
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE COMMUNICATIONS LETTERS, VOL. 3, NO. 4, APRIL 1999 109
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Abstract—New blind adaptive channel equalization techniques
based on a deterministic optimization criterion are presented.
A family of nonlinear functions is proposed which constitutes
a generic class of blind algorithms. They have been shown to
have better performance than the conventional constant modulus
algorithm (CMA)-like approaches. The advantages include the
relaxed stability range on the step size and that an automatic
gain control unit which estimates the gain of the channel, is no
longer of crucial importance.

I. INTRODUCTION

T HE soft-constraint-satisfaction (SCS)-based algorithms
have been proven to have better performance than the

conventional CMA-like approaches [1]. The SCS approach in
[1] includes a particular nonlinearity. In this letter, a general
family of nonlinear functions have been postulated to maintain
the improved performance of SCS-based approach thereby
providing an infinite number of functions for use.

II. DERIVATION OF SCS ALGORITHMS

The rationale behind the SCS approach, contrary to the
previous research of stochastic cost functions, is to use a
deterministic cost function with appropriate constraints. Con-
sider the following optimization problem, also known as
the principle of minimum disturbance [2]: Determine the
tap-weight vector of dimension at time , , given
the tap-input vectors , , and desired responses

, so as to minimize the squared Euclidean norm
of the change in the tap-weight vector , i.e.,

subject to (1)

where is the training sequence. In blind equalization the
training sequence is not known to receiver, and hence the
desired response must be obtained from pertinent quantities
in the receiver. Thea priori equalizer output
can be used for our purposes. Hence, the following choice for
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TABLE I
THE ESSENTIAL FEATURES OF CM NONLINEAR

FUNCTIONS  (y): R1
! R1, y 2 R1, cf. FIG. 1

is a viable one:

(2)

where is a nonlinear function which satisfies certain
conditions. It is possible to include multiple constraints in
the derivation of algorithms, but it is beyond the scope of
this letter. In [1] the particular SCS-1 nonlinearity

has been derived indirectly. Herein, a general
approach is presented to include a family of functions.

The solution of the above optimization problem via La-
grange multipliers yields

(3)

where . A stepsize is also introduced to
maintain the stability of the algorithm. Hence, we can obtain
the update of the SCS algorithms as

(4)

The principle of minimal disturbance can be modified for use
in fractionally spaced equalizers as well.

A. Conditions on the Nonlinear Function

The choice of nonlinear functions is of crucial impor-
tance in the development. These functions restore the constant
modulus (CM) of the communication signals. For the sake of
simplicity, we assume that the communication system uses real
modulation schemes.1 The essential features of CM nonlinear
functions are tabulated in Table I. If the characteristics of
the functions are investigated with reference to Fig. 1, it is
seen that the functions should be symmetric with respect to
origin (odd) because these type of equalizers cannot resolve
180 of phase ambiguity. The sole intersection points
correspond to the desired CM of the equalizer output. When
the equalizer output is close to CM, so is the nonlinear function
and the correction term in (4) is minimal. The continuity
and finite derivative properties come from the smoothness

1The functions can be used as well for complex modulation schemes but
care should be taken not to neglect modulus operators.
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Fig. 1. Examples of CM functions for SCS algorithms: I)y (equalizer
output), II) (y=1 � 0:8(1 � jyj)), III) SCS-1: (2 � jyj)y, IV) ye�jyj +1,
and V) Godard:(2 � jyj2)y.

and differentiability restrictions. The other properties about
the range of define the requirements for the algorithm to
converge to the CM. For instance, for
guarantees that the correction term in (4) pushes the algorithm
toward CM when .

An infinite number of functions can be found to satisfy the
properties in Table I, which provide flexibility in the design of
blind equalizers. For instance, in limited precision arithmetic
processors higher powers of the input signal can be avoided.
Convergence speed and estimation error are dependent on
the choice of the nonlinear function. At low signal-to-noise
ratio (SNR) values, the shape of the nonlinear function is less
critical.

III. SIMULATIONS

We simulated a -spaced equalizer with three taps in a
fading scenario with three algorithms which result from the
nonlinearities III–V in Fig. 1. Also, we have included the
unnormalized versions, i.e., the normalization in (4) have
been removed. The open-eye-measure (OEM)2 [1] for each

2The OEM for channel equalizers is defined asOEM(k)
�
= (kTkk1 �

kTkk1=kTkk1) whereTk represents the combined channel and equalizer
space. IfOEM(k) < 0 dB then the eye is open and ISI has no effect in the
decision process. IfOEM(k) > 0 dB, the eye is closed and hence the ISI left
after equalization will cause decision errors. The lower the OEM, the better
approximation of the inverse channel the equalizer provides.

TABLE II
STEP SIZED (TOP ROW) AND MEAN OEM’S (dB) (BOTTOM ROW) IN EACH SLOT.
QAM A PPROXIMATION OFGMSK, THREE-RAY CHANNEL MODEL WITH AVERAGE

POWERS OF0.1, 0.8,AND 0.3 AT INTEGER DELAYS, SNR OF 40 dB, BIT RATE

OF 271 kb/s, 950 MHz CARRIER FREQUENCY AND MOBILE SPEED OF150 km/h

algorithm is averaged over 30 000 samples in dB scale. The
runs are identical for each of the algorithms. The initial
convergence periods have been excluded in the computations.
The results in Table II demonstrate the improved tracking
capability of the SCS algorithms in fading environments.
Time-varying channel taps cause singularities frequently in the
channel, i.e., zeros of the channel cross the unit circle, which
means that it is impossible to equalize the channel. Equalizer
taps fluctuate during singularities. Good tracking algorithms
recover quickly and reconverge to optimum values. In that
sense the SCS algorithms have a faster response to changes in
the channel. The lower the OEM, the better the algorithms
track the time-varying channel on average. Also, the SCS
algorithms maintain tracking capability over a wider range of
stepsizes, whereas the unnormalized counterparts have their
best performance in a limited range.

IV. CONCLUSIONS

A family of nonlinear functions is proposed as an extension
of the SCS approach [1] which form a new set of blind adap-
tive algorithms. They are observed to maintain the advantages
of the SCS approach.
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