyl formate (2.00 g, 32.9 mmol) was added followed by an 

aqueous solution of sodium methoxide (25% w/v, 2.03 mL, 3.00 mmol). The reaction 

was monitored by TLC until complete consumption of the starting material was observed 

(typically 2 h). The resulting solution was evaporated under reduced pressure to afford 

the formyl-protected amine (9) as a yellow oil. The oil was dissolved in acetone (250 

mL), and 2,2-dimethoxypropane (31.1 g, 3.00 mol) and aqueous hydrogen bromide 

(48%, 0.34 mL, 3.00 mmol) were added. The reaction was monitored by TLC until 

consumption of the intermediate compound was observed (typically 1.5 h). The solvents 

were removed under reduced pressure to give the crude formyl-protected acetonide (10) 

as a colourless oil (6.58 g, 29.1 mmol, 97%). νmax(film) /cm-1 3325 (N-H), 2990, 1663 

(C=O), 1499, 1382, 1200, 1087, 844, 733, 700. δH (400 MHz; CDCl3) 1.49 (3 H, s, 

C8H3), 1.53 (3 H, s, C7H3), 3.35 (1 H, s, NC5H), 3.81 (1 H, m, OC6HH upfield portion of 

the ABX system), 4.23 (1 H, m, OC6HH downfield portion of the ABX system), 5.16 (1 

H, s, PhC4H), 6.48 (1 H, broad s, NH), 7.27 (5 H, m, 5 x Ar-C10-14H), 7.88 (1 H, s, 

NC15(O)H). δC (100 MHz; CDCl3) 17.5 (C7H3), 28.7 (C8H3), 44.4 (NC5H), 63.6 

(OC6H2), 70.6 (PhC4H), 98.9 (quat.C2), 124.2 (2 x ortho Ar-C10&14H), 126.6 (para Ar-

C12H), 127.3 (2 x meta Ar-C11&13H), 137.0 (Ar- quat.iC2H), 159.5 (C15=O) 
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(3S,4S)-5-Amino-2,2-Dimethyl-6-phenyl-(1,3)dioxane. 2 

 

 

 

   10 11   

 

Formamide 10 (6.58 g, 28.1 mmol) was suspended in an 85% saturated aqueous solution 

of hydrazine hydrate (100 mL) and the mixture heated under reflux for 4 h. The reaction 

mixture was extracted with toluene and ethyl acetate (1:1, 75 mL), and the combined 

organic layers were washed with water (3 x 75 mL) and dried over MgSO4. The solvents 

were removed under reduced pressure to give the desired amine as a yellow oil (11) 

(5.39 g, 87% yield). [α]20
D +45.5 ° (c 2.33, EtOH). νmax(film) /cm-1 3365 (N-H), 2990, 

1379, 1239, 1159, 1052, 945, 845, 740, 701. δH (400 MHz; CDCl3) 1.44 (6 H, s, 2 x 

C7&8H3), 2.64 (1 H, q, J 1.8 Hz, NC5H), 3.78 (1 H, dd, J 1.7 & 11.7 Hz, OC6HH), 4.18 (1 

H, dd, J 2.3 & 11.7 Hz, OC6HH), 4.99 (1 H, s, PhC4H), 7.23 (5 H, m, 5 x Ar-C10-14H). δC 

(100 MHz; CDCl3) 18.6 (C8H3), 29.7 (C7H3), 49.6 (NC5H), 65.9 (OC6H2), 73.7 (PhC4H), 

99.1 (quat.C2), 125.9 (2 x ortho Ar-C10&14H), 127.4 (para Ar-C12H), 128.4 (2 x meta Ar-

C11&13H), 139.8 (Ar- quat.C9). 
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2-(2-Bromoethyl)benzaldehyde. 3 
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Bromine (3.24 mL, 63.1 mmol) was added slowly to an ice-cooled solution of 

isochroman (12) (7.70 g, 57.4 mmol) in carbon tetrachloride (10 mL) over a period of 10 

min with stirring. After the exothermic reaction subsided, the cooling bath was removed 

and the dark brown solution heated under reflux until the reaction mixture became pale 

yellow and liberation of HBr fumes ceased (typically 1.5 h). The solution was allowed to 

attain ambient temperature temperature and the solvent removed under reduced pressure. 

A 48% saturated aqueous solution of hydrobromic acid (50 mL) was added to the yellow 

oil obtained (1-bromoisochroman), and the reaction mixture heated under reflux. After 

15 min the solution was allowed to cool and extracted with diethyl ether (4 x 50 mL). 

The combined organic extracts were washed with water (2 x 30 mL) and saturated 

aqueous sodium bicarbonate, and dried over magnesium sulfate. Evaporation of the 

solvent under reduced pressure furnished crude 2-(2-bromo-ethyl)benzaldehyde (13) as 

an orange oil; about 85 − 90% pure (5.30 g, 43%). Analytically pure samples could be 

obtained by distillation under reduced pressure; chromatography is not recommended. 

Both the crude and the distilled compound can be used in the synthesis of 

dihydroisoquinolinium salts. Found: C, 50.95; H, 4.20%; C9H9BrO requires C, 50.73; H, 

4.26 %. νmax/cm-1 (neat) 2742, 1697 (C=O), 1600, 1575, 1260, 1193, 755. δH (400 MHz; 

CDCl3), 3.50 (4 H, m, Ph(C7&8H2)2Br), 7.24 (1 H, td, J 6.96 & 0.5 Hz, Ar-H), 7.39 (1 H, 

dt, J 8.8 & 1.3 Hz, Ar-CH), 7.47 (1 H, dt, J 9.1 & 1.6 Hz, Ar-CH), 7.73 (1 H, dd, J 1.6 & 

7.6 Hz, Ar-CH) 10.05 (1 H, s, C8HO). δC (100 MHz; CDCl3), 32.8 (PhC7H2), 36.3 

(BrC8H2), 127.7 (Ar-CH), 132.2 (Ar-CH), 133.7 (Ar-CH), 134.6 (Ar-CH), 140.6 

(2xquat.Ar- iC1&6), 193.0 (C 8HO).  
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(3S,4S)-(2,2-Dimethyl-4-phenyl-(1,3)-dioxan-5-yl)-3,4-dihydroisoquinolinium 

tetraphenyl borate. 4, 5 

 

 

 

 13  11  6   

 

A solution of amine 11 (2.70 g, 13.1 mmol) in ethanol (30.0 mL) was added dropwise to 

2-(2-bromoethyl)benzaldehyde (13) (3.34 g, 15.7 mmol) at 0 °C. The reaction mixture 

was stirred for 16 h while reaching ambient temperature. A solution of sodium 

tetraphenylborate (4.91 g, 14.4 mmol) in the minimum amount of acetonitrile 

(approximately 5 mL) was added in 1 portion to the reaction mixture. After stirring for 5 

min the organic solvents were removed under reduced pressure. Ethanol (10 mL) was 

added to the reaction mixture, followed by water (10 mL) and diethyl ether (10 mL). 

Washing with cold ethanol (10 mL), then cold diethyl ether (2 x 10 mL) and subsequent 

filtration yielded the desired yellow crystalline catalyst (6) (4.48 g, 54%). Lit.4 mp 169-

170 ºC, mp 168-170 ºC. νmax(film) /cm-1 2921, 2357, 1558, 1456, 1377, 742, 707, 667, 

624, 606. [α]20
D +40.2 ° (c 1.10, CH3CN). δH (400 MHz; d6Acetone), 1.69 (3 H, s, 

C8H3), 1.75 (3 H, s, C7H3), 2.69 (1 H, m, isoq-C4H), 2.95 (1 H, m, isoq-C4H), 3.62 (2 H, 

m, isoq-NC3H2), 4.24 (1 H, m, NC5H), 4.58 (1 H, m, OC6HH, upfield portion of ABX 

system), 4.83 (1 H, q, J 3.2 Hz, OC6HH, downfield portion of ABX system), 5.64 (1 H, 

s, OC4HPh), 6.79 (4 H, t, J 7.3 Hz, 4 x Ar-CH para in BPh4
-), 6.94 (8 H, t, J 7.5 Hz, 8 x 

Ar-CH ortho in BPh4
-), 7.42 (8 H, m, 8 x Ar-CH meta in BPh4

-), 7.55 (6 H, m, 5 x phenyl 

Ar-CH & 1 H, isoq-C6H), 7.55 (1 H, t, J 7.5 Hz, isoq-C7H), 7.82 (1 H, m, isoq-C8H), 

7.89 (1 H, d, J 7.7 Hz, isoq-C9H), 9.32 (1 H, s, N=C1H). δC (100 MHz; d6Acetone), 

18.81 (C7H3), 25.4 (isoq-C4H2), 31.2 (C8H3), 52.5 (isoq-NC3H2), 62.8 (OC6H2), 66.7 

(NCH), 71.7 (OC4HPh), 101.4 (quat.C2(CH3)2), 122.3 (8 x Ar-CH, ortho in BPh4
-), 125.5 
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(isoq-quat.C10), 126.0 (2 x Ar-C11&13H, meta in phenyl ring), 129.2 (isoq-C6H), 129.38 

(isoq-C8H), 129.4 (1 x Ar-C12H, para in phenyl ring), 129.9 (4 x Ar-CH, para in BPh4
-), 

135.3 (isoq-C7H), 137.0 (8 x Ar-CH, meta in BPh4
-), 137.6 (quat.C9, ipso in phenyl ring), 

137.9 (isoq-quat.C5), 164.2, 165.2, 165.4, 165.7 (4 x quat.C, ipso in BPh4
-), 168.6 

(N=C1H). m/z 321.8652 ; C29H33NO2 requires 322.1822. 

 

 

5,7-Dihydrodibenzo-(c,e)-oxepine. 6 
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A suspension of 2,2’-biphenyl dimethanol (14) (5.46 g, 25.5 mmol) in a 24% 

hydrobromic acid solution (100 mL) was heated to 100 °C for 40 min. The solution was 

allowed to cool, after which the saturated aqueous phase was extracted with diethyl ether 

(3 x 50 mL). The organic fractions were washed with saturated aqueous saturated 

NaHCO3 (2 x 50 mL), and saturated brine (2 x 50 mL) and dried over magnesium 

sulphate. The solvent was removed under reduced pressure to yield colourless crystals of 

the desired oxepine (98) (4.85 g, 24.7 mmol, 97%.). mp 69 – 71 ºC (dec); Lit.6 mp 69 – 

71 °C. νmax(film) /cm-1 1556, 1446, 1196, 1072, 1041, 903, 891, 753, 667, 620. δH (400 

MHz; CDCl3), 4.27 (4 H, s, 2 x OCH2), 7.32 (2 H, dt, J 1.2 & 7.6 Hz, biphenyl-C6&6’H), 

7.34 (2 H, dt, J 1.2 & 5.6 Hz, biphenyl-C5&5’H), 7.41 (2 H, dt, J 7.6 & 2.0 Hz, biphenyl-

C3&3’H), 7.47 (2 H, d, J 7.6 Hz, biphenyl-C4&4’H). δC (100 MHz; CDCl3), 67.8 (2 x 

OCH2), 127.6 (2 x biphenyl-C4&4’H), 128.4 (2 x biphenyl-C6&6’H), 129.0 (2 x biphenyl-

C3&3’H), 129.8 (2 x biphenyl-C5&5’H), 135.2 (2 x quat. biphenyl-C1&1’), 141.3 (2 x quat. 

biphenyl-C2&2’).  
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2-(2-(Bromomethyl)phenyl)benzene carbaldehyde. 6 
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To an ice cooled solution of oxepine 98 (9.17 g, 46.7 mmol) a solution of bromine (2.64 

mL, 51.4 mmol) in cyclohexane (60 mL) was added dropwise over 5 min; the reaction 

turned to a deep red colour. The cooling bath was removed and the reaction mixture 

heated under reflux until the liberation of HBr ceased (typically 2 h) and the reaction 

mixture turned pale yellow. The solvent was removed under reduced pressure, dissolved 

in diethyl ether (150 mL), washed with saturated aqueous NaHCO3 (2 x 60 mL), and 

saturated brine (2 x 60 mL), and dried over magnesium sulphate. The solvent was 

removed under reduced pressure to yield an orange oil which was recrystallized in ethyl 

acetate/hexane to give colourless crystals of 99. (4.22 g, 15 mmol, 33%). mp 57 – 58 °C; 

Lit.6 mp 57 – 58 °C. νmax(film) /cm-1 3189, 1667 (C=O), 1393, 1148, 774, 739, 721, 631. 

δH (400 MHz; CDCl3), 4.33 (2 H, q, J 10.0 Hz, CH2Br), 7.24 (1 H, dd, J 1.2 & 7.6 Hz, 

biphenyl-CH), 7.40 (1 H, td, J 1.6 & 7.6 Hz, biphenyl-CH), 7.44 (1 H, ddd, J 1.2 & 7.6 

Hz, biphenyl-CH), 7.47 (1 H, td, J 1.6 & 7.6 Hz, biphenyl-C3’H), 7.59 (2 H, m, biphenyl-

C3&4H), 7.69 (1 H, td, J 1.6 & 3.6 Hz, biphenyl-CH), 8.09 (1 H, ddd, J 1.6 & 8.0 Hz, 

biphenyl-CH), 9.76 (1 H, s, CHO). δC (100 MHz; CDCl3), 31.40 (CH2Br), 127.6 

(biphenyl-C1H), 128.4 (biphenyl-C2’H), 128.6 (biphenyl-C3H), 129.1 (biphenyl-C3’H), 

130.7 (biphenyl-C4H), 130.7 (biphenyl-C4’H), 131.1 (biphenyl-C1’H), 133.6 (biphenyl-

C2H), 134.1 (quat. biphenyl-C), 136.0 (quat. biphenyl-C), 137.9 (quat. biphenyl-C), 

139.4 (quat. biphenyl-C), 143.3 (CHO). 
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 2,2'-bis-Bromomethyl-biphenyl. 
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Biphenyl dimethanol (14) (10.0 g, 46.7 mmol) was added to an aqueous hydrobromic 

acid solution (48%, 100 mL) and the mixture heated under reflux until complete 

consumption of the starting material was observed was observed by TLC (typically 2 h). 

The reaction was allowed to cool to ambient temperature and diethyl ether (100ml) 

added. The organic layer was washed with saturated brine (3 x 30 mL), saturated 

aqueous NaHCO3 (3 x 30 mL), and water (3 x 30 mL), and dried over MgSO4. The 

solvent was removed under reduced pressure to afford the desired product (15) as 

colourless crystals (15.9 g, 45.7 mmol, 98%). Found: C, 49.63; H, 3.51%. C14H12Br2 

requires: C, 49.45; H, 3.56%. νmax(film) /cm-1 2359, 2340, 1652, 1474, 1436, 1220, 

1091, 808, 760, 668. δH (400 MHz; CHCl3), 4.94 (4 H, q, J 11.5 Hz, 2 x CHHBr), 7.37 – 

7.38 (2 H, J 2.2 & 2.7 Hz, 2 x biphenyl-CH), 7.45 (2 H, J 0.7 & 7.8 Hz, 2 x biphenyl-

CH), 7.54 – 7.59 (2 H, m, 2 x biphenyl-CH), 7.91 (2 H, J 7.8 Hz, 2 x biphenyl-CH). δC 

(100 MHz; CHCl3), 69.2 (2 x CH2Br), 128.5 (biphenyl-CH), 128.61 (biphenyl-CH), 

128.62 (biphenyl-CH), 128.71 (biphenyl-CH), 128.73 (biphenyl-CH), 130.2 (biphenyl-

CH), 130.7 (biphenyl-quat.C), 132.0 (biphenyl-CH), 132.6 (biphenyl-CH), 134.9 

(biphenyl-quat.C), 137.3 (biphenyl-quat.C), 139.0 (biphenyl-quat.C). 
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(–)-2-((4S,5S)-2,2-Dimethyl-4-phenyl-(1,3)-dioxan-5-yl)-6,7-dihydro-5H-dibenzo-

(c,e)-azepine 

 

 

 

 15 11   16    

 

2,2'-bis-Bromomethylbiphenyl 15 (15.6 g, 46.0 mmol) and TEA (5.04 g, 50.0 mmol) 

were added to a nitrogen-purged stirred solution of amine 11 (10.4 g, 50.0 mmol) in 

anhydrous THF (200 mL) at ambient temperature. The reaction mixture was heated 

under reflux for 16 h. The solvent was removed under reduced pressure and the resulting 

residue dissolved in ethyl acetate (150 mL). The combined organic layers were washed 

with water (3 x 30 mL), and saturated brine (3 x 30 mL), and dried over MgSO4. The 

solvents were removed under reduced pressure. Column chromatography of the crude oil 

using ethyl acetate/petroleum ether (1:20) gave the product (16) as a yellow foam (17.2 

g, 44.5 mmol, 97%). νmax(film) /cm-1 3390, 2989, 2359, 1651, 1452, 1378, 1198, 1079, 

752, 698. (α]20
D +71.4 ° (c 1.11, CHCl3). δH (400 MHz; CHCl3), 1.50 (6 H, s, 2 x 

C7/8H3), 2.88 (1 H, q, J 2.8 Hz, NC5H), 3.41 (2 H, d, J 12.8 Hz, NC9/10HH, downfield 

portion of ABX system), 3,59 (2 H, d, J 12.8 Hz, NC6HH, upfield portion of ABX 

system), 4.17 (2 H, d, J 2.8 Hz, OC6HH), 5.12 (1 H, d, J 3.2 Hz, OC4HPh), 7.14 (2 H, 

dd, J 0.8 & 7.2 Hz, 2 x biphenyl-CH), 7.17 – 7.24 (3 H, m, 3 x biphenyl-CH), 7.28 (4 H, 

dt, J 1.2 & 7.2 Hz, 4 x biphenyl-CH), 7.34 (2 H, dd, J 7.2 & 1.6 Hz, 2 x biphenyl-CH), 

7.38 – 7.40 (2 H, m, Ar-CH, ortho in phenyl). δC (100 MHz; CHCl3), 18.1 (C7H3), 28.4 

(C8H3), 53.0 (2 x NC9/10H2), 59.8 (NC5H), 61.1 (OC6HH), 73.7 (C4HPh), 98.0 (quat-C2), 

125.2 (2 x Ar-CH, ortho in phenyl), 125.8 (Ar-CH, para in phenyl), 126.3 (2 x biphenyl-

CH), 126.4 (2 x Ar-CH), 126.7 (2 x Ar-CH), 126.8 (2 x biphenyl-CH), 128.3 (2 x 
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biphenyl-CH), 135.6 (2 x biphenyl-quat.C), 139.1 (quat.C, ipso in phenyl), 139.9 (2 x 

biphenyl-quat.C). m/z; observed 386.28184. C26H27NO2 requires 385.20418.  

 

 

 6-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-5 H-dibenzo-(c,e)- azepinium.6 

 

Method A 

 

 

 99 11   7    

 

To an ice cooled solution of carbaldehyde 99 (3.30 g, 12.0 mmol) in ethanol (35 mL), a 

solution of amine 11 (2.05 g, 7.00 mmol) in ethanol (20 mL) was added and left to heat 

to ambient temperature for 16 h. Sodium tetraphenylborate (3.76 g, 12.0 mmol) was 

dissolved in the minimal amount of acetonitrile (approximately 5 mL). This was then 

added to the reaction mixture and after 5 min gave a yellow precipitate. Ethanol and 

water were added to the reaction mixture. The mixture was then filtered, washed with 

cold ethyl acetate (3 x 10 mL), cold water (1 x 10 mL) and diethyl ether (3 x 10 mL) 

yielding the desired azepinium tetraphenyl borate salt (7) as a yellow powder. 
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Method B 

 

 

 

 16 7   

 

n-Bromosuccinimide (2.53 g, 14.2 mmol) was added to a stirred solution of azepine 16 

(5.00 g, 13.0 mmol) in chloroform (50 mL) at ambient temperature. The reaction was 

monitored by TLC and once complete consumption of the azepine was observed, 

typically 15 mins, the solvent was removed under reduced pressure to yield the iminium 

bromide salt intermediate. The salt was dissolved in ethanol (25 mL) and sodium 

tetraphenylborate (4.86 g, 14.2 mmol) was added in a minimal volume of MeCN. The 

reaction was allowed to stir at ambient temperature for 20 min. The solvents were 

removed under reduced pressure and dissolved in chloroform (25 mL). The combined 

organic layers were washed with water (3 x 10 mL), and saturated brine (3 x 10 mL) and 

dried over MgSO4. The solvent was removed under reduced pressure and the resultant 

residue was recrystallized from ethanol to yield iminium salt catalyst (7) as a bright 

yellow powder. (5.60 g, 8.00 mmol, 80%). m.p. 187-189 ºC (dec.); Lit.6 m.p. 187-188 

ºC. [α]20
D −44.3 ° (c 1.05, CH3CN). νmax(film) /cm-1 3051, 1630, 1479, 1382, 1201, 966, 

843, 733, 704, 610. δH (400 MHz; DMSO), 1.72 (3 H, s, C8H3), 1.75 (3 H, s, C7H3), 4.33 

(1 H, d, J 13.2 Hz, OC6HH, upfield portion of ABX system), 4.47 (1 H, d, J 12.1 Hz, 

NC9HH), 4.70 (1 H, d, J 3.2 Hz, OC6HH, downfield portion of ABX system), 4.73 (1 H, 

t, J 4.1 Hz, NC5H), 5.14 (1 H, broad peak, NC9HH), 5.64 (1 H, s, OC4HPh), 6.77 (4 H, t, 

J 7.2 Hz, 4 x Ar-CH para in BPh4
-), 6.9 (8 H, t, J 7.3 Hz, 8 x Ar-CH ortho in BPh4

-), 

7.23 (8 H, m, 8 x Ar-CH meta in BPh4
-), 7.59 (6 H, m, 4 x biphenyl-CH & 2 x Ar-
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C11&13H meta in phenyl ring), 7.70 (4 H, m, 4 x biphenyl-CH), 7.94 (2 H, m, 2C10&14H 

ortho in phenyl ring), 9.03 (1 H, s, N=C10H). δC (100 MHz; DMSO), 18.2 (C7H3), 28.7 

(C8H3), 55.5 (NC9H2), 60.82 (OC6H2), 66.1 (NC5H), 70.5 (C4HPh), 99.9 (quat.C2), 120.8 

(8 x Ar-CH ortho in BPh4
-), 124.5 (4 x Ar-CH para in BPh4

-), 124.5 (2 x Ar-C11&13H 

meta in phenyl), 124.5 (2 x Ar-C10&14H ortho in phenyl), 124.5 (Ar-C12H para in 

phenyl), 125.3 (biphenyl-quat.C5), 127.4 (biphenyl-quat.C2’), 127.8 (biphenyl-C4’H), 

128.0 (biphenyl-C6’H), 128.4 (biphenyl-C3’H), 128.5 (biphenyl-C5’H), 129.3 (biphenyl-

C4H), 129.6 (biphenyl-C6H), 129.6 (biphenyl-C3H), 132.9 (biphenyl-C2’H), 133.8 

(biphenyl-C2H), 135.1 (8 x Ar-CH meta in BPh4
-), 136.1 (biphenyl-quat.C1’), 140.5 

(biphenyl-quat.C2), 162.4, 162.8, 162.3, 163.8 (4 x quat.C4 ipso in BPh4
-), 170.3 

(N=C10H). 

 

 

 3,3-Dimethyl-isochroman. 
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Trifluoroacetic acid (10.0 mL, 1ml/g) and paraformaldehyde (2.42 g, 79.9 mmol) were 

added to a cooled solution of 2,2-dimethyl-1-phenyl-propan-2-ol (100) (10.0 g, 66.6 

mmol). The reaction was monitored by TLC until consumption of the starting material 

was observed (typically 1 h). The reaction mixture was washed with NaOH (1 M, 2 x 60 

mL), saturated brine (2 x 60 mL) and dried over magnesium sulphate to yield up to 85% 

pure product. The washed product was distilled (typically 170 °C @ 2 mbar) to give pure 

3,3-dimethyl-isochroman as a colourless oil (101) (8.90 g, 55.5 mmol, 83%). νmax(film) 

/cm-1 3461, 2971, 2360, 1776, 1453, 1367, 1212, 1181, 1081, 881, 746. δH (400 MHz; 
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CDCl3), 1.20 (6 H, s, 2 x C11&12H3, s), 2.62 (2 H, s, C4H2), 4.71 (2 H, s, OC1H2), 6.91 (1 

H, q, J 3.8 Hz, Ar-CH), 6.98 (1 H, q, J 3.6 Hz, Ar-H), 7.04 − 7.08 (2 H, Ar-H, m). δC 

(100 MHz; CDCl3), 26.5 (2 x C11&12H3), 39.7 (PhC4H2), 63.1 (OC1H2), 70.7 

(quat.C3(CH3)2), 123.9 (Ar-CH), 125.8 (Ar-CH), 126.5 (Ar-CH), 129.2 (Ar-CH), 133.0 

(quat.Ar-C), 133.9 (quat.Ar-C). 

