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Abstract  

Designs for a frequency switchable dual-band branch-line coupler and a reconfigurable S-band power 

amplifier input matching network with photoconducting switches are presented. Frequency switching 

is achieved by increasing the power of the laser applied to the highly resistive silicon wafer and 

changing the properties of silicon under optical illumination. The advantages of this approach are 

high-speed switching, electromagnetic transparency (no interference) and thermal and electrical 

isolation between the device and the control circuit. A branch-line coupler frequency shift of 35% and 

10% has been achieved from all switches off to all switches on in lower (900 MHz) and upper (1800 

MHz) frequency bands, respectively. Frequency switchable class AB power amplifier with silicon 

switch in the input matching circuit has obtained the frequency tuning range of 2.5-3.5 GHz with no 

significant loss in efficiency and linearity. 

 

Index Term— frequency switchable, branch-line coupler, power amplifier, silicon switch 
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1. Introduction 

Novel components for future wireless communications systems will have to meet the demands of 

Cognitive Radio and Software Defined Radio (SDR). The common directions in design of these 

novel components are component miniaturisation, design of components with enhanced bandwidth, 

design of multiband components and design of tunable components. Over the past few years, 

branch-line coupler designs with bandwidth enhancement and size-reduction have been gaining 

favor. Recently, the interest in tunable microwave components, such as couplers, baluns, phase-

shifters, filters has arisen. Tuning techniques include varactor/pin diodes, RF MEMS, ferroelectrics 

and optical tuning. The use of pin and varactor diodes has many disadvantages such as high loss, 

high power consumption, unacceptable SNR and distortion of the incident signals. RF MEMS 

provide a better solution in building tunable passives, which are necessary for multiband systems. 

These passives are small, with low insertion loss, high Q and low power consumption, they 

introduce less signal distortion, but the fastest tuning speeds are around a microsecond.   

Ferroelectric materials have fast tuning speeds (~picoseconds). They are easily tuned by voltage 

only. Their main disadvantage is high level of dielectric loss. The advantages of the optically 

controlled microwave devices include high isolation between the controlling optical beam and the 

controlled microwave signal, short response time, high-power handling capacity, immunity to 

electromagnetic interference and low cost. Optically controlled antennas [1], filters [2], resonators 

[3], phase-shifters [4], have been demonstrated recently. 

The aim of this work is to produce frequency switchable RF circuits for microwave applications. 

The branch-line coupler device presented in this paper was produced by modifying a dual-band 

branch-line coupler and adding four silicon switches. The frequency switchable power amplifier 

was produced by inserting silicon switch into the input matching network, while the output 

matching network was not changed. 
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2. Photoconductive Devices 

The photoconducting properties are used in order to optically switch or tune microwave and mm-

wave structures. The semiconductor conductivity changes when exposed to light of a certain 

wavelength and flux density. Microwave switches with silicon (Si) as a photoconductor have the 

ability to be integrated into most of today’s communication systems (smart antennas, tunable 

metamaterials, novel filters). 

 

In 1975 the first silicon photoconducting switch was demonstrated by Auston [6]. The first switch 

operated by illuminated gap was reported in 1989 by Anderson et al. [7]. They used GaAlAs/GaAs 

laser at 805 nm. Horii and Tsutsumi [8] did the same experiment with interdigital gap and got 

superior characteristics over the single straight gap. The first lumped element equivalent circuit of 

the gap on silicon substrate was proposed by Gevorgian [9]. The equivalent circuit is an important 

tool for simulation and optimisation of the performance of the switch. A frequency tunable antenna 

was designed by Panagamuwa et al. [1] using a pair of optically operated microswitches. The 

illumination from a laser diode was focused on two Si switches placed onto the gaps in the dipole 

arms. The center frequency of the antenna was shifted by 40% when both switches were activated. 

 

The photoconducting property of Silicon can be used to optically control Electromagnetic Band 

Gap (EBG) based structures. EBG structures have unique frequency selective properties. In 1987 

Yablonovitch [10] introduced photonic crystals, and attracted interest due to the ability of these 

structures to be engineered for different applications. EBG and PBG (Photonic Band Gap) materials 

have the unique property that within certain bands of frequency, electromagnetic waves cannot 

propagate through the structure. The term PBG is not widely accepted, and it has been used to 

describe microwave phenomena which occur in EBG structures. The EBG structures have found 

many applications within the fields of optical and microwave communications. The applications 
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include microstrip lines based filters and substrates for printed antenna structures. Vardaxoglou et 

al. demonstrated frequency switchable filter [2], optically operated phase shifter and optically 

controlled microstrip patch antenna. A frequency switchable microstrip filter for microwave 

applications was realised by modifying a single pole parallel-coupled line filter, and the wave 

propagation in the filter is controlled by varying the structural parameters. Silicon switches were 

employed to alter the dimensions of the filter, resulting in a reconfigurable centre frequency of the 

device. 

