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Proof: For 1), recall the assignment� in the proof of
Theorem 3.1. For 2), recall that the labels used in the optimal labeling
of Cm � � � Cm in the proof of Theorem 2.1 are consecutive.
For 3), recall the statement and proof of Corollary 2.2.
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On Stability of Relaxive Systems Described by Polynomials
with Time-Variant Coefficients

Danilo P. Mandic and Jonathon A. Chambers

Abstract—The problem of global asymptotic stability (GAS) of a time-
variant -th order difference equation

( ) = ( ) ( 1) = 1( ) ( 1) +

+ ( ) ( )

for ( ) 1 was addressed in [1], whereas the case ( ) = 1
has been left as an open question. Here, we impose the condition of con-
vexity on the set of the initial values ( ) = [ ( 1) (

)] IR and on the set IR of all allowable values of ( ) =
[ ( ) ( )] , and derive the results from [1] for 0 =
1 , as a pure consequence of convexity of the sets and . Based
upon convexity and the fixed-point iteration (FPI) technique, further GAS
results for both ( ) 1, and ( ) = 1 are derived. The
issues of convergence in norm, and geometric convergence are tackled.

Index Terms—Contraction mapping, convergence, fixed-point iteration,
global asymptotic stability, linear systems, relaxation.

I. INTRODUCTION

The issue of global asymptotic stability (GAS) of

yyy(n) =aaa
T (n)yyy(n� 1) = a1(n)y(n� 1) + � � �

+ am(n)y(n�m) (1)

is important in the theory of linear systems [2]–[4]. Equation (1) rep-
resents an autonomous system, which under certain conditions con-
verges. Actually, it is a relaxation equation, which stems from a general
linear system

YYY (n+ 1) = AAA(n)YYY (n) +BBB(n)uuu(n) (2)

for the zero exogenous input vectoruuu(n) = 000; 8n [2], [4]. Equation
(1) can be further written in the state-space form as

y(n+ 1)

y(n)
...

y(n�m+ 1)

=

a1(n) a2(n) � � � am(n)

1 0 � � � 0
...

...
. . .

...
0 � � � 1 0

�

y(n)

y(n� 1)
...

y(n�m)

(3)

with y(n+1) = [1 0 � � � 0]YYY (n+1). MatrixAAA, where the index “n”
is dropped for convenience, is a Frobenius matrix, which is a special
form of the companion matrix of the characteristic polynomial [5], [6].
Namely, let us denote the characteristic equation of a general matrixMMM

by (�1)n[�n�pn�
n�1

�� � ��p0] = 0, then, the characteristic equa-
tion ofAAA (3) is identical to the characteristic equation ofMMM , and the
matrixAAA is called the companion matrix of the characteristic polyno-
mial ofMMM . SinceMMM andAAA have the same characteristic polynomial, it
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is natural to ask whether they are, in general, similar. Similar matrices
have the same trace, determinant, characteristic polynomial, and eigen-
values [6]. The answer to this question lies in the fundamental theorem
of general matrices [5], [6], which states that every matrixAAA can be
reduced by a similarity transformation [5], [3] to the direct sum of a
number of Frobenius matrices. That is why it is important to consider
the stability results for the Frobenius matrixAAA (3), since a stability re-
sult of a general systemCCCxxx = yyy can be obtained through the stability
result of (3).

In this work, we show that the sequence of the setsCi 2 IRm; i =
1; 2; � � � of the values ofyyy(n)must, in the case of GAS, exhibit contrac-
tion features, which preserves convexity of adjacent subsets, as well as
the asymptotic stability. Namely, based upon the Cauchy–Schwarz in-
equality

jy(n)j = jaaaT (n)yyy(n� 1)j � kaaa(n)k2kyyy(n� 1)k2 (4)

which exhibits contraction features under the assumptionkaaa(n)k2 <
1.

Moreover, we derive the conditions for the pseudoperiodic or ape-
riodic GAS based upon the fixed-point iteration (FPI) technique. The
conditions of the convergence of the FPI are based upon thek � k1 and
k � k1 norms of the coefficient vectoraaa.