 

 

N-((4S,5S)-2,2-Dimethyl-4-(4-(methylsulfanyl)-phenyl)-1,3-dioxan-5-yl)formamide.7 

 

 

 

  17   18 19 

 

Thiomicamine (17) (10.0 g, 46.9 mmol.) was dissolved in methanol (100 mL), and 

methyl formate (3.20 mL, 51.4 mmol) added followed by a methanoic aqueous solution 

of sodium methoxide (25% w/v, 1.08 mL, 4.70 mmol). The reaction was monitored by 

TLC until complete consumption of the starting material was observed (typically 2 h). 

The resulting solution was evaporated under reduced pressure to afford the formyl-

protected amine 18 as a yellow oil. The oil was dissolved in acetone (500 mL), 2,2-

dimethoxypropane (57.6 mL, 0.469 mol) and p-TSA (0.89 g, 4.70 mmol) were added. 

The reaction was monitored by TLC until consumption of the intermediate product was 

observed (typically 1.5 h). The solvents were removed under reduced pressure and the 

residue re-dissolved in ethyl acetate (100 mL), which underwent saturated aqueous work 

up with saturated aqueous NaHCO3 (3 x 60 mL). The organics were dried over MgSO4 

and solvents removed under reduced pressure affording acetonide 19 (13.2 g, 46.9 mmol, 
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> 99%). Lit. [α]D +1.3 ° (c 1.27, CHCl3), [α]20
D +43.3 ° (c 1.06, CHCl3). νmax(film) /cm-1 

3321, 2989, 2362, 1671, 1497, 1380, 1199, 1074, 942. δH (400 MHz; CDCl3) 1.54 (3 H, 

s, C8H3), 1.57 (3 H, s, C7H3), 2.45 (3 H, s, SC16H3), 3.85 (1 H, dd, J 1.6 & 12.0 Hz, 

upfield portion of an ABX system, OC6HH), 4.23 (1 H, d, J 9.6 Hz, downfield portion of 

an ABX system, OC6HH), 4.28 (1 H, m, NC5H), 6.39 (1 H, s, OC4HPh), 7.21 (4 H, m, 4 

x Ar-CH), 7.95 (1 H, s, NC15HO); δC (100 MHz; CDCl3) 14.2 (SC16H3), 18.5 (C7H3), 

29.7 (C8H3), 45.3 (NC5H), 64.6 (OC6H2), 71.4 (OC4HPh), 99.7 (quat.C2), 125.8 (2 x Ar-

CH), 126.5 (2 x Ar-CH), 135.0 (quat.Ar-C), 137.7 (quat.Ar-C), 160.6 (NC15HO). 

 

 

N-((4S,5S)-2,2-Dimethyl-4-(4-(methylsulfonyl)-phenyl)-1,3-dioxan-5-yl) formamide.7 

 

 

 

   19 20  

 

Formamide 19 (13.2 g, 46.9 mmol) was dissolved in dichloromethane (250 mL) and 

cooled to 0 ºC. A solution of m-CPBA (17.8 g, 0.10 mol) in chloroform (50 mL) was 

added dropwise over 10 min. The reaction was then left to stir for 2 h. The reaction 

mixture was washed with saturated aqueous NaHCO3 (3 x 75 mL), saturated brine (3 x 

75 mL) and dried over MgSO4. The solvents were removed under reduced pressure to 

yield a colourless oil (20) (9.55 g, 30.5 mmol 65%). Lit. [α]D +11.6 ° (c 1.21, CHCl3), 

[α]20
D +70.1 ° (c 1.12, CHCl3). νmax(film) /cm-1 3371, 2984, 1609, 1400, 1191, 1070, 

945. δH (400 MHz; CDCl3) 1.48 (3 H, s, C8H3), 1.51 (3 H, s, C7H3), 2.96 (3 H, s, 

SC15H3), 3.75 (1 H, dd, J 1.6 & 12.0 Hz, upfield portion of an ABX system, OC6HH), 



   Phillip Parker; Experimental 

    152 

4.23, (1 H, dd, J 1.6 & 12.0 Hz, downfield portion of an ABX system, OC6HH), 4.31 (1 

H, dd, J 2.0 & 9.6 Hz, NC5H), 6.62 (1 H, d, J 10.0 Hz, OC4HPh), 7.47 (2 H, d, J 8.4 Hz, 

2 x Ar-C10&14H), 7.85 (2 H, dd, J 2.0 & 6.8 Hz, 2 x Ar-C11&13H), 7.82 (1 H, d, J 1.2 Hz, 

NC15HO); δC (100 MHz; CDCl3) 18.5 (C7H3), 29.5 (C8H3), 44.4 (SC16H3) 45.1 (NC5H), 

64.5 (OC6H2), 71.5 (OC4HPh), 99.9 (quat.C2), 126.6 (2 x Ar-C10&14H), 127.1 (2 x Ar-

C11&13H), 139.5 (quat.Ar-C14), 144.6 (quat.Ar-C9), 160.6 (NC15HO). 

 

 

(4S,5S)-2,2-Dimethyl-4-(4-(methylsulfonyl)-phenyl)-1,3-dioxan-5-amine.7 

 

 

 

  20 21  

 

Formamide 20 (4.65 g, 14.5 mmol) was suspended in saturated aqueous hydrazine 

hydrate (85%) (200 mL), the suspension was heated under reflux for 2.5 h. The solution 

was allowed to cool to ambient temperature and extracted with ethyl acetate. The 

combined organic layers were washed with water (2 x 150 mL), dried over MgSO4 and 

solvents removed under reduced pressure to yield colourless crystals (21) (3.50 g, 12.4 

mmol, 75%). Lit. mp. 120 – 122 ºC, mp. 121 – 123 ºC νmax(film) /cm-1 3369, 2995, 1607, 

1372, 1197, 1077, 945. [α]20
D +50.0 ° (c 1.00, CHCl3). δH (400 MHz; CDCl3) 1.49 (6 H, 

s, 2 x C7&8H3), 2.78 (1 H, dd, J 1.6 & 3.6 Hz, NC5H), 2.99 (3 H, s, SC15H3), 3.81 (1 H, 

dd, J 6.0 & 16.0 Hz, upfield portion of an ABX system, OC6HH), 4.25 (1 H, dd, J 2.0 & 

11.6 Hz, downfield portion of an ABX system, OC6HH), 5.11 (1 H, d, J 0.8 Hz, 

OC4HPh), 7.48 (2 H, m, 2 x Ar-C10&14H), 7.95 (2 H, m, 2 x Ar-C11&13H); δC (100 MHz; 

CDCl3) 18.6 (C7H3), 29.7 (C8H3), 44.6 (SC15H3), 49.4 (NC5H), 66.4 (OC6H2), 73.5 
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(OC4HPh), 99.5 (quat.C2), 126.8 (2 x Ar-C10&14H), 127.5 (2 x Ar-C11&13H), 139.5 

(quat.C14), 146.2 (quat.C9). 

 

 

(+)-((4S,5S)-2,2-Dimethyl-4-(4-(methylsulfonyl)-phenyl)-1,3-dioxan-5-yl)-3,4-

dihydroisoquinolinium tetraphenylborate.7 

 

 

 

13 21  1   

 

A solution of amine 21 (3.53 g, 12.4 mmol) in ethanol (70 mL) was added dropwise to 2-

(2-bromoethyl)benzaldehyde (13) (3.17 g, 14.9 mmol) at 0 °C. The reaction mixture was 

stirred for 16 h while reaching ambient temperature. Sodium tetraphenylborate (5.10 g, 

14.9 mmol) in the minimum amount of acetonitrile (approximately 5 mL) was added in 1 

portion to the reaction mixture, and after stirring for 5 min the organic solvents were 

removed under reduced pressure. Ethanol was added to the reaction mixture followed by 

water followed by diethyl ether. Washing and filtration with ethanol and diethyl ether 

yielded the desired tetraphenyl borate salt, 1, as a yellow powder (0.35 g, 0.50 mmol, 

35%). Lit. mp 218 – 220 °C; mp 218 – 220 °C. νmax(film) /cm-1 3269, 2924, 1643, 1603, 

1361, 1314, 1149, 1089, 759, 702. [α]20
D +126.4 ° (c 0.97, acetone). δH (400 MHz; 

acetone-d6), 1.51 (3 H, s, CH3), 1.54 (3 H, s, CH3), 2.49 (2 H, m, isoq-C4H2), 2.93 (3 H, 

s, SO2C15H3), 3.26 (1 H, m, isoq-NC3HH), 3.36 (1 H, m, isoq-NC3HH), 3.73 (1 H, d, J 

14.4 Hz, upfield portion of an ABX system, OC6HH), 3.80 (1 H, m, NC5H), 4.12 (1 H, d, 
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J 13.6 Hz, downfield portion of an ABX system, OC6HH), 5.30 (1 H, m, OC4HPh), 6.85 

(4 H, t, J 7.2 Hz, 4 x Ar-CH, para in BPh4), 7.00 (8 H, t, J 8.8 Hz, 8 x Ar-CH, ortho in 

BPh4), 7.11 (1 H, d, J 2.4 Hz, isoq-C8H), 7.20 (3 H, m, 3 x isoq-C6,7,9H), 7.37 (8 H, m, 8 

x Ar-CH, meta in BPh4), 7.63 (1 H, dd, J 2.4 & 8.8 Hz, Ar-C10H), 7.72 (1 H, ddd, J 1.2, 

8.2 & 17.2 Hz, Ar-C11H), 7.83 (2 H, d, J 8.4 Hz, Ar-C12&13H), 8.51 (1 H, s, isoq-

HC1=N); δC (100 MHz; acetone-d6), 18.8 (C7H3), 25.4 (isoq-C4H2), 29.5 (C8H3), 44.3 

(SO2C15H3,), 52.3 (isoq-C3H2N), 62.9 (OC6H2), 66.1 (NC5H), 71.5 (OC4HPh), 101.7 

(quat.C2(CH3)2), 122.3 (8 x Ar-CH, ortho in BPh4), 125.3 (isoq-quat.C10), 126.1 (2 x Ar-

C11&13H, meta to iC9 in phenyl ring), 127.6 (2 x Ar-C10&14H, ortho to iC9 in phenyl ring), 

128.8 (isoq-C6H), 129.3 (isoq-C8H), 129.4 (4 x Ar-CH, para in BPh4), 135.4 (isoq-C7H), 

137.0 (8 x Ar-CH, meta in BPh4), 137.0 (isoq-C9H), 137.9 (quat.Ar-CSO2Me), 142.4 

(isoq-quat.C5), 143.2 (quat.Ar-C, ipso in phenyl ring), 165.0 (4 x quat.Ar-C, ipso in 

BPh4), 169.0 (isoq-HC1=N). 
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(R)-Trifluoro-methanesulfonic acid 2'-trifluoromethanesulfonyloxy 

(1,1')binaphthalenyl-2-yl ester.8 
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(R)-[1,1']Binaphthalenyl-2,2'-diol (45) (3.40 g, 11.8 mmol) was dissolved in 

dichloromethane (40.0 mL) and cooled to − 30 ºC. To this was added 4-

dimethylaminopyridine (0.58 g, 4.72 mmol), 2,6-lutidine (3.80 mL, 35.5 mmol) and 

triflic anhydride (5.97 mL, 35.5 mmol). The solution was allowed to warm to ambient 

temperature and stirred for 4 h. Silica gel was added to the solution and the solvent 

evaporated under reduced pressure. The compound, adsorbed on silica, was transferred 

to a fritted glass funnel and washed with ethyl acetate/light petroleum until the title 

compound had eluted. Solvents were removed under reduced pressure to yield a crude 

colourless solid, which was recrystallized from hexane to give colourless crystals (46) 

(5.39 g, 9.23 mmol, 99%). Lit.9 mp 82 – 85 °C, mp 76 – 78 °C. νmax(film) /cm-1 1419, 

1215, 1139 (S-O), 1065 (S=O), 1030 (S=O), 962, 940, 830. [α]20
D −140 ° (c 1.06, 

CHCl3). [δH (400 MHz; CDCl3) 7.17 (1 H, q, J 0.8 Hz, Binap-C3H), 7.19 (1 H, q, J 0.8 

Hz, Binap-C3’H), 7.33 (2 H, m, Binap-C2&2’H). 7.51 (2 H, m, Binap-C8&8’H), 7.54 (2 H, 

d, J 9.2 Hz, Binap-C9&9’H), 7.93 (2 H, dt, J 0.4 & 8.4 Hz, Binap-C4&4’H), 8.07 (2 H, d, J 

8.8 Hz, Binap-C6&6’H). δC (100 MHz; CDCl3) 119.3 (2 x CF3), 119.7 (2 x Binap-C3&3’), 

123.5 (2 x Binap-quat.C1&1’), 126.8 (2 x Binap-C7&7’), 127.3 (2 x Binap-C9&9’), 128.0 (2 x 

Binap-C8&8’), 128.4 (2 x Binap-C6&6’), 132.0 (2 x Binap-C4&4’), 132.3 (2 x Binap-

quat.C5&5’), 133.1 (2 x Binap-quat.C10&10’), 145.4 (2 x Binap-quat.C2&2’). 
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 1,3-bis(diphenylphosphino)propane nickel(II)chloride.10 

 

NiCl2 PP PP

Ni
Cl Cl  

 

 102   103        104  

 

NiCl2.H2O (102) (6.43 g, 27.1 mmol) and 1,3-bis(diphenylphosphino)propane (103) 

(12.3 g, 29.8 mmol) were dissolved in DCM/MeOH (1:1, 150 mL) and refluxed for 1.5 

h. The solution was allowed to cool to ambient temperature and the solvents were 

removed under reduced pressure. The remaining oil was dissolved in DCM and passed 

through a pad of silica and celite removing diamagnetic nickel chloride. The solvent was 

reduced (typically 15 mL) and cooled to −19 °C to yield bright red crystals of the desired 

nickel complex (104) (12.9 g, 24.0 mmol, 88%). νmax(film) /cm-1 2925, 2358, 2339, 

1650, 1485, 1435, 1099, 787, 741, 731, 690, 668.11 C27H26P2Cl2Ni requires (M+) 

540.02403. C27 H26P2ClNi requires (M+ − Cl- ion) 505.05518. Observed mass 

505.05605.11 [75% of Cl35 34.968853. 68% of Ni58 57.935346. 26% of Ni60 59.938786]. 
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 (R)-2,2'-Dimethyl-(1,1')binaphthalenyl.10 
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(R)- [1,1']binaphthalene-2,2’-diol bis-trifluoromethanesulfonate (46) (5.39 g, 9.23 mmol) 

and 1,3-bis(diphenylphosphino)propane nickel chloride (102) (0.35 g, 0.65 mmol) were 

dissolved in anhydrous diethyl ether (50 mL). The reaction was cooled to −8 ºC and 

methylmagnesium bromide (3 M in Et2O, 12.3 mL, 36.9 mmol) was added dropwise 

over 30 min. The reaction was stirred at ambient temperature for 16 h. The dark 

green/brown solution was dissolved with diethyl ether (100 mL) and filtered though 

celite in order to remove the nickel catalyst). The filtrate was washed with 0.5 M 

hydrochloric acid (2 x 50 mL) and saturated brine (50 mL). Removal of solvent under 

reduced pressure yielded a red/orange crude oil, which was purified by column 

chromatography eluting with hexane to give a yellow oil. Crystallization from methanol 

afforded the product as colourless crystals (47) (2.61 g, 9.19 mmol, > 99%). νmax(film) 

/cm-1 3049, 2918, 2853, 2359, 1506, 1221, 810, 742. Lit. mp 74 – 78 °C mp 74 – 78 °C. 

[α]20
D −45 ° (c 1.01, CHCl3). δH (400 MHz; CDCl3) 1.96 (6 H, s, 2 x CH3), 6.97 (2 H, d, 

J 0.9 Hz, Binap-C3&3’H), 7.13 (2 H, m, Binap-C7&7’H), 7.32 (2 H, m, Binap-C8&8’H), 

7.43 (2 H, d, J 8.4 Hz, Binap-C4&4’H), 7.81 (4 H, t, J 6.8 Hz, Binap-C9&9’/6&6’H). δC (100 

MHz; CDCl3) 20.1 (2 x CH3), 124.9 (2 x Binap-C7&7’H), 125.7 (2 x Binap-C8&8’H), 126.1 

(2 x Binap-C4&4’H), 127.4 (2 x Binap-C9&9’H), 127.9 (2 x Binap-C6&6’H), 128.8 (2 x 

Binap-C3&3’H), 132.2 (2 x Binap-quat.C5&5’H), 132.8 (2 x Binap-quat.C10&10’H), 134.3 (2 

x Binap-quat.C2&2’H), 135.1 (2 x Binap-quat.C1&1’H).  
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 (R)-2,2'-Dibromomethyl-(1,1')binaphthalenyl.11 
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(R)-2,2'-Dimethyl-[1,1']binaphthalenyl (47) (2.60 g, 9.15 mmol), N-bromosuccinimide 

(3.25 g, 18.3 mmol) and AIBN (10 mol%, 0.15 g, 1.10 mmol) were dissolved in carbon 

tetrachloride (35 mL). The solution was irradiated with visible light (150 Watt Philips 

tungsten bulb) for 5 h. The reaction mixture was filtered through a fritted glass funnel 

and a scoop of silica added. The solvent was removed under reduced pressure to give the 

reaction mixture adsorbed onto silica, which was immediately purified eluting with light 

petroleum/ethyl acetate (97:3) to afford a colourless solid. Recrystallized from 

chloroform/hexane to give colourless crystals (48) (4.04 g, 9.14 mmol, > 99%). Lit. mp 

180 – 183 °C, mp 180 – 183 °C. νmax(film) /cm-1 3049, 2360, 2239, 1504, 1460, 1439, 

1367, 1227, 1183. [α]20
D −166 ° (c 1.09, benzene). δH (400 MHz; CDCl3) 4.29 (4 H, s, 2 

x CH2Br), 7.11 (2 H, dq, J 0.4 & 1.6 Hz, Binap-C3&3’H), 7.30 (2 H, dt, J 6.8 & 1.6 Hz, 

Binap-C7&7’H), 7.52 (2 H, dt, J 6.8 & 1.6 Hz, Binap-C8&8’H), 7.78 (2 H, d, J 8.4 Hz, 

Binap-C4&4’H), 7.96 (2 H, d, J 8.4 Hz, Binap-C9&9’H), 8.06 (2 H, d, J 8.4 Hz, Binap-

C6&6’H). δC (100 MHz; CDCl3) 32.8 (2 x CH3Br), 126.9 (4 x Binap-C7&7’/8&8’H), 127.8 (2 

x Binap-C4&4’H), 1 28.1 (4 x Binap-C6&6’/9&9’H), 129.4 (2 x Binap-C3&3’H), 132.5 (2 x 

Binap-quat.C5&5’H), 133.3 (2 x Binap-quat.C10&10’H), 134.1 (2 x Binap-quat.C2&2’H), 

134.2 (2 x Binap-quat.C1&1’H). 
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(R)-3,5-Dihydro-4-oxa-cyclohepta(2,1-a;3,4-a')dinaphthalene.12 
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(R)-2,2'-Bis-bromomethyl-[1,1']binaphthalenyl (48) (4.04 g, 9.14 mmol) was suspended 

in a mixture of saturated saturated aqueous Na2CO3 solution and 1,4-dioxane (1:1, 450 

mL). The solution was heated under reflux for 3 days. Upon cooling the mixture was 

extracted with diethyl ether (5 x 50 mL), washed with saturated brine (5 x 50 mL) and 

dried over MgSO4. Removal of the solvent under reduced pressure afforded a yellow oil 

which upon TLC visualised using UV light showed the desired product as bright blue 

spot. Column chromatography eluting with ethyl acetate/light petroleum (0:100-10:90) 

gave a colourless solid (105), recrystallized from chloroform/hexane, (2.47 g, 8.32 

mmol, 91%). Lit. mp 184 – 186 °C, mp 184 – 186 °C. νmax(film) /cm-1 2997, 2938, 2358, 

2238, 1462, 1382, 1184, 1150, 819, 751, 668. [α]20
D −553 ° (c 1.03, CHCl3). δH (400 

MHz; CDCl3) 4.12 (2 H, d, J 11.6 Hz, upfield portion of ABX system, CHHO), 4.56 (2 

H, d, J 11.2 Hz, downfield portion of ABX system, CHHO), 7.22 (2 H, ddd, J 1.2, 6.8 & 

8.4 Hz, Binap-C3&3’H), 7.43 (4 H, m, Binap-C7&7’/8&8’H), 7.55 (2 H, d, J 8.4 Hz, Binap-

C4&4’H), 7.90 (2 H, d, J 8.4 Hz, Binap-C9&9’H), 7.93 (2 H, d, J 8.4 Hz, Binap-C6&6’H). δC 

(100 MHz; CDCl3) 67.45 (2 x CH2O), 125.9 (2 x Binap-C7&7’H), 126.0 (2 x Binap-

C8&8’H), 127.4 (2 x Binap-C4&4’H), 127.6 (2 x Binap-C9&9’H), 128.4 (2 x Binap-C6&6’H), 

129.2 (2 x Binap-C3&3’H), 131.2 (2 x Binap- quat.C5&5’), 133.6 (2 x Binap-quat.C10&10’), 

133.6 (2 x Binap-quat.C2&2’), 135.5 (2 x Binap-quat.C1&1’).  
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 (R)-2'-Bromomethyl-(1,1')binaphthalenyl-2-carbaldehyde.8 
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Molecular bromine (1.09 g, 6.82 mmol) in a solution of carbon tetrachloride (5 mL) was 

added to an ice-cooled solution of (R)-3,5-dihydro-4-oxa-cyclohepta[2,1-a;3,4-

a']dinaphthalene (105) (2.48 g, 8.32 mmol) also in carbon tetrachloride (50 mL) over a 

period of 5 min. After a further 5 min the ice bath was removed and the reaction mixture 

was heated under reflux until it became pale yellow (typically 1 h). The solvent was 

removed under reduced pressure and the residue obtained was dissolved in diethyl ether. 

The organic solvents were washed with saturated aqueous NaHCO3 (3 x 40 mL), 

saturated brine (3 x 25 mL), dried over MgSO4 and solvents were removed under 

reduced pressure to yield an orange oil. Crystallization from ethyl acetate afforded the 

product as colourless crystals (106) (1.94 g, 5.15 mmol 62%); Lit. mp 150 – 152 °C, mp 

150 – 152 °C. νmax(film) /cm-1 δH 3055, 2840, 1688 (C=O), 1223, 1209, 1027, 820, 751. 

[α]20
D +142 ° (c 0.97, CHCl3). δH (400 MHz; CDCl3) 4.01 (1 H, d, J 10.0 Hz, upfield 

portion of ABX system, CHHBr), 4.06 (1 H, d, J 10.4 Hz, downfield portion of ABX 

system, CHHBr), 6.95 (1 H, d, J 8.4 Hz, Binap-C7’H), 7.16 (1 H, d, J 8.4 Hz, Binap-

C4’H), 7.22 (1 H, ddd, J 1.2, 6.8 & 8.4 Hz, Binap-C9’H), 7.27 (1 H, ddd, J 1.2, 6.8 & 8.4 

Hz, Binap-C6’H), 7.43 (1 H, ddd, J 1.2, 6.8 & 8.4 Hz, Binap-C8’H), 7.55 (1 H, ddd, J 1.2, 

6.8 & 8.4 Hz, Binap-C3’H), 7.65 (1 H, d, J 8.8 Hz, Binap-C8H), 7.87 (1 H, d, J 8.4 Hz, 

Binap-C4H), 7.93 (1 H, d, J 8.4 Hz, Binap-C6H), 7.98 (1 H, d, J 8.4 Hz, Binap-C9H), 

8.02 (1 H, d, J 8.8 Hz, Binap-C7H), 8.14 (1 H, d, J 8.8 Hz, Binap-C3H), 9.49 (1 H, d, J 

0.8 Hz, CHO). δC (100 MHz; CDCl3) 32.0 (CH2Br), 122.4 (Binap-C3H), 126.6 (Binap-

C7’H), 127.0 (Binap-C8’H), 127.0 (Binap-C4’H), 127.4 (3 x Binap-C8/6’/9’H), 128.2 
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(Binap-C4H), 128.5 (Binap-C6H), 129.2 (Binap-C3’H), 129.4 (Binap-C7H), 129.9 (Binap-

C9H), 132.4 (Binap-quat.C5’), 132.4 (Binap-quat.C10’), 132.5 (Binap-quat.C2), 133.0 

(Binap-quat.C5), 133.6 (Binap-quat.C2’), 134.6 (Binap-quat.C1’), 136.3 (Binap-quat.C10), 

141.6 (Binap-quat.C1), 191.9 (CHO). 

