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ABSTRACT 

Development of a robust technique for automatic detection 
of the epileptic seizures is an important goal in clinical 
neurosciences. In this paper support vector machines 
(SVM) has been used for this purpose. The system 
presented detects and uses three features of the 
electroencephalogram (EEG), namely, energy, decay 
(damping) of the dominant Bequency and cyclostationarity 
of the signals. The different types of epileptic seizures 
show some common characteristics in the feature space 
that can be exploited to distinguish them from normal 
activity in the brain or the nonepileptic abnormalities. The 
use of SVMs achieves high sensitivity and at the same 
time shows an improvement in terms of computational 
speed in comparison with other traditional systems. 

1. INTRODUCTION 

Analysis of the EEG is the primary method for diagnosis 
of epilepsy. Based on the EEG patterns during epileptic 
seizures, physicians can determine the type of epileptic 
syndrome. Long term monitoring is the common 
procedure to register the occurrence of epileptic events, 
which may last from seconds to hours. 

Traditionally, seizure detection was done at hospitals 
by means of continuous observation and possibly the use 
of an alarm button activated by the patient. Otherwise, the 
patient reports it. Nevertheless, many epileptic seizures 
imply loss of consciousness, confusion or even loss of 
memory, makiig patient’s registrations inaccurate. 
Moreover, some seizures do not present clinical symptoms 
and can he unnoticed even by the patient himself. 

Automatic detection of epilepsy has been investigated 
for the past few years. Murro [l] proposed a method based 
on spectral analysis in which he used the dominant 
Bequency, the relative amplitude and the power of the 
spectrum around the dominant frequency divided by the 
total power as features. Hardmg exploited the increase of 
spikes in the EEG in his proposal [2]. The use of neural 
networks has been common in the field of automatic 
detection since Webber [3] used a 31-30-8 network 
combining statistical features such as mean, variance and 

skewnes with morphologic features like amplitude, slope 
or duration of waves. Neural networks were also use 
F’radhan [4]. He used raw EEG as the input. Weng et al. 
used those features proposed by Gotman as the inputs to 
their NN [5].  In 1996, Gabor et al. brought the dqnamics 
of the brain insight with the help of wavelets [6].  In a 
recent paper, Qu and Gotman used a nearest neighbour 
classifier with features from both time and frequency 
domain extracted from overlapping EEG epochs of 2.56 
sec length [7]. Finally, a popular method called Matching 
pursuit (MF’) algorithm was introduced by Durka et al 
based on time-frequency decomposition, using Gabor 
functions called atoms [SI. 

Selection of the proper features plays a key role in 
design of the system. For classification, the most desirable 
features will be those that are easily separable (so errors in 
classification are less likely) and significant (so few 
features are required and computational costs are 
diminished). Thus, designing a feature extractor implies a 
deep knowledge of the problem domain, although 
fortunately no knowledge of the underlying laws that 
govern the brain is needed to recognize its manifestations. 
It is shown that only three features of the EEG are enough 
to detect epileptic seizures with sufficient accuracy. These 
are energy, frequency decay as the seizure evolves (i.e. the 
so-called damping factor) and the cyclostationarity. 

The adequate properties of SVMs make them 
desirable against other altemative methods such as neural 
networks or decision trees. Effectively, SVMs involve 
optimisation of a cost function that is convex, so no false 
local minima can get the algorithm stuck during the 
learning process. Moreover, SVMs are simple to use and 
only require a kernel and a few parameters to be chosen by 
the designer. Besides, the results obtained by SVMs have 
the advantage of being stable and reproducible in the sense 
that for a given data set, several executions with the same 
kemel and the same parameters will produce the same 
result (unlike for neural networks). 

2. FEATURES OF THE EEG 

To analyse the EEG a window is slid over the EEG signal @ 
and the features of each frame of EEG are extracted. 
These windows overlap in order not to miss any possible 
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- events happening at the end of a frame and prolonging to - the next one. Moreover, overlapping windows offer better 
time resolution and can produce shorter delays in the 
detection. 

Considering the frequency of the events involved, a 
frame length of 2 sec has been proved to be appropriate, 
resulting in a time resolution of 1 sec (since frames are 
half overlapped) and a frequency resolution equal to 
Fs/2M, where Fs is the sampling frequency of the EEG 
and M the number of points, is considered in the 
calculation of the spectrum. In our case, M=128. Fs is 
typically 200 Hz, yielding a frequency resolution of 0.78 
Hz approximately. Obviously, a trade-off arises here 
between time precision and spectral resolution. 

For majority of cases the amplitude of the signal 
increases during seizure, so, the fvst feature considered 
here is the average energy of the frame, E(I) , defmed as: 

. 

where x' [n]  is the fiame of EEG (containing L 
samples) centred at time I. Ictal activity is offen well 
distinguished by high values of energy compared to 
background activity. 