II. I NTERVAL CONTRACTION AND CONTRACTION MAPPING

We now cite the contraction mapping theorem (CMT) for the uni-
variate case [7], [8]

Theorem 1: If

i) x 2 [a; b] ) K(x) 2 [a; b]
ii) 9 < 1 s:t: jK(x)�K(y)j � jx � yj; 8x; y 2 [a; b]

then the equationx = K(x) has a unique solutionx� 2 [a; b] and the
iteration

xi+1 = K(xi) (5)

converges tox� from anyx0 2 [a; b].
The contraction feature can be seen as the interval contraction [9],

whose convergence can be derived as

jxi � x�j = jK(xi�1)�K(x�)j � jxi�1 � x�j (6)

thusjxi � x�j � ijx0 � x�j sincefigi ! 0 ) fxigi ! x� as
i ! 1. The usual way of checking ii) in Theorem 1 is to show that
jK 0(x)j �  < 1, where(�)0 denotes the first order differentiation.

III. COMMENTS ON THEGAS

In [1], Lemma 1 stated that the time variant difference equation {(1)}
is asymptotically stable, if and only if�m

v=1 a
+
v < 1, wherejav(n)j �

a+v ; v = 1; � � � ;m; 8n.
This was illustrated for the second order case. The illustration pro-

vided was very well known from autoregressive (AR) model theory
[10], [11]. However, nothing was said about the setCn�1 � IRm to
which the vectoryyy(n � 1) = [y(n � 1); � � � ; y(n �m)]T should be-
long, nor to which set the resulting valuey(n) belongs, and whether
the vectoraaa(n) is allowed to change continuously withn or not, and
what the bounds on the setA would be for allfaaa(n)g in that case.

We should re-state this Lemma, so that it comprises the bounds on
the set of initial valuesC0 and includes a continuous change of the
parameter vectoraaa(n) within its domain.

Lemma 1: Let the initial valuesy(�1); � � � ; y(�m) of (1) belong to
a convex setC0 � IRm, andav � 0; jav(n)j � a+v , for v = 1; � � � ;m
and8n. Then the difference equation (1) is asymptotically stable if and
only if �m

v=1 a
+
v < 1, and the resulting valuey(n) belongs to a subset

C � C0 of the setC0.

Fig. 1. Convergence of relaxation form = 4, the caseskaaak > 1=4, and
kaaak < 1=4.

Proof: Affine function (1) is either convex or concave. If the set
C0 is convex, and with the constraints onA as above, then the resulting
valuey(n) belongs to the convex subset ofC0. Now, the difference
equation (1) is asymptotically stable, as a mere consequence of con-
vexity and contraction mapping.

Furthermore the parameter setaaa(n) forms a closed halfspace after
each iteration. That means that on the run, the setfaaa(n)g forms a poly-
hedron, which is convex.

IV. PSEUDOPERIODIC ANDAPERIODICCONVERGENCE

The GAS results as introduced in [1] allow pseudoperiodic behavior,
since there is no further condition onaaa(n), except for GAS. Let us
present the result for the strict aperiodic uniform convergence of (1).

Theorem 2: The equation

y(n) = a1(n)y(n� 1) + � � �+ am(n)y(n�m) (7)

exhibits uniform GAS in the aperiodic sense if

i) ai(n) � 0; i = 1; � � � ; m; 8n
ii) �m

i=1 ai(n) < 1 , kaaak1 < 1
iii) maxa (n);i=1;���m ai(n) > (1=m), kaaak1 > (1=m)

Proof: Points i) and ii) have already been considered.

iii) In order to preserve contraction of the setsC0; C1; � � �, we
have

jy(n)j = ja1(n)y(n� 1) + � � �+ am(n)y(n�m)j

� a1jy(n � 1)j+ � � �+ amjy(n �m)j

< (a1(n) + � � � am(n))jy(n� 1)j

<m � max
a (n);i=1;���m

ai(n)jy(n� 1)j (8)

