

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288391186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

From An A Priori RNN to An A Posteriori
PRNN Nonlinear Predictor

D a d o P. Mandic and Jonathon A. Chambers

Signal Processing and Digital Systems Section
Department of Electrical and Electronic Engineering

Imperial College of Science, Technology and Medicine
Exhibition Road, SW7 2BT London

E-mail: d.mandic@ic.ac.uk, j .chambers@ic.ac.uk

Abstract
We provide an analysis of nonlinear time series prediction schemes,

from a common Recurrent Neural Network (RNN) through to the
Pipelined Recurrent Neural Network (PRNN), which consists of a num-
ber of nested small-scale RNNs. All these schemes are shown to be
suitable for Nonlinear Autoregressive Moving Average (NARMA) pre-
diction. The time management policy of such prediction schemes is
addressed and classified in terms of a priori and a posteriori mode of
operation. Moreover, it is shown that the basic a priori PRNN struc-
ture exhibits certain a posteriori features. In search for an optimal
PRNN based predictor] some inherent features of the PRNN, such as
nesting and the choice of cost function are addressed. It is shown that
nesting in essence is an a posteriori technique which does not diverge.
Simulations undertaken on a speech signal support the algorithms de-
rived, and outperform linear Least Mean Square (LMS) and Recursive
Least Squared (RLS) predictors.

1 Introduction
An important area in signal processing is time series prediction, which has
traditionally been achieved through linear structures] such as parametric Au-
toregressive (AR), Moving Average (MA), or Autoregressive Moving Aver-
age (ARMA) models [l, 21. Among linear adaptive time series predictors, the
most important examples are Least Mean Square (LMS) and Recursive Least
Squares (RLS) predictors [3]. For stochastic signals with nonstationary statis-
tical characteristics that cannot be adequately processed by linear predictors,
a number of nonlinear predictors has been developed [4, 51. An important
class of nonlinear predictors is Artificial Neural Network (ANN) based non-
linear predictors [B, 71; in particular Recurrent Neural Network (RNN) based
predictors have been shown to be able to represent the Nonlinear Autoregres-
sive Moving Average (NARMA) process [8]. RNN parameters are commonly
adapted by the use of the Real Time Recurrent Learning (RTRL) algorithm
[g], whose computational complexity is 0 (N4) , where N is the number of
neurons in the RNN, which is rather demanding. Therefore, if a prediction
scheme can be found which would outperform a common RNN prediction
scheme, without additional computational complexity, it would be of great

0-7803-5060-X/98/$10.00 0 1998 IEEE 174

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

mailto:d.mandic@ic.ac.uk
mailto:chambers@ic.ac.uk

henefit. Here, we present two such approaches, namely a posteriori predic-
tors based upon the RNN, and nested schemes, whose representative is the
I'ipelined Recurrent Neural Network (PRNN) [lo]. Further, it is shown that
these two schemes under certain conditions considerably overlap. Both of the
schemes have tolerable computational complexity, which for the a posteriori
approach, involves only an additional multiply-sum of order O(1), whereas
for the PRNN, which is a nested structure of a number of small-scale RNNs
c13mputationaI complexity is o ((M x N) ~) .

2 NARMA Processes and Recurrent Neiiral
Networks

According to [5], a nonlinear system can be defined by a NARMA difference
equation

x (t) = e (t) + h ((z (t - - 1) , . . . , x (t - - p) , e (t - l) , . . + , e (t - q)) (1)

where p denotes the order of the Autoregressive (AR) part, and q denotes
the order of the Moving Average (MA) part. A number of stochastic signal
models have been developed by appropriately defining the nonlinear function
h(.) so as the estimate 2 (t) = E (~ (t)) exhibits certain behaviour. Since the
innovation process {e@)} is not observable, the residual S(t) = z (t) - 2 (t) ,
is an emergent approximation which can be used instead of e (t) in (1). If,
in order to match the notation common in RNNs, we denote the predicted
values 2 by y, and have y (n) = k (n) , the NARMA scheme from (l), can be
further approximated as [B]

y(n) = h (z (n - 1) , . . . , x (n - p) , B (n - l) , . . . , E (n - q))
= h(.(n- l), . . . , z (n - p) , (z (n - 1) - y(n - l)), . . .

