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ABSTRACT 
Constant Modulus algorithms based on a determinis- 
tic error criterion are presented. Soft constraint satis- 
faction methods yield a general family of blind equal- 
ization algorithms employing nonlinear functions of 
the equalizer output which must satisfy certain con- 
ditions. The algorithms are also extended to cover 
fractionally-spaced blind equalization. A normalization 
factor which appears as a result of the deterministic for- 
mulation of the problem helps the blind equalizer im- 
prove its performance. Also, the family supports a wide 
range of nonlinear functions. Extensive simulations are 
presented to reveal convergence characteristics which 
also include signals from the Signal Processing Infor- 
mation Base (SPIB). 

1. INTRODUCTION 

Blind equalization has been the focus of extensive re- 
search effort [l, 2, 31 because the need to transmit a 
training sequence so that the equalizer can remove the 
effect of Inter-Symbol-Interference (ISI) . Unless com- 
batted, IS1 causes decision errors in receivers. So far 
numerous problems, the most serious of which is the ex- 
istence of undesirable local minima [4], have impeded 
the exploitation of blind equalizers in many commer- 
cial systems. Recently, it has been shown that [5] glob- 
ally convergent blind equalizers can be built within the 
fractionally-spaced configuration. However, important 
aspects such as the numerical conditioning for various 
nonlinear functions of the output and stability associ- 
ated with the power level of the input require further 
investigation. 

In this paper, we develop a general family of blind 
equalization algorithms which is less sensitive to input 
power, local variations at the channel output and has 
flexibility in choosing the nonlinear function. Figure 1 
shows a general blind equalizer. We assume that the 
rate of transmitted symbols, s k ,  is T. If p = 1, then 
the equalizer is single channel and termed “T-spaced” 
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since the channel output is sampled at the symbol rate. 
If p 2 2, we have a fractionally-spaced equalizer which 
corresponds to sampling the channel output at a rate 
T / p .  In general, it is necessary to oversample the chan- 
nel output at a frequency greater than the bandwidth 
of the transmit pulses, which is generally higher than 
the Nyquist rate due to pulse shaping, so that undesir- 
able effects in T-sampled equalization do not exist. 

2. DETERMINISTIC OPTIMIZATION 
CRITERION 

Blind equalization algorithms can be derived from a 
deterministic optimization criterion. Consider the fol- 
lowing optimization problem, also known as the prin- 
ciple of minimum disturbance [6]: Determine the tap- 
weight vector of dimension N at  time k ,  w k ,  given 
the tap-input vectors x k ,  X k - 1 ,  . . ., where X F  = 
[Xk  . . . X k - N + l ] ,  and desired responses d k ,  d k - 1 ,  . . . , 
so as to minimize the squared Euclidean norm of the 
change in the tap-weight vector w k ,  

subject to the constraints 

(2) 
H 

x k - m + l  w k  = d k - m + l ,  

where m < N and ( . ) H  denotes Hermitian transpose. 
If the training sequence is known to the receiver, the so- 
lution of the optimization problem leads to the Under- 
determined Recursive Least-Squares (URLS) algorithm 
[7], also known as the Affine Projection algorithm. In 
blind equalization the training sequence is not known 
to the receiver, and hence the desired response must 
be obtained from pertinent measurements in the re- 
ceiver. In this paper, we propose the following choice 
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factor ( X E , k X , , k ) - l  can significantly affect the per- 
formance as shown in [8]. The simulations presented in 
this paper also illustrate this fact. 

3. FRACTIONALLY-SPACED EQUALIZERS 
d k - m + l  = $(R ,  Y [ k - l ] , k - m + l )  (3) 

where y [ i l , j  = W i H X j ,  $(.) is a nonlinear function 
which satisfies certain conditions and R is a con- 
stant chosen appropriately for the particular modula- 
tion scheme employed in the transmission. In the se- 
quel we use yk to denote y [ k - l j , k .  The solution of the 
above optimization problem via Lagrange multipliers 
yields 

wk = w k - 1  + X m , k  ( X E , k x m , k ) - ' & ,  (4) 

where the m x 1 error vector &k and the N x m matrix 
(vector aggregate of x k )  X m , k  are 

(5) 

(6) 

A 
Xm,k = [xk X k - 1  " '  X k - m + l ] ,  

&k 4 2 ) k  - x E , k w k - l l  

H vk [$(& Y [ k - l ] , k )  ' '  ' $(& Y [ k - l ] , k - m + l ) ]  . (7) 
A stepsize is also introduced to maintain the stability 
of the algorithm. Hence, we have the update 

wk = w k - 1  + P X m , k ( X E , k X m , k ) - ' f k .  (8) 

A similar formulation has also appeared in [3] where 
only the signum function is considered in V and 
the resulting algorithm is interpreted as a projec- 
tion onto a circle. The family of functions which 
satisfy the requirements for convergence constitutes 
the soft-constraint satisfaction algorithms because at 
each iteration the constraints in (2) are dynamically 
changed. Some special cases may be identified: For 
m = 1, R = E { l ~ k l ~ ~ ) / E { I ~ k l ~ )  and $ ( R , y k )  = 
y k  ( R l y k l ( p - 2 )  - l y k 1 ( 2 p - 2 )  + 1) we can identify the nor- 
malized version of the Godard algorithm [l]. For 
m = 1, R = E ( I s k l 2 } / E { I s k l )  and $ ( R , Y k )  = 
R sgn(yk), we have the normalized version of the 
Sat0 algorithm [2]. New nonlinear functions can also 
be introduced. For example, when m = 1, R = 
E { l S k l 3 }  / E  { lSkl2} and 4(R,  Y k )  = (2 - I Y k l / R ) Y k j  
the SCS-1 algorithm in [8] results. Another choice 
could be R112 = E { ISkI'} / E  { Isk 13/ ' }  and 4(R,  yk) = 
R'/2sgn(yk)lyk11/2, which will be termed as the Square- 
root SCS (SqSCS) algorithm. 

