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ABSTRACT

Recent analytical results due to Walsh, Martin and Johnson

showed that optimizing the single lag autocorrelation min-

imization (SLAM) cost does not guarantee convergence to

high signal to interference ratio (SIR), an important metric

in channel shortening applications. We submit that we can

overcome this potential limitation of the SLAM algorithm

and retain its computational complexity advantage by mini-

mizing the square of single autocorrelation value with ran-

domly selected lag. Our proposed lag-hopping adaptive chan-

nel shortening algorithm based upon squared autocorrelation

minimization (LHSAM) has, therefore, low complexity as in

the SLAM algorithm and, more importantly, a low average

LHSAM cost can guarantee to give a high SIR as for the SAM

algorithm. Simulation studies are included to confirm the per-

formance of the LHSAM algorithm.

Index Terms— Adaptive filtering, channel shortening, mul-

ticarrier modulation

1. INTRODUCTION

In multicarrier modulation (MCM) systems, such as asym-

metrical digital subscriber line (ADSL) transceivers, each sym-

bol consists of samples to be transmitted to the receiver plus

a cyclic prefix (CP) of length v [1]. The CP is the last v sam-

ples of the original N samples to be transmitted. The CP is

inserted between blocks to combat inter-symbol interference

(ISI) and inter-channel interference (ICI). The length of the

CP should at least be equal to the order of the channel im-

pulse response. At the receiver the CP is removed, and the re-

maining N samples are then processed by the receiver. Since

the efficiency of the transceiver is reduced by the introduction

of the CP it is therefore desirable either to make v as small as

possible or to choose a large N. Selecting large N will increase

the computational complexity, system delay, and memory re-

quirements of the transceiver. To overcome these problems

a short time-domain equalizer (TEQ), usually an FIR filter,

can be placed in the front end of the receiver, to shorten the

impulse response of the effective channel. The length of the

shortened impulse response filter and CP are usually fixed a

priori and not changed from channel to channel. A low com-

plexity blind adaptive algorithm to design a TEQ, called sum-

squared auto-correlation minimization (SAM) was proposed

in [2] which achieves channel shortening by minimizing the

sum-squared autocorrelation terms of the effective channel

impulse response outside a window of a desired length. The

drawback with SAM is that it has a significant computational

complexity. SLAM [3], on the other hand, achieves channel

shortening by minimizing the squared value of only a single

autocorrelation at a lag greater than the guard interval. The

drawback with SLAM is that even guaranteeing convergence

of the SLAM cost to low values does not necessarily guaran-

tee convergence to high SIRs [4]. Our contribution is there-

fore to propose a new channel shortening algorithm with ran-

dom lag selection which retains the complexity advantage of

SLAM whilst mitigating its SIR problem.

The paper is organized as follows. Section 2 gives the system

model. Section 3 discusses the idea of minimizing the auto-

correlation at a random lag. Section 4 develops the gradient-

descent implementation of the LHSAM algorithm. Section 5

discusses the SIR performance for the SAM, SLAM, and LH-

SAM algorithms. Section 6 provides the comparative simu-

lations between SAM and LHSAM and in Section 7 conclu-

sions are drawn.

2. SYSTEM MODEL

The system model is shown in Figure (1). The input signal

x(n) is the source sequence to be transmitted through a lin-

ear finite-impulse-response (FIR) channel h of length (Lh +
1)taps, r(n) is the received signal, which will be filtered through

an (Lw+1)-tap TEQ with an impulse response vector w to ob-

tain the output sequence y(n). For convenience in this work

we assume real signals but generalization to the complex case

is straight-forward. We denote c = h ∗ w as the shortened or
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Fig. 1. System model for blind adaptive channel shortening.

effective channel assuming w is in steady-state where ∗ de-

notes discrete time convolution. We also assume that 2Lc <
Nfft holds, where Lc is the order of effective channel and

Nfft is the FFT size [2]. The signal v(n) is a zero-mean,

i.i.d., noise sequence, uncorrelated with the source sequence

with variance σ2
v . The received sequence r(n) is

r(n) =
Lh∑
k=0

h(k)x(n − k) + v(n) (1)

and the output of the TEQ y(n) is given by

y(n) =
Lw∑
k=0

w(k)r(n − k) = wT rn (2)

where rn = [r(n) r(n−1) · · · r(n−Lw)]T and w is the im-

pulse response vector of the TEQ w = [w0 w1 w2 · · ·wLw
]T .