 

 

4-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-4,5-dihydro-3H-4-aza-cyclohepta(2,1-

a;3,4-a')dinaphthalene. 13 

 

 

 

48 11 49  

 

To an ice cooled solution of (R)-2,2'-bis-bromomethyl-[1,1']binaphthalenyl (48) (0.79 g, 

1.80 mmol) in tetrahydrofuran (10 mL), a solution of acetonide (11) (0.41 g, 2.50 mmol) 

and triethylamine (0.20 g, 2.00 mmol) in tetrahydrofuran (10 mL) was added and 

allowed to warm to ambient temperature over 16 h. The reaction mixture was extracted 

from water (3 x 50 mL) and saturated brine (3 x 50 mL) and dried over MgSO4. The 

solvent was removed under reduced pressure to leave a yellow/brown foam, which was 

purified by column chromatography using a light petrol/ethyl acetate eluent (97:3) to 

yield the amine as a colourless foam (49) (0.86 g, 1.77 mmol, 98%). νmax(film) /cm-1 

3051, 1683, 1506, 1451, 1378, 1263, 1198, 1079, 819, 737, 698. Lit. [α]20
D −339 ° (c 

1.00, CHCl3), [α]20
D −345 ° (c 1.10, CHCl3). δH (400 MHz; CDCl3) 1.48 (3 H, s, C7H3), 

1.59 (3 H, s, C8H3), 2.55 (1 H, s, NC5H), 3.24 (2 H, d, J 12.4 Hz, upfield portions of 
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ABX systems 2 x NC9/10HH), 3.80 (2 H, d, J 12.4 Hz, downfield portions of ABX 

systems 2 x NC9/10HH), 3.97 (1 H, d, J 12.4 Hz, upfield portion of ABX system, 

OC6HH), 4.07 (1 H, dd, J 3.2 & 12.4 Hz, downfield portion of ABX system, OC6HH), 

5.03 (1 H, d, J 3.2 Hz, OC4HPh), 7.03 – 7.07 (2 H, m, 2 x Ar-CH), 7.11 – 7.19 (3 H, m, 3 

x Ar-CH), 7.22 – 7.27 (6 H, m, 6 x Ar-CH), 7.31 (2 H, d, J 8.0 Hz, 2 x Ar-CH), 7.69 – 

7.74 (4 H, m, 4 x Ar-CH). δC (100 MHz; CDCl3) 17.9 (C7H3), 28.8 (C8H3), 52.3 (2 x 

NC9/10H2), 58.7 (NC5H), 60.7 (OC6H2), 73.9 (C4HPh), 98.2 (quat.C2(CH3)2), 124.0 (2 x 

Ar-CH), 124.3 (2 x Ar-CH), 125.3 (2 x Ar-CH), 125.7 (Ar-CH, para in Ph group), 126.3 

(2 x Ar-CH), 126.5 (2 x Ar-CH), 126.7 (2 x Ar-CH), 127.0 (2 x Ar-CH), 127.3 (2 x Ar-

CH), 130.1 (2 x Binap-quat.C), 131.7 (2 x Binap-quat.C), 133.5 (2 x Binap-quat.C), 

133.7 (2 x Binap-quat.C), 139.2 (quat.Ar-C). m/z 486.2431; C34H31NO2[M+H]+ requires 

486.2433. 

 

 

 (R)-((4S,5S)-2,2-dimethyl-4-phenyl-1,3-dioxan-5-yl)-3 H-4-azapinium-cyclohepta 

(2,1-a;3,4-a')dinaphthalene tetraphenylborate.8 

 

Method A 

 

 

106 11  3   

 

To an ice cooled solution of (R)-2'-Bromomethyl-[1,1']binaphthalenyl-2-carbaldehyde 

(106) (0.72 g, 1.91 mmol) in ethanol (8 mL), a solution of amine 11 (0.38 g, 1.84 mmol) 
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in ethanol (5 mL) was added and allowed to warm to ambient temperature over 16 h. 

Sodium tetraphenylborate (0.69 g, 1.91 mmol) was dissolved in the minimal amount of 

acetonitrile (approximately 5 mL). This solution was subsequently added to the reaction 

mixture and, after approximately 5 min, gave a yellow precipitate. Ethanol, followed by 

water, was then added to the reaction mixture. The mixture was then filtered, washed 

with cold ethanol, cold water and diethyl ether giving the desired yellow crystals (3) 

(1.01 g, 1.25 mmol, 68%). 

 

Method B 

 

 

49 3 

 

N-Bromosuccinimide (0.35 g, 1.95 mmol) was added to a solution of amine 49 (0.87 g, 

1.77 mmol) in CHCl3 (10 mL). The reaction was stirred under reflux for 5 min. The 

solution was cooled to ambient temperature and extracted from water (3 x 50 mL), 

saturated brine (3 x 50 mL) and dried over MgSO4. The solvent was removed under 

reduced pressure, the resulting yellow foam was dissolved in ethanol and cooled to 0 °C. 

Sodium tetraphenylborate (0.86 g, 2.5 mmol) was dissolved in the minimal amount of 

acetonitrile (approximately 5 mL), this solution was subsequently added to the reaction 

mixture and allowed to warm to ambient temperature to give a yellow precipitate. 

Ethanol followed by water was added to the reaction mixture. The mixture was then 

filtered, washed with cold ethanol, cold water and diethyl ether giving the desired yellow 

crystals (3) (0.68 g , 1.2 mmol, 68%). νmax(film) /cm-1 3053, 2995, 2358, 1610, 1382, 

1110, 751, 733, 704. Lit. mp 111 – 113 °C, m.p. 111 – 113 °C. [α]20
D – 341 ° (c 1.07, 
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CHCl3). δH (400 MHz; CDCl3) 1.67 (3 H, s, C8H3), 1.72 (3 H, s, C7H3), 4.32 (1 H, d, J 

13.6 Hz, upfield portion of ABX system, biphenyl-C9HHN), 4.46 (1 H, d, J 13.2 Hz, 

OC6HH), 4.655 (1 H, s, upfield portion of ABX system, OC6HH), 4.72 (1 H, dt, J 14 Hz, 

NC5H), 5.85 (2 H, m, C4HPh), 6.83 (1 H, d, J 8.8 Hz, Ar-C14H para in Ph group), 6.91 (2 

H, t, J 8.8 Hz, Ar-C13&15H meta in Ph group), 6.62 (4 H, t, J 7.2 Hz, Ar-CH para in BPh4
-

), 6.77 (8 H, t, J 7.6 Hz, Ar-CH ortho in BPh4
-), 7.14 (2 H, t, J 8.4 Hz, Ar-C12&16H ortho 

in Ph group), 7.20 (10 H, m, 8 x Ar-CH meta in BPh4
- & 2 x Binap-CH), 7.32 (2 H, d, J 

3.6 Hz, Binap-CH), 7.37 (1 H, d, J 8.8 Hz, Binap-CH), 7.44 (1 H, t, J 7.2 Hz, Binap-

CH), 7.67 (1 H, m, Binap-CH), 7.74 (1 H, d, J 8.4 Hz, Binap-CH), 7.96 (1 H, d, J 8.0 

Hz, Binap-CH), 8.04 (1 H, d, J 8.0 Hz, Binap-CH), 8.09 (2 H, d, J 8.4 Hz, Binap-CH), 

9.03 (1 H, s, N=C10H). δC (100 MHz; CDCl3) 18.9 (C7H3), 29.0 (C8H3), 57.0 (NC9H2Ph), 

61.9 (OC6H2), 68.2 (NC5H), 72.6 (OC4HPh), 101.7 (quat.C2), 116.0 (Binap-quat.C2), 

122.3 (4 x Ar-C14H, para in BPh4
-), 126.0 (8 x Ar-CH, ortho in BPh4

-), 126.2 (Binap-

quat.C10), 126.9 (Binap-quat.C5’), 127.8 (2 x Binap-C7’&8’H), 128.0 (2 x Ar-C12&16H, 

ortho in Ph group), 128.2 (Ar-CH, para in Ph group), 128.7 (2 x Ar-C13&15H, meta in Ph 

group), 129.5 (2 x Binap-C7&8H), 129.6 (Binap-C3H), 129.7 (Binap-C4’H), 129.7 (2 x 

Binap-C6&9H), 130.2 (Binap-C4H), 130.2 (Binap-quat.C9’), 130.3 (Binap-C6’H), 131.6 

(Binap-C3’H), 132.2 (Binap-quat.C10’), 132.9 (Binap-quat.C5), 136.3 (Binap-quat.C2’), 

136.6 (Binap-quat.C1’), 137.2 (Binap-quat.C1), 137.1 (8 x Ar-CH, meta in BPh4
-), 142.4 

(quat.Ar-C11, ipso in Ph group), 164.2, 164.7, 165.2, 165.8 (4 x quat.C ipso in BPh4
-, J 

152 Hz), 171.4 (N=C10H). 
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 6-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-dibenzo-(c,e)-azepine-5,7-dione. 

 

 

 

 107 11 108  

Diphenic acid (107) (0.50 g, 2.10 mmol) was added to a solution of the acetonide (11) 

(0.43 g, 2.10 mmol) in chloroform (10 mL). The solution was heated under reflux for 3 

h. The solution was then allowed to cool down to ambient temperature and the solvent 

was removed under reduced pressure. The crude reaction mixture was dissolved in a 

saturated aqueous solution of NaSO4 (5 mL) in acetic anhydride (50 mL) and was heated 

under reflux for 30 min, hot water was then added. The solution was allowed to cool 

down to ambient temperature, the crude compound was then extracted with DCM (3 x 20 

mL), the combined organic phases were dried over MgSO4 and the solvent was removed 

under reduced pressure. The resulting dark yellow powder was re-crystallized from 

methanol to yield the desired imide as a yellow powder (108) (0.71 g, 1.70 mmol, 81%). 

νmax(film) /cm-1 3059, 2994, 1700 (C =O), 1520, 1451, 1418, 1382, 1273, 1240, 1200, 

1120, 1044, 955, 842, 755, 701. [α]20
D +182 ° (c 1.00, CHCl3). δH (400 MHz; CDCl3) 

1.06 (3 H, s, C8H3), 1.35 (3 H, s, C7H3), 2.73 (1 H, s, NC5H), 3.85 (2 H, q, J 12.4 Hz, 

OC6H2), 4.90 (1 H, s, OC4HPh), 7.11 (2 H, t, J 7.2 Hz, Ar-CH), 7.18 – 7.15 (6 H, m, Ar-

CH), 7.22 – 7.36 (5 H, m, Ar-CH). δC (100 MHz; CDCl3) 17.24 (C7H3), 28.06 (C8H3), 

48.08 (NC5H), 60.84 (OC6H2), 70.15 (OC4HPh), 99.06 (quat.C2), 125.3 (2 x Ar-CH), 

125.7 (2 x Ar-CH), 127.7 (Ar-C12H para in phenyl group), 128.0 (2 x Ar-CH), 128.03 (2 

x Ar-CH), 129.3 (2 x Ar-CH), 130.1 (2 x Ar-CH), 133.6 (2 x Biphenyl-quat.C), 134.9 

(quat.C9, ipso on phenyl ring), 140.7 (2 x Biphenyl-quat.C), 172.3 (2 x C=O). 
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General procedure for the addition of Grignard reagents to biphenyl azepinium 

salts. 

 

The desired azepinium salt (1 equiv) was dissolved in anhydrous THF (30 mL per g) 

under nitrogen and cooled to −78 °C. The desired Grignard reagent (3 equiv) was added 

dropwise over 5 min to the cold solution. The reaction was then allowed to warm to 

ambient temperature and stirred for 2 h. The reaction was then cooled to 0 °C and 

quenched with Rochelle’s salt. The reaction was allowed to warm to ambient 

temperature where it was extracted with water, saturated brine and dried over MgSO4. 

The solution was filtered and silica was added, the solvent was removed under reduced 

pressure. The crude reaction mixture was purified via column chromatography using 

1:99 (ethyl acetate/petrol) to yield the desired amine. 

 

 

General procedure for the synthesis of biphenyl azepinium bromide salts from 

heterocyclic amines and N-bromosuccinimide. 

 

To a solution of the desired amine (1 equiv) in DCM (15 mL g of amine) was added N-

bromosuccinimide (1.1 equiv) in DCM (15 mL per g of NBS) and the reaction mixture 

was refluxed for 2 h. The reaction was cooled to ambient temperature when it was then 

extracted with water, saturated brine and dried over MgSO4. The solvent was removed 

under reduced pressure to yield the crude bromide iminium salt. Recrystalisation from 

diethyl ether gave the purified biphenyl azepinium bromide salt 
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.General procedure for the synthesis of biphenyl azepinium tetraphenylborate salts from 

biphenyl azepinium bromide salts. 

 

To a ice cooled solution of the desired biphenyl azepinium salt (1 equiv) in DCM was 

added sodium tetraphenylborate (1.2 equiv) dissolved in the minimal amount of 

acetonitrile (approximately 5 mL). The reaction mixture was stirred whilst attaining 

ambient temperature over 10 min forming a yellow precipitate. The precipitate was 

filtered, washed with cold ethanol, cold water and diethyl ether to yield the desired 

yellow crystals. 

 

 

5-Methyl-6-(2,6,6-trimethyl-bicyclo(3.1.1)hept-3-yl)-6,7-dihydro-5H-dibenzo-(c,e)-

azepine. 
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 30 33  

 

Prepared according to the general procedure from (+)-6-[(1R,2R,3R,5S)-2,6,6-

trimethylbicyclo[3.1.1]hept-3-yl]-5H-dibenzo[c,e]azepinium tetraphenylborate (30) 

(0.50 g, 0.77 mmol) and methyl magnesium bromide (0.28 mL, 0.85 mmol). The 

purified amine was isolated as a colourless oil, as a pair of diastereoisomers (33) (0.16 g, 

0.61 mmol, 79%). νmax(film) /cm-1 3057, 3054, 2923, 2359, 2339, 1627, 1596, 1558, 

1472, 1448, 1424, 1387, 1261, 1091, 1031, 799, 734, 703, 667. [α]20
D +81.3 ° (c 0.30, 
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CHCl3). δH (400 MHz; DMSO 90 °C) 0.74 (3 H, d, J 11.6 Hz, minor C13H3), 0.78 (3 H, 

d, J 11.6 Hz, major C13H3), 0.95 (3 H, s, major C9H3), 0.96 (3 H, s, minor C9H3), 1.00 (1 

H, d, J 10.0 Hz, upfield portion of ABX system, minor C11HH), 1.06 (7 H, dd, J 6.8 & 

9.2 Hz, major and minor C10H3 and upfield portion of ABX system, major C11HH), 1.31 

(3 H, s, minor C8H3), 1.41 (3 H, s, major C8H3), 1.72 – 1.86 (6 H, m, major & minor C1H 

and major & minor C7HH), 2.00 – 2.15 (4 H, m, major & minor C2H and major & minor 

C5H), 2.21 – 2.34 (2 H, m, downfield portion of ABX system, major & minor C11HH), 

3.29 – 3.41 (2 H, m, major & minor C3H), 3.42 (1 H, d, J 11.2 Hz, minor C4HH), 3.51 (1 

H, s, major C4HH), 3.52 (1 H, s, minor C4HH), 3.59 (1 H, d, J 11.2 Hz, major C4HH), 

4.00 (1 H, q, J 6.8 Hz, minor C12H), 4.14 (1 H, q, J 7.2 Hz, major C12H), 7.19 – 7.32 (12 

H, m, major and minor Biphenyl-CH), 7.34 – 7.40 (4 H, m, major and minor Biphenyl-

CH). δC (100 MHz; DMSO 90 °C) 20.2 (major C10H3), 21.4 (minor C10H3), 22.2 (minor 

C9H3), 22.4 (major C9H3), 23.4 (major & minor C13H3), 27.0 (major C8H3), 27.2 (minor 

C8H3), 28.6 (major C7H2), 29.7 (minor C7H2), 32.0 (major C11H2), 32.8 (minor C11H2), 

38.2 (major quat.C6), 38.4 (major quat.C6), 39.8 (major C2H), 40.2 (minor C2H), 40.7 

(minor C5H), 40.8 (major C5H), 47.0 (major C1H), 47.3 (minor C1H), 49.8 (major & 

minor C4H2), 56.8 (major C12H), 61.2 (minor C12H), 63.7 (minor C3H), 65.0 (major 

C3H), 125.8 (minor Biphenyl-CaH), 126.0 (major Biphenyl-CaH), 126.1 (major Biphenyl-

CbH), 126.2 (minor Biphenyl-CbH), 126.61 (major Biphenyl-CcH), 126.64 (minor 

Biphenyl-CcH), 126.80 (major Biphenyl-CdH), 126.82 (minor Biphenyl-CdH), 126.9 

(major and minor Biphenyl-CeH), 127.6 (minor Biphenyl-CfH), 127.7 (major Biphenyl-

CfH), 128.46 (major Biphenyl-CgH), 128.51 (minor Biphenyl-CgH), 128.6 (major and 

minor Biphenyl-CHH), 136.5 (major and minor Biphenyl-quat.Ci), 138.1 (major 

Biphenyl-quat.Cj), 138.3 (minor Biphenyl-quat.Cj), 139.86 (major Biphenyl-quat.Ck), 

139.92 (minor Biphenyl-quat.Ck), 140.65 (major Biphenyl-quat.Cl), 140.75 (minor 

Biphenyl-quat.Cl). m/z; C25H31N requires 345.5203. 
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 5-Methyl-6-(2,6,6-trimethyl-bicyclo(3.1.1)hept-3-yl)-5H-dibenzo-(c,e)-azepinium 

tetraphenylborate. 
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Prepared according to the general procedure from the desired methylated amine (33) 

(0.16 g, 0.61 mmol) and N-bromosuccinimide (0.11 g, 0.61 mmol) to yield the desired 

yellow crystaline tetraphenylborate azepinium salt as a pair of diastereoisomers (34) 

(0.29 g, 0.43 mmol, 71%). mp 220 – 222 °C (dec.)νmax(film) /cm-1 3397, 3055, 2995, 

2924, 2360, 2339, 1628, 1597, 1479, 1448, 1426, 1387, 1262, 1218, 1155, 1119, 1031, 

757, 736, 703, 667. [α]20
D +56.3 ° (c 0.98, CHCl3). δH (400 MHz; DMSO 90 °C) 0.89 (3 

H, d, J 6.8 Hz, minor NCHC13H3), 1.10 (1 H, d, J 7.2 Hz, minor C1H), 1.15 (6H, s, major 

& minor C8H3), 1.21 (3 H, d, J 6.8 Hz, major NCHC13H3), 1.26 (3 H, d, J 6.8 Hz, major 

C10H3), 1.30 (3 H, d, J 6.8 Hz, minor C10H3), 1.35 (6H, s, major & minor C9H3), 1.512 (2 

H, m, major C1H & minor C7HH), 1.98 − 2.01 (1 H, m, minor C5H), 2.05 − 2.08 (2 H, m, 

major C7HH & minor C4HH), 2.12 − 2.13 (2 H, m, major C7HH & minor C7HH), 2.16 − 

2.20 (1 H, m, major C5H), 2.29 – 2.34 (1 H, m, major C4HH) 2.55 − 2.71 (4 H, m, major 

& minor C2H and minor & minor C4HH), 5.01 − 5.08 (2 H, m, minor major NC12HMe & 

minor C3H), 5.68 − 5.73 (2 H, m, minor NC12HMe & major C3H), 6.79 (6 H, t, J 7.2 Hz, 

Ar-CH, para in BPh4
-), 6.92 (12 H, t, 7.4 Hz, Ar-CH, ortho in BPh4

-), 7.20 − 7.26 (12 H, 

broad s, Ar-CH, meta in BPh4
-), 7.65 − 7.67 (4 H, m, Biphenyl-CH), 7.80 – 7.84 (1 H, m, 

Biphenyl-CH), 7.86 (1 H, m, Biphenyl-CH), 8.01 (1 H, m, Biphenyl-CH), 8.11 – 8.14 (2 

H, m, Biphenyl-CH), 8.18 – 8.20 (1 H, m, Biphenyl-CH), 9.77 (1 H, s, major N=C11H), 

9.79 (1 H, s, minor N=C11H). δC (100 MHz; DMSO 90 °C) 16.0 (minor NCHC13H3), 

16.1 (major NCHC13H3), 18.0 (minor C8H3), 18.6 (major C8H3), 21.3 (minor C9H3), 22.2 



   Phillip Parker; Experimental 

    170 

(major C9H3), 27.6 (major C10H3), 27.9 (minor C10H3), 33.0 (C7H2), 33.5 (minor 

NC12HMe), 33.6 (major NC12HMe), 47.06 (minor C1H) 47.08 (major C1H), 74.1 (minor 

C3H), 74.8 (major C3H), 120.7 (16 x Ar-CH, ortho in BPh4
-), 124.4 (8 x Ar-CH, para in 

BPh4
-), 128.02 (minor Biphenyl-quat.C2), 128.04 (major Biphenyl-quat.C2), 128.3 (minor 

Biphenyl-C4H), 128.6 (major Biphenyl-C4H), 128.80 (Biphenyl-C6H), 128.83 (minor 

Biphenyl-C3H), 128.9 (major Biphenyl-C3H), 129.52 (minor Biphenyl-C5H), 129.54 

(major Biphenyl-C5H), 130.01 (minor Biphenyl-C4’H), 130.03 (major Biphenyl-C4’H), 

130.05 (minor Biphenyl-C6’H), 130.07 (major Biphenyl-C6’H), 134.3 (major & minor 

Biphenyl-quat.C1), 134.69 (minor Biphenyl-quat.C5’), 134.71 (major Biphenyl-quat.C5’), 

135.1 (16 x Ar-CH, meta in BPh4
-), 135.6 (minor Biphenyl-quat.C1’), 135.7 (major 

Biphenyl-quat.C1’), 164.5 (8 x C quat., arom., J 196.40 Hz, C-B ipso in BPh4 ring), 171.2 

(HC=N). m/z; C25H30N+ (cation) requires 344.2373. 

 

 

6-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-5-methyl-6,7-dihydro-5H-dibenzo-(c, e)-

azepine. 

 

 

 

 7 36   

 

Method A 

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-
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[1,3]dioxan-5-yl)-5H-dibenzo[c,e]azepinium (7) (0.35 g, 0.76 mmol) and methyl 

magnesium chloride (2.3 mL, 0.77 mmol) to yield the desired methylated amine as a 

colourless oil (36) (0.28 g, 0.69 mmol, 91%). 

 

Method B 

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-

[1,3]dioxan-5-yl)-5H-dibenzo[c,e]azepinium (7) (0.35 g, 0.76 mmol) and methyl 

magnesium bromide (2.3 mL, 0.77 mmol) to yield the desired methylated amine as a 

colourless oil (36) (0.24 g, 0.60 mmol, 79%).  

 

νmax(film) /cm-1 3413, 3062, 3025, 2987, 2927, 2859, 2775, 2358, 1956, 1604, 1479, 

1449, 1377, 1263, 1238, 1196, 1147, 1084, 956, 940, 852, 803, 755, 736, 695. [α]20
D 

+30.3 ° (c 0.30, CHCl3). δH (400 MHz; CDCl3 55 °C) 0.68 (3 H, d, J 7.0 Hz, C11H3), 

1.64 (3 H, s, C7H3), 1.69 (3 H, s, C8H3), 3.19 (1 H, q, J 4.1 Hz, NC5H), 3.79 (2 H, s, 

NC9HH), 4.20 (1 H, dd, J 2.4 & 12.4 Hz, OC6HH), 4.32 (2 H, dd, J 4.8 & 12.3 Hz, 

OC6HH & OC10HCH3), 5.31 (1 H, s, C4HPh), 7.18 – 7.14 (2 H, m, Biphenyl-CH), 7.36 – 

7.29 (3 H, m, Biphenyl-CH), 7.45 – 7.37 (5 H, m, Biphenyl-CH), 7.49 (1 H, dd, J 1.4 & 

7.6 Hz, Biphenyl-CH), 7.53 (2 H, d, J 7.3 Hz, Biphenyl-CH). δC (100 MHz; CDCl3 55 

°C) 19.6 (C7H3), 21.2 (C11H3), 29.1 (C8H3), 53.7 (NC9HH), 58.6 (NC5H), 58.8 

(C10HCH3), 63.2 (OC6HH), 74.4 (C4HPh), 99.4 (quat.C2(CH3)2), 126.3 (2 x Biphenyl-

CH), 126.6 (Biphenyl-CH), 127.0 (Biphenyl-CH), 127.1 (Biphenyl-CH), 127.4 

(Biphenyl-CH), 127.6 (Biphenyl-CH), 127.7 (2 x Biphenyl-CH), 127.8 (Biphenyl-CH), 

128.4 (Biphenyl-CH), 128.5 (Biphenyl-CH), 128.9 (Biphenyl-CH), 138.1 (quat.Biphenyl-

C), 139.5 (quat.Biphenyl-C), 140.4 (quat.Biphenyl-C), 141.3 (quat.Biphenyl-C), 141.4 

(quat.Biphenyl-C). m/z 398.21268 [- 1.7 ppm]; C27H29N requires 399.2198. 
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 6-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-5-isopropyl-6,7-dihydro-5H-dibenzo-(c, 

e)-azepine. 