The methodology in this section is reminiscent of 
Bussgang techniques for blind equalization, for which 
the memoryless nonlinear function $(.) is thought of 
estimating the conditional mean E {sk 1 y k )  [9]. If a de- 
terministic formulation of the problem is adopted, the 

The concept of soft constrained satisfaction can be ex- 
tended to fractionally-spaced equalizers. The Single- 
Input-Multiple-Output (SIMO) system of Figure 1 rep- 
resents a fractionally sampled equalizer. The opti- 
mization problem of the previous section can be ex- 
tended to cover the multichannel setup. In this case, let 

and y k  = x F w k - 1 .  The nonlinear functions can be 
used without any alteration. 

H - W(')  H . . . & y  , x; = [ X p H  ...x y] 
wk - [  k 1 

4. SIMULATIONS 

The proposed algorithms have been tested on the arti- 
ficially created data and real data sets which are being 
placed in the Signal Processing Information Base. In 
particular, the simulations with the Godard ( p  = 2), 
normalized Godard ( p  = a), normalized Sato, SCS- 
1 and SqSCS algorithms with m = 1 have been pre- 
sented. The step-sizes of all algorithms have been cho- 
sen to give the fastest convergence in each case. 

4.1. Artifically Created Data Sets 

We have used a 2-channel SIMO structure to simulate a 
fractionally-spaced blind equalizer which has an over- 
sampling factor of 2. BPSK modulation technique is 
assumed. 
Experiment I: The mixed-phase subchannels in the 
upper and lower branches of the communication chan- 
nel are respectively chosen to be 0.242, -0.204, -0.159, 
0.142, 0.157 and 0.216, 0.508, 0.848, 0.530, 0.311. The 
equalizer has 4 taps in each subchannel. All algorithms 
start from the same arbitrary initial condition. The 
signal-to-noise-ratio in each subchannel is set to 10 dB 
and the results of 20 independent trials are averaged to 
obtain the Open-Eye Measure (OEM) which is defined 
an 

(9) 

where T k  represents the combined channel and equal- 
izer. If OEM(k) < OdB then the eye is open and IS1 has 
no effect in the decision process. If OEM(k) > OdB, the 
eye is closed and hence thc IS1 left after equalization 
will cause decision errors. The evolution of thc OEMs 
for the proposed algorithms is shown in Figure 2 . 
Experiment 11: In this experiment a common zero is 
assumed between the channels. The upper and lower 
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subchannels are assumed to be 0.197, 0.586, 0.960, 
0.705, 0.217 and 0.179, 0.422, 0.706, 0.440, 0.2588 re- 
spectively. There are common zeros at 1.5erjo.7r. The 
equalizer has 4 taps in each subchannel. Center-tap 
initialization is used in each subchannel. The results of 
20 independent trials are averaged to obtain the OEM 
curves presented in Figure 3. 

When common zeros exist between channels, the 
problem is equivalent to T-spaced equalization of the 
common transfer function [lo]. Hence, the Godard al- 
gorithm may fail to converge to the global optimum 
which is the possible cause of slow convergence of this 
case in the simulations. 

The experiments show that SCS algorithms perform 
better than the unnormalized algorithms. Also a dis- 
continuous nonlinearity as in the Sato or Normalized 
Sat0 algorithm is not desirable. It can also be con- 
cluded that the performance is unlikely to depend on 
the choice of the nonlinear function. Therefore, the one 
with better numerical properties could be chosen. 

4.2. SPIB Signals 

In this part, the algorithms are tested with the real 
data sets obtained from the SPIB database defined in 
the appendix of [ll]. A V.29 constellation modem se- 
quence is chosen. The channel output is sampled twice 
faster than the symbol period. The power spectral den- 
sity and constellation of the channel output are shown 
in Figure 4. The equalizer has 8 taps in each sub- 
channel. The constellations at the equalizer output in 
the steady-state for the Godard, Normalized Godard, 
SCS-1 and SqSCS algorithms can be seen in Figure 5. 
Although some carrier offset remains in the data set, 
all algorithms are able to open the channel eye. 

5. CONCLUSIONS 

A family of blind equalization algorithms is proposed 
for T-spaced and fractionally spaced equalizers. Better 
performance in realistic situations, flexibility in choos- 
ing the nonlinear function and less sensitivity to the 
input power level are the essential features of the new 
family. 
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Figure 1: SIMO structure for fractionally-spaced equaliza- 
tion. 
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Figure 4: Characteristics of the SPIB modem channel. Figure 2: OEMs of all algorithms for Experiment I. 
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Figure 3: OEMs of all algorithms for Experiment 11. Figure 5 :  Output Constellations for the Godard, Normal- 
ized Godard, SCS-1 and SqSCS algorithms. 
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