 

3. Switchable Coupler 

The dual-band coupler device presented here is comparable to varactor tuned devices [5] in terms of 

fabrication complexity. However varactor based designs often require biasing lines and short circuit 

vias.  

The switches used in the design of a branch-line coupler are diced from high resistivity silicon 

wafer (ρ > 6000 Ωcm). Silicon changes from an insulator state to a near conducting state when 

illuminated by light. Silicon used is n-type doped with Phosphorus to increase static conductivity. 

The ideal light for this process is in the near infrared range. If we assume that the carrier mobilities 

do not change for low dopant densities, the free electron and hole densities for a static conductivity 

of m/S1067.16 3−×  can be found as 311
0 cm/107.7 ×=e  and 38

0 cm/109.2 ×=h , as shown in [1]. 

When illuminated with light, an equal number of excess electrons and holes are generated in pairs, 

adding to the initial free carrier densities. The excess free carrier density  (e+h) can be related to the 

relative complex permittivity of the semiconductor [11]. 
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complex relative permittivity of the electron-hole plasma ( εεε ′′−′= jr ), 0ε  is permittivity of 

vacuum, Lε  is relative permittivity of the semiconductor without the plasma, m*  is the effective 

mass of the charge carrier, v is the charge carrier collision frequency. The equivalent conductivity 

of silicon (σe) is made of static (σs) and alternating parts (σa), which can be shown by inserting (1) 

into Maxwell-Ampere law (2)-(4): 

( )EEH εεωσ ′′−′+=×∇ jj          (2) 

EEH εωεωσ ′+′′+=×∇ j)(          (3) 

EEH εωσ ′+=×∇ je                 (4) 

where εωσσσσ ′′+=+= sase , εωσ ′′=a . 

Change in static, alternating and equivalent conductivity with increase of total free carrier density 

(e0+h0 +e+h)  is shown in Figure 1. 

A way of modelling the switch is by matching the experimental results for the optical switch and 

simulation results for the equivalent circuit of the switch. The results for different states of the 

switch were obtained using Agilent Advanced Design System. The lumped element values from 

Figure 2 are tuned in order to match measured S-parameters under various illumination powers, 

from 0 to 200mW. The gap is represented by three capacitors (C1, C2, C4) and two additional 

components (R3, C3) to account for the photoconducting effect of silicon. Resistors (R1, R2) and 

inductors (L1, L2) are added to account for losses. By analysing a number of S-parameter graphs it 

was shown that with increasing optical power, the gap capacitance values (C2 and C3) increase, 

while the gap resistance values (R1, R2 and R3) decrease, indicating a capacitive nature of the 

switch. The values of these elements are shown in Table 1. 

An example of the switch in a microstrip transmission line is shown in Figure 3. The 1 mm x 2 mm 

x 0.3 mm silicon dice was placed over a 0.5-mm gap. A transmission line was printed on a 1.57-mm 
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Rogers RT/Duroid 5880 substrate with a dielectric constant of 2.2. The same substrate was used for 

branch-line coupler design. The silicon switch was held in place using a RS silver loaded epoxy 

hardener. The measured S-parameters for the switched line in OFF (0mW) and ON state (200mW) 

are given in Figure 4. The architecture of a dual-band coupler is shown in Figure 5. The 

characteristic impedances and electrical lengths, widths and lengths of the lines corresponding to 

the ones shown in Figure 5 are presented in Table 2. When silicon switches are in OFF state, there 

is a considerable degree of electrical isolation between TLS1 and TLS2. Consequently, very little 

energy transfer occurs across the gap. When switches are ON, they operate in pseudo-metallic state, 

an electrical connection is formed between TLS1 and TLS2. 

A 980nm laser operating at 200mW is coupled with fiber optic cables and angled over silicon 

wafers using plastic clamps. When laser is off, all switches are off. When laser is on, operating at 

200mW, the silicon conducts and the gaps are bridged, increasing the lengths of stubs and reducing 

the resonant frequency. Although the refractive index of silicon is varied by applying laser power to 

the material, even in the worst-case contribution of the thermo-optic effect, this change is very 

small and the coupler performance is not temperature sensitive. 