. . . I (4. - q) - Y(" - q)))

= H (z (n - l) , - . , z (n - p) , y (n - I) , - . , y (n - q)) (2)

where H is some new, nonlinear smooth function. The last equation in (2) is
now suitable for the RNN implementation, with M becoming an activation
function of the neuron, which is typically the logistic function denoted by

1
1 + e-bu

@(U) = - (3)

and will be assumed in (4). The realisation of the process (2) by an RNN is
shcwn in Figure 1. The set of equations which fully describe the RNN given
in Figure 1 is

yi((Ic) = @ (~ i (k)) , i = l , . . . , N

175

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

Figure 1: Recurrent NARMA(p,q) implementation of prediction model

where the unity element corresponds to the bias input to the neurons. The
output values of neurons in the RNN are denoted by y1 , . . , YN and external
input signal samples by s. The set of weights {wi,l(k)} for every neuron
y' 2 , i = 1, . . . , N are arranged in the weight matrix W(k).

2.1
RTRL based training of the RNN is based upon minimising the instantaneous
squared error at the output of the first neuron of the RNN [9], which can be
expressed as min(e2(n)) = min([s(n) -y1 (n)I2) , where e(n) denotes the error
at the output of the RNN, and s (n) is the teaching signal. The correction
AW(n) to the weight matrix W(n) of the RNN is calculated as

Training Process for the NARMA(p,q) Predictor

which turns out to be a recursive calculation of the gradients of the outputs
of the neurons [9, 111. In order to make the algorithm run in real-time, an

176

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

approximation has to be made, namely that for a small learning rate 7, the
fdlowing approximation

holds for slowly varying systems. However, in a class of RNN networks, where
a number of delayed output signals is fed back into the RNN (Figure l), the
approximation which has to be made is

aYl(n - i) dy1(n - i) i = 1,2, . . . ,g M aw(n) d W (n - i) ’ (7)

which might not be appropriate, even for small learning rate 7. Hence, having
in mind the importance of the signal prediction paradigm, there is a need for
another learning strategy, which would possibly overcome those difficulties
encountered in traditional RTRL learning. One solution would be to increase
the number of neurons N in the RNN, but that would involve considerably
increased computational complexity, which is O(N4) for the RNN [SI. A
schtion to the problem stated might be the Q posteriori approach, which
u1,ilises the issue of time management policy throughout the RTRL algorithm
in order to improve the prediction. Another, solution would be the PRNN
approach, whose computational complexity for A4 modules with N neurons
is O (M x N ~) << o ((M N) ~) .

2 , 2 The A Posteriori Approach for the RNN Based Pre-
diction

The output of the RNN, denoted by y, can be expressed as

Y(k) = @ (X t (k) W (4) (8)

where the input vector to the RNN can be expressed as X (k) = [{y}, 1, { s }] ~ ,
where s denotes the external input signal to be predicted. As the updated
weight matrix W(k+l) is available before the arrival of the next, i.e. updated,
input X (k + 1) to the RNN, an improved, a posteriori estimate jj can be
formed as

Y(k) = @ (Xt(k)W(k + 1)) (9)
Nclte that y(k) in (9) is, strictly speaking, no longer causal, since the elements
of the weight matrix W(k + 1) were used to calculate y(k). The (I posteriori
output value y was obtained in an iterative fashion, i.e. applying the existing
input vector X (k) to the RNN based on the newly calculated weight matrix
W(k+ 1), which is recursively calculated through the RTRL algorithm. Thus,
using a combination of recursive and iterative signal processing, an improved
prediction scheme can be applied, without substantially increased computa-
tional complexity. If the desirable scheme (9) could be made strictly causal,
anti consequently realisable, the a posteriori approach would be preferable

177

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

as compared to the a priori approach. It can be shown that the a posteriori
prediction error C(k) = y(k) - s (k) , where {i j} and { s } now build XI can be
expressed as

d (k) - @ ((a t (k) W (k))
1 + 27&Rt(k)II(k)

E (k)