From (8) we havemaxa (n);i=1;���m ai(n) > (1=m).
Example 1: Check Theorem 2 form = 4 and

i) [i)] aaa = [0:7 0:1 0:05 0:05] wherekaaak1 = 0:9 < 1 and
maxaaa = kaaak1 = 0:7 > 1=4

ii) aaa = [0:2 0:1 0:15 0:2] wherekaaak1 = 0:65 < 1 andmaxaaa =
kaaak1 = 0:2 < 1=4

and initial conditionsYYY = [1 5 �6 3].
Note that case i) corresponds to the strict FPI convergence, whereas

in the case ii) we can expect pseudoperiodic behavior. The diagram of
the values of (7) are shown in Fig. 1. The solid line in Fig. 1, which
represents the case i) i.e.kaaak1 = 0:7 > 1=4, decays monotonically
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toward zero for lagsn > 4, i.e. after the initial values are processed by
(7). The dashed line in Fig. 1, which represents the case ii) i.e.kaaak1 =
0:2 < 1=4, decays in an oscillatory way toward zero for lagsn > 4,
which confirms Theorem 2.

A. Stability result for�mi=1 ai = 1

Let us finally consider the case with constant parameter vectoraaa =
[a1; � � � ; am]T , wherekaaak1 = 1. In that case, the matrixAAA from (3)
becomes a stochastic matrix [12], [13], since each of its rows is a prob-
ability vector, i.e. each entry of a row is nonnegative and the sum of the
entries in each row is unity. In addition, sets of real stochastic matrices
are compact convex sets [6]. This being the case, the process (3) can
be rewritten as

YYY (n+ 1) = AAAYYY (n) = AAA2YYY (n� 1) � � � = AAAnYYY (0) (9)

which means that the dynamics of (3) are fully described by its initial
stateYYY (0), and the system matrixAAA. In addition, since the product
of two stochastic matrices is a stochastic matrix, and the stochastic
matrix AAA is a regular stochastic matrix, it has a unique fixed vector
ttt = [t1; � � � ; tm] such that [12]

tttAAA = ttt (10)

which is a probability vector itself, i.e.ktttk1 = 1. In that case

AAAn =

a1 a2 � � � am
1 0 � � � 0
...

...
. . .

...
0 � � � 1 0

n

n!1
!

t1 t2 � � � tm
t1 t2 � � � tm
...

...
. . .

...
t1 t2 � � � tm

(11)

Lemma 2: The process (7) with the constant coefficient vectoraaa =
[a1; � � � ; am]

T , whereai � 0; i = 1; � � �m converges to

i) jy1j = j�mi=1 tiy(n� i)j � 0 for kaaak1 = 1
ii) y1 = 0 for kaaak1 < 1

from any finite initial stateYYY (0).
Proof:

i) Since from (11), the matrixAAAn approaches a constant matrix
with positive entries, and with rows being fixed vectors of the
matrixAAA, the quantityy1 = y(n)jn!1 becomes a linear com-
bination of its previous values, with strictly positive coefficients.
That means that, in a general case,y1 > 0, with y1 = 0 if
and only if the vectorsttt andaaa are orthogonal, i.e.tttTaaa = 0.

ii) Since the rows(2 � m) in AAA represent the shift operator, the
dynamics of the system (3) rest upon the first row ofAAA, which is
aaaT . The conditionkaaak1 < 1 introduces decay into the system,
and the output of the system converges to zero.

Example 2: Check Lemma 2 for

i) aaa = [0:15 0:2 0:5 0:15] wherekaaak1 = 1
ii) aaa = [0:15 0:1 0:5 0:15] wherekaaak1 = 0:9 < 1

and the initial conditionYYY = [1 5 �6 3].
Let us set up the recursion (3), where the first row inAAA should beaaa

from i) or ii), and plot the resulting valuesy(n); n = 1; 2; � � �, as shown
in Fig. 2. The diagram in Fig. 2 confirms the claim from Lemma 2, since
for i) wherekaaak1 = 1, the iteration (7) converges to a nonzero value,
whereas for the case ii) wherekaaak1 < 1, the iteration (7) converges
to the value of zero.

B. Examples

We present some results for the convergence in the geometric and
norm sense of the approach presented so far.

Fig. 2. Convergence of relaxation forkaaak = 1 andkaaak < 1.