 

 

 

 7 37   

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-

[1,3]dioxan-5-yl)-5H-dibenzo[c,e]azepinium (7) (0.35 g, 0.76 mmol) and isopropyl 

magnesium chloride (2.30 mL, 0.77 mmol) to yield the desired alkylated amine as a 

colourless oil (37) (0.20 g, 0.47 mmol, 62%). νmax(film) /cm-1 3359, 3060, 2957, 2920, 

2855, 2358, 2336, 1726, 1711, 1692, 1661, 1608, 1551, 1535, 1514, 1449, 1378, 1260, 

1197, 1080, 850, 800, 754, 697. [α]20
D +98.3 ° (c 0.96, CHCl3). δH (400 MHz; CDCl3 55 

°C) 0.12 (3 h, d, J 6.0 Hz, C12H3), 0.74 (1 H, m, C11H(CH3)2), 0.82 (3 H, d, J 6.0 Hz, 

C13H3), 1.61 (3 H, s, C7H3), 1.68 (3 H, s, C8H3), 3.05 (1 H, m, NC5H), 3.37 (1 H, d, J 

10.0 Hz, C10HPri), 3.66 (1 H, d, J 11.6 Hz, NC9HH), 4.28 (1 H, d, J 12.0 Hz, NC9HH), 

4.42 (1 H, d, J 12.0 Hz, OC6HH) 4.49 (1 H, dd, J 4.0 & 12.4 Hz, OC6HH), 5.26 (1 H, d, 

J 2.8 Hz, C4HPh), 6.32 (1 H, d, J 7.6 Hz, Ar-CH, ortho in phenyl gp), 7.10 – 7.07 (1 H, 

m, Ar-CH, para in phenyl gp), 7.23 (1 H, d, J 7.2 Hz, Ar-CH, ortho in phenyl gp), 7.27 – 

7.36 (8 H, m, Biphenyl-CH), 7.47 – 7.46 (2 H, m, 2 x Ar-CH, meta in phenyl gp). δC 

(100 MHz; CDCl3 55 °C) 18.4 (C8H3), 19.5 (C13H3), 20.2 (C12H3), 28.0 (C7H3), 33.5 

(C11H(CH3)2), 51.9 (NC9H2), 62.4 (NC5H), 65.5 (OC6H2), 74.4 (C4HPh), 75.7 (C10HPri), 

98.5 (quat.C2), 125.4 (Biphenyl-CH), 125.6 (Biphenyl-CH), 125.7 (Biphenyl-CH Ar-CH), 

125.9 (Biphenyl-CH), 126.0 (Biphenyl-CH), 126.3 (2 x Ar-CH in phenyl gp), 126.5 (Ar-

CH, para in phenyl gp), 126.8 (2 x Ar-CH in phenyl gp), 127.2 (Biphenyl-CH), 127.6 

(Biphenyl-CH), 130.3 (Biphenyl-CH), 137.1 (quat.Ar-C), 137.3 (quat.Ar-C), 138.1 
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(quat.Ar-C), 139.4 (quat.Ar-C), 140. 5 (quat.Ar-C). m/z 426.2439 [- 1.5 ppm]; 

C29H33NO2 requires 427.5781. 

 

 

6-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-5-phenyl-6,7-dihydro-5H-dibenzo-(c, e)-

azepine. 

 

 

 

 7 38   

Method A 

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-

[1,3]dioxan-5-yl)-5H-dibenzo[c,e]azepinium (7) (0.50 g, 1.10 mmol) and phenyl 

magnesium bromide (1.10 mL, 3.30 mmol) to yield the desired alkylated amine as a 

colourless oil (38) (0.24 g, 0.52 mmol, 47%).  

 

Method B 

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-

[1,3]dioxan-5-yl)-5H-dibenzo[c,e]azepinium (7) (0.50 g, 1.10 mmol) and phenyl 
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magnesium chloride (1.10 mL, 3.30 mmol) to yield the desired alkylated amine as a 

colourless oil (30) (0.20g, 0.43 mmol, 40%). 

 

νmax(film) /cm-1 3343, 2987, 2988, 2854, 2366, 1656, 1638, 1598, 1479, 1444, 1371, 

1343, 1322, 1265, 1240, 1197, 1176, 1150, 1136, 1801, 1064, 1026, 1008, 955, 921, 876, 

852, 780, 763, 733, 697, 657, 610. [α]20
D ° (c, CHCl3). δH (400 MHz; CDCl3 55 °C) 1.50 

(3 H, s, C7H3), 1.57 (3 H, s, C8H3), 2.99 (1 H, q, J 2.8 Hz, NC5H), 3.73 (1 H, d, J 11.6 

Hz, OC6HH), 3.99 (1 H, d, J 12.0 Hz, OC6HH), 4.25 (2 H, d. J 2.4 Hz, NC9H2), 5.20 (1 

H, d, J 3.6 Hz, OC4HPh), 5.42 (1 H, s, NC10HPh), 6.21 (2 H, d, J 7.6 Hz, 2 x Ar-CH, 

ortho in phenyl ‘A’), 6.55 (2 H, dt, J 6.4 & 1.6 Hz, 2 x Ar-CH, meta in phenyl ‘A’), 6.62 

(1 H, t, J 7.2 Hz, Ar-CH, para in phenyl ‘A’), 6.80 (1 H, dt, J 1.6 & 7.6 Hz, Biphenyl 

‘A’-CH), 6.92 (1 H, dt, J 7.6 & 1.6 Hz, Biphenyl ‘A’-CH), 7.02 (1 H, dt, J 7.6 & 1.6 Hz, 

Biphenyl ‘A’-CH), 7.07 (1 H, dd, J 1.4 &7.8 Hz, Biphenyl ‘A’-CH), 7.14 – 7.29 (9 H, m 

, 4 x Biphenyl ‘B’-CH & 5 x phenyl ‘B’-CH). δC (100 MHz; CDCl3 55 °C) 18.0 (C7H3), 

28.6 (C8H3), 53.2 (OC6H2), 28.9 (NC5H), 62.4 (NC9H2), 66.9 (NC10HPh), 73.5 

(OC4HPh), 98.4 (quat.C2), 123.4 (Ar-CH, para in phenyl ‘A’), 125.0 (2 x Ar-CH), 125.3 

(2 x Ar-CH, meta in phenyl ‘A’), 125.4 (2 x Ar-CH, ortho in phenyl ‘A’), 125.7 (2 x Ar-

CH), 126.0 (Biphenyl-CH), 126.2 (Biphenyl-CH), 126.27 (Biphenyl-CH), 126.29 (Ar-

CH), 126.31 (Ar-CH), 127.1 (Ar-CH), 127.5 (Biphenyl-CH), 128.0 (Ar-CH), 129.8 (Ar-

CH), 136.6 (quat.Ar-C), 138.6 (quat.Ar-C), 139.2 (quat.Ar-C), 139.7 (2 x quat.Ar-C), 

144.3(quat.Ar-C). m/z 461.2355 [- 1.2 ppm]; C32H31NO2 requires 460.2272. 
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 6-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-5-phenyl-6,7-dihydro-5H-dibenzo-(c, e)-

azepine. 

 

 

 

  7 31   

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-

[1,3]dioxan-5-yl)-5H-dibenzo[c,e]azepinium (7) (0.35 g, 0.76 mmol) and benzyl 

magnesium chloride (0.77 mL, 2.3 mmol) to yield the desired alkylated amine as a 

colourless oil (31) (0.21 g, 0.45 mmol, 60%). νmax(film) /cm-1 3414, 3060, 3024, 2989, 

2935, 2856, 2359, 2339, 1602, 1495, 1481, 1450, 1379, 1348, 1309, 1263, 1237, 1198, 

1177, 1147, 1080, 1029, 952, 852, 800, 778, 755, 736, 698, 668. [α]20
D −11.8 ° (c 1.02, 

CHCl3). δH (400 MHz; CDCl3 55 °C) 1.63 (3 H, s, C7H3), 1.72 (3 H, s, C8H3), 1.89 – 

1.83 (1 H, m, C11HH), 2.20 (1 H, dd, J 5.6 & 12.8 Hz, C11HH), 3.00 (1 H, s, NC5H), 3.78 

(1 H, d, J 11.2 Hz, NC9HH), 3.94 (1 H, d, J 11.2 Hz, NC9HH), 4.17 (1 H, d, J 12.4 Hz, 

OC6HH), 4.24 (1 H, dd, J 4.4 & 12.4 Hz, OC6HH), 4.53 (1 H, dd, J 6.0 & 9.6 Hz, 

OC10HBn), 5.28 (1 H, d, J 3.2 Hz, OC4HPh), 6.63 (1 H, d, J 7.2 Hz, Ar-CH), 6.68 (2 H, 

d, J 7.6 Hz, Ar- CH), 7.01 – 7.09 (4 H, m, Ar- CH), 7.26 – 7.34 (3 H, m, Ar- CH), 7.35 – 

7.40 (3 H, m, Ar- CH), 7.43 – 7.47 (2 H, m, Ar- CH), 7.52 – 7.54 (3 H, m, Ar- CH). δC 

(100 MHz; CDCl3 55 °C) 19.4 (C7H3), 29.4 (C8H3), 43.0 (C11H2), 54.2 (NC9H2), 60.9 

(NCH), 63.8 (OC6H2), 68.3 (C10HBn), 74.3 (OC4HPh), 99.5 (quat.C2), 125.3 (Ar-CH), 

126.2 (2 x Ar-CH), 126.8 (Ar-CH), 127.1 (Ar-CH), 127.1 (Ar-CH), 127.4 (Ar-CH), 

127.6 (2 x Ar-CH), 127.8 (Ar-CH), 127.9 (Ar-CH), 128.0 (2 x Ar-CH), 128.2 (Ar-CH), 

129.18 (2 x Ar-CH), 129.21 (Ar-CH), 130.9 (Ar-CH), 137.9 (quat.C), 138.8 (quat.C), 

139.0 (quat.C), 140.4 (2 x quat.C), 141.6 (quat.C). m/z 474.2426 [- 1.6 ppm]; C33H33NO2 

requires 475.2511.  
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6-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-5-methyl-5H-dibenzo-(c,e)-azepinium ; 

bromide. 

 

 

 

 36 40   

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-

[1,3]dioxan-5-yl)-5-methyl-6,7-dihydro-5H-dibenzo[c, e]azepine (36) (0.35 g, 0.89 

mmol) and N-bromosuccinimide (0.17 g, 0.98 mmol) to yield the desired bromide 

azepinium salt as a yellow powder (40) (0.27g, 0.56 mmol, 63%). νmax(film) /cm-1 3364, 

2987, 2359, 1709, 1640, 1595, 1558, 1486, 1449, 1384, 1265, 1202, 1080, 958, 835, 764, 

729, 701. [α]20
D −62.9 ° (c 0.96, CHCl3). δH (400 MHz; DMSO 90 °C) 0.96 (3 H, d, J 

7.1 Hz, C11H3), 1.74 (3 H, s, C7H3), 1.75 (3 H, s, C8H3), 4.43 (1 H, d, J 13.7 Hz, 

OC6HH), 4.79 (1 H, dd, J 2.8 & 13.7 Hz, OC6HH), 5.16 (1 H, s, NC5H), 5.87 – 5.92 (2 

H, m, OC4HPh & NC10HCH3), 7.51 – 7.14 (3 H, m, Biphenyl-Ca’/a”/a”’H), 7.31 – 7.34 (3 

H, m, Biphenyl-Cb/c/dH), 7.49 (2 H, m, Biphenyl-Ce/fH), 7.69 (1 H, dd, J 1.7 & 7.2 Hz, 

Biphenyl-CgH), 7.75 (1 H, dt, J 1.2 & 7.6 Hz, Biphenyl-CHH), 7.85 (1 H, d, J 7.8 Hz, 

Biphenyl-CIH), 7.96 (1 H, dt, J 1.2 & 7.6 Hz, Biphenyl-CJH), 8.02 (1 H, d, J 7.9 Hz, 

Biphenyl-CKH), 9.49 (1 H, s, N=C9H) . δC (100 MHz; DMSO 90 °C) 15.7 (C11H3), 19.3 

(C7H3), 29.8 (C8H3), 62.8 (OC6H2), 66.5 (NC10HCH3), 67.7 (NC5H), 70.8 (OC4HPh), 

101.0 (quat.C2), 125.4 (Biphenyl-CdH), 125.8 (quat.C), 128.3 (Biphenyl-CcH), 128.7 

(Biphenyl-Ca’/a”/a”’H), 129.2 (Biphenyl-CHH), 129.5 (Biphenyl-CbH), 130.0 (Biphenyl-

CkH), 130.3 (Biphenyl-CfH), 130.7 (Biphenyl-CgH), 130.9 (Biphenyl-CeH), 134.5 

(quat.C), 135.5 (Biphenyl-CIH), 136.4 (quat.C), 136.9 (Biphenyl-CJH), 138.0 (quat.C), 

141.4 (quat.C), 170.6 (N=C9H). m/z 398.21153 [- 1.2 ppm]; C27H28NO2
+ requires 

398.21200. 



   Phillip Parker; Experimental 

    177 

 6-(2,2-Dimethyl-4-phenyl-(1,3)-dioxan-5-yl)-5-isopropyl-5H-dibenzo-(c,e)- 

azepinium; bromide. 

 

 

 

 29 33   

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-

[1,3]dioxan-5-yl)-5-isopropyl-6,7-dihydro-5H-dibenzo[c, e]azepine (29) (0.18 g, 0.43 

mmol) and N-bromosuccinimide (0.08 g, 0.47 mmol) to yield the desired bromide 

azepinium salt as a yellow powder (33) (0.18g, 0.36 mmol, 83%). νmax(film) /cm-1 3385, 

2964, 2926, 2359, 2339, 1714, 1636, 1557, 1455, 1385, 1201, 1079, 960, 841, 763, 752, 

700, 667. [α]20
D −8.1 ° (c 0.64, CHCl3). δH (400 MHz; DMSO 90 °C) 0.46 (3 H, d, J 6.4 

Hz, C12H3), 0.91 (3 H, d, J 6.4 Hz, C13H3), 1.47 – 1.59 (1 H, m, C11H(CH3)2), 1.70 (6 H, 

s, C7H3 & C8H3), 4.63 (1 H, d, J 13.6 Hz, OC6HH), 4.82 (1 H, dd, J 2.0 & 13.2 Hz, 

OC6HH), 5.07 (1 H, d, J 10.4 Hz, C10HPri), 5.14 (1 H, s, NC5H), 5.83 (1 H, s, OC4HPh), 

6.79 (2 H, t, J 7.6 Hz, Ar-C16/18H, meta in phenyl ring), 6.88 (1 H, t, J 7.2 Hz, Ar-C17H, 

para in phenyl ring), 6.97 (2 H, d, J 7.2 Hz, Ar-C15/19H, ortho in phenyl ring), 7.05 (1 H, 

d, J 7.2 Hz, Biphenyl ‘A’-CdH), 7.40 (1 H, dt, J 1.2 & 7.6 Hz, Biphenyl ‘A’-CeH), 7.48 

(1 H, dt, J 1.2 & 7.6 Hz, Biphenyl ‘A’-CfH), 7.58 (1 H, d, J 6.8 Hz, Biphenyl ‘A’-CgH), 

7.75 – 7.81 (1 H, m, Biphenyl ‘B’-CHH), 7.97 (2 H, d, J 4.0 Hz, Biphenyl ‘B’-Ci/jH), 8.11 

– 8.13 (1 H, d, J 7.6 Hz, Biphenyl ‘B’-CkH), 9.63 (1 H, s, N=C9H). δC (100 MHz; DMSO 

90 °C) 19.4 (C7H3), 19.6 (C12H3), 20.0 (C13H3), 26.8 (C11H(CH3)2), 29.5 (C8H3), 62.2 

(C6H2), 68.5 (NC5H), 71.4 (OC4HPh), 80.4 (C10HPri), 101.3 (quat.C2), 125.1 (2 x Ar-

C15/19H, ortho in phenyl ring), 125.6 (quat.C), 128.30 (Ar-C17H, para in phenyl ring), 

128.33 (2 x Ar-C16/18H, meta in phenyl ring), 129.2 (Biphenyl ‘A’-CH), 129.88 (Biphenyl 
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‘A’-CH), 129.93 (Biphenyl ‘A’-CH), 130.5 (Biphenyl ‘B’-CH), 130.8 (Biphenyl ‘A’-

CH), 131.0 (Biphenyl ‘B ’-CH), 133.7 (quat.C), 135.7 (quat.C), 135.9 (quat.C), 136.2 

(Biphenyl ‘B’-CH), 137.2 (Biphenyl ‘B’-CH), 141.7 (quat.C), 169.6 (N=C9H). m/z 

426.24378 [+ 1.1 ppm]; C29H32NO2
+ requires 426.24330. 

 

 

 6-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-5-phenyl-5H-dibenzo(c,e)azepinium ; 

bromide. 

 

 

 

 38 42  

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-

[1,3]dioxan-5-yl)-5-phenyl-6,7-dihydro-5H-dibenzo[c, e]azepine (38) (0.07 g, 0.15 

mmol) and N-bromosuccinimide (0.03 g, 0.17 mmol) to yield the desired bromide 

azepinium salt as a yellow powder (42) (0.07 g, 0.14 mmol, 91%). νmax(film) /cm-1 3024, 

2921, 2360, 1628, 1599, 1448, 1260, 1086, 1027, 800, 756, 698. [α]20
D −21.2 ° (c 0.98, 

CHCl3). δH (400 MHz; DMSO 90 °C) 1.79 (3 H, s, C7H3), 1.81 (3 H, s, C8H3), 3.56 (1 H, 

s, NC10HPh), 4.64 (1 H, d, J 13.6 Hz, OC6HH), 4.93 (1 H, dd, J 2.4 & 14.0 Hz, OC6HH), 

5.56 (1 H, s, NC5H), 5.97 (1 H, d, J 2.0 Hz, OC4HPh), 6.53 (2 H, m, Ar-CH), 6.92 (3 H, 

m, Ar-CH), 6.99 (3 H, m, Ar-CH), 7.16 (2 H, d, J 7.2 Hz, Ar-CH), 7.46 – 7.50 (1 H, m, 

Ar-CH), 7.51 – 7.55 (1 H, m, Ar-CH), 7.67 – 7.62 (2 H, m, Ar-CH), 7.64 – 7.69 (3 H, m, 

Ar-CH), 7.79 (1 H, d, J 7.2 Hz, Ar-CH), 7.88 (1 H, d, J 7.6 Hz, Ar-CH), 9.73 (1 H, 
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N=C9H). δC (100 MHz; DMSO 90 °C) 19.4 (C7H3), 29.8 (C8H3), 30.0 (OC6H2), 30.8 

(NC5H), 61.9 (NC9H2), 67.6 (NC10HPh), 70.5 (OC4HPh), 101.6 (quat.C2), 125.0 (Ar-

CH), 125.8 (Ar-CH), 126.8 (Ar-CH), 127.0 (Ar-CH), 126.0 (Ar-CH), 126.2 (Ar-CH), 

126.3 (Ar-CH), 128.3 (Ar-CH), 128.5 (Ar-CH), 129.5 (Ar-CH), 130.7 (Ar-CH), 130.9 

(Ar-CH), 135.0 (Ar-CH), 135.8 (quat.Ar-C), 136.6 (quat.Ar-C), 140.3 (quat.Ar-C), 141.3 

(quat.Ar-C), 141.5 (quat.Ar-C), 171.2 (N=C9H). (. m/z 460.22711 [- 1.2 ppm]; 

C32H30NO2
+ requires 460.22765. 

 

 

 5-Benzyl-6-(2,2-dimethyl-4-phenyl-(1,3)dioxan-5-yl)-5H-dibenzo(c,e)azepinium ; 

bromide. 

 

 

 

 39 43   

 

Prepared according to the general procedure from 6-(2,2-Dimethyl-4-phenyl-

[1,3]dioxan-5-yl)-5-phenyl-6,7-dihydro-5H-dibenzo[c, e]azepine (39) (0.10 g, 0.21 

mmol) and N-bromosuccinimide (0.04 g, 0.23 mmol) to yield the desired bromide 

azepinium salt as a yellow powder (43) (0.10 g, 0.17 mmol, 83%). νmax(film) /cm-1 3372, 

2960, 2359, 1708, 1639, 1448, 1383, 1260, 1201, 1083, 1027, 799, 751, 700. [α]20
D 

−18.5 ° (c 1.06, CHCl3). δH (400 MHz; DMSO 90 °C) 1.67 (3 H, s, C7H3), 1.68 (3 H, s, 

C8H3), 2.56 (2 H, d, J 8.8 Hz, C11H2Ph), 3.55 (1 H, d, J 13.6 Hz, OC6HH), 4.52 (1 H, dd, 
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J 3.2 & 13.6 Hz, OC6HH), 5.01 (1 H, s, NC5H), 5.76 – 5.81 (2 H, m, OC4HPh & 

NC10HBn), 6.86 – 6.88 (2 H, m, Ar-Ca’/a”H), 6.96 (1 H, m, Ar-CbH), 6.97 – 7.04 (3 H, m, 

Ar-C c’/c”/c”’H), (5 H, m, Ar-Cd’/d”/e’/e”/e”’H), 7.34 (1 H, dt, J 0.8 & 7.4 Hz, Ar-CfH), 7.48 (1 

H, dt, J 1.2 & 7.4 Hz, Ar-CgH), 7.68 (1 H, d, J 7.2 Hz, Ar-CHH), 7.86 (1 H, dt, J 1.4 & 

7.4 Hz, Ar-CiH), 8.05 – 8.12 (3 H, m, Ar-Cj/k/lH), 9.61 (1 H, s, N=CH). δC (100 MHz; 

DMSO 90 °C) 19.2 (C7H3), 29.6 (C8H3), 34.1 (OC6H2), 65.2 (C11H2Ph), 68.6 (NC5H), 

71.2 (OC4HPh), 74.2 NC10HBn), 101.2 (quat.C2), 125.4 (Ar-Ce’/e”/e”’H), 126.0 (quat.C), 

127.8 (Ar-Cc’/c”/c’”H), 128.4 (Ar-Ca’/a”H), 128.7 (Ar-CiH), 129.0 (Ar-Cd’/d”H), 129.4 (Ar-

ClH), 130.2 (Ar-CgH), 130.5 (Ar-CHH), 130.6 (Ar-CfH), 130.7 (Ar-CbH), 134.6 (quat.C), 

130.6 (quat.C), 135.7 (quat.C), 136.1 (quat.C), 136.2 (quat.C), 137.5 (Ar-CkH), 141.9 

(quat.C), 170.6 (N=C9H). m/z 474.24268 [- 1.3 ppm]; C33H32NO2
+ requires 474.24330. 

