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An Enhanced NAS-RIF Algorithm
for Blind Image Deconvolution

Chin Ann Ong and Jonathon A. Chambers

Abstract—We enhance the performance of the nonnegativity and
support constraints recursive inverse filtering (NAS-RIF) algorithm for
blind image deconvolution. The original cost function is modified to
overcome the problem of operation on images with different scales for
the representation of pixel intensity levels. Algorithm resetting is used to
enhance the convergence of the conjugate gradient algorithm. A simple
pixel classification approach is used to automate the selection of the
support constraint. The performance of the resulting enhanced NAS-RIF
algorithm is demonstrated on various images.

Index Terms—Blind image deconvolution, classification, conjugate gra-
dient, deblurring.

I. INTRODUCTION

In many applications images are degraded by blur and additive
noise, for example in astronomy, medical imaging, and remote
sensing [1]–[3]. Such degradation is commonly represented by a
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linear model of the form

g(x; y) = f(x; y) � h(x; y)

=
(n;m)

f(n;m)h(x� n; y �m) + n(x; y) (1)

whereg(x; y); f(x; y), andh(x; y), denote respectively the degraded
two-dimensional (2-D) image, the true image and the linear shift-
invariant blur, morecommonly referred to as the point-spread function
(PSF); � denotes the 2-D convolution operation,n(x; y) is the
additive noise andx; y; n; m 2 Z, the set of integers.

The problem of blind image deconvolution corresponds to estimat-
ing the true image,f(x; y), from the observed imageg(x; y), when
both f(x; y) and the PSF,h(x; y), are either unknown or partially
known. This is a difficult ill-conditioned and ill-posed problem due to
the existence of the additive noise. Direct inversion of the PSF will
generally yield high frequency amplification of the additive noise,
thereby corrupting the estimate of the true image.

There are two main classes of methods for blind deconvolution.
The first class estimates the PSF before estimating the true image.
Methods which belong to this class have the advantage of being
low complexity approaches, but are limited to situations where the
true image, and/or the PSF, are known to have special characteristics
[1]. The second class, which is more generally applicable, estimates
simultaneously the PSF and true image. Techniques from this second
class can be further divided into parametric and nonparametric
methods. The parameteric methods assume some model for the PSF
or true image, for example an autoregressive (AR) model for the
true image and a moving average (MA) model for the PSF, but have
practical restrictions and convergence problems [1]. In this work, we
therefore concentrate upon a nonparametric method which utilizes
only deterministic constraints on the true image such as nonnegativity
and known finite support. The iterative blind deconvolution (IBD)
algorithm proposed by Ayers and Dainty [4] is an early example
of this approach, but this method is known to be unreliable, with
problems in uniqueness of solution and convergence, despite noise
robustness due to its analogy with Wiener-filtering. Another approach
proposed by McCallum [5] is based upon a multimodal cost function,
minimized with a simulated annealing algorithm. This algorithm is
however too computationally complex for real-time applications, the
complexity for each iteration of the algorithm isO(N4

f ) whereNf

is the number of pixels within the image estimate.
A new technique belonging to this nonparametric class of blind

deconvolution algorithms is the nonnegativity and support con-
straints recursive inverse filtering (NAS-RIF) algorithm proposed
by Kundur and Hatzinakos [1], which was designed to have good
convergence properties and relatively low computational complexity,
O(NfNuNls;k) whereNu is the number of parameters of a 2-D finite
impulse response (FIR) filter used to model the inverse of the PSF
andNls;k is the number of line searches used within the conjugate
gradient algorithm at thekth iteration of the minimization of an
associated cost function. This algorithm also assumes that both the
PSF and its inverse are absolutely summable [1]; but, advantageously,
is not limited to finite extent PSF’s.

In this correspondence we propose modifications to the original
NAS-RIF algorithm to overcome some of the limitations found in
its operation, namely it is unable to deal robustly with variations in
gray-scale ranges, compromises accuracy of restoration with speed
of convergence, and requires an accurate estimate of the support of
the object of interest.
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Fig. 1. Structure of the NAS-RIF algorithm.

(a) (b)

(c) (d)

Fig. 2. (a) Original image, (b) degraded image, and the image estimates using (c) the original and (d) the enhanced NAS-RIF algorithm.

II. NAS-RIF ALGORITHM

The structure of the NAS-RIF algorithm is shown in Fig. 1. The

true image,f(x; y) in (1), is assumed to contain an object with known

finite support against an uniformly black, grey or white background;

the object being entirely encompassed within the image. The degraded

image,g(x; y), forms the input to an adaptive FIR filter, the output of
which, f̂(x; y), is an unconstrained estimate of the true image. The
nonlinear filter projects the estimate of the true image onto the space
of images which satisfy the nonnegativity and support constraints to
form the refined image estimatêfNL(x; y). That is, pixels inf̂(x; y)
which are outside of the region of support of the object are set to the
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(a) (b)

(c) (d)

Fig. 3. (a) Original image, (b) degraded image, and the image estimates using (c) the original and (d) the enhanced NAS-RIF algorithm.