3. SAM AND SLAM COST FUNCTIONS

The idea of SAM is based on the fact that for the effective

channel c to have zero taps outside a window of size (v + 1),
its autocorrelation values should be zero outside a window of

size (2v + 1). In SAM the auto-correlation sequence of the

combined channel-equalizer impulse response is given by

Rcc(l) =
Lc∑

k=0

c(k)c(k − l) (3)

and for a shortened channel, it must satisfy

Rcc(l) = 0, ∀|l| > v (4)

Then the cost function Jv+1 in SAM is defined based upon

minimizing the sum-squared auto-correlation terms, i.e.,

Jv+1 =
Lc∑

l=v+1

Rcc(l)2 (5)

On the other hand, SLAM is based on the fact that a single au-

tocorrelation at a lag greater than the guard interval is a mea-

sure of the presence of the channel outside the desired guard

interval, therefore minimizing only this single autocorrelation

also gives the channel shortening effect. This is particularly

applicable to subscriber line channels which are essentially

minimum phase. In SLAM the auto-correlation sequence of

the combined channel-equalizer impulse response is given by

Rcc(l) =
Lc∑

k=0

c(k)c(k − l) (6)

and for a shortened channel, it must satisfy

Rcc(l) = 0, l = v + 1 (7)

Then the cost function Jv+1 in SLAM is defined based upon

minimizing the squared auto-correlation of the effective chan-

nel at lag l = v + 1, i.e.,

Jv+1 = Rcc(l)2, l = v + 1 (8)

Recently, however, it has been highlighted in [4] that mini-

mizing (8) does not guarantee high SIR for certain combined

channel and shortener responses. To mitigate this problem

our contribution is to modify SLAM so that the lag parameter

in (8) is chosen at random to lie within the range v+1, ...., Lc,

with equal probability of selecting anyone lag, so that on av-

erage the cost is identical to (5) when implemented in an

adaptive learning algorithm. The computational advantages

of SLAM would thereby be retained.

4. LHSAM ADAPTIVE ALGORITHM

The steepest gradient-descent algorithm to minimize the SLAM

cost Jv+1 is

wnew = wold − μ∇w(E[y(n)y(n − l)])2 (9)

where l is a single lag, μ denotes the step size, and ∇w is

the gradient with respect to w. We define the instantaneous

cost function, where we replace the expectation operation by

a moving average over a user-defined window of length Navg

J inst
v+1 (k) =

⎧⎨
⎩

(k+1)Navg−1∑
n=kNavg

y(n)y(n − l)
Navg

⎫⎬
⎭

2

(10)

where Navg is a design parameter and it should be large enough

to give a reliable estimate of the expectation, but no larger,
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as the algorithm complexity is proportional to Navg . The

gradient-descent algorithm is given by

w(k + 1) = w(k) − 2μ

⎧⎨
⎩

(k+1)Navg−1∑
n=kNavg

y(n)y(n − l)
Navg

⎫⎬
⎭

×
⎧⎨
⎩∇w

⎛
⎝(k+1)Navg−1∑

n=kNavg

y(n)y(n − l)
Navg

⎞
⎠

⎫⎬
⎭

(11)

which can be simplified to

w(k + 1) = w(k) − 2μ

⎧⎨
⎩

(k+1)Navg−1∑
n=kNavg

y(n)y(n − l)
Navg

⎫⎬
⎭

×
⎧⎨
⎩

(k+1)Navg−1∑
n=kNavg

(
y(n)rn−l + y(n − l)r(n)

Navg

)⎫⎬
⎭

(12)

The key defining feature of the LHSAM algorithm is that at

each iteration k, the lag ′l′ is chosen with equal probability

to take on one of the values in the range of v + 1, ...., Lc.