 

 

 4-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-3-methyl-4,5-dihydro-3H-4-aza-

cyclohepta(2,1-a;3,4-a')dinaphthalene 
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3 51   

 

Prepared according to the general procedure from azepinium (3) (0.69 g, 1.20 mmol) and 

methyl magnesium bromide (1.20 mL, 3.60 mmol) to yield the desired methylated amine 

(51) as a colourless powder (0.34 g, 0.67 mmol, 56%). νmax(film) /cm-1 2921, 2359, 

1379, 1260, 1198, 1100, 1082, 1028, 819, 699. [α]20
D −96.4 ° (c 0.71, CHCl3). δH (400 



   Phillip Parker; Experimental 

    181 

MHz; CDCl3) 0.12 (3 H, d J 7.2 Hz, C11H3), 1.51 (3 H, s, C7H3), 1.60 (3 H, s, C8H3), 

2.90 (1 H, sextet, J 2.0 & 4.0 Hz, NC5H), 3.54 (1 H, d, J 11.6 Hz, upfield portion of 

ABX system, NC9HH), 3.74 (1 H, d, J 11.2 Hz, downfield portion of ABX system, 

NC9HH), 4.01 (1 H, dd, J 1.6 & 12.4 Hz, upfield portion of ABX system, OC6HH), 4.23 

(1 H, dd, J 2.8 & 15.2 Hz, downfield portion of ABX system, OC6HH), 4.45 (1 H, q, J 

7.2 Hz, NC10HMe), 5.13 (1 H, d. 3.2 Hz, OC4HPh), 7.07 – 7.14 (3 H, m, 3 x Ar-CH), 

7.19 – 7.25 (5 H, m, 5 x Ar-CH), 7.28 – 7.34 (5 H, m, 5 x Ar-CH), 7.73 – 7.82 (4 H, m, 4 

x Ar-CH). δC (100 MHz; CHCl3) 18.3 (C7H3), 20.2 (C11H3), 28.4 (C8H3), 53.2 (NC9H2), 

58.8 (NC10HMe), 59.1 (NC5H), 62.9 (OC6H2), 73.3 (OC4HPh), 98.4 (quat.C2), 124.00 

(Ar-CH), 124.03 (Ar-CH), 124.2 (Ar-CH), 124.5 (Ar-CH), 125.2 (2 x Ar-CH), 125.6 

(Ar-CH), 126.3 (Ar-CH), 126.4 (Ar-CH), 126.5 (Ar-CH), 126.7 (2 x Ar-CH), 126.8 (Ar-

CH), 127.1 (Ar-CH), 127.3 (Ar-CH), 127.5 (Ar-CH), 127.8 (Ar-CH), 130.8 (quat.Ar-C), 

130.9 (quat.Ar-C), 131.5 (quat.Ar-C), 131.7 (quat.Ar-C), 131.9 (quat.Ar-C), 133.9 

(quat.Ar-C), 135.3 (quat.Ar-C), 138.8 (quat.Ar-C), 139.1 (quat.Ar-C). C35H33NO2 

requires 499.2511. 
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 4-(2,2-Dimethyl-4-phenyl-(1,3)dioxan-5-yl)-3-methyl-3H-4-azonia-cyclohepta(2,1-

a;3,4-a')dinaphthalene; Bromide salt. 

 

 

 

51 52  

 

Prepared according to the general procedure from amine 51 (0.34 g, 0.66 mmol) and 

NBS (0.24 g, 1.33 mmol) to yield the desired binapthalene azepinium salt catalyst 52 As 

a dark yellow powder (0.30 g, 0.52 mmol, 79%). νmax(film) /cm-1 3392, 2359, 1695, 

1377, 1190, 1112, 820, 753, 667. [α]20
D −96.4 ° (c 0.71, CHCl3). δH (400 MHz; CDCl3) 

1.05 (3 H. d, J 7.2 Hz, NCH(C11H3)), 1.70 (6 H, s, 2 x C7&8H3), 4.34 (1 H. d, J 14.0 Hz, 

upfield portion of ABX system, OC6HH), 4.97 (1 H. dd, J 2.4 & 14.0 Hz, downfield 

portion of ABX system, OC6HH), 5.41 (1 H, s (broad), NC5H), 5.72 (1 H. d, J 2.0 Hz, 

OC4HPh), 5.98 – 6.08 (1 H, m, NC10H(CH3), 6.74 (1 H, d, J 9.2 Hz, Ar-CH), 7.05 – 7.16 

(3 H. m, 3 x Ar-CH), 7.24 – 7.36 (3 H. m, 3 x Ar-CH), 7.37 – 7.50 (3 H, m, 3 x Ar-CH), 

7.54 – 7.67 (3 H. m, 3 x Ar-CH), 7.86 (1 H. d, J 8.0 Hz, Ar-CH), 7.94 (2 H. dd, J 8.4 & 

10.8 Hz, 2 x Ar-CH), 8.05 (1 H. d, J 8.4 Hz, Ar-CH), 9.54 (1 H, s, N=CH). δC (100 

MHz; CHCl3) 18.7 (C11H3), 29.8 (C7 or 8H3), 31.0 (C7 or 8H3), 62.5 (OC6H2), 67.1 (CH), 

67.9 (CH), 71.2 (CH), 101.0 (quat.Ar-C2H), 124.5 (Ar-CH), 124.6 (Ar-CH), 125.5 (Ar-

CH), 126.8 (Ar-CH),127.4 (Ar-CH),128.01 (Ar-CH), 128.06 (Ar-CH), 128.2 (Ar-CH), 

128.3 (Ar-CH), 128.5 (Ar-CH), 129.3 (Ar-CH), 129.7 (Ar-CH), 130.8 (Ar-CH), 132.2 

(Ar-CH), 134.7 (quat.Ar-C), 135.4 (quat.Ar-C), 136.9 (quat.Ar-C), 137.1 (quat.Ar-C), 

137.6 (quat.Ar-C), 139.4 (quat.Ar-C), 141.2 (quat.Ar-C), 142.6 (quat.Ar-C), 169.2 

(quat.Ar-C), 177.4 (N=CH). m/z 498.24435 [+ 1.9 ppm]; C35H32NO2Br requires 

498.24331. 
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 2-iodo-benzoic acid methyl ester. 14 
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  63 64   

  

Acetyl chloride (0.31 mL, 4.40 mmol) was added to a solution of 2-iodobenzoic acid 

(63) (1.00 g, 4.00 mmol) in methanol (50 mL). The reaction mixture was heated under 

reflux for 16 h. The reaction was allowed to cool to ambient temperature. The crude 

product was extracted from saturated aqueous hydrochloric acid (2 x 50 mL, 1 M), and 

saturated brine (2 x 50 mL), and dried over MgSO4. The solvent was removed under 

reduced pressure to yield the desired product (64) as a yellow oil (0.84 g, 3.20 mmol, 

81%). νmax(film) /cm-1 1726, 1284, 1254, 1130, 1107, 1014, 743. δH (400 MHz; CDCl3) 

3.85 (3 H, s, OC8H3), 7.06 (1 H, dt, J 8.0 & 2.0 Hz, Ar-C5H ortho to ester group), 7.31 (1 

H, dt, J 1.2 & 7.6 Hz, Ar-C2H meta to ester group, ortho to iodo group), 7.72 (1 H, dd, J 

1.6 & 8.0 Hz, Ar-C3H para to ester group), 7.90 (1 H, dd, J 1.2 & 8.0 Hz, Ar-C4H meta 

to ester group, para to iodo group). δC (100 MHz; CDCl3) 14.6 (OC8H3), 94.3 (quat.C1 

ipso to iodo group), 128.2 (Ar-CH), 131.2 (Ar-CH), 132.8 (Ar-CH), 135.8 (quat.C6 ipso 

to ether), 141.6 (Ar-CH), 167.0 (quat.C=O). 

 

 



   Phillip Parker; Experimental 

    184 

 2-iodo-benzoic acid ethyl ester. 14 
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A solution of 2-iodobenzoic acid (63) (1.00 g, 4.00 mmol) in thionyl chloride (10 mL, 

142 mmol) was heated under reflux for 2 h. The reaction was allowed to cool to ambient 

temperature and the solvent removed under reduced pressure. The crude intermediate 

was dissolved in absolute ethanol (14 mL) and heated under reflux for 12 h. The reaction 

was allowed to cool to ambient temperature. The solvent was removed under reduced 

pressure and the residue dissolved in 5% saturated aqueous potassium carbonate 

solution. The organic phase was extracted into DCM and dried over MgSO4. The solvent 

was removed under reduced pressure to yield the desired ester as a yellow oil (65). 

νmax(film) /cm-1 1724, 1285, 1255, 1133, 1102, 1015, 741. δH (400 MHz; CDCl3) 1.33 (3 

H, dt, J 6.8 & 2.4 Hz, OCH2C9H3), 4.32 (2 H, dq, J 7.2 & 2.8 Hz, OC8H2CH3), 7.05 (1 

H, t, J 7.2 Hz, Ar-C5H ortho to ester group), 7.31 (1 H, t, J 7.6 Hz, Ar-C2H meta to ester, 

ortho to iodo group), 7.70 (1 H, d, J 7.6 Hz, Ar-C3H para to ester), 7.89 (1 H, d, J 8.0 

Hz, Ar-C4H meta to ester, para to iodo group). δC (100 MHz; CDCl3) 14.3 (C9H3), 61.7 

(OC8H2), 94.0 (quat.C1 ipso to iodo), 127.9 (Ar-CH), 130.8 (Ar-CH), 132.5 (Ar-CH), 

135.4 (quat.C6 ipso to ether), 141.2 (Ar-CH), 166.6 (quat.C=O). 
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2'-Formyl-biphenyl-2-carboxylic acid methyl ester. 14 
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Acetyl phenyl boronic acid (50) (0.53 g, 3.20 mmol) and saturated aqueous potassium 

carbonate (1.32 g, 9.40 mmol) were added to a solution of 2-iodo-benzoic acid methyl 

ester (64) (0.93 g, 3.40 mmol) in toluene (50 mL), ethanol (5 mL) and water (6 mL). The 

reaction mixture was degassed with a nitrogen flow over 30 min. After adding Pd(PPh3)4 

(185 mg, 0.16 mmol) the reaction mixture was degassed under a nitrogen flow over 15 

min. The mixture was stirred under reflux and a nitrogen atmosphere for 24 h and 

allowed to cool to ambient temperature. The reaction mixture was then filtered through a 

plug of celite and the organic solvents were removed under reduced pressure and the 

crude reaction mixture was dissolved in diethyl ether (50 mL). The combined organic 

layers were washed with water (2 x 40 mL) and dried over MgSO4. The solvents were 

removed under reduced pressure, and the crude compound was purified by flash 

chromatography (ethyl acetate/petrol 15% − 100%) to afford the desired biaryl 

compound as a yellow oil (66) (0.66 g, 2.6 mmol, 76%). νmax(film) /cm-1 2949, 1725, 

1688, 1289, 1254, 1127, 1091, 761. δH (400 MHz; CDCl3) 2.08 (3 H, d, J 0.8 Hz, 

OC9H3), 3.53 (3 H, d, J 0.4 Hz, COC8H3), 7.06 (1 H, ddd, J 0.4, 0.8 & 7.2 Hz, Ar-CH), 

7.10 (1 H, ddd, J 0.4, 0.8 & 7.6 Hz, Ar-CH), 7.293 − 7.432 (4 H, m, Ar-CH), 7.62 (1 H, 

ddd, J 0.4, 0.8 & 7.6 Hz, Ar-CH), 7.88 (1 H, ddd, J 0.4, 0.8 & 7.6 Hz, Ar-CH). δC (100 

MHz; CDCl3) 29.4 (OC9H3), 52.0 (COC8H3), 127.4 (Ar-CH), 127.6 (Ar-CH), 128.2 (Ar-

CH), 129.6 (quat.Ar-C), 130.2 (Ar-CH), 130.8 (Ar-CH), 130.9 (Ar-CH), 131.7 (Ar-CH), 

138.7 (Ar-CH), 138.7 (quat.Ar-C), 140.9 (quat.Ar-C), 142.8 (quat.Ar-C), 167.5 (quat.Ar-

C), 201.7 (quat.Ar-C). 



   Phillip Parker; Experimental 

    186 

 2'-Formyl-biphenyl-2-carboxylic acid ethyl ester. 14 
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Acetyl phenyl boronic acid (60) (0.56 g, 3.4 mmol) and saturated aqueous potassium 

carbonate (1.4 g, 10 mmol) were added to a solution of 2-iodo-benzoic acid ethyl ester 

(65) (0.93 g, 3.4 mmol) in toluene (50 mL), ethanol (5 mL) and water (6 mL). The 

reaction mixture was degassed with a nitrogen flow over 30 min. After adding Pd(PPh3)4 

(196 mg, 0.17 mmol) the reaction mixture was degassed under a nitrogen flow over 15 

min. The mixture was stirred under reflux and a nitrogen atmosphere for 48 h and 

allowed to cool to ambient temperature. The reaction mixture was filtered through a plug 

of celite and the organic solvents were removed under reduced pressure. The crude 

reaction mixture was then dissolved in diethyl ether (50 mL) and the combined organic 

layers were washed with water (2 x 40 mL) and dried over MgSO4. The solvents were 

removed under reduced pressure, and the crude compound was purified by flash 

chromatography (ethyl acetate:petrol 15% − 100%) to afford the desired biaryl 

compound as a yellow oil (67) (0.66 g, 2.6 mmol, 76%). νmax(film) /cm-1 2980, 1718, 

1688, 1287, 1251, 1129, 1089, 760. δH (400 MHz; CDCl3) 0.89 (3 H, t, J 7.0 Hz, 

OCH2C10H3), 2.04 (3 H, s, COC8H3), 3.95 (2 H, dq, J 2.4 & 7.2 Hz),OC9H2CH3), 7.05 (1 

H, ddd, J 0.8, 2.0 & 6.8 Hz, Ar-CH), 7.08 (1 H, ddd, J 0.4, 1.2 & 7.2 Hz, Ar-CH), 7.28 − 

7.41 (4 H, m, Ar-CH), 7.60 (1 H, dd, J 1.6 & 7.2 Hz, (Ar-CH), 7.88 (1 H, dd, J 1.6 & 7.6 

Hz, Ar-CH). δC (100 MHz; CDCl3) 12.7 (OCH2C10H3), 28.4 (COC8H3), 59.7 

(OC9H2CH3), 126.3 (Ar-CH), 126.5 (Ar-CH), 127.1 (Ar-CH), 129.0 (Ar-CH), 129.1 

(quat.Ar-C), 129.2 (Ar-CH), 129.6 (Ar-CH), 129.7 (Ar-CH), 130.4 (Ar-CH), 137.7 

(quat.Ar-C), 140.0 (quat.Ar-C), 141.3 (quat.Ar-C), 166.1 (COCH3), 200.7 (COOEt). 
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 (aR,3R,13bS)-13b-Methyl-3-phenyl-2,3-dihydro-13bH-dibenz-(c,e)- oxazolo(3,2-a) 

azepine-5-1. 14 

 

 

 

 66 (R = Me) 

 67 (R = Et) 

57 

 

56   

 

 

2'-Formyl-biphenyl-2-carboxylic acid methyl ester (66) (0.66 g, 2.60 mmol) [or 2'-

formyl-biphenyl-2-carboxylic acid ethyl ester (67) (0.70 g, 2.60 mmol)] and R-

phenylglycinol (57) (0.37 g, 2.60 mmol) were dissolved in toluene (13 mL) in a Dean-

Stark apparatus. The mixture was stirred at reflux for 16 h. The reaction was allowed to 

cool to ambient temperature and solvent was removed under reduced pressure. The crude 

product was purified by flash chromatography on silica gel (ethyl acetate/petrol 10 − 

25%) to provide the desired lactam (56) as a colourless oil, as a pair of diastereoisomers 

(0.39 g, 1.16 mmol, 57%). νmax(film) /cm-1 3061, 2986, 2935, 2877, 1634, 1449, 1396, 

1239, 1038, 743, 697. [α]20
D +108 ° (c 1.00, CHCl3). δH (400 MHz; CDCl3) 1.45 (3 H. s, 

C6H3), 4.18 (1 H, dd, J 1.2 & 8.8 Hz, upfield portion of ABX system, OC3HH), 4.32 (1 

H, q, J 6.0 Hz, downfield portion of ABX system, OC3HH), 5.36 (1 H, d, J 6.0 Hz, 

NC2HPh), 7.22 (1 H, J 1.2, 6.4 & 14.8 Hz. Ar-CH), 7.28 − 7.51 (10 H, m, Ar-CH), 7.58 

− 7.60 (1 H, m, Ar-CH), 7.80 (1 H, d, 1.2 & 7.6 Hz, Ar-CH). δC (100 MHz; CDCl3) 25.7 

(C6H3), 61.8 (NC2HPh), 71.0 (OC3H2), 93.9 (quat.C5OCH3), 122.3 (Ar-CH), 126.9 (2 x 

Ar-CH), 127.6 (Ar-CH), 128.1 (Ar-CH), 128.3 (Ar-CH), 128.6 (2 x Ar-CH), 128.8 (Ar-

CH), 128.9 (Ar-CH), 130.4 (Ar-CH),130.8 (Ar-CH), 131.3 (Ar-CH), 133.4 (quat.C), 

135.9 (quat.C), 137.2 (quat.C), 141.0 (quat.C), 142.0 (quat.C), 165.6 (quat.C13O). 
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3-(2-iodo-benzyl)-4-phenyl-oxazolidin-2-one. 
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Method A 

 

To a solution of R-(-)-4-phenyl-2-oxazolidinone (72) (0.20 g, 1.23 mmol) in THF (2 mL) 

at ambient temperature under a nitrogen atmosphere was added NaHMDS (2M in THF, 

0.68 mL, 1.35 mmol) in one portion. After 30 min a solution of 2-iodobenzylbromide 

(73) (0.40 g, 1.35 mmol) in THF (2 mL) was added, the reaction mixture was heated to 

50 °C and monitored by HPLC for completion. The reaction was allowed to cool to 

ambient temperature at which point saturated potassium carbonate and TBME were 

added. The organic fraction was separated and dried over magnesium sulphate. The 

solvent was removed under reduced pressure to yield the desired alkylated oxazolidinone 

as a low melting solid (71) (0.46 g, 1.21 mmol, 98%). 

 

Method B 

 

To a solution of R-(-)-4-phenyl-2-oxazolidinone (72) (0.54 g, 3.36 mmol) in THF (5 mL) 

at ambient temperature under a nitrogen atmosphere was added potassium butoxide 

(12% in THF, 3.27 g, 29.1 mmol) in one portion. After 30 min a solution of 2-

iodobenzylbromide (73) (0.80 g, 3.37 mmol) in THF (5 mL) was added, the reaction 
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mixture was heated to 50 °C and monitored by HPLC for completion. The reaction was 

allowed to cool to ambient temperature at which point saturated potassium carbonate and 

TBME were added. The organic fraction was dried over magnesium sulphate and the 

solvent was removed under reduced pressure to yield the desired alkylated oxazolidinone 

as a low melting solid (71) (1.13 g, 2.99 mmol, 89%). νmax(film) /cm-1 2960, 1749, 1428, 

1240, 1081, 1012, 751, 668. [α]20
D −56.0 ° (c 0.65, CHCl3), δH (400 MHz; CDCl3) 4.00 

(1 H, d, J 16.0 Hz, NCHH), 4.18 (1 H, dd. J 8.0 & 12.0 Hz, NCHPh), 4.57 (1 H, dd, J 

4.0 & 12.0 Hz, OCHH), 4.63 (1 H, t, J 8.0 Hz, OCHH), 4.79 (1 H, d, J 16.0 Hz, OCHH), 

6.97 (1 H, t, J 8.0 Ar-CH), 7.15 – 7.19 (3 H, m, 3 x Ar-CH), 7.26 – 7.30 (1 H, m, Ar-

CH), 7.34 – 7.41 (3 H, m, 3 x Ar-CH), 7.79 (1 H, d, J 8.0 Hz, Ar-CH). δC (100 MHz; 

CHCl3) 51.1 (OCH2), 59.7 (NCHPh), 70.5 (NCH2), 99.3 (quat.Ar-C, ipso in iodopenyl 

ring), 114.4 (Ar-CH), 126.6 (Ar-CH), 127.6 (Ar-CH), 129.0 (Ar-CH), 129.6 (Ar-CH), 

129.8 (Ar-CH), 130.1 (Ar-CH), 130.4 (Ar-CH), 138.2 (quat.Ar-CI), 138.3 (quat.Ar-C, 

ipso in phenyl ring) 140.3 (Ar-CH), 158.8 (C=O). m/z 380.21; C16H14NO2I requires 

379.0069 

 

 

3-(2-iodo-benzyl)-4-isopropyl-oxazolidin-2-one. 
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To a solution of R-(-)-4-isopropyl-2-oxazolidinone (109) (4.8 g, 37.2 mmol) in THF

(80 mL) at ambient temperature under a nitrogen atmosphere was added potassium 
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butoxide (12% solution in THF, 50.0 g, 448 mmol) in one portion. After 30 min a 

solution of 2-iodobenzylbromide (73) (13.27 g, 44.8 mmol) in THF (20 mL) was added 

and monitored by HPLC for completion. On consumption of the starting material 

saturated potassium carbonate and TBME were added. The organic fraction was dried 

over magnesium sulphate and the solvent was removed under reduced pressure to yield 

the desired alkylated oxazolidinone as a foam (110) (12.3 g, 35.7 mmol, 96%). 

νmax(film) /cm-1 2960, 1749, 1428, 1240, 1081, 1012, 751, 668. [α]20
D −19.4 ° (c 1.09, 

CHCl3). δH (400 MHz; CDCl3) 0.84 (3 H, d, J 8.0 Hz, CH3), 0.89 (3 H, d, J 8.0 Hz, 

CH3), 2.13 (1 H, dectet (m), 4.0 Hz, CH(CH3)2), 3.59 (1 H, ddd, J 4.0 & 6.0 Hz, 

NCHPri), 4.13 (1 H, dd, J 4.0 & 8.0 Hz, OCHH), 4.21 – 4.26 (2 H, m, OCHH & NCHH), 

4.82 (1 H, d, J 16 Hz, NCHH), 6.98 – 7.02 (1 H, m, Ar-CH), 7.35 (2 H, d, J 4.0 Hz, 2 x 

Ar-CH), 7.85 (1 H, d, J 8.0 Hz, Ar-CH). δC (100 MHz; CHCl3) 14.2 (CH3), 17.7 (CH3), 

27.6 (CHPri), 50.4 (OCHH), 58.7 (CHPh), 62.9 (NCHH), 98.6 (quat.Ar-C, ipso in 

iodophenyl ring), 128.7 (Ar-CH), 129.3 (Ar-CH), 129.6 (Ar-CH), 138.3 (quat.Ar-CI), 

139.8 (Ar-CH), 158.6 (C=O). m/z 346.02983 [- 1.4 ppm]; C13H17INO2
+ requires 

346.03040. 

 

 

 3-(2-iodo-benzyl)-4-benzyl-oxazolidin-2-one. 
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To a solution of R-(-)-4-benzyl-2-oxazolidinone (110) (5.00 g, 28.2 mmol) in THF (40 

mL) at ambient temperature under a nitrogen atmosphere was added potassium butoxide 

(12% solution in THF, 32 mL, 256 mmol) in one portion. After 30 min a solution of 2-

iodobenzylbromide (73) (7.61 g, 25.6 mmol) in THF (10 mL) was added and monitored 

by HPLC for completion. On consumption of the starting material saturated potassium 

carbonate and TBME were added.  The organic fraction was dried over magnesium 

sulphate and the solvent was removed under reduced pressure to yield the desired 

alkylated oxazolidinone as a foam (111) (10.4 g, 26.6 mmol, 95%). νmax(film) /cm-1 

1750, 1418, 1237, 1081, 1012, 743, 701, 668. [α]20
D −26.8 ° (c 1.09, CHCl3). δH (400 

MHz; CDCl3) 2.64 (1 H, dd, J 10.0 & 16.0 Hz, CHHPh), 3.17 (1 H, dd, J 4.0 & 12.0 Hz, 

CHHPh), 3.82 – 3.88 (1 H, m, NCHPh), 4.07 (1 H, dd, J 4.0 & 8.0 Hz, OCHH), 4.16 (1 

H, t, J 8.0 Hz, OCHH), 4.44 (1 H, d, 16 Hz, NCHH), 4.81 (1 H, d, J 16.0 Hz, NCHH), 

7.00 – 7.05 (1 H, m, Ar-CH), 7.08 (2 H, d, J 8.0 Hz, 2 x Ar-CH), 7.23 – 7.30 (3 H, m, 3 x 

Ar-CH), 7.37 (2 H, d, J 4.0 Hz, Ar-CH), 7.87 (1 H, d, J 8.0 Hz, Ar-CH). δC (100 MHz; 

CHCl3) 38.4 (CHHPh), 50.9 (OCHH), 56.0 (NCH), 66.8 (NCHH), 98.7 (quat.Ar-C, ipso 

in iodophenyl ring), 127.7 (Ar-CH), 128.8 (Ar-CH), 128.9 (2 x Ar-CH), 129.1 (2 x Ar-

CH), 129.5 (Ar-CH), 129.8 (Ar-CH), 135.4 (quat.Ar-CI), 138.5 (quat.Ar-C in benzyl 

ring), 139.8 (Ar-CH), 158.2 (C=O). m/z 394.03105; C17H17NO2I+ requires 394.03040. 

 

 

General procedure for the addition of 3-(2-iodo-benzyl)-4-alkyl-oxazolidin-2-ones to 

acetylphenyl boronic acid using Suzuki methodology. 

