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ABSTRACT 
A normalized algorithm for on-line adaptation of a recur- 
rent perceptron is derived. The algorithm builds upon the 
normalized backpropagation (NBP) algorithm for feedfor- 
ward neural networks, and provides an adaptive learning 
rate and normalization for a recurrent perceptron learning 
algorithm. The algorithm is based upon local linearization 
about the current point in  the state-space of the network. 
Such a learning rate is normalized by the squared norm of 
the gradient at the neuron, which extends the notion of  nor- 
malized linear algorithms to the nonlinear case. 

1. INTRODUCTION 

A general class of Least Mean Square (LMS) based nonlin- 
ear algorithms can be expressed as 

w(k + 1) = w(k) + 17(k)F (x(k)) 9 (w(k),x(k)) (1 )  

where w(k) = [wl(k), . . . , w ~ ( k ) ] ~  is the weight vector, 
q(k) is the learning rate, x(k) = [XI ( k ) ,  . . . , x ~ ( k ) ] ~  is an 
input vector, k is the discrete time index, F : RN + RN 
usually consists of N copies of the scalar function f, and 
g(.)  is typically a scalar function of the error e k .  Function 
F is related to data nonlinearities, which can impede the 
convergence of the algorithm. Function g is related to error 
nonlinearities, and it  affects the cost function to be mini- 
mized. Error nonlinearities are mostly sign-preserving [ I ] .  
Numerous algorithms have been developed in order to im- 
prove the convergence of the LMS-based algorithms. The 
most popular variant of the LMS algorithm which uses an 
adaptive step size is the Normalized LMS (NLMS) algo- 
rithm. Its derivation involves optimization by the method of 
Lagrange multipliers. 
For nonlinear systems, learning algorithms with an adap- 
tive learning rate are most desirable [2]. Among them, an- 
nealing algorithms use a search-then-converge technique 
[ 3 ] .  Backpropagation algorithms with an adaptive learn- 
ing rate include algorithms with Lipschitz continuous con- 
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straints [4], and algorithms based upon the first and second 
order derivatives. 
A class of linearized algorithms for nonlinear adaptive Volter- 
ra and Myriad filters has been proposed in [ 5 ] .  For neu- 
ral networks, a backpropagation algorithm based upon local 
linearization of the state space equations is the Normalized 
Backpropagation (NBP) algorithm [6]. In [7] ,  normaliza- 
tion is provided using the Lagrange multiplier method ap- 
plied to the state space of the network. Neural networks for 
on-line learning use direct gradient algorithms, such as the 
Real Time Recurrent Learning algorithm (RTRL). 
Hence, there is a need for a real-time gradient based algo- 
rithm for a recurrent perceptron, with an adaptive learning 
rate which would impose stability and convergence similar 
to that produced by the NLMS for linear filters. We derive 
such an algorithm, which is locally optimal, in the sense that 
it  minimizes the instantaneous squared error at the output of 
a recurrent perceptron, based upon the local properties of 
linearization provided via Taylor series expansion. Experi- 
mental results are presented to support the analysis. 

2. ASPECTS OF LINEARIZATION 

Linearization is used in order to examine the stability of 
the algorithm (l) ,  where, in the case of the RTRL algorith- 
m, F is an identity matrix, and g is some nonlinear, sign- 
preserving function of the output error. The linearization 
ought to be time-varying, due to the external input signal x. 
An assumption that the learning rate 17 is sufficiently smal- 
l to allow the algorithm to be linearized around its current 
point in the state space is also needed. The idea itself is not 
new. From Lyapunov stability theory, system 

z ( k  + 1) = F ( k ,  z ( k ) )  (2) 

can be analyzed via its linearized version 

z(k + 1) = A(k)z(k) (3)  
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where A is the Jacobian of F and k denotes discrete time. 
This is the Lyapunov indirect method, and assumes that 
A ( k )  is bounded in the neighborhood of the current point 
in the state space, and that 

t 4) 

which guarantees that time variation in the nonlinear terms 
of the Taylor series does not become arbitrarily large in 
time. Function g preserves the local nature of the results, 
and ( 1  . I( denotes an arbitrary norm. 