The decay (damping) in frequency during seizure is 
an interesting factor. It reflects variations in the dominant 
frequency and quantifies its decrease through time. For 
every frame the dominant frequency is calculated as: 

- 
-8 

fd( l )=argmax ( I  x'(f) I )  
f 

where X'(f)  is the estimated spectrum based on 
autoregressive modelling (AR) of the signals i.e. 

where B is a constant set to E l ,  p is the prediction order, 
and ak are the model prediction coefficients. ak are 
calculated from the signal using Durbin algorithm. Then a 
fvst order polynomial fitting of fd (I) is performed over a 
sliding window for several frames. The damping factor is 
represented by the slope of the polynomial. 

Analytically, let the sliding window contain the 
frames at f l , f2 ,  ..., fk ,  and fd(fl),fd(f2), ..., f d ( f ~ )  be the 
dominant frequencies of those frames, respectively. The 
linear interpolation consists of fitting a linear polynomial 
so that we can express fd ( I )  = at + b , with I = t l ,  t2 ,.__, ik , 

'' 

The damping factor is thus represented by the coefficient 
a. If a < 0 the pattem represents an onset of seizure. The 
size of the sliding window must be large enough for 
interpolation to be significant and small enough not to 
ignore short seizures and, in case of on-line detection, not 
to introduce a considerable delay; 35 < L 5 5L is usually 
adequate V; is the sampling frequency). 

The third feature is a measure of cyclostationarity of 
the signal defined by the following indicator [9]: 

a+Ll 

where Pc = c,"(O,O,O) represents the Fourier coefficient 
of the cyclic cumulant of forth order at zero lag and can be 
estimated as follows: 

where x ,  [n] = x' [n]-A?, [n] ,  with a synchronous average 

of A?,[n] and 

x,*[n]exp(-jZma/N). (6) 

The indicator in equation (4) measures, for a frame 
centred at time t, how spread the energy is over the range 
of frequencies before seizure onset, the EEG has a chaotic 
behaviour and no frequency appears to control its trace. 
During seizure, the EEG becomes more rhythmic and 
therefore the spectrum appears dominated by a peak 
contrasting with the flatness of the remaining components. 
This results in large values of the indicator of 
cyclostationarity. The fact that the dominant Gequency 
may vary (which makes necessary the use of the damping 
factor) does not affect the aspect ratio of the specbum and 
therefore its cyclostationarity Involvement of other 
features, i.e. decay in frequency and the signal energy, will 
be also effective due to the certain properties of the EEGs 
during the onset of seizures. 

3. SYSTEM DESCRIPTION 

The framework on which our system is based on is stated 
as follows. A set of known EEG recordings (for both 
seizures and normal states) is given. For each recording, a 
window is slid over time in overlapping steps. For each 
frame of EEG signal, three features are extracted. When 
ail the frames within a recording interval have been 
processed, they are labelled accordingly (-1 for epileptic 
seizures, +I otherwise). When all the recordings in the set 
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are processed. the supervised SVM algorithm is applied to 
the set of features to fmd the decision boundary that better 
separates the two classes or categories. At this point, the 
machine is said to be trained, i.e. it bas ''learnt'' the 
common features that characterize the epileptic seizures 
and is prepared to identify them in the new recordings. 
The tafget values, i.e. -1 and +1, are presented to the 
system during the training process. 

For the frequency analysis of the frames, the power 
spectral density must be estimated. This is done by means 
of an autoregressive (AR) model to overcome blocking 
effect in DFT and the restrictions induced by the 
nonstationarity of the signals. Moreover, AR filters use 
linear prediction of the output based on previous inputs, 
reinforcing the signal against the effect of noise, which 
makes the resulting spectra smoother and less affected by 
noise. The order of the AR filter represents a compromise 
between accuracy and computational speed. The 
prediction order can be estimated. For this application, 
values between 10 to 12 have been proved to be 
appropriate for OUT purposes. The convenience for AR 
models and its considerations have been discussed in more 
detail by other authors [IO]. 

The feature extractor transforms portions of EEG into 
a space of higher dimension (i.e. the feature space, 53') 
where the significant information has been extracted to 
make the differences more apparent. Each transformed 
portion can be viewed as a point in the feature space. 
These points represent the input to the classifier. 