 

To a solution of the desired 3-(2-iodo-benzyl)-4-alkyl-oxazolidin-2-one (1 equiv.) in 

toluene (10 vol.) and ethanol (15 vol.), were added boronic acid (50) (1 equiv.) and 

saturated aqueous potassium carbonate solution (2M in water, 10 vol.). The reaction 

mixture was degassed with a nitrogen flow over 30 min. After adding the desired 

palladium catalyst (5%mol), the reaction mixture was degassed with a nitrogen flow over 

15 min. The mixture was stirred at under reflux and under nitrogen atmosphere whilst 

monitoring by HPLC, once full consumption of the starting material was observed the 
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reaction was allowed to cool to ambient temperature. The solution was filtered through a 

plug of celite and toluene was removed under reduced pressure. To the resulting 

saturated aqueous phase TBME was added. After phase separation, the organic layer 

were washed with water and dried over MgSO4. The solvents were removed under 

reduced pressure to afford the crude Suzuki biphenyl compound. 

 

 

3-(2'-acetyl-biphenyl-2-ylmethyl)-4-phenyl-oxazolidin-2-one. 
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Prepared according to the general procedure from the 3-(2-iodo-benzyl)-4-phenyl-

oxazolidin-2-one (71) (0.46 g, 1.21 mmol), boronic acid (60) (0.20 g, 1.21 mmol) and 

Pd(DPPF)4 (70.0 mg, 0.06 mmol), to afford the crude biphenyl compound (70). The 

crude material was immediately carried forward into the next reaction. 
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3-(2'-acetyl-biphenyl-2-ylmethyl)-4-isopropyl-oxazolidin-2-one. 
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Prepared according to the general procedure from the desired 3-(2-iodo-benzyl)-4-

isopropyl-oxazolidin-2-one (110) (1.00 g, 2.90 mmol), boronic acid (60) (0.48 g, 2.90 

mmol) and Pd(DPPF) (0.12 g, 0.15 mmol) to afford the crude biphenyl compound (112). 

The crude material was immediately carried forward into the next reaction. 

 

 

3-(2'-acetyl-biphenyl-2-ylmethyl)-4-benzyl-oxazolidin-2-one. 
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Prepared according to the general procedure from the desired 3-(2-iodo-benzyl)-4-

benzyl-oxazolidin-2-one (111) (1.00 g, 2.90 mmol), boronic acid (60) (0.48 g, 2.9 mmol) 

and Pd(DPPF) (0.12 g, 0.15 mmol) to afford the crude biphenyl compound (113). The 

crude material was immediately carried forward into the next reaction. 

 

 

General procedure for the deprotection of biphenyl oxazolidinones and the 

subsequent cyclisation in the generation tetracyclic compounds. 

 

To a crude solution of the desired biphenyl oxazolidinone in ethanol (10 vol.) was added 

saturated aqueous NaOH (2M in water, 10 vol.). The reaction mixture was heated under 

reflux for 16 h then allowd to cool to ambient temperature. The organic solvent was 

removed under reduced pressure and the resulting residue was dissolved in TBME (10 

vol.) and HCl (5M in water, 10 vol.). The reaction mixture was stirred for 30 min and the 

organic layer was separated, dried over magnesium sulphate and the solvent was 

removed under reduced pressure to yield the crude cyclised product. The desired 

compounds were isolated by flash chromatography on silica gel (ethyl acetate:heptane 1 

– 5%). 

 

 

 4b-Methyl-7-phenyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo(e,g) azulene. 
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Prepared according to the general procedure using a crude solution of 3-(2'-acetyl-

biphenyl-2-ylmethyl)-4-phenyl-oxazolidin-2-one (70) to afford the desired tetracycle as 

one diastereoisomer isolated as a foam (62) (two steps; 0.049 g, 0.15 mmol, 12%). 

νmax(film) /cm-1 2963, 1449, 1260, 1153, 1038, 897, 802, 758, 740, 701. [α]20
D – 25.1 ° 

(c 1.10, CHCl3). δH (400 MHz; CDCl3) 1.01 (3 H, s, NC(CH3)O), 2.98 (1 H, d, J 10.8 

Hz, NCHH), 3.47 (1 H, d, J 10.8 Hz, NCHH), 3.75 (1 H, dd, J 7.6 & 9.6 Hz, OCHH), 

3.83 (1 H, dd, J 6.0 & 9.6 Hz, OCHH), 4.26 (1 H, dd, J 6.4 & 7.2 Hz, NCHPh), 7.12 (1 

H, d, J 7.2 Hz, Biphenyl-CH), 7.19 – 7.24 (2 H, m, 2 x Ar-CH), 7.25 – 7.31 (3 H, m, 3 x 

Ar-CH), 7.33 – 7.41 (6 H, m, 4 x Biphenyl-CH & 2 x Ar-CH), 7.78 – 7.81 (1 H, m, Ar-

CH). δC (100 MHz; CHCl3) 29.4 (CH3), 51.3 (OCH2), 68.1 (CHPh), 71.5 (NCH2), 96.1 

(NC(Me)O), 124.7 (Ar-CH), 126.4 (Ar-CH), 126.60 (Ar-CH), 126.63 (2 x Ar-CH), 

126.80 (Ar-CH), 126.84 (Ar-CH), 126.9 (Ar-CH), 127.3 (Ar-CH), 127.6 (2 x Ar-CH), 

127.9 (Ar-CH), 128.0 (Ar-CH), 134.0 (quat.Ar-C), 135.7 (quat.Ar-C), 137.9 (quat.Ar-C), 

139.2 (quat.Ar-C), 140.9 (quat.Ar-C). m/z 327.16263 [+ 1.0 ppm]; C23H21NO requires 

327.16231. 

 

 

7-isopropyl-4b-methyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo(e,g) azulene. 
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Prepared according to the general procedure using a crude solution of 3-(2'-acetyl-

biphenyl-2-ylmethyl)-4-isopropyl-oxazolidin-2-one (112) to afford the desired tetracycle 

as one diastereoisomer, isolated as a foam (90) (two steps; 0.08 g, 0.29 mmol, 10%). 

νmax(film) /cm-1 3419, 2954, 2871, 1459, 1365, 1213, 1160, 1043, 756, 730. [α]20
D – 98.8 

° (c 1.21, CHCl3). δH (400 MHz; CDCl3) 1.13 – 1.15 (9 H, m, 3 x CH3), 2.03 (1 H, octet, 

J 6.4 & 12.8 z, CH(CH3)2), 2.95 (1 H, q, J 5.6 Hz, CHPri), 3.39 (1 H, d, J 10.8 Hz, 

upfield portion of ABX system, NCHH), 3.88 (1 H, d, J 11.2 Hz, downfield portion of 

ABX system, NCHH), 4.01 (1 H, dd, J 5.6 & 8.0 Hz, OCHH), 4.16 (1 H, t(dd), J 7.6 

(7.2), OCHH), 7.44 (1 H, m, Biphenyl-CH), 7.47 – 7.49 (1 H, m, Biphenyl-CH), 7.50 – 

7.55 (3 H, m, 3 x Biphenyl-CH), 7.57 – 7.61 (2 H, m, 2 x Biphenyl-CH), 7.89 – 7.91 (1 

H, m, Biphenyl-CH). δC (100 MHz; CHCl3) 15.9 (CH3), 18.4 (CH3), 28.9 (CH(CH3)2), 

29.5 (CH3), 53.0 (NCH2), 64.5 (OCH2), 68.8 (CHPri), 96.9 (quat.CO), 123.9 (Biphenyl-

CH), 126.3 (Biphenyl-CH), 126.65 (Biphenyl-CH), 126.67 (Biphenyl-CH), 126.7 

(Biphenyl-CH), 126.9 (Biphenyl-CH), 127.1 (Biphenyl-CH), 127.9 (Biphenyl-CH), 134.5 

(Biphenyl-quat.C), 136.1 (Biphenyl-quat.C), 139.2 (Biphenyl-quat.C), 140.8 (Biphenyl-

quat.C). m/z C20H23NO requires 293.17796  

 

 

 7-benzyl-4b-methyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo(e,g) azulene. 

 

N

O
O

O
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H

 

 

113 115  94 
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Prepared according to the general procedure using a crude solution of 3-(2'-acetyl-

biphenyl-2-ylmethyl)-4-isopropyl-oxazolidin-2-one (113) to afford the desired tetracycle 

as one diastereoisomer, isolated as a foam (94) (two step; 0.08 g, 0.23 mmol, 8%). 

νmax(film) /cm-1 2926, 1493, 1452, 1365, 1215, 1158, 1069, 1043, 761, 738, 700. [α]20
D 

−133.8 ° (c 1.10, CHCl3). δH (400 MHz; CDCl3) 0.93 (3 H, s, NC(CH3)O), 2.64 (1 H, q, 

J 10.4 Hz, PhCHH), 3.01 – 3.10 (3 H, m, NCHH, PhCHH & NCHBn), 3.68 (1 H, d, J 

10.8 Hz, NCHH), 3.75 (1 H, t, J 7.2 Hz, OCHH), 3.94 (1 H, dd, J 6.0 & 7.6 Hz, OCHH). 

7.13 – 7.17 (2 H, m, 2 x Ar-CH), 7.20 – 7.26 (3 H, m, 3 x Ar-CH), 7.27 – 7.33 (2 H, m, 2 

x Ar-CH), 7.34 – 7.40 (4 H, m, 4 x Ar-CH), 7.56 – 7.63 (2 H, m, 2 x Ar-CH). δC (100 

MHz; CHCl3) 29.5 (CH3), 38.5 (PhCH2), 52.4 (NCH2), 65.1 (CHBn), 68.9 (OCH2), 96.9 

(quat.C(CH3)), 124.3 (Ar-CH), 125.3 (Ar-CH), 126.4 (Ar-CH), 126.7 (Ar-CH), 126.83 

(Ar-CH), 126.84 (Ar-CH), 127.3 (3 x Ar-CH), 127.9 (Ar-CH), 128.0 (Ar-CH), 128.1 (2 x 

Ar-CH), 133.8 (quat.Ar-C), 135.9 (biphenyl-quat.C), 137.7 (biphenyl-quat.C), 138.9 

(biphenyl-quat.C), 140.9 (biphenyl-quat.C). m/z 342.18529 [- 1.5 ppm]; C24H23NO 

requires 341.17796. 

 

 

General procedure for the reductive amination using 2-iodobenzaldehyde and amino 

alcohols. 

 

2-iodobenzaldehyde (1.1 equiv.) and the desired amino alcohol (1.0 equiv.) were 

dissolved in methanol (10 vol.) and agitated over 5 h. To the reaction mixture sodium 

cyanoborohydride (1.1 equiv.) was added and stirred at ambient temperature for 15 h. 

The reaction was quenched with ammonium chloride and the solvent was removed under 

reduced pressure. The remaining residue was dissolved in DCM and was separated from 

saturated brine and dried over magnesium sulphate. The crude oil was purified by 

column chromatography using a DCM/MeOH eluent (100:0 – 95:5) to yield the desired 

secondary amine.  
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2S-(2-iodo-benzylamino)-propan-1-ol. 

 

O
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(S)
H

OH HN
I (S)

H
OH

 

 

77 116    87  

 

Prepared according to the general procedure using 2-iodobenzaldehyde (77) (6.38 g, 27.5 

mmol) and 2-(S)-aminopropanol (116) (1.88 g, 25 mmol) to yield the desired secondary 

amine as an oil (87) (1.05 g, 3.60 mmol, 14%). νmax(film) /cm-1 3324, 2956, 1563, 1435, 

1045, 1011, 750, 648. [α]20
D +14.3 ° (c 1.09, CHCl3). δH (400 MHz; CDCl3) 1.05 (3 H, 

d, J 6.4 Hz, CH3), 2.76 – 2.83 (1 H, m (dectet), NCH), 3.24 (1 H, dd, J 6.8 & 10.8 Hz, 

OCHH), 3.57 (1 H, dd, J 4.0 & 10.8 Hz, OCHH), 3.70 (1 H, d, J 13.2 Hz, NCHH), 3.84 

(1 H, d, J 13.2 Hz, NCHH), 6.90 (1 H, dt, J 1.6 & 7.6 Hz, Ar-CH), 7.25 (1 H, dt, J 1.2 & 

7.2 Hz, Ar-CH), 7.31 (1 H, dd, J 1.6 & 7.6 Hz, Ar-CH), 7.76 (1 H, dd, J 1.2 & 8.0 Hz, 

Ar-CH). δC (100 MHz; CHCl3) 17.2 (CH3), 53.9 (NCH), 55.5 (NCH2), 65.4 (OCH2), 

99.9 (quat.C), 128.5 (Ar-CH), 129.1 (Ar-CH), 129.9 (Ar-CH), 139.6 (Ar-CH), 141.9 

(quat.CI). m/z 292.02037 [+ 1.8 ppm]; C10H14NO+ requires 292.01984. 
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2S-(2-iodo-benzylamino)-3-methyl-butan-1-ol . 
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H
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77 117    89  

 

Prepared according to the general procedure using 2-iodobenzaldehyde (77) (6.38 g, 27.5 

mmol) and (S)-valinol (117) (2.56 g, 25.0 mmol) to yield the desired secondary amine as 

an oil (89) (1.30 g, 4.09 mmol, 16%). νmax(film) /cm-1 3321, 2956, 1563, 1464, 1435, 

1045, 1011, 750, 648. [α]20
D +11.3 ° (c 1.42, CHCl3). δH (400 MHz; CDCl3) 0.85 (3 H, 

d, J 6.8 Hz, C(CH3)(CH3)), 0.91 (3 H, d, J 6.8 Hz, C(CH3)(CH3)), 1.81 (1 H, sextet, J 6.8 

& 13.6 Hz, Pri-H), 2.41 (1 H, dd, J 6.0 & 10.0 Hz, NCH), 3.01 (2 H, s, OH & NH), 3.36 

(1 H, dd J 7.2 & 10.8 Hz, OCHH), 3.60 (1 H, dd, J 4.0 & 10.8 Hz, OCHH), 3.73 (1 H, d, 

J 13.2 Hz, NCHH), 3.80 (1 H, d, J 13.2 Hz, NCHH), 6.89 (1 H, dt, J 2.0 & 7.6 Hz, Ar-

CH, para to CCH2), 7.24 (1 H, dt, J 1.2 & 7.2 Hz, Ar-CH, para to CI), 7.29 (1 H, dd, J 

1.2 & 7.6 Hz, Ar-CH, orho to CCH2), 7.75 (1 H, dd, J 1.2 & 8.0 Hz, Ar-CH, ortho to 

CI). δC (100 MHz; CHCl3) 18.6 (CH3), 19.7 (CH3), 28.8 (CH(CH3)2), 55.8 (NCH2), 66.4 

(OCH2), 63.9 (NCHPri), 99.9 (quat.Ar-CCH2), 128.5 (Ar-CH, para to quat.CCH2), 129.1 

(Ar-CH, para to quat.CI), 130.1 (Ar-CH, ortho to quat.CCH2), 139.6 (Ar-CH, ortho to 

quat.CI), 142.0 (quat.Ar-CI). m/z 320.05114 [- 0.0 ppm]; C12H18INO requires 320.05114. 
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2-(2-iodo-benzylamino)-2-phenyl-ethanol. 
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77 57   76  

 

To a solution of R-phenylglycinol (57) (1.32 g, 9.60 mmol) in MeOH (25 mL) at 0 °C 

under a nitrogen atmosphere was added 2-iodobenzaldehyde (77) (2.20 g, 9.50 mmol). 

The reaction was allowed to warm to ambient temperature whilst being monitored by 

HPLC. When complete consumption of the starting materials was observed the crude 

reaction mixture was cooled to 0 °C and NaBH4 (0.66 g, 17.4 mmol) was added over 30 

min. The reaction was then allowed to stir for 16 h at ambient temperature. The reaction 

mixture was then cooled to 0 °C and quenched with saturated NaHCO3 (10% in water, 

30 mL). The organic solvent was removed under reduced pressure and dissolved with 

TBME. The organic fraction underwent saturated aqueous acid/base washing to isolate 

the pure amino alcohol as a colourless low melting solid (76) (2.77 g, 7.80 mmol, 81%). 

[α]20
D +2.5 ° (c 1.10, CHCl3). δH (400 MHz; CDCl3) 3.57 (1 H, d, J 8.8 & 10.4 Hz, 

OCHH), 3.65 (1 H, d, J 13.2 Hz, NCHH), 3.72 (1 H, dd, J 4.4 & 6.4 Hz, NCHPh), 3.78 

(1 H, d, J 13.2 Hz, NCHH), 3.81 (1 H, dd, J 4.4 & 8.4 Hz, OCHH), 6.94 – 6.97 (1 H, m, 

Ar-CH), 7.26 – 7.40 (7 H, m, 7 x Ar-CH), 7.80 – 7.83 (1 H, m, Ar-CH). δC (100 MHz; 

CHCl3), 55.7 (NCHH), 63.8 (NCH), 66.9 (CH2N), 99.9 (quat.Ar-C(CH2N)), 127.4 (2 x 

Ar-CH in phenyl ring) 127.8 (Ar-CH), 128.3 (Ar-CH), 128.7 (2 x Ar-CH in phenyl ring), 

129.0 (Ar-CH), 130.1 (Ar-CH), 139.6 (Ar-CH), 140.2 (quat.Ar-C), 142.1 (quat.Ar-C). 

m/z 354.03630 [+ 2.3 ppm]; C15H16INO requires 353.02766. 
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 (2-Hydroxy-1-phenyl-ethyl)-(2-iodo-benzyl)-carbamic acid tert-butyl ester. 

 

N H
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H

N H
OHI

OO

 

 

 76 118  

 

To 2-(2-iodo-benzylamino)-2-phenyl-ethanol (76) (0.38 g, 1.08 mmol) in THF (5 mL), 

di-tert-butyl dicarbonate (0.71 g, 3.24 mmol) and TEA (0.15 mL, 1.1 mmol) were added 

under a nitrogen atmosphere. The reaction was heated under reflux for 16 h at which the 

reaction was allowed to cool to ambient temperature. The organic solvent was removed 

under reduced pressure and re-dissolved in TBME, the crude reaction mixture then 

underwent saturated aqueous acid/base workup in an attempt to isolate the Boc-protected 

amido alcohol (118). No reaction was observed. 
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3-(2-Iodo-benzyl)-2,2-dimethyl-4-phenyl-oxazolidine. 
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 76 75  

To a solution of 2-(2-iodo-benzylamino)-2-phenyl-ethanol (76) (650 mg, 1.84 mmol) in 

toluene (10 mL) was added DMP (2.25 mL, 18.4 mmol) and p-TSA (70.0 mg, 0.37 

mmol). The reaction was heated under reflux in Dean and Stark apparatus. The reaction 

was monitored by TLC and the azeotropic removal of solvents. The crude reaction 

mixture was separated from saturated brine (3 x 20 mL), dried over MgSO4 and the 

solvent removed under reduced pressure. Purification via column chromatography using 

silica gel (washed with 4% TEA) and an ethylacetate/light petrol eluent (10%) yielded 

the desired acetal as a yellow low melting solid (75). (694 mg, 1.76 mmol, 96%). 

νmax(film) /cm-1 3420, 2972, 1455, 1362, 1255, 1187, 1054, 1011, 753, 700. [α]20
D −60.2 

(c 1.19, CHCl3). δH (400 MHz; CDCl3) 1.27 (3 H, s, CaH3), 1.30 (3 H, s, CbH3), 3.59 (1 

H,d, J 14.8 Hz, NCHH), 3.68 (1 H, t, J 8.0 Hz, OCHH), 3.82 (1 H, d, J 14.8, NCHH), 

4.01 (1 H, t, J 7.6 Hz, NCHPh), 4.14 (1 H, t, J 7.2, OCHH), 6.68 (1 H, dt, J 1.6 & 7.6 

Hz, meta in phenyl ring), 7.04 – 7.08 (2 H, m, meta in phenyl ring & Ar-CH), 7.10 – 

7.14 (2 H, m, para in phenyl ring & Ar-CH), 7.27 – 7.31 (2 H, m, 2 x Ar-CH), 7.36 (1 H, 

dd, J 1.6 & 8.0 Hz, ortho in phenyl ring), 7.54 (1 H, dd, J 1.2 & 8.0 Hz, ortho in phenyl 

ring). δC (100 MHz; CHCl3) 20.4 (CaH3), 27.6 (CbH3), 55.6 (NCH2), 66.6 (NCHPh), 70.9 

(OCH2), 95.2 (quat.C(CH3)2), 98.4 (quat.C), 126.4 (Ar-CH), 126.5 (Ar-CH), 126.9 (2 x 

Ar-CH), 127.1 (2 x Ar-CH), 127.6 (Ar-CH),130.1 (Ar-CH), 137.9 (Ar-CH), 139.4 

(quat.Ar-C), 140.0 (quat.Ar-C). m/z 393.05828 [+1.7 ppm]; C18H20INO requires 

393.05896 
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2R-(2-iodo-benzylamino)-3-phenyl-propan-1-ol. 
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OH  

 

77 119   91 

Prepared according to the general procedure using 2-iodobenzaldehyde (77) (3.00 g, 21.5 

mmol) and 2R-amino-3-phenyl-propan-1-ol (119) (2.92 g, 19.6 mmol) to yield the 

desired secondary amine as a viscous oil (91) (6.47 g, 17.6 mmol, 90%). νmax(film) /cm-1 

3441, 2359, 1652, 1635, 1113, 743, 699, 668. [α]20
D −21.4 ° (c 1.12, CHCl3). δH (400 

MHz; CDCl3) 2.67 – 2.78 (2 H, m [octet], CH2Ph), 2.85 – 2.91 (1 H, m, NCH), 3.30 (1 

H, dd, J 5.2 & 10.8 Hz, OCHH), 3.62 (1 H, dd, J 3.6 & 10.8 Hz, OCHH), 3.71 (2 H, s, 

NCHH), 6.86 (1 H, dt, J 1.6 & 7.6 Hz, Ar-CH, para to quat.CCH2), 7.09 – 7.07 (2 H, m, 

2 x Ar-CH), 7.12 – 7.16 (2 H, m, 2 x Ar-CH), 7.18 – 7.23 (3 H, m, 3 x Ar-CH), 7.71 (1 

H, dd, J 1.2 & 8.0 Hz, Ar-CH, ortho to CI). δC (100 MHz; CHCl3) 38.2 (CH2Ph), 55.6 

(CH2), 59.3 (NCH), 62.5 (CH2), 99.9 (quat.Ar-C), 126.5 (Ar-CH), 128.4 (Ar-CH), 128.7 

(2 x Ar-CH), 129.0 (Ar-CH), 129.3 (2 x Ar-CH), 129.8 (Ar-CH), 138.3 (quat.Ar-C), 

139.6 (Ar-CH), 141.9 (quat.Ar-CI). m/z 336 (C15H15NI+, minus methanol fraction); 

C16H18NOI requires 367.0344 
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2S-(2-iodo-benzylamino)-3-phenyl-propan-1-ol. 
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77 120   93 

 

Prepared according to the general procedure using 2-iodobenzaldehyde (77) (3.00 g, 21.5 

mmol) and 2S-amino-3-phenyl-propan-1-ol (120) (2.92 g, 19.6 mmol) to yield the 

desired secondary amine as a viscous oil (93) (6.19 g, 16.9 mmol, 86%). Having almost 

identical spectroscopic data to (91). νmax(film) /cm-1 3450, 2358, 1645, 1112, 745, 670, 

668. [α]20
D +19.2 ° (c 1.00, CHCl3). 

 

 

 2R-(2-iodo-benzylamino)-1R-phenyl-propan-1-ol. 
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77 121   95   
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Prepared according to the general procedure using 2-iodobenzaldehyde (77) (3.00 g, 21.5 

mmol) and 2-amino-1-phenyl-propan-1-ol as a viscous oil (121) (2.00 g, 13.2 mmol) to 

yield the desired secondary amine (95) (3.26 g, 8.90 mmol, 67%). νmax(film) /cm-1 3403, 

3058, 2969, 2869, 1450, 1115, 1011, 741, 701. [α]20
D −27.3 ° (c 1.10, CHCl3), δH (400 

MHz; CDCl3) 0.78 (3 h , d, J 6.4 Hz, CH3), 2.85 – 2.79 (1 H, m, CHCH3), 3.71 (1 H, d, J 

13.2 Hz, NCHH), 3.71 (1 H, d, J 13.2 Hz, NCHH), 4.63 (1 H, d, J 4.0 Hz, CH(Ph)OH), 

6.82 – 6.86 (1 H, m, Ar-CH), 7.10 – 7.16 (1 H, m, Ar-CH), 7.17 – 7.22 (6 H, m, 6 x Ar-

CH) 7.69 – 7.71 (1 H, m, Ar-CH). δC (100 MHz; CHCl3) 14.7 (CH3), 55.7 (NCH2), 57.8 

(CHCH3), 73.5 (CHOH), 99.9 (quat.Ar-CCH2), 126.3 (2 x Ar-CH), 127.2 (Ar-CH), 

128.2 (2 x Ar-CH), 128.5 (Ar-CH), 129.2 (Ar-CH), 130.0 (Ar-CH), 139.7 (Ar-CH), 

141.4 (quat.Ar-C, ipso in phenyl ring), 141.8 (quat.Ar-CI). m/z 368.05135 [+ 0.6 ppm]; 

C16H18INO requires 367.04332. 

