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Abstract 
We provide an analysis of nonlinear time series prediction schemes, 

from a common Recurrent Neural Network (RNN) through to the 
Pipelined Recurrent Neural Network (PRNN), which consists of a num- 
ber of nested small-scale RNNs. All these schemes are shown to  be 
suitable for Nonlinear Autoregressive Moving Average (NARMA) pre- 
diction. The time management policy of such prediction schemes is 
addressed and classified in terms of a priori and a posteriori mode of 
operation. Moreover, it is shown that the basic a priori PRNN struc- 
ture exhibits certain a posteriori features. In search for an optimal 
PRNN based predictor] some inherent features of the PRNN, such as 
nesting and the choice of cost function are addressed. It is shown that 
nesting in essence is an a posteriori technique which does not diverge. 
Simulations undertaken on a speech signal support the algorithms de- 
rived, and outperform linear Least Mean Square (LMS) and Recursive 
Least Squared (RLS) predictors. 

1 Introduction 
An important area in signal processing is time series prediction, which has 
traditionally been achieved through linear structures] such as parametric Au- 
toregressive (AR), Moving Average (MA), or Autoregressive Moving Aver- 
age (ARMA) models [l, 21. Among linear adaptive time series predictors, the 
most important examples are Least Mean Square (LMS) and Recursive Least 
Squares (RLS) predictors [3]. For stochastic signals with nonstationary statis- 
tical characteristics that cannot be adequately processed by linear predictors, 
a number of nonlinear predictors has been developed [4, 51. An important 
class of nonlinear predictors is Artificial Neural Network (ANN) based non- 
linear predictors [B, 71; in particular Recurrent Neural Network (RNN) based 
predictors have been shown to be able to represent the Nonlinear Autoregres- 
sive Moving Average (NARMA) process [8]. RNN parameters are commonly 
adapted by the use of the Real Time Recurrent Learning (RTRL) algorithm 
[g], whose computational complexity is 0 (N4) ,  where N is the number of 
neurons in the RNN, which is rather demanding. Therefore, if a prediction 
scheme can be found which would outperform a common RNN prediction 
scheme, without additional computational complexity, it would be of great 
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henefit. Here, we present two such approaches, namely a posteriori predic- 
tors based upon the RNN, and nested schemes, whose representative is the 
I'ipelined Recurrent Neural Network (PRNN) [lo]. Further, it is shown that 
these two schemes under certain conditions considerably overlap. Both of the 
schemes have tolerable computational complexity, which for the a posteriori 
approach, involves only an additional multiply-sum of order O( 1), whereas 
for the PRNN, which is a nested structure of a number of small-scale RNNs 
c13mputationaI complexity is o ( ( M  x N ) ~ ) .  

2 NARMA Processes and Recurrent Neiiral 
Networks 

According to [5], a nonlinear system can be defined by a NARMA difference 
equation 

x ( t )  = e ( t ) + h ( ( z ( t - - 1 ) , . . . , x ( t - - p ) , e ( t  - l ) , . . + , e ( t - q ) )  (1) 

where p denotes the order of the Autoregressive (AR) part, and q denotes 
the order of the Moving Average (MA) part. A number of stochastic signal 
models have been developed by appropriately defining the nonlinear function 
h( .) so as the estimate 2 ( t )  = E ( ~ ( t ) )  exhibits certain behaviour. Since the 
innovation process {e@)} is not observable, the residual S(t) = z ( t )  - 2 ( t ) ,  
is an emergent approximation which can be used instead of e ( t )  in (1). If, 
in order to match the notation common in RNNs, we denote the predicted 
values 2 by y, and have y ( n )  = k ( n ) ,  the NARMA scheme from (l), can be 
further approximated as [B] 

y(n) = h ( z ( n -  1 ) , . . . , x ( n - p ) , B ( n -  l ) , . . . , E ( n - q ) )  
= h(.(n- l), . . . , z ( n  - p ) ,  ( z ( n  - 1) - y(n - l)), . . . 