Classification of the points is performed by 
means of SVMs [ 111. This is a geometrically intuitive and 
elegant algorithm based on beautifully simple ideas from 
statistical learning theoly that permit to construct complex 
models. Let every frame of EEG be described as a point 
x' in the feature space, i.e. XI = ( x ' I , x ' D , x ' E ) ,  where 

X ' I  , X ' D  and X ' E  are respectively the values of the 
indicator of cyclostationarity, damping factor and energy 
for the frame centred at time f. Thus, a recording of EEG 
comprising several frames is defined by a set of points 
G' I .x '~  ,..., x ' N } .  During training the system, the set of 
targets b , , y  * , . . . , yN}  is also known (since it is 

supervised training), with y 2  indicating if x ' ~  corresponds 
to a seizure ( y ,  = -1 ) or not ( y ,  = + I  ). The purpose of 
the classifier is to find a boundary that separates points 
with different values of y , .  SVMs construct linear 
discriminant functions based on the criterion of 
maximisation of the separating margin between the two 
classes. Nevertheless, it is usual that the points are not 
linearly separable, in which case a linear function does not 
classify well. This is solved by the introduction of kemels 
and a relaxation of the margins so that some points are 
accepted to invade the opposite margin. The use of kernels 

allows mapping the points into a space of higher . 
dimensionality where they are indeed lmearly separable. - 
Any linear discriminant function traced in this space will 
yield a nonlinear bonndary in the original feature space 
when the mapping is inverted. 

SVMs minimize the overlap between the classes as: 

subject to the constraints 

and 0 5 a, 5 C i = 1, ..., N .  (9) 

The coeficients a, are the Lagrangian multipliers, 
K ( x ,  ,x,) is the kemel function and C is a parameter that 

determines how relaxed the margins are. In our case, a 
radial basis function (RBF) was chosen as a kemel, that is: 

Using RBF enables classification of a non-lmear set 
of data with a quasi-Gaussian distribution, which perfectly 
matches the EEG signals. One of the advantages of using 
SVMs is that there exist fast computational algorithms to 
solve the quadratic problem stated by equation (6). The 
solution of the problem yields what are known as the 
support vectors, i.e. a subset of the data points that 
contains points relevant and closest to the decision 
boundary. Training the classifier means determining the 
support vectors for the training EEGs by solving the 
aforementioned quadratic equations. They provide the 
optimally encompassed regions corresponding to the two 
separated classes. 

The output of the classifier consists of a time series of 
the values -1 or +1, depending on whether the 
corresponding frame is classified as a seizure or not, 
respectively. Post-processing is applied to these signals 
based on the knowledge of the problem domain. This 
avoids possible fluctuations in our detector due to the 
misclassified points and exploits the correlation between 
channels to obtain more information such as the 
localization of the seizure or its propagation. 

(G 

4. RESULTS 
@ The performance of the system was tested with the choice 

of an RBF as a kemel. Thus, only two parameters must be 
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Seizure 

e Tonic-Clonic 100% 
5 .................................................... 

Complex Partial 100% 
.- 
0 

81.25% 

30% 70% Abnormalities 

Normal Activity 100% 

Noseizure 

0 

0 

chosen, namely, C and the variance of the Gaussian in 
equation (IO). These parameters can be adjusted 
empirically but, in general, e l  is a good option since the 
inputs to the classifier are previously standardized (that is, 
the mean removed and the variance normalized to unity) 
and even C=l provides enougb relaxation of the separating 
margins, avoiding the classifier to excessively specialize in 
the training set and consequently perform poorly in the 
general cases (this effect is known as overfitting). 
However, we set C to 100 as a default value. The results 
obtained proved nonetheless to be stable for a wide range 
of values for both parameters. 

‘The system was trained using the E E G  of a complex 
partial seizure. A set of 40 scalp EEGs from different 
subjects was used to test the performance. All the signals 
were IO sec long and contained between 3 and 5 sec of 
preictal activity. IO of the EEGs corresponded to epileptic 
seizures (7 tonic-clonic and 3 complex partial). The 
remaining EEGs contained no seizure (16 with 
hyperventilation, 10 with nonepileptic abnormalities and 4 
normal). The results are summarized in table 1. 

-, 

5. CONCLUSIONS 

The proposed system has shown a sensitivity of loo%, i.e. 
all seizures were detected. With no abnormalities no false 
positives were produced (as shows the last row of table 1). 
However, the specificity of the system, i.e. its ability not to 
make erroneous detections, gets worse when some 
abnormal (although nonepileptic) activity is present, 
yielding a total specificity of 80%. 

These figures would surely be improved if all the 
EEGs were corresponded to the same patient or they were 
intracranial EEGs, for which the features would present 
the differences more clearly. Moreover, a cascade of SVM 
classifiers could be used instead of only one, with each of 
them specialized in a particular type of seizure. Thus, 
sensitivity would be kept high without significantly 

;e 

reducing speed, since the computational cost of 
performing additional classifications with SVMs is low 
compared to that incurred in the extraction of the features. 
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