 

 

2-(2-iodo-benzylamino)-1,2-diphenyl-ethanol. 
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 77 122   123 

 

Prepared according to the general procedure using 2-iodobenzaldehyde (77) (3.36 g, 14.5 

mmol) and 2-amino-1,2-diphenyl-ethanol (122) (2.82 g, 13.2 mmol) to yield the desired 

secondary amine as a foam (123) (4.10 g, 9.56 mmol, 66%). νmax(film) /cm-1 3060, 2965, 

3006, 2965, 1450, 1416, 1092, 1047, 748, 700. [α]20
D −32.1 ° (c 0.96, CHCl3). δH (400 

MHz; CDCl3) 3.49 (1 H, d, 13.6 Hz, NCHH), 3.61 (1 H, d, 13.6 Hz, NCHH), 3.78 (1 H, 
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d,6.0 Hz, NCHPh), 4.71 (1 H, d, 6.4 Hz, OCHPh), 6.86 (1 H, dt, 1.6 & 7.6 Hz, Ar-CH, 

para to quat.CCH2), 7.02 (1 H, dd, J 1.6 & 7.6 Hz, Ar-CH, para to quat.CI), 7.08 – 7.06 

(1 H, m, Ar-CH), 7.15 – 7.21 (6 H, m, 6 x Ar-CH), 7.22 – 7.29 (4 H, m, 4 x Ar-CH), 7.69 

(1 H, dd, J 1.2 & 8.0 Hz, Ar-CH, ortho to quat.CI). δC (100 MHz; CHCl3) 55.5 (NCH2), 

67.9 (NCHPh), 77.1 (OCHPh), 99.8, (quat.Ar-CCH2), 127.0 (2 x Ar-CH), 127.8 (Ar-

CH), 127.9 (Ar-CH), 128.17 (Ar-CH), 128.24 (2 x Ar-CH), 128.4, (2 x Ar-CH), 128.5 (2 

x Ar-CH), 129.0 (Ar-CH), 130.2 (Ar-CH), 139.1 (quat.Ar-CCHN), 139.6 (Ar-CH), 140.3 

(quat.Ar-CCHO), 141.7 (quat.Ar-CI). m/z 430.06602 [+ 1.8 ppm]; C21H21INO requires 

430.06678. 

 

 

General procedure for the addition of iodo-amino alcohols to acetylphenyl boronic 

acid using Suzuki methodology. 

 

To a solution of the desired amino alcohol (1 equiv.) in toluene (10 vol.) and ethanol (1 

vol.), were added boronic acid (1 equiv.) and saturated aqueous potassium carbonate 

solution (2M in water, 1 vol.). The reaction mixture was degassed with a nitrogen flow 

over 30 min. After adding the desired palladium catalyst (10%mol), the reaction mixture 

was then degassed over 15 min. The mixture was stirred at reflux under nitrogen 

atmosphere whilst monitoring by HPLC, once full consumption of the starting material 

was observed the reaction was allowed to cool to ambient temperature. The solution was 

filtered through a plug of celite and toluene was removed under reduced pressure. TBME 

was then added to the resulting saturated aqueous phase. After phase separation, the 

combined organic layers were washed with water and dried over MgSO4. The solvents 

were removed under reduced pressure to afford the crude Suzuki biphenyl compound. 
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 4b,7-dimethyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo(e,g)azulene 
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 87 60    88

 

Prepared according to the general procedure from 2-(2-iodo-benzylamino)-propan-1-ol 

(87) (1.05 g, 3.60 mmol) and acetylphenylbronic acid (60) (1.77 g, 10.8 mmol) to yield 

the desired tetracycle as a viscous oil. (88) (0.21 g, 0.80 mmol, 22%). νmax(film) /cm-1 

3377, 2966, 1448, 1365, 1217, 1161, 1097, 1046, 756, 738. [α]20
D −69.2 ° (c 0.96, 

CHCl3). δH (400 MHz; CDCl3) 0.90 (3 H, s, NCHCH3), 1.13 (3 H, d, J 6 Hz, 

NC(CH3)O), 2.76 – 2.85 (1 H, m, NCHCH3), 2.92 (1 H, d, J 10.8 Hz, NCHH), 3.59 (1 H, 

dd, J 7.6 & 9.6 Hz, OCHH), 3.76 (1 H, d, J 11.2 Hz, NCHH), 4.11 (1 H, dd, J 6.0 & 7.2 

Hz, NCHH), 7.24 – 7.38 (7 H, m, 7 x Biphenyl-CH), 7.68 – 7.70 (1 H, m, Biphenyl-CH). 

δC (100 MHz; CHCl3) 14.7 (NCHCH3), 29.3 (NC(CH3)O), 51.7 (NCH2), 58.5 

(NCHCH3), 70.5 (OCH2), 96.3 (quat.CCH3), 124.7 (Biphenyl-CH), 126.4 (Biphenyl-

CH), 126.5 (Biphenyl-CH), 126.9 (2 x Biphenyl-CH), 127.5 (Biphenyl-CH), 127.8 

(Biphenyl-CH), 128.1 (Biphenyl-CH), 133.7 (Biphenyl-quat.C), 135.7 (Biphenyl-quat.C), 

139.1 (Biphenyl-quat.C), 141.2 (Biphenyl-quat.C). m/z C18H19NO requires 265.14666. 
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 7-isopropyl-4b-methyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo (e,g) azulene. 
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89 60   90a

 

Prepared according to the general procedure from 2-(2-Iodo-benzylamino)-3-methyl-

butan-1-ol (89) (1.30 g, 4.09 mmol) and acetylphenylbronic acid (60) (2.01 g, 12.3 

mmol) to yield the desired tetracycle as a foam. (90a), having almost identical 

spectroscopic data to (90). (0.54 g, 1.90 mmol, 47%). νmax(film) /cm-1 3419, 2954, 2871, 

1459, 1365, 1213, 1160, 1043, 756, 730. [α]20
D −98.8 ° (c 1.21, CHCl3). m/z C20H23NO 

requires 293.17796. 

 

 

 4b-Methyl-7-phenyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo(e,g) azulene 
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76 60   62a
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Prepared according to the general procedure from 2-(2-iodo-benzylamino)-2-phenyl-

ethanol (76) (2.29 g, 6.50 mmol) and acetylphenylbronic acid (60) (3.20 g, 19.5 mmol) 

to yield the desired tetracycle as colourless foam (62a), having almost identical 

spectroscopic data to (62). (0.85 g, 2.60 mmol, 40%). νmax(film) /cm-1 2963, 1449, 1260, 

1153, 1038, 897, 802, 758, 740, 701. [α]20
D −22.9 ° (c 1.10, CHCl3). m/z 327.16263 [+ 

1.0 ppm]; C23H21NO requires 327.16231. 

 

 

 7-Benzyl-4b-methyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo (e,g) azulene 

 

O

B
OH

OH
H
N

HO

O

HN
I H

OH
(S)

N

O

(R)H

 

 

91 60   92

Prepared according to the general procedure from 2-(2-Iodo-benzylamino)-3-phenyl-

propan-1-ol (100) (1.00 g, 2.70 mmol) and acetylphenylbronic acid (50) (1.34 g, 8.20 

mmol) to yield the desired tetracycle as colourless foam (92), having almost identical 

spectroscopic data to (93). (0.51 g, 1.60 mmol, 60%). νmax(film) /cm-1 2926, 1493, 1452, 

1365, 1215, 1158, 1069, 1043, 761, 738, 700. [α]20
D −130.1 ° (c 0.99, CHCl3). 

 

 



   Phillip Parker; Experimental 

    210 

 7-Benzyl-4b-methyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo (e,g) azulene. 

 

O

B
OH

OH
H
N

HO

O

HN
I H

OH
(R)

N

O

(S)H

 

 

93 60  94

 

Prepared according to the general procedure from 2-(2-Iodo-benzylamino)-3-phenyl-

propan-1-ol (93) (1.00 g, 2.70 mmol) and acetylphenylbronic acid (60) (1.34 g, 8.20 

mmol) to yield the desired tetracycle as colourless foam (94), having almost identical 

spectroscopic data to (93). (0.27 g, 0.80 mmol, 30%). νmax(film) /cm-1 2927, 1602, 1452, 

1365, 1215, 1156, 1070, 761, 738, 700. [α]20
D +130.9 ° (c 1.03, CHCl3). 

 

 

4b,7-Dimethyl-6-phenyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo (e,g)azulene 

O

B
OH

OH
H
N

HO

ON
H

I

H

OH

N

O (R)

(R)

 

 

95  60   96
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Prepared according to the general procedure from 2-(2-iodo-benzylamino)-propan-1-ol 

(95) (0.33 g, 0.89 mmol) and acetylphenylbronic acid (60) (0.44 g, 2.67 mmol) to yield 

the desired tetracycle as colourless crystals as a mixture of two diastereoisomers as a 

viscous oil. (96) (0.11 g, 0.27 mmol, 30%).νmax(film) /cm-1 3055, 2927, 1723, 1600, 

1488, 1437, 1286, 757, 738, 699. [α]20
D −18.4 ° (c 1.00, CHCl3). δH (400 MHz; CDCl3) 

0.74 (3 H, d, J 6.8 Hz, minor-CHCH3), 0.89 – 0.93 (3 H. m, major-CHCH3), 1.17 – 1.21 

(3 H, m, minor-NCCH3), 2.44 (3 H, s, major-NCCH3), 3.02 (1 H, d, J 10.8 Hz, minor-

NCHH), 3.10 – 3.14 (1 H, m, minor-CHCH3), 3.81 (1 H, d, J 11.2 Hz, minor-NCHH), 

4.18 –4.26 (1 H, m, major-CHCH3), 4.65 (1 H, d, J 14.4 Hz, major-NCHH), 4.87 (1 H, d, 

J 14.0 Hz, major-NCHH), 5.26 (1 H, d, J 8.0 Hz, minor-CHPh), 6.47 (1 H, s, major-

CHPh), 7.13 – 7.17 (1 H, m, major-Ar-CH), 7.21 – 7.46 (20 H, m, 9 x major & 11 x 

minor Ar-CH), 7.50 – 7.52 (1 H, m, major-Ar-CH), 7.56 (1 H, dd, J 1.2 & 7.2 Hz, major-

Ar-CH), 7.62 – 7.64 (1 H, m, major-Ar-CH), 7.67 (1 H, dd, J 3.2 & 5.6 Hz, minor-Ar-

CH), 7.77 – 7.79 (1 H, m, minor-Ar-CH). δC (100 MHz; CHCl3) 9.91 (major CCH3), 

9.96 (major CHCH3), 13.1 (minor CCH3), 14.9 (minor CHCH3), 46.5 (major NCH2), 

53.1 (minor NCH2), 62.6 (minor CHCH3), 67.0 (major CHCH3), 80.5 (minor CHPh), 

96.5 (major quat.CCH3), 105.6 (major CHPh), 121.6 (minor quat.CCH3), 124.4 (minor 

Ar-CH), 125.6 (major Ar-CH), 127.0 (major Ar-CH), 126.5 (minor Ar-CH), 126.56 

(minor Ar-CH), 126.58 (major Ar-CH), 126.61 (major Ar-CH), 126.69 (minor Ar-CH), 

126.73 (minor Ar-CH), 126.9 (major Ar-CH), 126.95 (minor Ar-CH), 127.0 (Ar-CH), 

127.1 (2 x Ar-CH), 127.2 (2 x Ar-CH), 127.3 (major Ar-CH), 127.4 (minor Ar-CH), 

127.6 (minor Ar-CH), 127.7 (minor Ar-CH), 127.8 (major Ar-CH), 127.9 (minor Ar-

CH), 128.2 (minor Ar-CH), 128.9 (major Ar-CH), 129.2 (major Ar-CH), 129.8 (major 

Ar-CH), 131.1 (major quat.Ar-C), 131.3 (minor quat.Ar-C), 133.9 (minor quat.Ar-C), 

135.0 (major quat.Ar-C), 136.1 (minor quat.Ar-C), 136.4 major (quat.Ar-C), 139.0 

(major quat.Ar-C), 141.4 (minor quat.Ar-C), 166.6 (major quat.Ar-C), 169.9 (mior 

quat.Ar-C). m/z C24H23NO requires 341.17796 . 
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 4b-Methyl-6,7-diphenyl-6,7-dihydro-4bH,8H-5-oxa-7a-aza-dibenzo (e,g)azulene 

 

O

B
OH

OH
H
N

HO

O

N
H

I
H

OH

N

O (R)

(R)

 123 60   124

 

Prepared according to the general procedure from 2-(2-iodo-benzylamino)-1,2-diphenyl-

ethanol (123) (1.62 g, 3.8 mmol) and acetylphenylbronic acid (60) (1.87 g, 11.5 mmol) 

to yield the desired tetracycle as viscous oil. (124) (0.30 g, 0.70 mmol, 18%).νmax(film) 

/cm-1 3747, 3055, 1599, 1505, 1456, 1262, 1182, 1027, 803, 756, 737, 699. [α]20
D – 32.1 

° (c 0.96, CHCl3). δH (400 MHz; CDCl3) 0.01 (3 H, s, CH3), 4.54 (1 H, d, J 14.0 Hz, 

NCHH), 4.75 (1 H, d, J 14.0 Hz, NCHH), 6.60 (1 H, d, J 1.2 Hz, NCHPh), 6.97 – 7.08 (7 

H, m, 6 x Ar-CH & OCHPh), 7.10 – 7.46 (8 H, m, Ar-CH), 7.54 – 7.61 (2 H, m, Ar-CH), 

7.69 – 7.70 (1 H, m, Ar-CH). δC (100 MHz; CHCl3) 0.0 (CH3), 46.7 (NCH2), 96.7 

(quat.CCH3), 106.0 (NCHPh), 124.1 (OCHPh), 126.0 (Ar-CH), 126.3 (Ar-CH), 126.8 

(Ar-CH), 126.9 (Ar-CH), 127.0 (Ar-CH), 127.1 (Ar-CH), 127.4 (Ar-CH), 127.4 (Ar-

CH), 127.47 (Ar-CH), 127.52 (Ar-CH), 127.6 (Ar-CH), 127.7 (Ar-CH), 128.2 (Ar-CH), 

129.17 (Ar-CH), 129.20 (Ar-CH), 130.5 (Ar-CH), 132.6 (Ar-CH), 132.8 (Ar-CH), 

135.19 (quat.Ar-C), 135.24 (quat.Ar-C), 136.0 (quat.Ar-C), 136.2 (quat.Ar-C), 136.5 

(quat.Ar-C), 139.1 (quat.Ar-C). m/z 384.17935 [+ 1.6 ppm]; C28H24NO requires 

384.17996. 
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General procedure for the oxidation of tertiary cyclic amines with N-

bromosuccinimide. 

 

To an ice-cooled solution of the desired tertiary cyclic amine (1 equiv.) in 

dichloromethane (5 vol.) was added N-bromosuccinimide (2 equiv.). The reaction 

mixture was removed from the ice bath and stirred for 20 min whilst monitoring by 

HPLC/TLC. Water (10 vol.) was added to the reaction mixture and the DCM layer was 

separated and dried over magnesium sulphate. The solvent was removed under reduced 

pressure to yield the desired tetracyclic iminium bromide salt. 

 

 

4b,7-Dimethyl-6,7-dihydro-4bH-5-oxa-7a-azonia-dibenzo(e,g)azulene; bromide salt. 

 

(R)
N

O

(S)
(R)

N+

O

(S)

Br-

 

 

  88 82   

 

Prepared following the general procedure using 88 (0.21 g, 0.80 mmol) in 

dichloromethane (2 mL) and N-bromosuccinimide (0.29 g, 1.60 mmol) to yield the 

tetracyclic iminium bromide salt as a pair of diastereoisomers (82) (0.20 g, 0.59 mmol, 

74%). νmax(film) /cm-1 2965, 1704, 1652, 1558, 1259, 1184, 1102, 1017, 763, 615. [α]20
D 

107.6 ° (c 10.3, CHCl3). δH (400 MHz; CDCl3) 1.33 (3 H, s, minor-NCCH3), 1.45 (3 H, 

s, minor-NCCH3), 1.40 (3 H, d, J 6.4 Hz, minor-CHCH3), 1.91 (3 H, d, J 6.8 Hz, major-

CHCH3), 3.84 (1 H, dd, J 0.4 & 8.4 Hz, minor-OCHH), 4.00 (1 H, dd, J 4.4 & 8.8 Hz, 
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minor-OCHH), 4.30 (1 H, dd, J 2.4 & 9.6 Hz, major-OCHH), 4.42 (1 H, dd, J 5.2 & 9.2 

Hz, minor-OCHH), 4.44 – 4.50 (1 H, m, minor-CHCH3), 5.06 – 5.10 (1 H, m, major-

CHCH3), 7.33 – 7.36 (4 H, m, 4 x minor-Ar-CH), 7.56 (2 H, dd, J 1.6 & 7.2 Hz, 2 x 

major-Ar-CH), 7.59 (1 H, td, J 2.0 & 7.6 Hz, major-Ar-CH), 7.65 – 7.71 (6 H, m, 2 x 

major-Ar-CH & 4 x minor-Ar-CH), 7.88 – 7.91 (2 H, m, 2 x major-Ar-CH), 8.32 (1 H, d, 

J 7.6 Hz, major-Ar-CH), 9.92 (1 H, s, N=CH). δC (100 MHz; CHCl3) 17.9 (minor 

NCCH3), 20.0 (major NCCH3), 22.5 (major OCCH3), 25.4 (minor OCCH3), 53.5 (minor 

CHMe), 63.8 (major CHMe), 68.8 (minor CHHO), 69.7 (major CHHO), 92.1 (minor 

quat.CMe), 98.8 (major quat.CMe), 121.2 (Biphenyl-CH), 122.5 (Biphenyl-CH), 123.7 

(Biphenyl-quat.C), 127.0 (Biphenyl-CH), 127.3 (Biphenyl-CH) minor, 127.7 (Biphenyl-

CH), 128.1 (Biphenyl-CH), 128.2 (Biphenyl-CH), 129.2 (Biphenyl-CH), 129.3 

(Biphenyl-CH), 129.7 (Biphenyl-CH), 129.8 (Biphenyl-CH), 130.0 (Biphenyl-CH), 130.4 

(Biphenyl-CH), 130.9 (Biphenyl-CH), 131.9 (Biphenyl-quat.C), 132.5 (Biphenyl-quat.C), 

134.5 (Biphenyl-quat.C), 135.1 (Biphenyl-CH), 136.1 (Biphenyl-CH), 136.3 (Biphenyl-

quat.C), 136.6 (Biphenyl-quat.C), 140.8 (Biphenyl-quat.C), 141.5 (Biphenyl-quat.C), 

143.3 (Biphenyl-quat.C), 146.7 (Biphenyl-quat.C), 146.8 (Biphenyl-quat.C), 163.30 

(major N=CH), 176.65 (minor N=CH). m/z C18H18NO+ requires 246.13884. 
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7-Isopropyl-4b-methyl-6,7-dihydro-4bH-5-oxa-7a-azonia-dibenzo(e,g) azulene; 

bromide salt. 

 

(R)
N

O

(S)
(R)

N+

O

(S)

Br-

 

 

  90 83   

 

Prepared following the general procedure using 90 (0.54 g, 1.90 mmol) in 

dichloromethane (2 mL) and N-bromosuccinimide (0.68 g, 3.80 mmol) to yield the 

desired tetracyclic iminium bromide salt (83) (0.57 g, 1.50 mmol, 81%). νmax(film) /cm-1 

3397, 2359, 1699, 1652, 1635, 1558, 1259, 1184, 1098, 744. [α]20
D 125.9 ° (c 1.16, 

CHCl3).δH (400 MHz; CDCl3) 1.13 (3 H, d, J 6.8 Hz, CH(CH3)(CH3)), 1.21 (3 H, d, J 

6.8 Hz, CH(CH3)(CH3)), 1.37 (3 H, s, NCCH3), 2.58 – 2.66 (1 H, m [sextet], CH(CH3)2), 

4.27 (1 H, dd, J 5.2 & 10.0 Hz, OCHH), 4.42 (1 H, d, J 9.6 Hz, OCHH), 5.00 (1 H, s 

(broad) NCHPri), 7.40 – 7.44 (1 H, m, Biphenyl-CH), 7.50 – 7.59 (2 H, m, 2 x Biphenyl-

CH), 7.61 – 7.66 (2 H, m, 2 x Biphenyl-CH), 7.84 – 7.89 (2 H, m, 2 x Biphenyl-CH), 8.23 

(1 H, d, J 7.6, Biphenyl-CH) 10.61 (1 H, s, N=CH). δC (100 MHz; CHCl3) 17.2 (CH3), 

18.1 (CH3), 21.4 (quat.CH3), 30.8 (CH(Me)2), 66.1 (OCHH), 71.0 (CHPri), 98.4 

(quat.CMe), 122.5 (Biphenyl-CH), 123.8 (Biphenyl-quat.C), 128.1 (Biphenyl-CH), 129.0 

(Biphenyl-CH), 129.7 (Biphenyl-CH), 129.8 (Biphenyl-CH), 129.9 (Biphenyl-CH), 132.6 

(Biphenyl-quat.C), 134.4 (Biphenyl-CH), 135.7 (Biphenyl-CH), 136.9 (Biphenyl-quat.C), 

141.2 (Biphenyl-quat.C), 164.7 (N=CH). m/z 292.17045 [+ 1.1 ppm]; C20H22NO+ Br- 

requires 292.17014. 
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 4b-Methyl-7-phenyl-6,7-dihydro-4bH-5-oxa-7a-azonia-dibenzo(e,g) azulene; 

bromide salt. 

 

(S)
N

O

(R)
(S)

N+

O

(R)

Br-

 

 

  62 61   

 

Prepared following the general procedure using 62 (0.43 g, 1.32 mmol) in 

dichloromethane (2 mL) and N-bromosuccinimide (0.47 g, 2.64 mmol) to generate the 

desired tetracyclic iminium bromide salt (61) (0.27 g, 0.66 mmol, 50%). νmax(film) /cm-1 

3394, 3055, 2359, 1713, 1639, 1436, 1181, 751, 722, 696. [α]20
D – 20.0 ° (c 1.00, 

CHCl3). δH (400 MHz; CDCl3) 1.42 (3 H, s, major-CH3), 1.47 (3 H, s, minor-CH3), 4.19 

(1 H, dd, J 0.8 & 8.4 Hz, minor-CHHO), 4.33 (1 H, dd, J 6.4 & 8.8 Hz, minor-CHHO), 

4.65 (1 H, dd. J 5.6 & 9.6 Hz, major-CHHO), 4.77 (1 H, dd. J 1.2 & 9.6 Hz, major-

CHHO), 5.36 (1 H, d, J 6.4 Hz, minor-CHPh) minor, 6.50 (1 H, d, J 5.2 Hz, major-

CHPh), 7.29 – 7.33 (1 H, m, Ar-CH), 7.368 – 7.475 (6 H, m, 6 x Ar-CH), 7.54 – 7.60 (3 

H, m, 3 x Ar-CH), 7.61 – 7.65 (2 H, m, 2 x Ar-CH), 7.73 (1 H, dd, J 1.2 & 8.0 Hz, Ar-

CH), 7.78 – 7.87 (5 H, m, 5 x Ar-CH), 7.93 – 7.91 (1 H, m, Ar-CH), 7.98 – 8.01 (2 H, m, 

2 x Ar-CH), 10.38 (1 H, s, N=CH). δC (100 MHz; CHCl3) 22.1 (CH3), 24.6 (minor CH3), 

60.7 (minor CHPh), 68.0 (major CHPh), 69.6 (major OCHH), 70.0 (minor OCHH), 92.8 

(minor quat.CMe), 98.7 (major quat.CMe), 121.2 (minor Ar-CH), 122.3 (major Ar-CH), 

123.8 (major quat.Ar-C), 125.8 (2 x minor Ar-CH), 126.5 (minor Ar-CH), 127.0 (minor 

Ar-CH), 127.2 (minor Ar-CH), 127.3 (3 x Ar-CH, 2 x major & 1 x minor), 127.4 (2 x 

minor Ar-CH), 127.8 (minor Ar-CH), 127.88 (minor Ar-CH), 127.91 (major Ar-CH), 

128.9 (2 x major Ar-CH), 129.1 (major Ar-CH), 129.3 (major Ar-CH), 129.786 (major 

Ar-CH), 129.787 (minor Ar-CH), 130.0 (major Ar-CH), 130.3 (minor Ar-CH), 131.0 

(major Ar-CH), 132.3 (minor quat.Ar-C), 132.6 (major quat.Ar-C), 134.5 (major 
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quat.Ar-C), 134.8 (minor quat.Ar-C), 135.0 (major quat.Ar-C), 135.8 (major Ar-CH), 

136.1 (minor quat.Ar-C), 136.7 (major quat.Ar-C), 139.9 (minor quat.Ar-C), 140.8 

(minor quat.Ar-C), 141.8 (major quat.Ar-C), 163.6 (minor N=CH), 164.0 (major N=CH). 

m/z 326.15489 [+ 1.2 ppm]; C23H20NO+ Br- requires 326.15449. 