. . . I (4. - q )  - Y(" - q ) ) )  

= H ( z ( n -  l ) , - . , z ( n - p ) , y ( n -  I ) , - . , y ( n - q ) )  (2) 

where H is some new, nonlinear smooth function. The last equation in (2) is 
now suitable for the RNN implementation, with M becoming an activation 
function of the neuron, which is typically the logistic function denoted by 

1 
1 + e-bu 

@(U) = - (3) 

and will be assumed in (4). The realisation of the process (2) by an RNN is 
shcwn in Figure 1. The set of equations which fully describe the RNN given 
in Figure 1 is 

yi((Ic) = @ ( ~ i ( k ) ) ,  i = l , . . . , N  
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Figure 1: Recurrent NARMA(p,q) implementation of prediction model 

where the unity element corresponds to the bias input to the neurons. The 
output values of neurons in the RNN are denoted by y1 , . . , YN and external 
input signal samples by s. The set of weights {wi,l(k)} for every neuron 
y' 2 ,  i = 1, . . . , N are arranged in the weight matrix W(k). 

2.1 
RTRL based training of the RNN is based upon minimising the instantaneous 
squared error at the output of the first neuron of the RNN [9], which can be 
expressed as min(e2(n)) = min([s(n) -y1 (n)I2) ,  where e(n) denotes the error 
at the output of the RNN, and s (n)  is the teaching signal. The correction 
AW(n) to the weight matrix W(n)  of the RNN is calculated as 

Training Process for the NARMA(p,q) Predictor 

which turns out to be a recursive calculation of the gradients of the outputs 
of the neurons [9, 111. In order to make the algorithm run in real-time, an 
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approximation has to be made, namely that for a small learning rate 7, the 
fdlowing approximation 

holds for slowly varying systems. However, in a class of RNN networks, where 
a number of delayed output signals is fed back into the RNN (Figure l),  the 
approximation which has to be made is 

aYl(n - i )  dy1(n - i )  i =  1,2, . . . ,g M aw(n) d W ( n - i )  ’ (7) 

which might not be appropriate, even for small learning rate 7. Hence, having 
in mind the importance of the signal prediction paradigm, there is a need for 
another learning strategy, which would possibly overcome those difficulties 
encountered in traditional RTRL learning. One solution would be to increase 
the number of neurons N in the RNN, but that would involve considerably 
increased computational complexity, which is O(N4) for the RNN [SI. A 
schtion to the problem stated might be the Q posteriori approach, which 
u1,ilises the issue of time management policy throughout the RTRL algorithm 
in order to improve the prediction. Another, solution would be the PRNN 
approach, whose computational complexity for A4 modules with N neurons 
is O ( M  x N ~ )  << o ( ( M N ) ~ ) .  

2 , 2  The A Posteriori Approach for the RNN Based Pre- 
diction 

The output of the RNN, denoted by y, can be expressed as 

Y(k) = @ ( X t ( k ) W ( 4 )  (8) 

where the input vector to the RNN can be expressed as X ( k )  = [{y}, 1, { s } ] ~ ,  
where s denotes the external input signal to be predicted. As the updated 
weight matrix W(k+l) is available before the arrival of the next, i.e. updated, 
input X ( k  + 1) to the RNN, an improved, a posteriori estimate jj can be 
formed as 