Most importantly, through learning, the algorithm is in effect

operating on a cost function of the form of (5).

5. SIR PERFORMANCE

In [4], the authors examine how the signal to interference

(SIR) power ratio in the output of the shortener changes when

the shortening metrics of SAM, sum absolute autocorrelation

minimization (SAAM), and SLAM are used. The SIR is de-

fined to be

SIR :=
∑v

l=−v |Rcc(l)|2∑−v+1
l=−N |Rcc(l)|2 +

∑N
l=v+1 |Rcc(l)|2

Note that the denominator in this expression is the SAM cost,

considering those combined z-domain responses c(z) only

which satisfy the unit energy constraint, the following rela-

tion can be obtained

SIR(dB) = 10 log10

(
v∑

l=−v

|Rcc(l)|2
)

− 10 log10(Js)

= 10 log10

(
1 + 2

v∑
l=1

|Rcc(l)|2
)

− 10 log10(Js)

≥ −Js(dB)

where Js is the SAM cost function, and a low SAM cost can

be guaranteed to give a high SIR at the output of the matched

filter. SLAM design affords no such underbound on the SIR

performance. For further detail consult [4]. Our proposed

algorithm (LHSAM) overcomes the problem of SLAM by

choosing the lag randomly, so that a low average LHSAM

cost, achieved through recursive learning, will be identical to

a low SAM cost which guarantees to give a high SIR at the

output of the matched filter, as on the average the proposed

algorithm uses all the lags as in SAM.

6. SIMULATIONS

The Matlab code at [5] was extended to simulate LHSAM.

The cyclic prefix was of length 32, the FFT size Nfft = 512,

the TEQ had 16 taps and the channels were the test ADSL

channel CSA loop 1 available at [6]. The noise was set such

that σ2
x‖c‖2/σ2

v = 40dB where ‖.‖ denotes the Euclidean

norm; and 75 OFDM symbols were used. The step size used

for SLAM and LHSAM was 600, in order to achieve con-

vergence in approximately 1000 blocks. All algorithms are

compared with the maximum shortening SNR solution [1],

which was obtained using the code at [5], and the matched

filter bound (MFB) on capacity, which assumes no ICI.

In Figures (2), (3) and (4) the shortened channels are com-

pared with the original channels and all algorithms are con-

firmed to be effective. The support of the shortened channel is

restricted to lie within the first 50 taps. In Figures (5), (6) and

(7) the achievable bits per second as a function of the averag-

ing block number, are plotted which show the improved con-

vergence property of LHSAM over SLAM, best performance

is achieved at approximately 900 rather than 1010 blocks, due

to the nature of the underlying cost function as a function of

the parameters of the shortener. The bit rate was determined

based on

R =
Nfft∑
i=1

log2(1 + SNRi/Γ)

The bit rate was computed using a 6-dB margin and a 4.2-dB

coding gain. For more details, see [6], and for more details on

how the achievable bit rate relates to SAM cost and ICI, see

[2]
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7. CONCLUSION

A new partial update blind channel shortening algorithm has

been proposed. The proposed algorithm essentially achieves
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Fig. 7. Achievable bit rate versus iteration number at 40 dB

SNR of SLAM algorithm

the same result in terms of reducing the effective channel

length as SLAM. Importantly, however, the disadvantage of

SLAM in terms of the SIR performance has been overcome

by the proposed algorithm where the proposed algorithm has

the advantage of low complexity of SLAM over SAM and

also has the advantage of SAM where a low LHSAM cost

will be identical to a low SAM cost which guarantees to give

a high SIR at the output of the matched filter as on the average

the proposed algorithm uses all the lags as in SAM.
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