11 F ( k ,  z> - A4kz 11 = lim max 
11~11~0 k I 1  z I I  

3. RECURRENT PERCEPTRON 

A general structure of a recurrent perceptron is shown in 
Figure 1. The equations which describe the recurrent per- 
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Figure 1 : NARMA(p,q) recurrent perceptron 

ceptron are 

Y(k) = Q,(v (k>)  
w(k) = W(k)T . u ( k ) ,  ( 5 )  

where u(k) = [y(k-l) ,  . . . , y ( k -q ) ,  l ,x(k- l ) ,  . . . , z ( k -  
p ) l T .  The Bounded Input Bounded Output (BIBO) stabili- 
ty of ( 5 )  is preserved due to the saturation type nonlinearity 
Q, in (3, which is typically the logistic function @(U) = 
I+:-gy, with slope p. 
The problem of gradient based training can be set as [8] 

minimize 1 )  w(k + 1) - w(k) J l p  t 6)  
subject to s ( k )  - (wT(k + l )u(k) )  = 0 (7) 

where 1) . ( I p  denotes the C, norm, and s(k) is some teach- 
ing (desired) signal. The equations that define the adapta- 

tion of a recurrent perceptron are 

e ( k )  = s ( k )  -@(.(IC)) (8) 
w(k + 1) = w(k) - qV,(k)e2(L) (9) 

where e ( k )  is the instantaneous error at the output neuron, 
and e'( IC) is the cost function to be minimized. The correc- 
tion to the weight vector of the neuron, at the time instant k 
becomes [9] 

Aw(k) = Zq(k)e(k) I I (k )  (10) 

where II(k) = [a,. . . , a] represents the gra- 
dient vector at the output of the neuron. 

4. DERIVATION OF THE ALGORITHM 

Notice that the weight vectors consist of two subvectors, 
namely w = [Wa,WbIT, where wa represents the weight- 
s associated with the feedback inputs, whereas the weights 
with the index b correspond to the weights associated with 
the external and bias inputs. Hence, the weight vector w 
can be split into two subvectors, w, and W b .  

In order to minimize the a posteriori error (7) via an adap- 
tive learning rate, consider Taylor expansion of the instan- 
taneous error 

This approach to normalization of gradient adaptive algo- 
rithms for linear systems is provided in [IO]. In linear sys- 
tems, the terms after the second t e m  vanish due to linearity 
of the system. In nonlinear systems, generally, many terms 
of the Taylor series are not negligible. However, as our in- 
tention is to provide a local linearization around the current 
point in the state-space of the network, and knowing that 
the logistic function behaves approximately linearly in the 
areas that are not saturated, we will also take into account 
only the first two terms of the expansion ( 1  1).  It also helps 
to reduce the computational load associated with calculating 
higher order derivatives of ( I  I ) .  After neglecting the higher 
order terms in the Taylor series expansion ( I  l ) ,  we have 
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Differentiating with respect to q, the optimal value of learn- 
ing rate q o p ~ ( k )  for a direct gradient trained recurrent per- 

The misalignment vector can be expressed as 

ceptron becomes v ( k )  = w ( k )  - % 

(14) Now, subtract \t from either side of (21), so we have 

This is closely related to the learning rate in the NLMS al- 
gorithm for linear adaptive filters. However, in order to con- 
verge, this algorithm has to be bounded by the correspond- 
ing normalized algorithm for Infinite Impulse Response (I- 
IR) linear adaptive filters. Hence, the slope of the activa- 
tion function B and the learning rate q ( k )  are dependent 
[ 1 I]. For the normalized algorithm (14), to converge, func- 
tion @ ought to be a contraction, i.e. for any a,  b E EX, 
I@@) - @(.)I L Ib - 4 .  