Y(k) = @ (Xt(k)W(k + 1)) (9) 
Nclte that y(k) in (9) is, strictly speaking, no longer causal, since the elements 
of the weight matrix W(k + 1) were used to calculate y(k).  The (I posteriori 
output value y was obtained in an iterative fashion, i.e. applying the existing 
input vector X ( k )  to the RNN based on the newly calculated weight matrix 
W(k+ 1),  which is recursively calculated through the RTRL algorithm. Thus, 
using a combination of recursive and iterative signal processing, an improved 
prediction scheme can be applied, without substantially increased computa- 
tional complexity. If the desirable scheme (9) could be made strictly causal, 
anti consequently realisable, the a posteriori approach would be preferable 
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as compared to the a priori approach. It can be shown that the a posteriori 
prediction error C(k) = y(k)  - s ( k ) ,  where {i j}  and { s }  now build XI can be 
expressed as 

d ( k ) -  @ ( ( a t ( k ) W ( k ) )  
1 + 27&Rt(k)II(k)  

E ( k )  

The a posteriori prediction error e ( k )  in (10) does not comprise the terms 
with the index ( k  + I), which makes the learning process causal. The dom- 
inator in (10) is strictly greater than unity, and serves as a stabilising term, 
providing the Nonlinear Normalised LMS (NNLMS) features, and may be- 
come relatively big in magnitude, since the gradients of the neurons II can be 
high. Hence, using an a posteriori recurrent nonlinear module in the PRNN, 
it is possible to obtain lower prediction error, than using an a priori recurrent 
module. Iteration (9) can be repeated, and can be shown not to diverge [12]. 
However, there might not be enough time between two consecutive input 
samples for a sufficient number, say MI  iterations. In other words, if T is the 
time needed for one iteration to complete, the aim is to enable the iterative 
process (9) to finish in time measure of O ( T ) ,  rather than O ( M  x T ) .  Such 
a strategy is known as pipelining and is widely used in advanced computer 
architectures. Using the pzpelzning strategy, a task is divided in subtasks, 
each of them is represented by a module. The modules exchange their out- 
put values and most often are merely cascaded. The concept of iterative and 
pipelining approach is shown in Figure 2. 

3 The Pipelined Recurrent Neural Network 
(PRNN) 

The PRNN is a modular neural network, and consists of a certain number 
M of RNNs as its modules, with each module consisting of N neurons. In 
the PRNN configuration, the M modules, which are RNNs, are connected as 
shown in Figure 3.  The ( p  x 1) dimensional external signal vector sT(n)  = 
[s (n  - l), . . . , s(n - p ) ]  is delayed by m time steps (zemI) before feeding the 
module m. All the modules operate using the same weight matrix W. The 
overall output signal of the PRNN is y,,t(n) = y l , l ( n ) ,  i.e. the output of 
the first neuron of the first module. Thus, the overall cost function of the 
PRNN becomes 

M 

where ei(n) is the error from module i, and a forgetting factor A, X E (0,1], 
is introduced which determines the weighting of the individual modules. 
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i=l 

- 
Y. 

(a) Iterative ap- 
proach 

module 1 module 2 module m 

(b) Pipelined approach 

Figure 2: From iterative to pzpelined fixed point iteration 

3.1 An Analysis of the Influence of the Forgetting Fac- 
tor on the Total Prediction Gain 

According to the method of recursive least squares, the error criterion which 
requires minimisation is 

w th weighting factor 0 < p 5 1. The calculation of E ( t )  can be carried out 
rezursively as 

E( t )  = PE(t - 1) + 2 ( t )  
However, as the processes {yl(n)}, {y2(n)}, . . . , {y,w(n)} at the output of the 
mt2dules of the PRNN do not represent realisations of the same stochastic 
process, the cost function (11) might not be the best choice. Indeed, the 
uFdating of the weight matrix W of the PRNN can be expressed as 

M 
W(n + 1) = W ( n )  + A W ( n )  = W(n)  + Xi-'AWi(n) (14) 

,, ;-1 - 
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Figure 3: Pipelined recurrent neural network 

where the elements of the correction A W  to the weight matrix W can be 
calculated as 

(15) 
Function (11) provides MA smoothing of its arguments (since Xi > 0 , i  = 
1, . . . , M ,  X > 0). Hence, it is the forgetting factor X that has an influence 
on the learning process. 