The a posteriori prediction error e (k) in (10) does not comprise the terms
with the index (k + I), which makes the learning process causal. The dom-
inator in (10) is strictly greater than unity, and serves as a stabilising term,
providing the Nonlinear Normalised LMS (NNLMS) features, and may be-
come relatively big in magnitude, since the gradients of the neurons II can be
high. Hence, using an a posteriori recurrent nonlinear module in the PRNN,
it is possible to obtain lower prediction error, than using an a priori recurrent
module. Iteration (9) can be repeated, and can be shown not to diverge [12].
However, there might not be enough time between two consecutive input
samples for a sufficient number, say MI iterations. In other words, if T is the
time needed for one iteration to complete, the aim is to enable the iterative
process (9) to finish in time measure of O (T) , rather than O (M x T) . Such
a strategy is known as pipelining and is widely used in advanced computer
architectures. Using the pzpelzning strategy, a task is divided in subtasks,
each of them is represented by a module. The modules exchange their out-
put values and most often are merely cascaded. The concept of iterative and
pipelining approach is shown in Figure 2.

3 The Pipelined Recurrent Neural Network
(PRNN)

The PRNN is a modular neural network, and consists of a certain number
M of RNNs as its modules, with each module consisting of N neurons. In
the PRNN configuration, the M modules, which are RNNs, are connected as
shown in Figure 3. The (p x 1) dimensional external signal vector sT(n) =
[s (n - l), . . . , s(n - p)] is delayed by m time steps (zemI) before feeding the
module m. All the modules operate using the same weight matrix W. The
overall output signal of the PRNN is y,,t(n) = y l , l (n) , i.e. the output of
the first neuron of the first module. Thus, the overall cost function of the
PRNN becomes

M

where ei(n) is the error from module i, and a forgetting factor A, X E (0,1],
is introduced which determines the weighting of the individual modules.

178

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

i=l

-
Y.

(a) Iterative ap-
proach

module 1 module 2 module m

(b) Pipelined approach

Figure 2: From iterative to pzpelined fixed point iteration

3.1 An Analysis of the Influence of the Forgetting Fac-
tor on the Total Prediction Gain

According to the method of recursive least squares, the error criterion which
requires minimisation is

w th weighting factor 0 < p 5 1. The calculation of E (t) can be carried out
rezursively as

E(t) = PE(t - 1) + 2 (t)
However, as the processes {yl(n)}, {y2(n)}, . . . , {y,w(n)} at the output of the
mt2dules of the PRNN do not represent realisations of the same stochastic
process, the cost function (11) might not be the best choice. Indeed, the
uFdating of the weight matrix W of the PRNN can be expressed as

M
W(n + 1) = W (n) + A W (n) = W(n) + Xi-'AWi(n) (14)

,, ;-1 -

179

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

Figure 3: Pipelined recurrent neural network

where the elements of the correction A W to the weight matrix W can be
calculated as

(15)
Function (11) provides MA smoothing of its arguments (since Xi > 0 , i =
1, . . . , M , X > 0). Hence, it is the forgetting factor X that has an influence
on the learning process.

3.2 Nesting Process in the PRNN
A simple nesting scheme for functions with one variable is given by

2 = (a (x ~) = (a ((a(xm-l)) = . . . = @ (@((a(. . . (@(XI)) . . .) (16)

and can be shown under some mild conditions not to diverge. Notice that the
nesting process (16) represents an implicitly written iterative'process, which
is correspondent to the a. posteriori approach

Xi+l = @(xi) e xi+l = (a ((a(xi-1)) = @ ((a(@(. . . (@(XI)) . .) (17)

Let us therefore just show the diagram of the effects of the nesting process
for the logistic function with slope 6 = 1, depicted in Figure 4. From Figure
4, it is apparent that nesting (16) provides influence on the amplitude of its
argument. Hence, it is expected that the nesting process (16) with m stages
on [a, 61 converges towards the interval [I@'(x*)lmal 1(a'(x*)1"6] [la], which
provides the a posteriori features spatially, rather than temporally. It is now
straightforward, that a PRNN description based upon (4) exhibits nesting.