known background level of the true image, and negative pixels within
the region of support of the object are set to zero. The difference
between these two images,e(x; y), is the input to the optimization
algorithm which minimizes the following cost function

Jfu(x; y)g =
8(x;y)

e
2(x; y)

=
8(x;y)2D

f̂
2(x; y)

1� sgn(f̂(x; y))

2

+

8(x;y)2 �D

[f̂(x; y)� LB ]
2 (2)

where u(x; y) denotes the parameters of the adaptive FIR filter,
f̂(x; y) = g(x; y)�u(x; y); Dsup is the set of pixels within the known
region of support of the object, and�Dsup is the set of pixels within
the image that are outside of the region of support. The parameterLB
corresponds to the background grey-level of the pixels within�Dsup,
andsgn(x) is the sign function. This cost function has been shown to
be convex with respect tou(x; y) [6] and has been minimized with
the conjugate gradient algorithm. A complete listing of the NAS-RIF
algorithm based upon conjugate gradient algorithm minimization of
(2) together with some simulation studies can be found in [1].

When the background of the true image is black, i.e.,LB = 0,
an additional term is added to the cost function (2), of the form
[

8(x;y) u(x; y)�1]2, to avoid a trivial all-zero minimum solution,
where is a positive constant.

III. ENHANCING THE NAS-RIF ALGORITHM

In this section we propose modifications to the original NAS-RIF
algorithm to enhance its operation.

A. Scaling

The representation of grey-scale intensity levels is arbitrary, for
example the closed set of real numbers[0; 1] or [0; 1000] may be
used. The original NAS-RIF algorithm based upon the minimization
of (2),LB 6= 0, fails to converge because as the algorithm progresses,
the d.c. gain of the adaptive FIR filter is not constrained to unity.
A scaling difference between the pixel intensity levels of the input
g(x; y) and output f̂(x; y) is therefore introduced. The original
cost function (2) does not account for such scaling and hence the
convergence of the NAS-RIF algorithm is found to be poor [7].

To overcome this limitation, we introduce a scaling term within
the cost function of the enhanced NAS-RIF algorithm to compensate
for the nonunity d.c. gain of the adaptive filter

Jfu(x; y)g =
8(x;y)2D

f̂
2(x; y)

1� sgn(f̂(x; y))

2

+

8(x;y)2 �D

[f̂(x; y)� �LB ]
2 (3)

where � = (x;y) u(x; y) is the d.c. gain of the adaptive filter
which ensures thatLB is appropriately scaled in the calculation of
the error term during the optimization procedure. The second term
in (3) remains quadratic in the parameters of the adaptive filter and
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(a) (b)

(c) (d)

Fig. 4. (a) Original image, (b) degraded image, and the image estimates using (c) original and (d) the enhanced NAS-RIF algorithm.

Fig. 5. Evolution of the binary maskb(x; y).

therefore the convex form of the original cost function is maintained.
This modification introduces onlyO(Nu) additional computational
complexity to each iteration of the minimization algorithm.

B. Algorithm Resetting

The conjugate gradient algorithm is designed for quadratic cost
functions, for more general and nonlinear cost functions, as in (2)
and (3), modifications are necessary to aid convergence behavior and
encourage convergence to the global minimum [8]. In the enhanced
NAS-RIF algorithm we employ algorithm resetting to improve the
convergence properties.

For a quadratic cost function ofN variables the conjugate gradient
algorithm is guaranteed to converge inN iterations. Therefore, in the
enhanced NAS-RIF algorithm, due to the nonquadratic nature of (2)
and (3), we propose using the partial conjugate gradient algorithm
[8], in which the search direction of the conjugate gradient algorithm

is reset to that of the steepest descent algorithm at everyN iterations,
whereN is the number of parameters being estimated. We have also
found advantage in increasing progressively the size of the support
of adaptive FIR filter during the minimization procedure, beginning
with a small support, say 3� 3, and adding pixels to the boundary
of the support to build up to the target dimension [7].

C. Classification of the Region of Support

In the conventional NAS-RIF algorithm the object is assumed to
be contained within a rectangular region of support. However, for
nonrectangular objects the real background pixels within the region
of support will be wrongly classified as object pixels. This degrades
the quality of restoration [7]. We therefore propose to use a simple
approach to classify the pixels of the degraded image,g(x; y), as
belonging toDsup or �Dsup, other more sophisticated techniques can
be found in [9] and [10].
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We form a binary mask ofb(x; y) of the degraded imageg(x; y)
based upon a fixed thresholdT , that is

b(x; y) =
1; if g(x; y) > T
0; if g(x; y) � 0

:

The threshold can easily be found from the image histogram, as it is
assumed that the background intensity of the original imageh(x; y) is
constant, the first mode of the histogram ofg(x; y) is therefore likely
to be equal to the background intensity, and as such the thresholdT
can be chosen just above this level. The enhanced NAS-RIF algorithm
is therefore based upon the following cost function

Jfu(x; y)g =
f(x;y):b(x;y)=1g

f̂2(x; y)
1� sgn(f̂(x; y))

2

+
f(x;y):b(x;y)=0g

[f̂(x; y)� �LB ]
2: (4)

The maskb(x; y) can be refined during the minimization process
using the estimated imagêf(x; y). In terms of computational com-
plexity this will introduceO(Nf ) additional threshold tests, together
with the computations necessary to form the histogram. In summary,
the enhanced NAS-RIF algorithm is based upon the cost function
given in (4) minimized with the conjugate gradient algorithm and
reinitialization.