Fig. 3. Convergence of the processYYY (n) = AAAYYY (n� 1).

For the matrixa11 = 0:2; a12 = 0:8; a21 = 1; a22 = 0, and the
initial conditionsY = [1 2], the geometric convergence of the vector
Y in the plane, and the convergence of itsk � k2 norm are shown in
Fig. 3. Askaaak1 = 1, and the entries inaaa are nonnegative, the points
YYY (n) = [y1(n); y2(n)] converge toward a point, forming a line in
the plane (convexity). The convergence in the norm is oscillatory, and
toward a nonzero point (Lemma 2).

For the matrixa11 = �0:2; a12 = 0:8; a21 = 1; a22 = 0, and the
initial conditionsY = [1 2], the geometric convergence of the vector
Y in the plane, and the convergence of itsk � k2 norm are shown in
Fig. 4. Here,kaaak1 = 1, but not all elements ofaaa are nonnegative.
The process (1) converges in the norm, but not in the geometric sense,
where it achieves its limit cycle, for there are two distinct points, with
the same norm, to which the process converges. That is because, with
both the positive and negative entries inaaa, the convexity is violated,
and the functions and adjacent sets are affine, rather than convex.
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Fig. 4. Convergence of the processYYY (n) = AAAYYY (n� 1).

Claim 1: For the system (1), withkaaak1 = 1, the convergence in the
norm does not imply the convergence in the geometric sense.

V. CONCLUSION

Based upon the results in [1], for the casekaaak1 < 1, we have shown
that all the statements given in [1] can be derived simply as a conse-
quence of convexity and affinity of the sets of initial values of the signal
considered, and the filter parameters, if all the entries inaaa are nonneg-
ative. The convexity property, together with the contraction mapping
imposed on the filter equation, allows derivation of the conditions of
the pseudoperiodic and aperiodic GAS, as well as uniform GAS. The
values to which the processes converge in the cases of aperiodic and
pseudoperiodic convergence have been found. That has been achieved
through thek �k1 andk�k1 norm of the coefficient vectoraaa. In this ap-
proach, the values of the coefficient vector are allowed to change freely
within the convex setA of all the allowable values ofaaa. In addition,
we have derived corresponding results for the casekaaak1 � 1, using the
state space approach, and the fixed-point theory, and have shown that
the convergence in the norm, does not necessarily imply geometric con-
vergence. It has been shown that the case whenaaa has only one positive
entry, andkaaak1 = 1 leads to occurrence of limit cycles. The examples
presented fully support our approach.
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Adaptive Control of Chaotic Dynamical Systems Using
Invariant Manifold Approach

Yu-Ping Tian and Xinghuo Yu

Abstract—In this brief, an adaptive chaos control method is developed
for stabilizing chaotic systems at their unknown equilibrium(s) using
the invariant manifold theory. The developed method overcomes the
problem that the equilibrium(s) of the chaotic systems are dependent
on the unknown system parameters, which makes direct application
of the conventional adaptive control difficult. Further development of
the adaptive chaos control is undertaken for the situation where the
parameter estimates are only allowed to vary within a bounded set due
to the sensitivity of chaotic systems to parameter variations. A sufficient
condition for convergence of system states and parameter estimates is
obtained. The design method developed then is applied to stabilizing the
Lorenz chaotic system at an unknown equilibrium. Both mathematical and
computational results have demonstrated the effectiveness of this method.

Index Terms—Adaptive control, chaos control, invariant manifolds,
Lorenz system, Lyapunov method.

I. INTRODUCTION

Controlling chaos has attracted more and more attention recently,
and has become a very active multidisciplinary research area involving
physics, biology, mathematics, and engineering. Various control strate-
gies for chaos control have been developed, e.g., [1]–[5] and references
therein.

The basic assumption of the existing chaos control results is that
the system parameters are knowna priori. Unlike most conventional
control systems whose equilibriums are assumed known and fixed re-
gardless of values of the system parameters, the equilibriums of chaotic
systems are a function of their system constant parameters. This sug-
gests that, when the constant parameters are not precisely known (or
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