4. Frequency Switchable S-band Power Amplifier 

The frequency characteristics of an amplifier depend mainly on its input matching circuit. The idea 

presented here was to use reconfigurable input matching circuit and the output matching circuit was 

designed with fixed-value elements to cover the whole frequency tuning range without significant 

implications to efficiency and linearity. The wider tuning range would be possible if the additional 

input matching networks with the additional switches were inserted [14], but the complexity and 

size of the circuit would be increased.  

In the simulations the accurate large signal model of the CREE CGH35015F GaN HEMT device 

was used. The active device was initially recommended for 3.5 GHz OFDM WiMAX applications 

(12 dB Small Signal Gain, 26 % Efficiency at 2 W Average Power). A 0.508-mm-thick Rogers 
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Duroid 5880 substrate with dielectric constant of 2.2 was used for the matching networks. A model 

of the device was characterised, then the biasing circuit was added, load-pull simulations were 

performed. Finally, the input and output matching network design procedure was applied. The 

schematic of the reconfigurable power amplifier is shown in Figure 6. The dimensions of the lines 

are shown in Table 3. The dimensions of the upper (transmission line) and lower part of the tunable 

stub are given as Line and Stub 2 respectively. The gap is 0.25 mm wide.  

 

5. Results 

The simulations were performed using Agilent Advanced Design System 2008 and Agilent 

Momentum, the 2.5D electromagnetic simulation engine within the ADS package, that employs the 

Method of Moments technique. The simulated scattering parameter input and output port responses 

(magnitude response) for two states of the switch (0mW and 200mW) are shown in Figure 7 and 8 

respectively.  

 

The infrared 980±0.5nm laser is used in the experiment. An electronic control system alters the 

amount of optical power produced by the laser. The scattering parameter measurements were 

obtained using and Anritsu 37397D vector network analyzer. The measured S-parameter input and 

output port responses are shown in Figures 9 and 10. Good reflection is shown in both frequency 

bands (better than -15 dB). The coupling is close to -3 dB in both bands. The simulated and 

measured results are in good agreement. The frequency shift of 230MHz and 160MHz are 

demonstrated in lower (900MHz) and upper (1800MHz) frequency bands, respectively. The 

percentage frequency shift is 35% and 10% in lower and upper bands, respectively. 

 

Power Amplifier simulations were performed in Agilent ADS 2008. Figure 11 shows the simulated 

frequency response for the 2.5-GHz mode (a) and the 3.5-GHz mode (b), respectively. The device 
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was biased for the operation in class-AB (VDD=28V). The gain of 15 dB was reached in both 

modes. Figure 12 shows power added efficiency (PAE) for various input powers for both modes 

(0mW and 200mW). The device was biased under the conditions described above. The maximum 

PAE is 33%. The power amplifier achieves almost the same level of PAE as the one of single band 

power amplifier. After testing the amplifier under various input power levels it was shown that 

intermodulation distortion levels are almost the same as the standard single band amplifier. The 

simulated C/IM3 is shown in Figure 13. 

 

6. Conclusion 

This paper has proposed frequency switchable RF circuits using photoconducting switches: a 

frequency switchable dual-band branch-line coupler and a frequency switchable S-band power 

amplifier. The silicon gap-loaded switch properties were changed from insulator state to near 

conducting state under illumination and resulted in the change of the effective length of the 

transmission line. The frequency switchable power  amplifier with simple circuit topology has 

shown considerably good efficiency and linearity, although even higher linearity and power levels 

could be obtained by designing more complex tunable matching networks at both input and output. 

An optically switchable dual-band branch-line coupler has been demonstrated, both through 

simulation and measurements. The frequency shift of 35% and 10% has been achieved from all 

switches off to all switches on in lower and upper frequency bands, respectively. The branch line 

coupler’s performance has shown near -3 dB insertion loss, good return and isolation loss better 

than -15 dB and near 90 degrees phase difference between coupled and through ports, in both 

bands. The advantages of these new frequency switchable RF circuits are high-speed switching, 

electromagnetic transparency (no interference), thermal and electrical isolation between the device 

and the control circuit, and no need for short circuit vias and biasing lines. 
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TABLE I 
R, L, C VALUES AS A FUNCTION OF LASER POWER 