IV. SIMULATIONS

Three different images are used to compare the performance of the
original and enhanced NAS-RIF algorithms. The first image is shown
in Fig. 2(a). The degraded image, Fig. 2(b), is produced by using a
separable PSF generated fromvvT wherev is a column vector, of
dimension23 � 1, with elements that geometrically decrease from
the centre by a factor of 0.7 [1]. Additive white Gaussian noise is
also added such that the signal-to-noise (SNR) ratio is 40 dB. The
background grey scale level of the original image is set at1=255
over a normalized grey scale range of[0; 1]. The image estimates,
shown in Fig. 2(c) and (d), are obtained after 40 iterations. Additional
iterations for the modified algorithm yield severe noise amplification,
whereas the original algorithm locks-up at the 20th iteration as a
result of the nonzero background grey level of the original image.
The adaptive FIR filter,u, has dimension 5� 5. It is clear that the
modified algorithm has improved convergence properties, but there
is some amplification of the noise.

In Fig. 3(a), a segmented version of the Lenna image is shown.
The same PSF function is applied to this image to generate Fig. 3(b),
together with additive white Gaussian noise of 30 dB SNR. The image
estimates in Fig. 3(c) and (d) are again obtained after 20 iterations so
as to avoid noise amplification. The adaptive FIR filter has dimension
5 � 5. Notice that the image estimate with the enhanced algorithm
is noticeably more sharp and there is little noise amplification as a
result of the smoothness of the Lenna image. The key advantage of
the NAS-RIF type algorithms is good performance without having to
estimate explicitly the PSF.

To show how the region of support is classified automatically,
a third image is introduced in Fig. 4(a). Similar degradation is
employed to generate the degraded image in Fig. 4(b). The estimated
images are shown in Fig. 4(c)–(d), which clearly demonstrates the
advantage of the enhanced NAS-RIF algorithm. Finally, the evolution
of the binary mask,b(x; y), is shown in Fig. 5.

V. CONCLUSION

In this work, we have presented three enhancements to overcome
drawbacks of the original NAS-RIF algorithm. The problem of
robustness to the range of pixel values is solved by the introduction
of a scaling term within the cost function; the convergence of the
conjugate gradient algorithm is improved with the use of algorithm
resetting; and finally,a priori knowledge of the region of support of
the object is replaced by a simple classification procedure. We hope
that this paper will inspire further research on the NAS-RIF algorithm.

ACKNOWLEDGMENT

The authors gratefully acknowledge the assistance of D. Kundur
and D. Hatzinakos during the initial stage of our research, the advice
of J. Allwright, Imperial College, on optimization, Y. S. Goh for
assistance during the generation of simulations, and the valuable
comments of the anonymous reviewers.

REFERENCES

[1] D. Kundur and D. Hatzinakos, “Blind image deconvolution,”IEEE
Signal Processing Mag., vol. 13, pp. 43–64, 1996.

[2] D. Kundur and D. Hatzinakos, “Blind image deconvolution revisited,”
IEEE Signal Processing Mag., vol. 13, pp. 61–63, 1996.

[3] M. R. Banham and A. K. Katsaggelos, “Digital image restoration,”IEEE
Signal Processing Mag., vol. 14, pp. 24–41, 1997.

[4] G. R. Ayers and J. C. Dainty, “Iterative blind deconvolution method and
its applications,”Opt. Lett., vol. 13, pp. 547–549, 1988.

[5] B. C. McCallum, “Blind deconvolution by simulated annealing,”Opt.
Commun., vol. 75, pp. 101–105, 1990.

[6] D. Kundur, “Blind deconvolution of still images using recursive inverse
filtering,” M.A.Sc. thesis, Dept. Elect. Comput. Eng., Univ. Toronto,
Toronto, Ont., Canada, 1995.

[7] C. A. Ong, “Blind image restoration using the NAS-RIF algorithm,”
M.Eng. thesis, Dept. Electr. Electron. Eng., Imperial College, Univ.
London, U.K., 1997.

[8] E. Polak, Optimization Algorithms and Consistent Approximations.
Berlin, Germany: Springer-Verlag, 1997.

[9] R. C. Gonzalez and P. Wintz,Digital Image Processing, 2nd ed.
Reading, M: Addison-Wesley, 1987.

[10] A. K. Jain, Fundamentals of Digital Image Processing. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 15, 2010 at 06:57 from IEEE Xplore.  Restrictions apply. 