For @ a contraction mapping the term in the square brack- 
ets from (23) is bounded from above by (Y IuT(k)v(k)I,  
0 < (Y _< 1. Further analysis towards the weight conver- 
gence becomes rather involved because of the nature of II. 
Let us denote wT(k)u (k )  = net(k). Since 

II(~) = a = CP' (net(k)) [u(k) + wz(k)n,(k)] 
let us restrict ourselves to an approximation 

This does not affect the generality of the result, since i t  is 
possible to return to the II terms, after the convergence re- 
sult is obtained. In fact, this approximation of II resembles 
a single-layer, single-neuron feedforward normalized algo- 

5. CONVERGENCE OF THE PROPOSED 
ALGORITHM r I ( k )  4 @' (WT(k)U(k)) u ( k )  

From (1 2), we have 

e ( k  + 1) = e ( k )  - 277(k)e(k) I1 n(k> 11; 
= e ( k )  [l - 2q(k)  ( 1  n(k) (15) rithm [6]. Therefore 

v ( k  + 1) 5 v(k) + 2q(k)q(k)@' (ne t (k ) )  u(k)  It is desirable that le(k)l  -+ 0 as k + oa, which gives 

Ie(k + 111 = l d k )  [I - 277(k) I1 Wk.1 IIa I - 2q(k )uT(k )v (k )a@'  ( n e t ( k ) )  u ( k )  (24) 

For a contractive activation function, @' ( n e t ( k ) )  is also 
bounded as 0 < )@'(net(k))l  5 11121, and can be replaced 
by a'(.) < y 5 1. We do not take into account the algebra- 
ic sign of @', because of the sign-preserving nature of the 
nonlinear function @. Now (24) becomes 

' . I' - 277(k) I' IT(') ( I 6 )  

This will converge unijorormly if and only if 

11 - 2rl(k) II W k )  IEI < 1 (17) 

which is a contractive behaviour. 

6. MORE ON CONVERGENCE 

Considerthe errorequatione(lc) = s ( k ) - @  ( ~ ( k ) ~ u ( k ) ) ,  
but assume If we now include the zero mean noise assumption, and the 

independence assumption between 77, U, and v, we have 

s ( k )  = q ( k )  + @ ( G T U ( k ) )  (18) 
E [ ~ ( k  + l)] = E [ ~ ( k ) ]  E [I - 2 y ~ p ( k ) ~ ~ ( k ) ( ~ ]  (26) 

where E[.] is the expectation operator. For convergence, 
where G ( k )  are optimal filter weights (not time varying). It 
follows then that 

0 < E [i[-I - 2 y q ( i ) u ( k ) ~ ~ ( i ) ( ~  [I] < 1, which For the 

upper limit of (Y and y gives 0 < q ( k )  < E [UT('C;U(k)]' .  
This means that the NLMS algorithm is the upper bound for 

e ( k )  = q ( k )  + (GTu(k ) )  - @ (w*(k)u(k)) (19) 

Consider again the weight equation update 

(20) 
the simplified recurrent perceptron algorithm analyzed. Al- 
so, by continuity, an IIR version of the NLMS algorithm is 
the bound for the single-neuron RTRL algorithm. The mean 
square and steady state mean square convergence analysis 

w(k + l) = w ( k )  + 277(k)e(k)II(k) 

From (19) and (20), we have 

w ( k  + 1) = w ( k )  + 277(k)q(k)rI(k) follows the same form. 

'Using the independence assumption, u(k)uT(k) is a diagonal matrix, 
+ W k ) @  (GT(k)U(k)) HI(k) 

- 271(k)@ (WT(k)U(k)) n ( k )  (21) and E [It u ( k ) u T ( k )  111 can be replaced by its trace uT(k)u(k). 
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7. EXPERIMENTAL RESULTS 9. REFERENCES 

Figure 2 shows the comparison of instantaneous squared 
prediction errors for the RTRL and NRTRL for a nonsta- 
tionary (speech) signal. The NRTRL algorithm from Figure 

(a) Standard RTRL algorithm 

I 

(b) Normalized RTRL algorithm 

Figure 2: Squared instantaneous prediction errors for the 
RTRL and NRTRL algorithms 

2(b), clearly achieves significantly better performance than 
the RTRL algorithm (Figure 2(a)). To quantify this, if the 
measure of performance is the standard prediction gain, the 
NRTRL achieved 7 d B  better performance than the RTRL 
algorithm. 

8. SUMMARY 

A normalized version of the Real Time Recurrent Learn- 
ing (RTRL) algorithm has been analyzed. This has been 
achieved via local linearization around the current point in 
the state space, as is common in stability theory in  automat- 
ic control. Such an algorithm provides an adaptive learning 
rate normalized by the 2-norm of the gradient vector at the 
neuron. Experimental results on a nonstationary signal sup- 
port the analysis. 
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