OFF (0mW) L1=1nH L2=1nH C4=1pF 
R1=800Ω R2=800Ω R3=800Ω 
C1=1pF C2=1pF C3=1pF 

ON (200mW) L1=41nH L2=41nH C4=23pF 
R1=50Ω R2=50Ω R3=50Ω 
C1=23pF C2=23pF C3=23pF 

 

 

 

TABLE II 
CHARACTERISTIC IMPEDANCES AND ELECTRICAL LENGTHS OF THE TRANSMISSION LINES 

 

 Impedance 
(Ω) 

Electrical 
Length 
(degrees) 

Width 
(mm) 

Length 
(mm) 

TL1 42.7 90 1.95 37.45 
TL2 60.4 90 1.15 38.06 
TLS1 54.4 75.6 1.36 31.50 
TLS2 54.4 27 1.36 11.36 

 
 

 
 
 
 

TABLE III 
DIMENSIONS OF THE INPUT MATCHING NETWORK TRANSMISSION LINES 

 
Transmission 

line 
Width 
(mm) 

Length 
(mm) 

Stub 1 2.17 9.58 
Stub 2 8.02 7.63 
Line 8.02 6.45 

Main 
Input 

d1 2.95 4.68 
d2 2.95 29.41 
d3 2.95 34.75 
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List of figure captions 
 
Figure 1: Change in conductivity with the increase of total free carrier density. 

Figure 2: Equivalent circuit of the switch. 

 
Figure 3: Example of a switch in a microstrip transmission line. 
 
Figure 4: Measured magnitude response of the switch in OFF (a) and ON (b) states. 
 
Figure 5:  Architecture of a dual-band switchable branch-line coupler. 
 
Figure 6: Schematic of the reconfigurable power amplifier circuit (biasing circuit is omitted). 
 
Figure 7: Simulated S-parameters of the frequency switchable branch-line coupler in OFF state (0 
mW). 
 
Figure 8: Simulated S-parameters of the frequency switchable branch-line coupler in ON state (200 
mW). 
 
Figure 9: Measured S-parameters of the frequency switchable branch-line coupler in OFF state (0 
mW). 
 
Figure 10: Measured S-parameters of the frequency switchable branch-line coupler in ON state 
(200 mW). 
 
Figure 11: S-parameters versus frequency for two positions of the switch(0 mW and 200 mW, for 
(a) and (b), respectively). 
 
Figure 12: Power Added Efficiency versus RF Power for both positions of the switch (0 mW and 
200 mW, for Positions 1 and 2, respectively). 
 
Figure 13. C/IM3 versus Output Power for both positions of the switch (0 mW and 200 mW for 
Positions 1 and 2, respectively). 
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Figure 1. Change in conductivity with the increase of total free carrier density. 

 
 

R1 R2

R3

L1 L2

C1 C2

C3

C4

 

Figure 2. Equivalent circuit of the switch. 

 
 
 

 
 
 

Figure 3. Example of a switch in a microstrip transmission line. 
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Figure 4. Measured magnitude response of the switch in OFF (a) and ON (b) states. 
 
 

 

Figure 5. Architecture of a dual-band switchable branch-line coupler. 
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Figure 6. Schematic of the reconfigurable power amplifier circuit (biasing circuit is omitted). 
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Figure 7. Simulated S-parameters of the frequency switchable branch-line coupler in OFF state 
(0 mW). 
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Figure 8. Simulated S-parameters of the frequency switchable branch-line coupler in ON state (200 
mW). 

 

1 2

-30

-20

-10

Frequency (GHz)

S
-p

a
ra

m
e

te
rs

 (
dB

)

 S11
 S21
 S31
 S41

 

Figure 9. Measured S-parameters of the frequency switchable branch-line coupler in OFF state (0 
mW). 
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Figure 10. Measured S-parameters of the frequency switchable branch-line coupler in ON state 
(200 mW). 
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Figure 11. S-parameters versus frequency for two positions of the switch (0 mW and 200 mW, for 
(a) and (b), respectively). 

 

 



International Journal of RF & Microwave CAE                                                              

 20

0 10 20 30 400

10

20

30

Position 2
Position 1

RF Power (dBm)

P
A

E
 (

%
)

 

Figure 12. Power Added Efficiency versus RF Power for both positions of the switch (0 mW and 
200 mW, for Positions 1 and 2, respectively). 
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Figure 13. C/IM3 versus Output Power for both positions of the switch (0 mW and 200 mW). 
 