 

 

7-Benzyl-4b-methyl-6,7-dihydro-4bH-5-oxa-7a-azonia-dibenzo(e,g) azulene; bromide 

salt. 

 

(S)
N

O

(R)
(S)

N+

O

(R)

Br-

 

 

  92  84   

 

Prepared following the general procedure using 92 (0.27 g, 0.80 mmol) in 

dichloromethane (2 mL) was added N-bromosuccinimide (0.29 g, 1.60 mmol) to yield 

the desired tetracyclic iminium bromide salt (84) (0.28 g, 0.66 mmol, 82%). νmax(film) 

/cm-1 3445, 2358, 1714, 1654, 1616, 1558, 1454, 1404, 1257, 1182, 1104, 744, 701, 668. 

[α]20
D – 17.4 ° (c 0.99, CHCl3). δH (400 M Hz; CDCl3) 1.26 (3 H, s, minor CH3), 1.42 (3 

H, s, major CH3), 2.77 (1 H, d, J 10.4 Hz, minor CHHPh), 3.34 (1 H, dd, J 2.8 & 12.8 

Hz, major CHHPh), 3.39 – 3.49 (2 H, m, major CHHPh), 3.79 (1 H, dd, J 1.2 & 5.6 Hz, 

minor OCHH), 3.96 (1 H, d, J 9.2 Hz, minor OCHH), 4.32 (1 H, dd, J 4.4 & 9.6 Hz, 

major OCHH), 4.42 (1 H, d, J 9.6 Hz, major OCHH), 4.46 – 4.54 (1 H, m, minor NCH), 

5.13 – 5.21 (1 H, m, major NCH), 7.23 – 7.25 (2 H, m, 2 x Ar-CH), 7.31 – 7.56 (21 H, 

[7.31 – 7.37 (m), 7.39 – 7.47 (m), 7.48 – 7.55 (m), 7.60 (ddt, J 1.2 & 7.6 Hz)] 21 x Ar-

CH), 7.80 – 7.85 (2 H, m, 2 x Ar-CH), 7.92 (1 H, dd, J 1.2 & 7.6 Hz, Ar-CH), 8.97 (1H, 
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s, minor N=CH), 8.99 (1 H. s, major N=CH). δC (100 M Hz; CHCl3) 22.3 (major CH3), 

24.9 (minor CH3), 36.9 (minor PhCH2), 39.0 (major PhCH2), 59.3 (minor NCH), 65.7 

(minor OCH2), 67.9 (major NCH), 68.0 (major OCH2), 92.5 (minor quat.CMe), 99.0 

(major quat.CMe), 121.1 (minor quat.Ar-C), 122.3 (major quat.Ar-C), 123.3 (major 

quat.Ar-C), 125.6 (minor quat.Ar-C), 127.1 (minor quat.Ar-C), 127.2 (major quat.Ar-C), 

127.3 (minor quat.Ar-C), 127.6 (major quat.Ar-C), 127.7 (minor quat.Ar-C), 128.0 

(major quat.Ar-C), 128.2 (minor quat.Ar-C), 128.6 (major 2 x minor quat.Ar-C), 128.7 

(major 2 x quat.Ar-C), 129.2 (major 2 x minor quat.Ar-C), 129.2 (major 2 x quat.Ar-C), 

129.3 (minor quat.Ar-C), 129.7 (minor quat.Ar-C), 129.8 (major quat.Ar-C), 130.0 

(major quat.Ar-C), 130.6 (minor quat.Ar-C), 130.9 (major quat.Ar-C), 131.7 (minor 

quat.Ar-C), 132.4 (major quat.Ar-C), 133.1 (major quat.Ar-C), 133.8 (major quat.Ar-C), 

134.5 (minor quat.Ar-C), 135.9 (major quat.Ar-C), 136.3 (minor quat.Ar-C), 136.6 

(major quat.Ar-C), 137.0 (minor quat.Ar-C), 140.7 (minor quat.Ar-C), 141.4 (major 

quat.Ar-C), 163.4 (major N=CH), 176.5 (minor N=CH). m/z 340.17068 [+ 1.6 ppm]; 

C24H22NO+ Br- requires 340.17014. 

 

 

7-Benzyl-4b-methyl-6,7-dihydro-4bH-5-oxa-7a-azonia-dibenzo(e,g) azulene; bromide 

salt. 

 

(R)
N

O

(S)
(R)

N+

O

(S)

Br-

 

 

  94 85   

 

Prepared following the general procedure using 94 (0.51 g, 1.60 mmol) in 
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dichloromethane (2 mL) was added N-bromosuccinimide (0.57 g, 3.20 mmol) to yield 

the desired tetracyclic iminium bromide salt (85) (0.62 g, 1.20 mmol, 75%). Having 

almost identical spectroscopic data to (84). νmax(film) /cm-1 3445, 2358, 1714, 1654, 

1616, 1558, 1454, 1404, 1257, 1182, 1104, 744, 701, 668. [α]20
D +15.0 ° (c 1.07, 

CHCl3). 

 

 

4b,7-Dimethyl-6-phenyl-6,7-dihydro-4bH-5-oxa-7a-azonia-dibenzo (e,g)azulene; 

bromide salt. 

 

N

O

N+

O

Br-

 

 

  96 86   

 

Prepared following the general procedure using 96 (0.11 g, 0.32 mmol) in 

dichloromethane (2 mL) was added N-bromosuccinimide (0.11 g, 0.64 mmol) to yield 

the desired tetracyclic iminium bromide salt. (86) (0.10 g, 0.24 mmol, 75%). νmax(film) 

/cm-1 3380, 3053, 2360, 1724, 1641, 1597, 1259, 1172, 908, 733, 703. [α]20
D 10.1 ° (c 

1.11, CHCl3). δH (400 M Hz; CDCl3) 0.98 (3 H, d, J 6.8 Hz, CHCH3), 1.32 (3 H, s, 

NC(CH3)O), 3.80 – 3.86 (1 H, m, NCH(CH3)), 4.99 – 4.98 (1 H, d, J 4.8 Hz, CHPh), 

6.66 – 6.70 (2 H, m, 2 x Ar-CH), 6.80 (2 H, t (dd), J 7.2/7.6, 2 x Ar-CH), 7.26 – 7.31 (3 

H, m, 3 x Ar-CH), 7.32 – 7.43 (2 H, m, 2 x Ar-CH), 7.49 – 7.52 (2 H, m, 2 x Ar-CH), 

7.60 – 7.65 (1 H, m, Ar-CH), 7.80 – 7.82 (1 H, m, Ar-CH). δC (100 M Hz; CHCl3) 16.9 

(CHCH3), 22.8 (NC(CH3)O), 66.1 (NCH), 78.5 (CHPh), 97.5 (quat.CCH3), 121.1 (Ar-

CH), 124.9 (Ar-CH), 126.1 (Ar-CH), 126.2 (Ar-CH), 127.3 (Ar-CH), 127.7 (Ar-CH), 

127.9 (Ar-CH), 129.5 (Ar-CH), 130.8 (Ar-CH), 131.7 (Ar-CH), 135.0 (Ar-CH), 164.1 
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(N=CH) (no signal for 5 x quaternary aromatic carbon atoms). m/z 340.17025 [+ 0.3 

ppm]; C24H22NO+ Br- requires 340.17014. 

 

 

General procedure for the formation of racemic epoxides for ee determinations 

 

The alkene (1.0 equiv) was dissolved in dichloromethane (10 mL/g) and cooled to 0 ºC. 

m-CPBA (2 equiv) was added as a solution in dichloromethane (10 mL/g). The reaction 

was allowed to attain ambient temperature temperature and stirred until complete 

consumption of the substrate was observed by TLC. The reaction was quenched with the 

addition of saturated aqueous NaHCO3 (10 mL/g) and the layers separated. The organic 

layer was washed with saturated NaOH (1.0 M) (10 mL/g) and dried (MgSO4). Solvents 

were removed under reduced pressure. The pure epoxide was obtained after column 

chromatography eluting with ethyl acetate/light petroleum (1:99). 

 

 

General procedure for catalytic asymmetric epoxidation of simple alkenes mediated 

by iminium salts using Oxone 

 

Oxone (2 equiv) was added to an ice cooled solution of Na2CO3, (4 equiv) in water (12 

mL per 1.50 g of Na2CO3), the resulting foaming solution was left to stir for 5-10 min. 

The iminium salt (10 mol%) was then added as a solution in acetonitrile, (6 mL per 1.50 

g of Na2CO3 used), followed by the alkene substrate (1 equiv) also as a solution in 

acetonitrile of the same volume as the solution of the catalyst. The mixture was stirred at 

0 °C until the alkene substrate was completely consumed as observed by TLC. The 

reaction mixture was then dissolved with ice cooled diethyl ether (20 mL per 100 mg 

substrate) and was immediately followed by the addition of the same volume of water. 

The saturated aqueous phase was washed 4 times with diethyl ether and the organics 



   Phillip Parker; Experimental 

    221 

were combined, washed with saturated brine and dried over magnesium sulphate. 

Filtration and evaporation of the solvents gave a yellow/brown residue. The pure epoxide 

was obtained after column chromatography eluting with ethyl acetate/light petroleum 

(1:99). 

 

 

General procedure for catalytic asymmetric epoxidation of simple alkenes mediated 

by iminium salts using hydrogen peroxide and bicarbonate salts 

 

The bicarbonate salt (0.2 equiv) and the iminium salt catalyst (10 mol%) were dissolved 

in acetonitrile (1 mL) and cooled to −5 °C. To this solution the substrate alkene (1 equiv) 

and hydrogen peroxide (6 equiv) were added. The reaction was monitored by TLC until 

complete consumption of the substrate alkene was observed or after 24 h of reaction time 

has elapsed. The reaction was then quenched with saturated brine and extracted with 

diethyl ether. The ether layer was dried over MgSO4 to give the crude epoxide. 

 

 

General procedure for catalytic asymmetric epoxidation of simple alkenes mediated 

by iminium salts using sodium hypochlorite and bicarbonate salts 

 

The bicarbonate salt (0.25 equiv) was disolved in NaOCl (3 equiv) and cooled to 0 °C. In 

a separate vessel also cooled to 0 °C the iminium salt catalyst (10 mol%) and the 

substrate alkene (1 equiv) were dissolved in dichloromethane (1 mL). The 

dichloromethane solution was then added to the NaOCl solution. The reaction was 

monitored by TLC until complete consumption of the substrate alkene was observed or 

after 24 h of reaction time has elapsed. The reaction was then quenched with saturated 

brine and extracted with diethyl ether. The ether layer was dried over MgSO4 to give the 

crude epoxide.  
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3.5 Appendices 

 

3.5.2 Appendix A; X-Ray data reports 

 

The crystallographic data for the structures presented in the text are given in this section. 

Crystallographic analyses were carried out at Loughborough University by Dr M. R. J. 

Elsegood 

 

Crystal data and the structure refinement for 6-(2,2-Dimethyl-4-phenyl-[1,3]dioxan-5-

yl)-5-methyl-5H-dibenzo [c, e]azepinium; bromide (44): 

 

Identification code    pcbp69 

Chemical formula    C53H52BCl4NO2 

Formula weight    887.57 

Temperature     150(2) K 

Radiation, wavelength    Mokα, 0.71073 Å 

Crystal system, space group   monoclinic, PS1 

Unit cell parameters    a = 11.0253(7) Å α = 90° 

      b = 18.2597(11) Å β = 109.694(2) ° 

      c = 11.9748(2) Å γ = 90° 

Cell volume     2269.7(2) Å3 

Z      2 

Calculated density    1.299 g/cm3 

Absorption coefficient μ   0.304 mm-1 

F(000)      932 

Crystal colour and size   colourless, 0.70 x 0.49 x 0.30 mm3 

Reflections for cell refinement  6011 (θ range 2.23 to 30.39°) 

Data collection method   Bruker APEX 2 CCD diffractometer 

      ω rotation with narrow frames 



  Phillip Parker; Appendicies 

   224 

θ range for data collection   1.81 to 27.50° 

Index ranges     h – 14 to 14, k – 23 to 23, l – 15 to 15 

Completeness to θ = 26.00°   99.9% 

Intensity decay    0% 

Reflections collected    22134 

Independent reflection   10396 (Rint = 0.0247) 

Reflections with F2>2σ   9587 

Absorption correction    semi-empirical from equivalents 

Min. and max. transmission   0.816 and 0.914 

Structure solution    direct methods 

Refinement method    Full-matrix least squares on F2 

Weighting parameters a, b   0.1599, 1.0002 

Data/restraints/parameters   10396/1/553 

Final R indices [F2>2σ]   R1 = 0.0712, wR2 = 0.2110 

R indices (all data)    R1 = 0.0763, wR2 = 0.2197 

Goodness-of-fit on F2    1.073 

Absolute structure parameter   0.01(9), well determined 

Largest and mean shift/su   0.001 and 0.000 

Largest diff. peak and hole   0.812 and – 1.054 e Å-3 

 

 

Crystal data and the structure refinement for 4b-Methyl-7-phenyl-6,7-dihydro-4bH-5-

oxa-7a-azonia-dibenzo[e,g] azulene. (80): 

 

Identification code  pcbp77 

Chemical formula  C23H21NO 

Formula weight  327.41 

Temperature  150(2) K 

Radiation, wavelength  Mokα, 0.71073 Å 

Crystal system, space group  monoclinic, P21 

Unit cell parameters a = 8.4016(5) Å α = 90° 
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 b = 9.9253(6) Å β = 97.2928(9)° 

 c = 10.5431(7) Å γ = 90° 

Cell volume 872.06(9) Å3 

Z 2 

Calculated density  1.247 g/cm3 

Absorption coefficient μ 0.076 mm−1 

F(000) 348 

Crystal colour and size colourless, 0.32 × 0.29 × 0.10 mm3 

Reflections for cell refinement 3905 (θ range 2.45 to 28.24°) 

Data collection method Bruker APEX 2 CCD diffractometer 

 ω rotation with narrow frames 

θ range for data collection 1.95 to 28.31° 

Index ranges h −11 to 11, k −13 to 13, l −14 to 14 

Completeness to θ = 28.31° 99.7 %  

Intensity decay 0% 

Reflections collected 9089 

Independent reflections 2284 (Rint = 0.0255) 

Reflections with F2>2� 2146 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.976 and 0.993 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0530, 0.1214 

Data / restraints / parameters 2284 / 1 / 227 

Final R indices [F2>2σ] R1 = 0.0342, wR2 = 0.0858 

R indices (all data) R1 = 0.0370, wR2 = 0.0881 

Absolute structure not determined from the data. Friedel pairs merged. 

Goodness-of-fit on F2 1.038 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.224 and −0.207 e Å−3 
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Crystal data and the structure refinement for 7-Benzyl-4b-methyl-6,7-dihydro-4bH,8H-5-

oxa-7a-azonia-dibenzo [e,g] azulene. (97): 

 

Identification code  pcbp80 

Chemical formula  C24H23NO 

Formula weight  341.43 

Temperature  150(2) K 

Radiation, wavelength  MoKα, 0.71073 Å 

Crystal system, space group  monoclinic, P21 

Unit cell parameters a = 8.5648(4) Å α = 90° 

 b = 9.8551(5) Å β = 98.4207(7)° 

 c = 11.1777(5) Å γ = 90° 

Cell volume 933.30(8) Å3 

Z 2 

Calculated density  1.215 g/cm3 

Absorption coefficient μ 0.073 mm−1 

F(000) 364 

Crystal colour and size colourless, 0.52 × 0.38 × 0.36 mm3 

Reflections for cell refinement 4517 (θ range 2.40 to 30.51°) 

Data collection method Bruker APEX 2 CCD diffractometer 

 ω rotation with narrow frames 

θ range for data collection 1.84 to 30.56° 

Index ranges h −11 to 12, k −14 to 14, l −15 to 15 

Completeness to θ = 30.56° 99.6 %  

Intensity decay 0% 

Reflections collected 11151 

Independent reflections 3010 (Rint = 0.0271) 

Reflections with F2>2σ 2761 

Absorption correction semi-empirical from equivalents 

Min. and max. transmission 0.963 and 0.974 

Structure solution direct methods 
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Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0760, 0.0558 

Data / restraints / parameters 3010 / 1 / 236 

Final R indices [F2>2�] R1 = 0.0420, wR2 = 0.1128 

R indices (all data) R1 = 0.0455, wR2 = 0.1158 

Goodness-of-fit on F2 1.072 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.296 and −0.222 e Å−3 
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3.5.2 Appendix B; Supporting chiral separation data 

 

Determination of enantiomeric excess for racemic 1phenylcyclohex-1-ene oxide 

 

O

H 
 

GC – flame ionisation detector using a Chiraldex B-DM column at an oven 

temperature of 120 °C 

 

Racemic  1-phenylcyclohex-1-ene oxide 
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Determination of enantiomeric excess for 1phenylcyclohex-1-ene oxide when catalysed 

by 40 

 

O

H 
 

GC – flame ionisation detector using a Chiraldex B-DM column at an oven 

temperature of 120 °C 

 

1041d 1 phenylcyclohex-1-ene oxide 
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Determination of enantiomeric excess for racemic dihydronaphthalene oxide 

 

H
OH

 
 

GC – flame ionisation detector using a Chiraldex B-DM column at an oven 

temperature of 120 °C 

 

Racemic  dihydronaphthalene oxide 
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Determination of enantiomeric excess for dihydronaphthalene oxide when catalysed by 

40 

 

H
OH

 
 

GC – flame ionisation detector using a Chiraldex B-DM column at an oven 

temperature of 120 °C 

 

1050 Dihydronaphthalene oxide 
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Determination of enantiomeric excess for dihydronaphthalene oxide when catalysed by 

85 

 

H
OH

 
 

GC – flame ionisation detector using a Chiraldex B-DM column at an oven 

temperature of 120 °C 

 

1210  dihydronaphthalene oxide 
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Determination of enantiomeric excess for dihydronaphthalene oxide when catalysed by 

85 

 

H
OH

 
 

Racemic literature reference: Wong, M.-K.; Ho, L.-M.; Zheng, Y.-S.; Ho, C.-Y.; Yang, 

D. Org. Lett. 2001, 3, 2587 

 
1H-NMR spectroscopy. 8 – 10 mg substrate; 3 – 5 mg (+)-Eu(hfc)3 using CDCl3 as 

solvent 

 

1209 dihydronaphthalene oxide 
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Determination of enantiomeric excess for dihydronaphthalene oxide when catalysed by 

85 

 

H
OH

 
 

1H-NMR spectroscopy. 8 – 10 mg substrate; 3 – 5 mg (+)-Eu(hfc)3 using CDCl3 as 

solvent 

 

1210  dihydronaphthalene oxide 
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Determination of enantiomeric excess for racemic 1-phenyl dihydronaphthalene oxide 

 

H
O

 
 

HPLC analysis; Flow 1.0, CS 0.5, Atten. 512, Hex:IPA 90:10. 

 

Literature reference: Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. 

Soc. 1997, 119, 11224 

 

Racemic 1-phenyldihydronaphthalene oxide 

Retension times (1R,2S) = 7.18; (1S, 2R) = 9.6 
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Determination of enantiomeric excess for racemic 1-phenyl dihydronaphthalene oxide 

when catalysed by 40 

 

H
O

 
 

HPLC analysis; Flow 1.0, CS 0.5, Atten. 512, Hex:IPA 90:10 

 

1051 1 phenyldihydronaphthalene oxide 

Retension times (1R,2S) = 7.10; (1S, 2R) = 9.73 
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Determination of enantiomeric excess for racemic trans methyl stilbene oxide 

 

O

 
 

HPLC analysis; Flow 1.0, CS 0.5, Atten. 512, Hex:IPA 80:20. 

 

Racemic trans methyl stilbene oxide 

Retension times (S,S) = 6.63; (R,R) = 10.72 
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Determination of enantiomeric excess for trans methyl stilbene oxide when catalysed by 

40 

 

O

 
 

HPLC analysis; Flow 1.0, CS 0.5, Atten. 512, Hex:IPA 80:20. 

 

1052 trans methyl trans stilbene oxide 

Retension times (S,S) = 6.63; (R,R) = 10.72 
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Determination of enantiomeric excess for racemic triphenylethylene oxide 

 

O

 
 

HPLC analysis; Flow 1.0, CS 0.5, Atten. 512, Hex:IPA 80:20. 

 

Literature reference; Tu, Y.; Wang, Z.-X.; Shi, Y. J. Am. Chem. Soc. 1996,, 118, 9806. 

 

Racemic triphenylethylene oxide 

Retension times (S) = 6.32; (R) = 10.89 

 



  Phillip Parker; Appendicies 

   243 

Determination of enantiomeric excess for triphenylethylene oxide when catalysed by 40 

 

O

 
 

HPLC analysis; Flow 1.0, CS 0.5, Atten. 512, Hex:IPA 80:20. 

 

1054 triphenylethylene oxide 

Retension times (S) = 6.30; (R) = 10.06 
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Determination of enantiomeric excess for triphenylethylene oxide 

 

O

 
 

1H-NMR spectroscopy. 8 – 10 mg substrate; 3 – 5 mg (+)-Eu(hfc)3 using CDCl3 as 

solvent 

 

Racemic Triphenylethylene oxide 
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Determination of enantiomeric excess for triphenylethylene oxide when catalysed by 85 

 

O

 
 

1H-NMR spectroscopy. 8 – 10 mg substrate; 3 – 5 mg (+)-Eu(hfc)3 using CDCl3 as 

solvent 

 

1216 triphenylethylene oxide 
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Determination of enantiomeric excess for triphenylethylene oxidem when catalysed by 

85 

 

O

 
 

1H-NMR spectroscopy. 8 – 10 mg substrate; 3 – 5 mg (+)-Eu(hfc)3 using CDCl3 as 

solvent 

 

1217 triphenylethylene oxide 
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Determination of enantiomeric excess for racemic trans stilbene oxide 

 

O

 
 

HPLC analysis; Flow 1.0, CS 0.5, Atten. 512, Hex:IPA 80:20. 

 

Racemic  trans stilbene oxide 

Retension times (S,S) = 7.92; (R,R) = 10.78 
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Determination of enantiomeric excess for racemic trans stilbene oxide when catalysed by 

40 

 

O

 
 

HPLC analysis; Flow 1.0, CS 0.5, Atten. 512, Hex:IPA 80:20. 

 

1055 trans stilbene oxide 

Retension times (S,S) = 7.91; (R,R) = 10.71 
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Determination of enantiomeric excess for trans stilbene oxide when catalysed by 61 

 

O

 
 

1H-NMR spectroscopy. 8 – 10 mg substrate; 3 – 5 mg (+)-Eu(hfc)3 using CDCl3 as 

solvent 

 

1111 trans stilbene oxide 
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Determination of enantiomeric excess for trans stilbene oxide when catalysed by 43 

 

O

 
 

1H-NMR spectroscopy. 8 – 10 mg substrate; 3 – 5 mg (+)-Eu(hfc)3 using CDCl3 as 

solvent 

 

1118 trans stilbene oxide 
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Determination of enantiomeric excess for trans stilbene oxide when catalysed by 85 

 

O

 
 

1H-NMR spectroscopy. 8 – 10 mg substrate; 3 – 5 mg (+)-Eu(hfc)3 using CDCl3 as 

solvent 

 

1214 trans stilbene oxide 
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Determination of enantiomeric excess for trans stilbene oxide (129) when catalysed by 

84 

 

O

 
 

1H-NMR spectroscopy. 8 – 10 mg substrate; 3 – 5 mg (+)-Eu(hfc)3 using CDCl3 as 

solvent 

 

1215 trans stilbene oxide 

 
 

 

 