180

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

-40 -5 0 5 10

0 63

0 62
-10 -5 0 5 10

argument

Figure 4: Nested logistic nonlinearity

4 Experimental Results
I11 order to support the algorithms derived, simulations were undertaken on
a speech signal denoted by sl. The measure that was used to assess the
performance of the predictors was the forward prediction gain Rp given by

Rp 5 1OZoglo (2) dB

where 6.52 denotes the estimated variance of the speech signal { ~ (n) } , whereas
U:: denotes the estimated variance of the forward prediction error signal

Simulations undertaken on sl include LMS prediction, RLS prediction, a
priori and a posteriori RNN prediction, and a priori and a posteriori PRNN
prediction. The results of simulations are shown in a self-explanatory way in
Table 1. The relationship between the prediction gain R p and the value of X
in (11) for signal sl, having the PRNN with p = 4, M = 5 , ~ = 0.07, N = 2
is given in Figure 5(a). From Figure 5(a), the best value for the smoothing
factor X for signal sl is XOpt = 1.1, where prediction gain R p = 13.54dB. In
Figure 5(b), relationship between prediction gain Rp versus the number of
input signals to the PRNN is shown. If instead of p = 4, we put p = 1, the
results achieved are even better than with p = 4. Now, it is possible to apply
the: a posteriori approach on the a priori PRNN structure, which again takes
the benefits of the time management policy and exhibits improved results.

{4.>).

181

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

1 3 6 , , , , , , , , ,

5 ’ 2 8 .

2 1 2 6 -

6 1 2 4 -

1 2 2 -

12 ~

118-

speech signal
Rp[dB] LMS only
R p [d B] RLS only
Rp[dB] a priori RNN
Rp[dB] a posteriori RNN
Rp[dB] for a priori PRNN, p = 4, X = 1.1
Rp[dB] for a posteriori PRNN, p = 4, X = 1.1
RddBl for a posteriori PRNN, P = 1, X = 1.1

(a) Prediction gain R p versus the for-
getting factor X for sl

(b) Prediction gain R p versus the num-
ber of external inputs p for speech sig-
nal sl

S l

8.06
11.55
8.48
8.79
12.48
13.54
17.66

Figure 5: Towards optimal PRNN parameters for sl

5 Conclusions
Temporal and spatial methods to improve existing RNN predictors have
been addressed. It is shown that for an RNN architecture, the Q posteri-
or2 approach gives better results, as compared to the Q priori one. On the
other hand, nesting realised through the Pipelined Recurrent Neural Network
(PRNN) offers a spatial representation of the same problem. The a posteri-
ori approach does not involve additional order of computational complexity,
while the PRNN approach, whose computational complexity is U (M x N4)
offers improved prediction performance, whilst maintaining low computa-
tional complexity as compared to the RNN (U ((? v ~ N) ~)) . The results of
simulations support the algorithms presented.

182

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

References
[l] J. Makhoul, “Linear prediction: A tutorial overview,” Proceedings of the

IEEE, vol. 63, no. 4, pp. 561-580, 1975.

[a] G. E. Box and G. M. Jenkins, Time series: analysis: forecasting and
control. Holden-Day, second ed., 1976.

[3] J . R. Treichler, C. R. Johnson, Jr., and M. G. Larimore, Theory and
Design of Adaptive Filters. John Wiley & Sons, 1987.

,141 V. Mathews, “Adaptive polynomial filters,” IEEE Signal Processing
Magazine, vol. 8, no. 3, pp. 10-26, 1991.

(‘51 M. Priestley, Non-linear and Non-stationary Time Series Analysis. Aca-
demic Press, London, 1991.

[6] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural net-
works and robust time series prediction,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 240-254, 1994.

[7] R. M. Dillon and C. N. Manikopoulos, “Neural net nonlinear prediction
for speech data,” Electronics Letters, vol. 27, no. 10, pp. 824-826, 1991.

[SI L. Li, “Approximation theory and recurrent networks,” in Proceedings of
the International Joint Conference on Neural Networks, vol. 11, pp. 266-
271, 1992.

[3] R. Williams and D. Zipser, “A learning algorithm for continually running
fully recurrent neural networks,” Neural Computation, vol. 1, pp. 270-
280, 1989.

[10] S. Haykin and L. Li, “Nonlinear adaptive prediction of nonstationary
signals,” IEEE Transactions on Signal Processing, vol. 43, no. 2, pp. 526-
535, 1995.

[l l .] A. Prochazka and P. Sovka, eds., Signal Analysis and Prediction, ch. D.
P. Mandic, J. Baltersee, and J . A. Chambers: Non-linear Adaptive Pre-
diction of Speech with a Pipelined Recurrent Neural Network and Ad-
vanced Learning Algorithms. Birkhauser, Boston, 1998.

[l2] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Prentice-Hall Series in
Computational Mat hematics , 1983.

183

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on January 18, 2010 at 08:25 from IEEE Xplore. Restrictions apply.