3.2 Nesting Process in the PRNN 
A simple nesting scheme for functions with one variable is given by 

2 = (a ( x ~ )  = (a ((a(xm-l)) = . . . = @ (@((a(. . . (@(XI)) . . .) (16) 

and can be shown under some mild conditions not to diverge. Notice that the 
nesting process (16) represents an implicitly written iterative'process, which 
is correspondent to the a. posteriori approach 

Xi+l = @(xi) e xi+l = (a ((a(xi-1)) = @ ((a(@(. . . (@(XI)) . .) (17) 

Let us therefore just show the diagram of the effects of the nesting process 
for the logistic function with slope 6 = 1, depicted in Figure 4. From Figure 
4, it is apparent that nesting (16) provides influence on the amplitude of its 
argument. Hence, it is expected that the nesting process (16) with m stages 
on [a, 61 converges towards the interval [I@'(x*)lmal 1(a'(x*)1"6] [la], which 
provides the a posteriori features spatially, rather than temporally. It is now 
straightforward, that a PRNN description based upon (4) exhibits nesting. 
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Figure 4: Nested logistic nonlinearity 

4 Experimental Results 
I11 order to support the algorithms derived, simulations were undertaken on 
a speech signal denoted by sl. The measure that was used to assess the 
performance of the predictors was the forward prediction gain Rp given by 

Rp 5 1OZoglo (2) dB 

where 6.52 denotes the estimated variance of the speech signal { ~ ( n ) } ,  whereas 
U:: denotes the estimated variance of the forward prediction error signal 

Simulations undertaken on sl include LMS prediction, RLS prediction, a 
priori and a posteriori RNN prediction, and a priori and a posteriori PRNN 
prediction. The results of simulations are shown in a self-explanatory way in 
Table 1. The relationship between the prediction gain R p  and the value of X 
in (11) for signal sl,  having the PRNN with p = 4, M = 5 , ~  = 0.07, N = 2 
is given in Figure 5(a). From Figure 5(a), the best value for the smoothing 
factor X for signal sl is XOpt = 1.1, where prediction gain R p  = 13.54dB. In 
Figure 5(b), relationship between prediction gain Rp versus the number of 
input signals to the PRNN is shown. If instead of p = 4, we put p = 1, the 
results achieved are even better than with p = 4. Now, it is possible to apply 
the: a posteriori approach on the a priori PRNN structure, which again takes 
the benefits of the time management policy and exhibits improved results. 

{4.>). 
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speech signal 
Rp[dB] LMS only 
R p [ d B ]  RLS only 
Rp[dB] a priori RNN 
Rp[dB] a posteriori RNN 
Rp[dB] for a priori PRNN, p = 4, X = 1.1 
Rp[dB] for a posteriori PRNN, p = 4, X = 1.1 
RddBl for a posteriori PRNN, P = 1, X = 1.1 

(a) Prediction gain R p  versus the for- 
getting factor X for sl 

(b) Prediction gain R p  versus the num- 
ber of external inputs p for speech sig- 
nal sl 

S l  

8.06 
11.55 
8.48 
8.79 
12.48 
13.54 
17.66 

Figure 5: Towards optimal PRNN parameters for sl 

5 Conclusions 
Temporal and spatial methods to improve existing RNN predictors have 
been addressed. It is shown that for an RNN architecture, the Q posteri- 
or2 approach gives better results, as compared to the Q priori one. On the 
other hand, nesting realised through the Pipelined Recurrent Neural Network 
(PRNN) offers a spatial representation of the same problem. The a posteri- 
ori approach does not involve additional order of computational complexity, 
while the PRNN approach, whose computational complexity is U ( M  x N4) 
offers improved prediction performance, whilst maintaining low computa- 
tional complexity as compared to the RNN ( U ( ( ? v ~ N ) ~ ) ) .  The results of 
simulations support the algorithms presented. 
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